Appendi x A

A New Rel ati onal Al gebr a

| nt roducti on

Motivation and justification
<«REMOVE», <«RENAME», and <«COVPOSE»
Treating operators as relations
Formal definitions

How Tutorial D builds on A

I NTRODUCTI ON

In this appendi x, we describe a new relational algebra that we call
A. The nane Ais a doubly recursive acronym It stands for
ALGEBRA, which in turn stands for A Logical Genesis Explains Basic
Rel ati onal Al gebra. As this expanded nane suggests, A has been
designed in such a way as to enphasi ze, perhaps nore clearly than
previ ous al gebras have done, its close relationship to and solid
foundation in the discipline of predicate logic. In addition, the
abbrevi ated nane A has pl easing connotations of beginning, basis,
foundation, sinplicity, and the Iike——not to nention that it is an
obvi ous precursor to D.

The al gebra A differs from Codd' s original algebra [20-22] in
four principal respects:

e Cartesian product (TIMES) is replaced by a natural join
operator that, appealing to its counterpart in predicate |ogic,
we call sinply «AND». The original TIMES becones nerely a
speci al case of «<AND». Note: W adopt the convention of using
solid arrowheads « and » to delimt A operator nanmes, as in
<AND», in order to distinguish those operators from operators
with the sane nane in predicate |logic or Tutorial D or both.

Al so, in the case of «AND» in particular, do not be msled by
the nane: The <AND» operator of A is, of course, a relational
operator (it operates on relations and returns a relation),
whereas its predicate logic and Tutorial D counterparts are

| ogi cal operators (they operate on propositions or, nore
generally, predicates and return a truth value). Anal ogous
remarks apply to the A operators «OR» and «NOI» as well (see
the next two bullet itens).

e UNION is replaced by a nore general «OR® operator that does not
require its operands to be of the sane type. The original
UNI ON becones nerely a special case of «OR».

Copyright © 2005 C. J. Date and Hugh Darwen page a.1

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

e W include a relational conplenent operator, «NOT». The
availability of «NOT» allows us to drop the relational
di fference operator (M NUS), since that operator can easily be
expressed in terns of <«AND» and «NOT».

e W are able to dispense with restrict (WHERE), EXTEND, and
SUMVARI ZE, since these operators all becone further special

cases of <AND». Note: EXTEND and SUVMARI ZE were not i ncl uded
in Codd' s original al gebra but were added subsequently [132].

In addition to «<AND», «OR», and «NOTI», A includes three
operators call ed «<RENAME», <«REMOVE», and «COMPOSE», which are
di scussed in the next section but one. It also includes a
transitive closure operator, <«TCLOSE»; however, this operator is
essentially identical to TCLOSE as discussed in Chapters 2 and 6,
and we have little nore to say about it in this appendi x.

MOT1 VATI ON AND JUSTI FI CATI ON

In this section we explain our reasons for developing A and justify
the departures from Codd' s al gebra identified in the previous
section. Qur explanations and notation are deliberately not too
formal (formal definitions appear in a later section). In
particul ar, we show tuples not as sets of <A T,V> triples, as the
formal apparatus of Chapter 4 would require, but as sinple
commal i sts of val ues encl osed in angle brackets. For exanple, we
use the expression <EX,DX> to nmean a 2-tuple in which EX denotes a
certain enpl oyee and DX a certain departnent.

Since we often appeal in what follows to ideas from predicate
| ogi ¢, using natural |anguage predicates as exanples, a brief note
on the term nology we use in that connection is in order:

e First, where our exanples include operands that are relvar
references, the predicates for the corresponding relvars are
rel var predicates as described in Chapter 2. For exanple, the
predi cate "Enpl oyee E works in departnent D' m ght be the
rel var predicate for a relvar called WORKS I N

e W refer to the paraneters of a predicate as its free
variables.' For exanple, in the predicate "Enpl oyee E works in
departnment D," E and D are free vari abl es.

e Second, we use Greek derivatives involving the suffix -adic
when referring to the nunber of free variables in a predicate,
but Latin ones involving the suffix -ary when referring to the
degree of a relation. For exanple, the predicate "Enpl oyee E
works in departnent D' is dyadic, while a relation
corresponding to that predicate is binary.

W apol ogi ze for this slight terninological inconsistency, but in fact—as we
have di scussed in detail elsewhere [78] —there seens to be al nbst no consensus
on the use of terms in |ogic textbooks either.

Copyright © 2005 C. J. Date and Hugh Darwen page a.?2

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

The al gebra A has been notivated by certain general objectives,
the foll ow ng anong t hem

e For psychol ogi cal reasons, we sought a collection of operators
with inmediate counterparts in logic and with | ess reliance on
set theory in their nonenclature. W feel that rel ational
theory is better taught and understood this way; indeed, we
have been di smayed at the w despread | ack of appreciation in
t he database community at |arge of the |ogical foundations of
rel ational theory, and we think it likely that this |ack has
contributed to the deficiencies we observe in avail able
rel ational (or woul d-be relational) technol ogy.

e Previous al gebras have had nore than one operator corresponding
to logical AND. W thought this apparent redundancy worth
| ooking into, with a viewto elimnating it.

e W wanted all of the relational operators of Tutorial D to be
mappabl e to expressions in A for conveni ence and al so for our
own satisfaction (and we would strongly recormmend that the sane
be true for any industrial strength D as well). Full details
of the mappings in question are deferred to the final section
of this appendix, but sone idea of what is involved can be
found in exanples prior to that section.

We now proceed to justify the four principal respects in which
A differs from previous al gebras.

Di spensing with TIMES

In logic, when two predicates are connected by AND, attention nust
be paid to the nanmes of the free variables. Any free variable nane
that appears in both predi cates nust be understood to stand for the
sanme thing when it consequently appears nore than once in the
resulting predicate. For exanple, consider the natural |anguage
predi cates "Enpl oyee E works in departnent D' and "Enpl oyee E works

on project J." The AND of these two predicates yields a triadic
predi cate, not a tetradic one: nanely, "Enployee E works in
departnent D and enpl oyee E works on project J." This latter

predi cate can perhaps be abbreviated to just "Enployee E works in
departnent D and on project J," to stress the fact that we cannot
substitute sonme particular enployee for the E that works in
departnment D without at the sanme tinme substituting that very sane
enpl oyee for the E that works on project J. This observation
regarding free variable nanes |lies at the heart of the well-known

natural join operator (the <AND» operator in A).

As for the classical TIMES operator, it is of course just a
speci al case of natural join (which hereinafter we abbreviate to
sinply join). More precisely, TIMES corresponds to the AND of two
predi cates that have no free variables in common—f or exanpl e,
"Enpl oyee E works in departnent D and project J has budget B."

TI MES as such can thus be discarded.

Copyright © 2005 C. J. Date and Hugh Darwen page a.3

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

W return for a nonment to the predicate "Enployee E works in
departnent D and on project J" to nake another point. As already
noted, that formulation of the predicate is really an abbreviation.

Now, it m ght be abbreviated still further, to just "Enployee E
works in departnent D on project J." However, that further
abbreviation could lead to the erroneous conclusion that project J
is sonehow "in" departnent D. In reference [21], Codd

characterized this kind of error as the connection trap, but it has
since becone known, at least in sone circles, as the join trap

I nstead—rather unfairly, we feel, since it is not unique to join
in particular, nor to relational operators in general. 1In fact, it
was precisely Codd's point in reference [21] that the error is nore
likely to arise in a nonrelational context than it is in a

rel ati onal one.

D spensing with UN ON

We can conbi ne natural |anguage predicates wwth OR as well as AND
Thus, there is a ternary relation corresponding to the triadic
predi cate "Enpl oyee E works in departnent D or enpl oyee E works on
project J." If enployee EX works in departnent DX, then <EX DX j>
is atuple in the body of this relation for all possible projects
j, regardl ess of whether enployee EX actually works on project |
(and regardl ess of whether there is even a project j in the conpany
at this tinme). Likewse, if enployee EX works on project JX, then
<EX;d,JX> is a tuple in the body of this relation for all possible
departnents d, regardl ess of whether enployee EX actually works in
departnment d (and regardl ess of whether there is even a departnent
d in the conpany at this tine).

Just as we introduce <«AND» as the A counterpart of AND,
therefore, we introduce «OR as the A counterpart of OR As for
the classical UNION operator, it is of course just a special case
of «OR». More precisely, UNION corresponds to the OR of two
predi cates that have exactly the sane free variabl es—for exanpl e,

"Enpl oyee E works in departnent D or enployee Eis on |loan to
departnment D." UNON as such can thus be discarded.

Note: We do not concern ourselves here wth the conputationa
difficulties that m ght arise fromour generalization of Codd's
UNI ON, because at this point we are only defining an al gebra.
Various safety nechani snms can be (and normally are) inposed in
practice to circunmvent such difficulties. For simlar reasons, we
al so do not concern ourselves with the high degree of redundancy
that nost relations produced by «OR» will exhibit.

Di spensi ng with M NUS

Let WORKS IN be a relation with attributes E and D, where E is an
enpl oyee and D is a departnment, and | et the correspondi ng predicate
be "Enpl oyee E works in departnment D." Then the |ogical conplenent
(«NOT») of this relation has a body that consists of all possible

Copyright © 2005 C. J. Date and Hugh Darwen page a. 4

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

tuples of the form<E D> such that it is not the case that enployee
E works in departnment D. Note: Conputational difficulties arise

here as they did with «OR», but again we need not concern ourselves
with themat this juncture.

To see that M NUS can now be di scarded, consider the follow ng
exanple. Let WORKS IN be as above; |let WORKS ON be a relation with
attributes E and J, where J is a project; and |let the predicate
correspondi ng to WORKS ON be "Enpl oyee E works on project J." Now
consi der the unary relation corresponding to the nonadi c predicate
"Enpl oyee E works in sone departnent but works on no project at
all.” 1In Codd' s algebra, we could obtain this relation by
projecting both WORKS I N and WORKS _ON over their E attributes and
then taking the appropriate difference. In A we first project
WORKS ON over E (see the next section for a discussion of
projection), and then we take the «NOTI» of that projection; the
correspondi ng predicate is "There does not exist a project such
t hat enpl oyee E works on that project.” This relation can then be
joined ("<ANDred") with WORKS IN, and the result projected over E
to obtain the desired final result.

Di spensing with restrict (WHERE), EXTEND, and SUWMVARI ZE

Restrict (WHERE), EXTEND, and SUVWMARI ZE all require certain
operators to be invoked as part of their execution. |In the case of
restrict, the operators in question return values (truth values, to
be precise) that are used to disqualify certain tuples from
appearing in the result relation; in the case of EXTEND and
SUMVARI ZE, they return values that are used as the basis for
defining certain attributes in the result relation.

It occurred to us that it nade sense, and coul d possibly be
useful, to treat such operators as relations. Consider an operator
Qo that is in fact a scalar function (a scalar function is an
operator for which every valid invocation returns exactly one
result and that result is a scalar value). Suppose Op has n
paraneters. Then Qp can be treated as a relation with n+l
attri butes, one for each paraneter and one for the result. The
attri butes corresponding to the paraneters clearly forma key for
this relation; however, that key is not necessarily the only one.
For exanple, let PLUS be a relation with attributes X, Y, and Z,
each of type INTECGER, corresponding to the scalar function "+" of
integer arithnetic and to the predicate "X + Y = Z." Then each of
{X, Y}, {Y,2Z}, and {Z, X} is a key for relation PLUS; further, that
relation contains exactly one 3-tuple <x,y,z> for every possible
conbi nation of values x, y, and z that satisfies the predicate
(i.e., such that x +y = z).

Note, incidentally, that the relation PLUS can be regarded as
an exanple of what in Chapters 5 and 6 we referred to as a "rel con”
or relation constant: It is nanmed, like a relvar, but unlike a
relvar it has a value that does not change over tine. O course,

Copyright © 2005 C. J. Date and Hugh Darwen page a.5

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

anal gous remarks apply to the relational representation of any
function; the keys discussed in the previous paragraph are thus
keys for a "relcon,” not a relvar.

Let us take a closer |ook at what is going on here. A scalar
function is a special case of a relation, of course, as the PLUS
exanple illustrates. 1In fact, any relation can al ways be regarded
as an operator that maps from sone subset of its attributes to the
rest; and, if the mapping in question is a functional (i.e., many-
to-one) mapping specifically, then the relation can be regarded as
a function. |In fact, since a set of n elenents has 2» subsets, a
rel ati on of degree n can be regarded as representing 2~ different
operators, sone of which will be functions and sonme not (in
general). For exanple, PLUS can be regarded, anong other things,
as an operator that maps fromZ to X and Y—but of course that
particul ar mapping is not a functional one (the functiona

dependencies Z - X and Z — Y do not hold), and the correspondi ng
operator is thus not a function.

W now claimthat, given the fact that operators can be treated
as relations, and given also the availability of the A operators
<AND», <«REMOVE», and <«RENAME» (the latter two still to be
di scussed), it is indeed the case that we can dispense with

restrict, EXTEND, and SUMVARI ZE. W will justify this claimin the
next section but one.

<«REMOVE», <«RENAME», AND <«COVPOSE»

<REMOVE»
<«REMOVE»r is the A counterpart to the existential quantifier of
predicate logic. It corresponds to Codd's project. However, it

differs fromproject in that it specifies, not an attribute (or
attributes, plural) to be projected over, but rather an attribute
to be "projected away"; it is equivalent to projecting the relation
i n question over all of its attributes except the one specified.
Qur notivation for this inversion, so to speak, with respect to
Codd's project is a psychol ogical one—projecting a relation with
(say) attributes X and Y over attribute X is equivalent to

exi stentially quantifying over attribute Y. For exanple, the
projection of WORKS IN over E corresponds to the natural |anguage
predi cate "There exists sonme departnent D such that enployee E
works in departnent D." We thus feel that <«REMOVE» is

psychol ogically closer to our foundation in |ogic than project is.
The Third Mani festo, however, explicitly requires the | anguage D
not to arbitrate in this matter; rather, projection over specified
attri butes and projection over all except specified attributes are
required to be equally easy to express.

Copyright © 2005 C. J. Date and Hugh Darwen page a.6

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<«RENANVE»

The purpose of <«RENAMEr is, |oosely, to renane sone attribute of
sonme relation. More precisely, the «RENAMEr operator takes a given
relation and returns another that is identical to the given one
except that one of its attributes has a different nane. Such an
operator is required? in any concrete syntax for relationa
expressions in which attributes are distinguished by name, as they
are in A (and D).

<«COVPOSE»

In addition to the operators discussed so far—<AND», <«OR», <NOT»,
<«REMOVE», and <RENAME»—we have al | owed oursel ves the |uxury (sone
m ght think) of including a "macro" operator called <«COVPCSE».
<«COVWPCSE» is a conbination of «AND» and <«REMOVE», in which

attri butes common to the "<ANDred" rel ations are subsequently
"<«REMOVErd." The nane «COVPCSE» is neant to be suggestive of the
fact that relational conposition is a natural generalization of
functional conposition. (In case you are not famliar with this

| atter notion, the conposition of two functions f(...) and g(...),
in that order, is the function f(g(...)).) Note: Codd did in fact
include a relational conposition operator in his earliest papers

[20-21] but for some reason subsequently discarded it; we find it
useful in support of our desire to treat operators as relations.
To be specific, it turns out that a certain degenerate form of

conposition can be used to sinulate the expression of operator
i nvocations, as will be seen in the next section.

Cl osi ng Renar ks

It should be obvious that Ais relationally conplete [22].

Previ ous al gebras have needed six operators for this purpose
(typically RENAME, restrict, project, TIMES, UNION, and M NUS); we
have reduced that nunber to five. Moreover, thanks to our
observation that operators can be treated as rel ations, we have

al so avoi ded the need for EXTEND and SUMVARI ZE; i ndeed, these
operators m ght have been added needlessly in the past, sinply for
| ack of that observation. Points arising:

e As a matter of fact Ais "nore than" relationally conplete, in

the sense that its unconstrai ned «OR» and «NOT» operators
permt the definition of relations that cannot be defined in
previ ous al gebras. The point is purely academ c, of course,
since as already noted the «OR®» and «NOI» operations wll not
be totally unconstrained in practice, in order to avoid certain
conput ati onal problens that woul d otherw se ari se.

Or hi ghly desirable, at any rate. As the next section shows, <«RENAME» is in
fact not a primtive operation.

Copyright © 2005 C. J. Date and Hugh Darwen page a.7

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

e W do not actually need both <AND» and «OR» in order to achieve
rel ati onal conpl eteness, thanks to De Mdrgan's Laws. For
exanple, A «<AND» B is identically equal to «NOT» ((«<NOT» A)
<«OR» («NOT» B)), so we could dispense with «<AND» if we included
bot h «NOT» and «OR». W could even coll apse «NOT» and <«OR
into a single operator, <«NOR» ("neither A nor B"; equivalently,
"not A and not B"). Equally well, of course, we could dispense
with «OR and col | apse <AND» and «NOT» into a single operator,
<«NAND» ("not A or not B'). Overall, therefore, we could if
desired reduce our algebra to just three operators: <RENAVE»
<«REMOVE», and either <«NOR or <«NAND» (plus «TCLOSE»).

e In fact, we will showin the next section that we do not really
need <«RENAME» either; thus, we could in fact reduce our al gebra
still further to just the two operators <«REMOVE» and either
<«NOR or <NAND» (plus «TCLCSE»).

O course, we are not suggesting that all of the various
operators that we claimcan be dispensed with should in fact be
di spensed with in the concrete syntax of D—they are useful and
conveni ent shorthands, generally speaking, and as a matter of fact
RM Prescription 18 of our Manifesto expressly requires that they
("or sone |ogical equivalent thereof") all be supported. But we do
suggest that such operators be explicitly defined as short hands,
for reasons of clarity and sinplicity anong others [31].

TREATI NG OPERATORS AS RELATI ONS

In this section we el aborate on our idea of treating operators as
rel ations. Consider the relation PLUS once again, with attributes
X, Y, and Z, each of type INTEGER, corresponding to the predicate
"X+ Y =2Z" Let TWO AND TW be that rel ati on whose body consi sts
of just the single 2-tuple

{ < X, INTEGER, 2 >, <Y, INTEGER 2 >}

(we now revert to sonething closer to the formal notation for

tuples—i.e., as sets of <A T,v> triples—introduced in Chapter 2).
Then the expression

TWO _AND_TWO «COWVPCSE» PLUS
yields a rel ati on whose body consists of the single 1-tuple
{ < Z, INTEGER, 4 >}

observe, therefore, that we have effectively invoked the "+"
operator with argunents X = 2 and Y = 2 and obtained the result Z =
4.% O course, that result is still embedded as an attribute val ue
inside a tuple inside a relation (like all A operators, <«COMPOSEr

®*Note that the result has a nane, Z. W are still considering the i mplications
of this fact for the |Ianguage D.

Copyright © 2005 C. J. Date and Hugh Darwen page a.8

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

returns a relation); if we want to extract that result as a pure
scalar value, we will have to go beyond A per se and nake use of
the operators (required by RM Prescriptions 7 and 6, respectively)
for (a) extracting a specified tuple froma specified relation
(necessarily of cardinality one) and then (b) extracting a
specified attribute value froma specified tuple. In Tutorial D
ternms, for exanple, these extractions can be perforned as foll ows:

Z FROM (TUPLE FROM (result))

where result denotes the result of evaluating the A expression
TWO_AND_TWO «COVPCSE» PLUS

In other words, while it is certainly true that any given
operator can be treated as a relation, it will still be necessary
to step outside the confines of the al gebra per se in order to
obtain the actual result of sone invocation of that operator. For
present purposes, however, we are interested only in treating
operators as relations within a pure relational context; such a
treatnent allows us to explain the classical relational operation
EXTEND, for exanple, in a purely relational way (i.e., w thout
having to | eave the relational context at all), as we now proceed
to denonstrate.

Consi der the expression
TWO AND TWO <AND» PLUS

(this expression is the sane as before, except that we have

repl aced «COVWOSE» by <«AND»). The result is a relation whose body
consists of just the single 3-tuple

{ < X INTEGER, 2 > <Y, INTECGER, 2 > < Z, INTECER, 4 >}

It should be clear, therefore, that the original A expression
is logically equivalent to the follow ng Tutorial D extension:

EXTEND TWO AND TWD ADD (X + Y AS Z)

Thi s exanpl e should thus be sufficient to suggest how we can i ndeed
di spense with EXTEND, as cl ai ned.

Moreover, that very sane expression TWO AND TWO <AND» PLUS is
|l ogically equivalent to the followng Tutorial D restriction:

PLUS WHERE X = 2 AND ¥ = 2

This sane exanpl e should thus al so be sufficient to suggest how we
can di spense with restrict, again as clai ned.

As an aside, we remark that if we were to renane attributes X
and Z of PLUS as Z and X, respectively, then the expression
TWO AND TWO <AND» PLUS woul d yield a relati on whose body consists
of just the single 3-tuple

{ < Z, INTEGER, 2 >, <Y, INTEGER, 2 > < X, INTEGER, 0 >}

Copyright © 2005 C. J. Date and Hugh Darwen page a.9

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

In other words, M NUS would be just a good a nanme for our "rel con”
as PLUS is, psychol ogically speaking.

As for SUWARI ZE, it is well known that any given sunmarization
can be expressed in terns of EXTEND i nstead of SUMVARI ZE per se
(though the details are a little conplicated and we omt them here;
see the final section of this appendix for further explanation).

It follows that we can dispense with SUMVARI ZE as wel | .

Now consi der the follow ng Tutorial D expression:
R RENAME (X AS Y)

(we assune here that R denotes a relation with an attribute called
X and no attribute called Y). Then the Tutorial D expression

(EXTEND RADD (X AS Y)) { ALL BUT X}

is semantically equivalent to the original RENAME expression.

Thus, it should be clear that «RENAMEr can be expressed in terns of
EXTEND (which as we already know is basically just <«AND») and
<«REMOVE», and hence is not primtive.

Before we | eave this section, we would like to stress the point
that it is not just operators that are scalar functions
specifically that can be treated as relations. Consider the
fol |l ow ng exanpl es:

e An exanple of an operator that is scalar but not a function is
SQRT—"square root"—which, given a positive nuneric argunent,
returns two scalar results (at |least, we will assunme so for the
sake of this discussion). For exanple, SQRT(4.0) returns both
+2.0 and -2.0.

e An exanple of an operator that is a function but not scalar is
ADDR_CF ("address of"), which, given an enployee E, returns the
address of that enployee as a collection—nore precisely, a
tupl e—i nvol ving four scal ar values (STREET, CITY, STATE, and
ZI P).

Again we take a closer |ook. First, SQRT. SQRT can obviously
be treated as a relation with attributes X and Y, say, each of type
RATIONAL (X > 0). However, that relation is not a function because

the functional dependency X — Y does not hold: for exanple, the
tuples (4.0,+2.0) and (4.0,-2.0) both appear. (By contrast, the

functi onal dependency Y — X does hold; SQRT can be regarded as a
function if it is looked at in the inverse—i.e., "square
of"—direction.) Cbserve that the relation contains:

e For x =0, exactly one tuple with X = X
e For x >0, exactly two tuples with X = x

e For x <0, no tuples at all with X = x
It follows fromthe foregoing that the expression

Copyright © 2005 C. J. Date and Hugh Darwen page a. 10

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

SQRT «COMPOSE» { { < X, RATIONAL, 4.0 >} }

effectively represents an invocation of the SQRT operator, but—in
contrast to the situation in conventional progranmm ng

| anguages—t he invocation in question returns two results. More
precisely, it produces a (unary) relation with the follow ng body:

{ { <Y RATIONAL, +2.0 >}, { <Y, RATIONAL, -2.0 >} }

(If desired, we could now go on to extract the individual scalar
values +2.0 and -2.0 fromthis relation.) One inplication of this
exanple is that a relational |anguage such as D m ght reasonably

i nclude an extended form of EXTEND that —unlike the traditiona
EXTEND-—i s not necessarily limted to producing exactly one out put
tuple fromeach i nput tuple.

By way of another exanple, consider the expression
SQRT «COWPCSEr { { < X, RATIONAL, -4.0 >} }

Thi s expression also represents an invocation of the SQRT operator,

but —again in contrast to the situation in conventional progranmm ng
| anguages—t he invocation in question returns no result (nore

precisely, it produces a relation with heading {Y RATI ONAL} and
body enpty). |In conventional progranm ng | anguages the invocation
SQRT(-4.0) would give rise to a run-tinme exception.

Now we turn to ADDR OF. This operator too can obviously be
treated as a relation, this one having attributes E, STREET, CITY,
STATE, and ZIP, where {E} is a key. Note: The other four
attributes mght forma key as well, if no two enpl oyees ever live
at the sane address (in which case the ADDR OF rel ati on woul d
correspond to the inverse function that al so happened to apply).

O course, the nanme ADDR OF would be a little questionable if such
were the case; EMP_AT might be just as appropriate, EMP_ADDR
perhaps nore so. The issue is merely psychol ogical, of course.*

It follows fromthe foregoing that the expression
{ { <E EMPLOYEE, e >} } «COWOSB ADDR OF

(where e denotes sone enpl oyee) effectively represents an

i nvocation of the ADDR _OF operator, but—in contrast to the
situation in conventional progranm ng | anguages—the invocation in
gquestion returns a nonscalar result. One inplication of this
exanple is that a relational | anguage such as D m ght reasonably

i ncl ude an extended form of EXTEND that (unlike the traditiona

EXTEND) is not necessarily limted to producing just one additiona
attribute.®

“Actual |y, anal ogous remarks apply to the SQRT exanple, where the nane is again
not very appropriate if the relation is looked at in the inverse ("square of")
direction.

*Tutorial D does support such an operator. \What is nore, the additional
attributes can be scalar-, tuple-, or relation-valued, or any conbination.

Copyright © 2005 C. J. Date and Hugh Darwen page a. 11

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

FORVAL DEFI NI TI ONS

We now proceed to give fornmal definitions for the A operators

di scussed up to this point.® First we explain our notation (which
is based on that introduced in Chapter 2, of course, and—unlike
that of previous sections—is now neant to be conpletely precise).
Let r be arelation, let A be the nane of an attribute of r, let T
be the nane of the corresponding type (i.e., the type of attribute
A), and let v be a value of type T. Then:

e The heading Hr of r is a set of attributes (i.e., ordered pairs
of the form<A T>). By definition, no two attributes in that
set contain the sanme attribute nane A

e Let tr be a tuple that conforns to H; i.e., tr is a set of
ordered triples of the form<A T,v> one such triple for each
attribute in Hr.

e The body Br of r is a set of such tuples tr. Note that (in
general) there will be sone such tuples tr that conformto H
but do not appear in Br.

The rest of our notation is neant to be self-explanatory.

observe that a heading is a set, a body is a set, and a tuple
is a set (and we rem nd you from Chapter 2 that every subset of a
headi ng i s a headi ng, every subset of a body is a body, and every
subset of a tuple is a tuple). A nenber of a heading is an
attribute (i.e., an ordered pair of the form<A T>); a nenber of a
body is a tuple; and a nenber of a tuple is an ordered triple of
the form<A T, v>.

Now we can define the operators per se. Each of the
definitions that follow consists of (a) a formal specification of
the rules, if any, that apply to the operands of the operator in
question, (b) a formal specification of the heading of the result
of that operator, and (c) a formal specification of the body of
that result, followed by (d) an informal discussion of the fornal
speci fications.

e Let s be «NOT» r.
Hs = H
Bs = { ts : exists tr (tr ¢ Br and ts =tr) }

The <«NOT» operator yields the conplenent s of a given relation
r. The heading of s is the heading of r. The body of s
contains every tuple with that heading that is not in the body
of r.

® G eaves [97] gives definitions of all of the operators of Ain terns of the
formal specification | anguage Z.

Copyright © 2005 C. J. Date and Hugh Darwen page a. 12

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

e lLet s ber «REMOVEr A. It is required that there exist sone
type T such that <A T> € Hr.

Hs = H mnus { <A T>}

Bs = { ts : exists tr exists v
(tr €e Br and v € T and <A T,v> € tr and
ts =tr minus { <A T,v>1}) }

The <«REMOVE» operator yields a relation s fornmed by renoving a
given attribute A froma given relation r. The operation is
equi valent to taking the projection of r over all of its
attributes except A The heading of s is the heading of r

m nus the ordered pair <A T> The body of s contains every
tuple that conforns to the heading of s and is a subset of sone
tuple of r.

e Let s ber «RENAME» (A/B). It is required that there exist
sone type T such that <A, T> € H and that there exist no type
T such that <B, T> e H.

H = (HH mnus { <A T>}) union { <B, T>}
Bs = { ts : exists tr exists v
(tr € Br and v € T and <A, T,v> € tr and

ts = (tr mnus { <A T,v>1})
union { <B, T,v>1}) }

The <RENAME» operator yields a relation s that differs froma
given relation r only in the nane of one of its attributes,
which is changed fromA to B. The heading of s is the heading
of r except that the ordered pair <A T> is replaced by the
ordered pair <B,T>. The body of s consists of every tuple of
the body of r, except that in each such tuple the triple

<A, T,v> is replaced by the triple <B, T, v>.

e lLet s berl «<ANDr r2. It is required that if <A T1l> € H'1l and
<A, T2> € H 2, then Tl = T2.

Hs = H1 union H 2

Bs = { ts : exists trl exists tr2

((trl € Brl and tr2 € Br2) and
ts =trl union tr2) }

The <AND» operator is relational conjunction, yielding a
relation s that in previous literature has been referred to as
the (natural) join of the two given relations rl and r2. The
heading of s is the union of the headings of rl1 and r2. The
body of s contains every tuple that conforns to the headi ng of
s and is a superset of both sonme tuple in the body of rl1 and
sone tuple in the body of r2. W remark that the <AND>
operator mght logically be called the conjoin.

Copyright © 2005 C. J. Date and Hugh Darwen page a. 13

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

e lLet sberl «O®» r2. It isrequired that if <A T1> € H1 and
<A, T2> € H 2, then T1 = T2.

Hs = H1 union H2

Bs = { ts : exists trl exists tr2
((trl € Brl or tr2 € Br2) and
ts = trl union tr2) }

The «OR» operator is relational disjunction, being a
generalization of what in previous literature has been referred
to as union (in the special case where the given relations rl
and r2 have the sane heading, the result s is in fact the union
of those two relations in the traditional sense). The headi ng
of s is the union of the headings of rl1 and r2. The body of s
contains every tuple that conforns to the heading of s and is a
superset of either sone tuple in the body of r1 or sonme tuple
in the body of r2. W remark that the «OR» operator m ght

| ogically be called the disjoin.

W al so define the "macro" operator <«COVPOSE». Let s berl
<«COWPCSE» r2 (where rl and r2 are as for <AND»). Let the

attributes common to rl1 and r2 be A1, A2, ..., An (n > 0). Then s
is the result of the expression
(rl «<AND>» r2) «REMOVE» An ... <REMOVEr A2 <«REMOVEr Al

Note that when n = 0, rl1 «COWOSE» r2 is the sane as r1 <AND» r 2,
which is in turn the sanme as r1 TIMES r2 in Codd' s al gebra.

Finally, we remind you that the A operator <«TCLCSE»r is
essentially identical to the TCLOSE operator already discussed in
Chapters 2 and 6.

HOW Tutorial D BU LDS ON A

As noted in the body of the book, many—in fact, al nost all —of the
built-in relational operators in Tutorial D are really just
shorthands. In this section we justify this remark by show ng how

the operators in question’ map to those of the relational algebra A
defined in earlier sections. The notation is intended to be self-
expl anatory, for the nost part.

Transitive closure: The Tutorial D <tcl ose>
TCLCSE r
is semantically equivalent to the A expression

<«TCLCSE»

"Or nost of them at any rate. For sinplicity, however, we ignore operators
like <n-adic join> that are clearly equivalent to certain conbinations of other
oper at or s.

Copyright © 2005 C. J. Date and Hugh Darwen page a. 14

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

Renam ng: The Tutorial D <renane>
r RENAME (A AS B)
Is semantically equivalent to the A expression

r «RENAVE» (A, B)

QO her Tutorial D <renane> formats are just shorthand for
repeated application of the format shown above.

Projection: The Tutorial D <project>
r { ALL BUT A }

is semantically equivalent to the A expression
r «<REMOVE» A

QO her Tutorial D <project> formats are readily defined in terns
of the format shown above.

Join: The Tutorial D <dyadic join>
ri JON T2
is semantically equivalent to the A expression

rl <AND» 12

The Tutorial D <dyadic intersect> rl1 INTERSECT r2 is just that
special case of r1 JONT2 in which rl and r2 have the sane
headi ng, so the <«AND» operator of A takes care of | NTERSECT as
wel | .

Conmpose: The Tutorial D <conpose>
rl COWPCSE r 2

is semantically equivalent to the A expression
rl «COMPCSE» r2

Union: The Tutorial D <dyadic union>
ri UNTON r2

(where rl and r2 have the sane heading) is semantically equival ent
to the A expression

ri «OR» r2
M nus: The Tutorial D <m nus>
ri MNUS r2

(where rl1 and r2 have the sane heading) is semantically equival ent
to the A expression

ri <AND» («NOT» r2)
Sem join: The Tutorial D <sem join>
ri SEMJONT2 or ri MATCHI NG r 2

Copyright © 2005 C. J. Date and Hugh Darwen page a. 15

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

Is semantically equivalent to the Tutorial D expression
(r1JONT2) { A B ..., C}

(where A, B, ..., Care all of the attributes of r1), and can
therefore be expressed in A. Since this latter expression involves
only operators that have al ready been shown to be expressible in A
it follows that sem join can al so be expressed in A° Note: A
remark simlar to the foregoing sentence applies to many of the
operators still to be discussed. W wll let that one sentence do
duty for all.

Sem di fference: The Tutorial D <sem m nus>
ri SEMMNUS r2 or ri NOT MATCHI NG r 2
is semantically equivalent to the Tutorial D expression
rit MNUS (r1 SEMJONTr2)
Division: The Tutorial D <divide>
rl DOVIDEBY r2 PER (r3)
(a Small Divide) is shorthand for the Tutorial D expression
r1 { Al }

MNUS ((r1{ AL} JONTr2{ A2})
MNUS 3 { Al, A2}) { Al }

(where Al is the set of attributes common to rl and r3 and A2 is
the set of attributes comon to r2 and r3), and can therefore be
expressed in A Likewi se, the Tutorial D <divide>

rl DDVIDEBY r2 PER (r3, r4)
(a Geat Dvide) is shorthand for the Tutorial D expression
(rl1 { A1} JONTr2 { A2}
MNUS ((rl1 { A1} JONTr4 { A2, A3})

MNUS (r3 { Al, A3 }
JONT4 { A2, A3})) { AL, A2}

(where Al is the set of attributes common to rl and r3, A2 is the
set of attributes conmmon to r2 and r4, and A3 is the set of
attributes comon to r3 and r4), and can therefore be expressed in
A

Extension: Let PLUS be a relation constant with headi ng
{ X INTEGER, Y INTEGER, Z | NTEGER }

and with body consisting of all tuples such that the Z value is
equal to the sumof the X and Y values. Then the Tutorial D
<ext end>

EXTEND r ADD (A + B AS C)

Copyright © 2005 C. J. Date and Hugh Darwen page a. 16

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

(where we assunme wi thout |oss of generality that A and B are
attributes of r® of type INTEGER) is semantically equivalent to the
Tutorial D expression

r JON (PLUS RENAME (X AS AL YAS B, ZASC))

and can therefore be expressed in A Anal ogous equival ents can be
provided for all other forns of <extend> (including forns in which
the <exp> in the <extend add> is tuple- or relation-valued). For
exanpl e, the Tutorial D expression

EXTEND r ADD (TUPLE{ A A BB} ASC)

Is semantically equivalent to the Tutorial D expression
r JON s

where s is a relation with heading
{ ATAL BTB, CTUPLE { ATA B TB } }

cont ai ni ng exactly one tuple for each possible conbination of A and
B values, in which the Cvalue is exactly the correspondi ng <A B>
tuple (TA and TB here being the types of attributes A and B,
respectively).

Restriction: Let ONE be a relation constant wi th headi ng
{ X INTEGER }

and with body consisting of a single tuple, with X value one. Then
the Tutorial D <where>

r VHERE A =1

(where Ais an attribute of r of type INTEGER) is semantically
equi valent to the Tutorial D expression

r JON (ONE RENAME (X AS A))

and can therefore be expressed in A
Now | et GTI be a relation constant with headi ng
{ X INTEGER, Y |NTEGER }

and with body consisting of all tuples such that the X value is
greater than the Y value. Then the Tutorial D <where>

r WHERE A > B

(where A and B are attributes of r of type INTEGER) is semantically
equi valent to the Tutorial D expression

r JON(GIT RENAME (X AS AL YASB))
and can therefore be expressed in A

i they are not, we can effectively nmake them so by neans of appropriate joins.
I

An anal ogous remark applies to many of our exanples; for brevity, we w not
meke it every tine.
Copyright © 2005 C. J. Date and Hugh Darwen page a. 17

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

More generally, consider the Tutorial D <where> r WHERE X,

where x is an arbitrarily conpl ex <bool exp> Let A B, ..., C be
all of the attributes of r nmentioned in x. Let rx be a relation
whose body consists of all tuples of the form<AB,...,C that

satisfy x. Then r WHERE x is equivalent tor JONrx.
Summari zation: The Tutorial D <sunmarize>

SUMMARI ZE r1 PER (r2) ADD (ss (exp) AS Z)

(where r2 has attributes A; B, ..., C rl has the sane attributes
and possibly nore; and ss is any <sunmary spec> except COUNT
EXACTLY, or EXACTLYD) is semantically equivalent to the Tutorial D

expr essi on

(EXTEND r2 ADD

(r1 JON RELATION { TUPLE { A A,
agg ((EXTEND Y ADD (exp AS X

{ ALL BUT Y }

(where agg is identical to ss unless ss is COUNTD, SUMD, or AVGD,
I n which case agg is COUNT, SUM or AVG respectively, and where
the projection over X in the third line is included only if ss is
COUNTD, SUMD, or AVAED), and can therefore be expressed in A

Simlarly,
SUMVARI ZE r1 PER (r2) ADD (ss (expl, exp2) AS Z)

(where ss is therefore EXACTLY or EXACTLYD) is semantically
equi valent to the Tutorial D expression

(EXTEND r2 ADD
(rl1 JON RELATION { TUPLE{ A A BB ..., CC} } ASY,
EXACTLY (expl
(EXTEND Y ADD (exp2 AS X)) { X}, X) AS Z))
{ ALL BUT Y }

(where the projection over Xin the fourth line is included only if
ss is EXACTLYD), and can therefore be expressed in A.

CC}} ASY,

BB ...,
)) { X}, X) ASZ))

Simlarly,
SUMVARI ZE r1 PER (r2) ADD (COUNT () AS Z)

is semantically equivalent to the Tutorial D expression

(EXTEND r2 ADD

(r1 JONRELATION{ TUPLE{ AA BB, ..., CC} } ASY,
COUNT (YY) ASZ))

{ ALL BUT Y }

and can therefore be expressed in A

Note: Each of the foregoi ng SUMVARI ZE expansi ons i nvol ves an
I nvocati on of sone aggregate operator (COUNT, for exanple, in the
third case). But we have already seen, in the section "Treating
Qperators as Relations,” that read-only operators can be

Copyright © 2005 C. J. Date and Hugh Darwen page a. 18

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

i npl emented in A and our conclusion that SUVWARI ZE can al so be
expressed in Ais thus not underm ned by our reliance on those
aggregate operators in the expansions.

W appi ng and unwrapping: The Tutorial D <wap>

r WRAP ({ A, B, ..., C} AS X)
is shorthand for the Tutorial D expression
(EXTEND r ADD (TUPLE{ AA BB ..., CC} ASX))

{ ALL BUT A B, ..., C}

and can therefore be expressed in A Likewise, the Tutorial D
<unwr ap>

r UNWRAP (X)
is shorthand for the Tutorial D expression

(EXTEND r ADD (A FROM X AS A,
B FROM X AS B,

C FROMX AS C)) { ALL BUT X }

(where A, B, ..., Care all the attributes of X), and can therefore
al so be expressed in A.

G oupi ng and ungrouping: Let relation r have attributes A B, ...

C D E ..., F. Then the Tutorial D <group>
r GROPP ({ D E, ..., F} AS X)

is shorthand for the Tutorial D expression
(EXTEND r

ADD (r AS RR,
RELATI ON { TUWPLE {
RR COMPCSE TX AS X
{A B ..., C X}

(where RR and TX are attribute nanes not already appearing inr),
and can therefore be expressed in A Likewi se, the Tutorial D
<ungr oup>

r UNGROUP (X)

(where r has attributes A, B, ..., C and X, and Xin turnis a
relation-valued attribute with attributes D, E, ..., F) is
shorthand for the Tutorial D expression

(EXTEND (r COMPCSE s)

AA BB ..., CC}} AS TX,
))

ADD (DFROMY AS DL EFROMY ASE, ..., FFROMY AS F))
{A B ..., CDE ..., F}
where s is a relation with heading
{ X RELATION{ D, E, ..., F}, YTUPLE{ D, E, ..., F } }
Copyright © 2005 C. J. Date and Hugh Darwen page a. 19

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

and with body containing every possible tuple such that the Y val ue
(a tuple) is a nenber of the body of the X value (a relation). It
follows that the original <ungroup> can be expressed in A

*** End of Appendix A ***

Copyright © 2005 C. J. Date and Hugh Darwen page a. 20

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

	A N e w R e l a t i o n a l A l g e b r a

