
Copyright © 2005 C. J. Date and Hugh Darwen page a.1

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

Appendix A

A N e w R e l a t i o n a l A l g e b r a

┌─────────────────────────────────────┐
│ Introduction │
│ Motivation and justification │
│ REMOVE, RENAME, and COMPOSE │
│ Treating operators as relations │
│ Formal definitions │
│ How Tutorial D builds on A │
└─────────────────────────────────────┘

INTRODUCTION

In this appendix, we describe a new relational algebra that we call
A. The name A is a doubly recursive acronym: It stands for
ALGEBRA, which in turn stands for A Logical Genesis Explains Basic
Relational Algebra. As this expanded name suggests, A has been
designed in such a way as to emphasize, perhaps more clearly than
previous algebras have done, its close relationship to and solid
foundation in the discipline of predicate logic. In addition, the
abbreviated name A has pleasing connotations of beginning, basis,
foundation, simplicity, and the like──not to mention that it is an
obvious precursor to D.

The algebra A differs from Codd's original algebra [20-22] in
four principal respects:

 Cartesian product (TIMES) is replaced by a natural join
operator that, appealing to its counterpart in predicate logic,
we call simply AND. The original TIMES becomes merely a
special case of AND. Note: We adopt the convention of using
solid arrowheads and to delimit A operator names, as in
AND, in order to distinguish those operators from operators
with the same name in predicate logic or Tutorial D or both.
Also, in the case of ANDin particular, do not be misled by
the name: The ANDoperator of A is, of course, a relational
operator (it operates on relations and returns a relation),
whereas its predicate logic and Tutorial D counterparts are
logical operators (they operate on propositions or, more
generally, predicates and return a truth value). Analogous
remarks apply to the A operators ORand NOTas well (see
the next two bullet items).

 UNION is replaced by a more general ORoperator that does not
require its operands to be of the same type. The original
UNION becomes merely a special case of OR.



Copyright © 2005 C. J. Date and Hugh Darwen page a.2

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

 We include a relational complement operator, NOT. The
availability of NOTallows us to drop the relational
difference operator (MINUS), since that operator can easily be
expressed in terms of ANDand NOT.

 We are able to dispense with restrict (WHERE), EXTEND, and
SUMMARIZE, since these operators all become further special
cases of AND. Note: EXTEND and SUMMARIZE were not included
in Codd's original algebra but were added subsequently [132].

In addition to AND, OR, and NOT, A includes three
operators called RENAME, REMOVE, and COMPOSE, which are
discussed in the next section but one. It also includes a
transitive closure operator, TCLOSE; however, this operator is
essentially identical to TCLOSE as discussed in Chapters 2 and 6,
and we have little more to say about it in this appendix.

MOTIVATION AND JUSTIFICATION

In this section we explain our reasons for developing A and justify
the departures from Codd's algebra identified in the previous
section. Our explanations and notation are deliberately not too
formal (formal definitions appear in a later section). In
particular, we show tuples not as sets of <A,T,V> triples, as the
formal apparatus of Chapter 4 would require, but as simple
commalists of values enclosed in angle brackets. For example, we
use the expression <EX,DX> to mean a 2-tuple in which EX denotes a
certain employee and DX a certain department.

Since we often appeal in what follows to ideas from predicate
logic, using natural language predicates as examples, a brief note
on the terminology we use in that connection is in order:

 First, where our examples include operands that are relvar
references, the predicates for the corresponding relvars are
relvar predicates as described in Chapter 2. For example, the
predicate "Employee E works in department D" might be the
relvar predicate for a relvar called WORKS_IN.

 We refer to the parameters of a predicate as its free
variables.1 For example, in the predicate "Employee E works in
department D," E and D are free variables.

 Second, we use Greek derivatives involving the suffix -adic
when referring to the number of free variables in a predicate,
but Latin ones involving the suffix -ary when referring to the
degree of a relation. For example, the predicate "Employee E
works in department D" is dyadic, while a relation
corresponding to that predicate is binary.

1 We apologize for this slight terminological inconsistency, but in fact──as we
have discussed in detail elsewhere [78]──there seems to be almost no consensus
on the use of terms in logic textbooks either.



Copyright © 2005 C. J. Date and Hugh Darwen page a.3

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

The algebra A has been motivated by certain general objectives,
the following among them:

 For psychological reasons, we sought a collection of operators
with immediate counterparts in logic and with less reliance on
set theory in their nomenclature. We feel that relational
theory is better taught and understood this way; indeed, we
have been dismayed at the widespread lack of appreciation in
the database community at large of the logical foundations of
relational theory, and we think it likely that this lack has
contributed to the deficiencies we observe in available
relational (or would-be relational) technology.

 Previous algebras have had more than one operator corresponding
to logical AND. We thought this apparent redundancy worth
looking into, with a view to eliminating it.

 We wanted all of the relational operators of Tutorial D to be
mappable to expressions in A, for convenience and also for our
own satisfaction (and we would strongly recommend that the same
be true for any industrial strength D as well). Full details
of the mappings in question are deferred to the final section
of this appendix, but some idea of what is involved can be
found in examples prior to that section.
We now proceed to justify the four principal respects in which

A differs from previous algebras.

Dispensing with TIMES
In logic, when two predicates are connected by AND, attention must
be paid to the names of the free variables. Any free variable name
that appears in both predicates must be understood to stand for the
same thing when it consequently appears more than once in the
resulting predicate. For example, consider the natural language
predicates "Employee E works in department D" and "Employee E works
on project J." The AND of these two predicates yields a triadic
predicate, not a tetradic one: namely, "Employee E works in
department D and employee E works on project J." This latter
predicate can perhaps be abbreviated to just "Employee E works in
department D and on project J," to stress the fact that we cannot
substitute some particular employee for the E that works in
department D without at the same time substituting that very same
employee for the E that works on project J. This observation
regarding free variable names lies at the heart of the well-known
natural join operator (the ANDoperator in A).

As for the classical TIMES operator, it is of course just a
special case of natural join (which hereinafter we abbreviate to
simply join). More precisely, TIMES corresponds to the AND of two
predicates that have no free variables in common──for example,
"Employee E works in department D and project J has budget B."
TIMES as such can thus be discarded.



Copyright © 2005 C. J. Date and Hugh Darwen page a.4

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

We return for a moment to the predicate "Employee E works in
department D and on project J" to make another point. As already
noted, that formulation of the predicate is really an abbreviation.
Now, it might be abbreviated still further, to just "Employee E
works in department D on project J." However, that further
abbreviation could lead to the erroneous conclusion that project J
is somehow "in" department D. In reference [21], Codd
characterized this kind of error as the connection trap, but it has
since become known, at least in some circles, as the join trap
instead──rather unfairly, we feel, since it is not unique to join
in particular, nor to relational operators in general. In fact, it
was precisely Codd's point in reference [21] that the error is more
likely to arise in a nonrelational context than it is in a
relational one.

Dispensing with UNION
We can combine natural language predicates with OR as well as AND.
Thus, there is a ternary relation corresponding to the triadic
predicate "Employee E works in department D or employee E works on
project J." If employee EX works in department DX, then <EX,DX,j>
is a tuple in the body of this relation for all possible projects
j, regardless of whether employee EX actually works on project j
(and regardless of whether there is even a project j in the company
at this time). Likewise, if employee EX works on project JX, then
<EX,d,JX> is a tuple in the body of this relation for all possible
departments d, regardless of whether employee EX actually works in
department d (and regardless of whether there is even a department
d in the company at this time).

Just as we introduce ANDas the A counterpart of AND,
therefore, we introduce ORas the A counterpart of OR. As for
the classical UNION operator, it is of course just a special case
of OR. More precisely, UNION corresponds to the OR of two
predicates that have exactly the same free variables──for example,
"Employee E works in department D or employee E is on loan to
department D." UNION as such can thus be discarded.

Note: We do not concern ourselves here with the computational
difficulties that might arise from our generalization of Codd's
UNION, because at this point we are only defining an algebra.
Various safety mechanisms can be (and normally are) imposed in
practice to circumvent such difficulties. For similar reasons, we
also do not concern ourselves with the high degree of redundancy
that most relations produced by ORwill exhibit.

Dispensing with MINUS
Let WORKS_IN be a relation with attributes E and D, where E is an
employee and D is a department, and let the corresponding predicate
be "Employee E works in department D." Then the logical complement
(NOT) of this relation has a body that consists of all possible



Copyright © 2005 C. J. Date and Hugh Darwen page a.5

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

tuples of the form <E,D> such that it is not the case that employee
E works in department D. Note: Computational difficulties arise
here as they did with OR, but again we need not concern ourselves
with them at this juncture.

To see that MINUS can now be discarded, consider the following
example. Let WORKS_IN be as above; let WORKS_ON be a relation with
attributes E and J, where J is a project; and let the predicate
corresponding to WORKS_ON be "Employee E works on project J." Now
consider the unary relation corresponding to the monadic predicate
"Employee E works in some department but works on no project at
all." In Codd's algebra, we could obtain this relation by
projecting both WORKS_IN and WORKS_ON over their E attributes and
then taking the appropriate difference. In A, we first project
WORKS_ON over E (see the next section for a discussion of
projection), and then we take the NOTof that projection; the
corresponding predicate is "There does not exist a project such
that employee E works on that project." This relation can then be
joined ("ANDed") with WORKS_IN, and the result projected over E,
to obtain the desired final result.

Dispensing with restrict (WHERE), EXTEND, and SUMMARIZE
Restrict (WHERE), EXTEND, and SUMMARIZE all require certain
operators to be invoked as part of their execution. In the case of
restrict, the operators in question return values (truth values, to
be precise) that are used to disqualify certain tuples from
appearing in the result relation; in the case of EXTEND and
SUMMARIZE, they return values that are used as the basis for
defining certain attributes in the result relation.

It occurred to us that it made sense, and could possibly be
useful, to treat such operators as relations. Consider an operator
Op that is in fact a scalar function (a scalar function is an
operator for which every valid invocation returns exactly one
result and that result is a scalar value). Suppose Op has n
parameters. Then Op can be treated as a relation with n+1
attributes, one for each parameter and one for the result. The
attributes corresponding to the parameters clearly form a key for
this relation; however, that key is not necessarily the only one.
For example, let PLUS be a relation with attributes X, Y, and Z,
each of type INTEGER, corresponding to the scalar function "+" of
integer arithmetic and to the predicate "X + Y = Z." Then each of
{X,Y}, {Y,Z}, and {Z,X} is a key for relation PLUS; further, that
relation contains exactly one 3-tuple <x,y,z> for every possible
combination of values x, y, and z that satisfies the predicate
(i.e., such that x + y = z).

Note, incidentally, that the relation PLUS can be regarded as
an example of what in Chapters 5 and 6 we referred to as a "relcon"
or relation constant: It is named, like a relvar, but unlike a
relvar it has a value that does not change over time. Of course,



Copyright © 2005 C. J. Date and Hugh Darwen page a.6

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

analgous remarks apply to the relational representation of any
function; the keys discussed in the previous paragraph are thus
keys for a "relcon," not a relvar.

Let us take a closer look at what is going on here. A scalar
function is a special case of a relation, of course, as the PLUS
example illustrates. In fact, any relation can always be regarded
as an operator that maps from some subset of its attributes to the
rest; and, if the mapping in question is a functional (i.e., many-
to-one) mapping specifically, then the relation can be regarded as
a function. In fact, since a set of n elements has 2ⁿsubsets, a
relation of degree n can be regarded as representing 2ⁿdifferent
operators, some of which will be functions and some not (in
general). For example, PLUS can be regarded, among other things,
as an operator that maps from Z to X and Y──but of course that
particular mapping is not a functional one (the functional
dependencies Z  X and Z  Y do not hold), and the corresponding
operator is thus not a function.

We now claim that, given the fact that operators can be treated
as relations, and given also the availability of the A operators
AND, REMOVE, and RENAME(the latter two still to be
discussed), it is indeed the case that we can dispense with
restrict, EXTEND, and SUMMARIZE. We will justify this claim in the
next section but one.

REMOVE, RENAME, AND COMPOSE

REMOVE

REMOVEis the A counterpart to the existential quantifier of
predicate logic. It corresponds to Codd's project. However, it
differs from project in that it specifies, not an attribute (or
attributes, plural) to be projected over, but rather an attribute
to be "projected away"; it is equivalent to projecting the relation
in question over all of its attributes except the one specified.
Our motivation for this inversion, so to speak, with respect to
Codd's project is a psychological one──projecting a relation with
(say) attributes X and Y over attribute X is equivalent to
existentially quantifying over attribute Y. For example, the
projection of WORKS_IN over E corresponds to the natural language
predicate "There exists some department D such that employee E
works in department D." We thus feel that REMOVEis
psychologically closer to our foundation in logic than project is.
The Third Manifesto, however, explicitly requires the language D
not to arbitrate in this matter; rather, projection over specified
attributes and projection over all except specified attributes are
required to be equally easy to express.



Copyright © 2005 C. J. Date and Hugh Darwen page a.7

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

RENAME

The purpose of RENAMEis, loosely, to rename some attribute of
some relation. More precisely, the RENAMEoperator takes a given
relation and returns another that is identical to the given one
except that one of its attributes has a different name. Such an
operator is required2 in any concrete syntax for relational
expressions in which attributes are distinguished by name, as they
are in A (and D).

COMPOSE

In addition to the operators discussed so far──AND, OR, NOT,
REMOVE, and RENAME──we have allowed ourselves the luxury (some
might think) of including a "macro" operator called COMPOSE.
COMPOSEis a combination of ANDand REMOVE, in which
attributes common to the "ANDed" relations are subsequently
"REMOVEd." The name COMPOSEis meant to be suggestive of the
fact that relational composition is a natural generalization of
functional composition. (In case you are not familiar with this
latter notion, the composition of two functions f(...) and g(...),
in that order, is the function f(g(...)).) Note: Codd did in fact
include a relational composition operator in his earliest papers
[20-21] but for some reason subsequently discarded it; we find it
useful in support of our desire to treat operators as relations.
To be specific, it turns out that a certain degenerate form of
composition can be used to simulate the expression of operator
invocations, as will be seen in the next section.

Closing Remarks

It should be obvious that A is relationally complete [22].
Previous algebras have needed six operators for this purpose
(typically RENAME, restrict, project, TIMES, UNION, and MINUS); we
have reduced that number to five. Moreover, thanks to our
observation that operators can be treated as relations, we have
also avoided the need for EXTEND and SUMMARIZE; indeed, these
operators might have been added needlessly in the past, simply for
lack of that observation. Points arising:

 As a matter of fact A is "more than" relationally complete, in
the sense that its unconstrained ORand NOToperators
permit the definition of relations that cannot be defined in
previous algebras. The point is purely academic, of course,
since as already noted the ORand NOToperations will not
be totally unconstrained in practice, in order to avoid certain
computational problems that would otherwise arise.

2 Or highly desirable, at any rate. As the next section shows, RENAME is in
fact not a primitive operation.



Copyright © 2005 C. J. Date and Hugh Darwen page a.8

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

 We do not actually need both ANDand ORin order to achieve
relational completeness, thanks to De Morgan's Laws. For
example, A ANDB is identically equal to NOT((NOTA)
OR(NOTB)), so we could dispense with ANDif we included
both NOTand OR. We could even collapse NOTand OR
into a single operator, NOR("neither A nor B"; equivalently,
"not A and not B"). Equally well, of course, we could dispense
with ORand collapse ANDand NOTinto a single operator,
NAND("not A or not B"). Overall, therefore, we could if
desired reduce our algebra to just three operators: RENAME,
REMOVE, and either NORor NAND(plus TCLOSE).

 In fact, we will show in the next section that we do not really
need RENAMEeither; thus, we could in fact reduce our algebra
still further to just the two operators REMOVEand either
NORor NAND(plus TCLOSE).
Of course, we are not suggesting that all of the various

operators that we claim can be dispensed with should in fact be
dispensed with in the concrete syntax of D──they are useful and
convenient shorthands, generally speaking, and as a matter of fact
RM Prescription 18 of our Manifesto expressly requires that they
("or some logical equivalent thereof") all be supported. But we do
suggest that such operators be explicitly defined as shorthands,
for reasons of clarity and simplicity among others [31].

TREATING OPERATORS AS RELATIONS

In this section we elaborate on our idea of treating operators as
relations. Consider the relation PLUS once again, with attributes
X, Y, and Z, each of type INTEGER, corresponding to the predicate
"X + Y = Z." Let TWO_AND_TWO be that relation whose body consists
of just the single 2-tuple

{ < X, INTEGER, 2 >, < Y, INTEGER, 2 > }
(we now revert to something closer to the formal notation for
tuples──i.e., as sets of <A,T,v> triples──introduced in Chapter 2).
Then the expression

TWO_AND_TWO COMPOSEPLUS
yields a relation whose body consists of the single 1-tuple

{ < Z, INTEGER, 4 > }
Observe, therefore, that we have effectively invoked the "+"

operator with arguments X = 2 and Y = 2 and obtained the result Z =
4.3 Of course, that result is still embedded as an attribute value
inside a tuple inside a relation (like all A operators, COMPOSE

3 Note that the result has a name, Z. We are still considering the implications
of this fact for the language D.



Copyright © 2005 C. J. Date and Hugh Darwen page a.9

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

returns a relation); if we want to extract that result as a pure
scalar value, we will have to go beyond A per se and make use of
the operators (required by RM Prescriptions 7 and 6, respectively)
for (a) extracting a specified tuple from a specified relation
(necessarily of cardinality one) and then (b) extracting a
specified attribute value from a specified tuple. In Tutorial D
terms, for example, these extractions can be performed as follows:

Z FROM ( TUPLE FROM ( result ) )
where result denotes the result of evaluating the A expression
TWO_AND_TWO COMPOSEPLUS.

In other words, while it is certainly true that any given
operator can be treated as a relation, it will still be necessary
to step outside the confines of the algebra per se in order to
obtain the actual result of some invocation of that operator. For
present purposes, however, we are interested only in treating
operators as relations within a pure relational context; such a
treatment allows us to explain the classical relational operation
EXTEND, for example, in a purely relational way (i.e., without
having to leave the relational context at all), as we now proceed
to demonstrate.

Consider the expression

TWO_AND_TWO ANDPLUS
(this expression is the same as before, except that we have
replaced COMPOSEby AND). The result is a relation whose body
consists of just the single 3-tuple

{ < X, INTEGER, 2 >, < Y, INTEGER, 2 >, < Z, INTEGER, 4 > }

It should be clear, therefore, that the original A expression
is logically equivalent to the following Tutorial D extension:

EXTEND TWO_AND_TWO ADD ( X + Y AS Z )
This example should thus be sufficient to suggest how we can indeed
dispense with EXTEND, as claimed.

Moreover, that very same expression TWO_AND_TWO ANDPLUS is
logically equivalent to the following Tutorial D restriction:

PLUS WHERE X = 2 AND Y = 2
This same example should thus also be sufficient to suggest how we
can dispense with restrict, again as claimed.

As an aside, we remark that if we were to rename attributes X
and Z of PLUS as Z and X, respectively, then the expression
TWO_AND_TWO ANDPLUS would yield a relation whose body consists
of just the single 3-tuple

{ < Z, INTEGER, 2 >, < Y, INTEGER, 2 >, < X, INTEGER, 0 > }



Copyright © 2005 C. J. Date and Hugh Darwen page a.10

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

In other words, MINUS would be just a good a name for our "relcon"
as PLUS is, psychologically speaking.

As for SUMMARIZE, it is well known that any given summarization
can be expressed in terms of EXTEND instead of SUMMARIZE per se
(though the details are a little complicated and we omit them here;
see the final section of this appendix for further explanation).
It follows that we can dispense with SUMMARIZE as well.

Now consider the following Tutorial D expression:
R RENAME ( X AS Y )

(we assume here that R denotes a relation with an attribute called
X and no attribute called Y). Then the Tutorial D expression

( EXTEND R ADD ( X AS Y ) ) { ALL BUT X }
is semantically equivalent to the original RENAME expression.
Thus, it should be clear that RENAMEcan be expressed in terms of
EXTEND (which as we already know is basically just AND) and
REMOVE, and hence is not primitive.

Before we leave this section, we would like to stress the point
that it is not just operators that are scalar functions
specifically that can be treated as relations. Consider the
following examples:

 An example of an operator that is scalar but not a function is
SQRT──"square root"──which, given a positive numeric argument,
returns two scalar results (at least, we will assume so for the
sake of this discussion). For example, SQRT(4.0) returns both
+2.0 and -2.0.

 An example of an operator that is a function but not scalar is
ADDR_OF ("address of"), which, given an employee E, returns the
address of that employee as a collection──more precisely, a
tuple──involving four scalar values (STREET, CITY, STATE, and
ZIP).
Again we take a closer look. First, SQRT. SQRT can obviously

be treated as a relation with attributes X and Y, say, each of type
RATIONAL (X 0). However, that relation is not a function because
the functional dependency X  Y does not hold: for example, the
tuples (4.0,+2.0) and (4.0,-2.0) both appear. (By contrast, the
functional dependency Y  X does hold; SQRT can be regarded as a
function if it is looked at in the inverse──i.e., "square
of"──direction.) Observe that the relation contains:

 For x = 0, exactly one tuple with X = x

 For x > 0, exactly two tuples with X = x

 For x < 0, no tuples at all with X = x
It follows from the foregoing that the expression



Copyright © 2005 C. J. Date and Hugh Darwen page a.11

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

SQRT COMPOSE{ { < X, RATIONAL, 4.0 > } }
effectively represents an invocation of the SQRT operator, but──in
contrast to the situation in conventional programming
languages──the invocation in question returns two results. More
precisely, it produces a (unary) relation with the following body:

{ { < Y, RATIONAL, +2.0 > }, { < Y, RATIONAL, -2.0 > } }
(If desired, we could now go on to extract the individual scalar
values +2.0 and -2.0 from this relation.) One implication of this
example is that a relational language such as D might reasonably
include an extended form of EXTEND that──unlike the traditional
EXTEND──is not necessarily limited to producing exactly one output
tuple from each input tuple.

By way of another example, consider the expression

SQRT COMPOSE{ { < X, RATIONAL, -4.0 > } }
This expression also represents an invocation of the SQRT operator,
but──again in contrast to the situation in conventional programming
languages──the invocation in question returns no result (more
precisely, it produces a relation with heading {Y RATIONAL} and
body empty). In conventional programming languages the invocation
SQRT(-4.0) would give rise to a run-time exception.

Now we turn to ADDR_OF. This operator too can obviously be
treated as a relation, this one having attributes E, STREET, CITY,
STATE, and ZIP, where {E} is a key. Note: The other four
attributes might form a key as well, if no two employees ever live
at the same address (in which case the ADDR_OF relation would
correspond to the inverse function that also happened to apply).
Of course, the name ADDR_OF would be a little questionable if such
were the case; EMP_AT might be just as appropriate, EMP_ADDR
perhaps more so. The issue is merely psychological, of course.4

It follows from the foregoing that the expression

{ { < E, EMPLOYEE, e > } } COMPOSEADDR_OF
(where e denotes some employee) effectively represents an
invocation of the ADDR_OF operator, but──in contrast to the
situation in conventional programming languages──the invocation in
question returns a nonscalar result. One implication of this
example is that a relational language such as D might reasonably
include an extended form of EXTEND that (unlike the traditional
EXTEND) is not necessarily limited to producing just one additional
attribute.5

4 Actually, analogous remarks apply to the SQRT example, where the name is again
not very appropriate if the relation is looked at in the inverse ("square of")
direction.
5 Tutorial D does support such an operator. What is more, the additional
attributes can be scalar-, tuple-, or relation-valued, or any combination.



Copyright © 2005 C. J. Date and Hugh Darwen page a.12

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

FORMAL DEFINITIONS

We now proceed to give formal definitions for the A operators
discussed up to this point.6 First we explain our notation (which
is based on that introduced in Chapter 2, of course, and──unlike
that of previous sections──is now meant to be completely precise).
Let r be a relation, let A be the name of an attribute of r, let T
be the name of the corresponding type (i.e., the type of attribute
A), and let v be a value of type T. Then:

 The heading Hr of r is a set of attributes (i.e., ordered pairs
of the form <A,T>). By definition, no two attributes in that
set contain the same attribute name A.

 Let tr be a tuple that conforms to Hr; i.e., tr is a set of
ordered triples of the form <A,T,v>, one such triple for each
attribute in Hr.

 The body Br of r is a set of such tuples tr. Note that (in
general) there will be some such tuples tr that conform to Hr
but do not appear in Br.
The rest of our notation is meant to be self-explanatory.
Observe that a heading is a set, a body is a set, and a tuple

is a set (and we remind you from Chapter 2 that every subset of a
heading is a heading, every subset of a body is a body, and every
subset of a tuple is a tuple). A member of a heading is an
attribute (i.e., an ordered pair of the form <A,T>); a member of a
body is a tuple; and a member of a tuple is an ordered triple of
the form <A,T,v>.

Now we can define the operators per se. Each of the
definitions that follow consists of (a) a formal specification of
the rules, if any, that apply to the operands of the operator in
question, (b) a formal specification of the heading of the result
of that operator, and (c) a formal specification of the body of
that result, followed by (d) an informal discussion of the formal
specifications.

 Let s be NOTr.
Hs = Hr

Bs = { ts : exists tr ( tr  Br and ts = tr ) }

The NOToperator yields the complement s of a given relation
r. The heading of s is the heading of r. The body of s
contains every tuple with that heading that is not in the body
of r.

6 Greaves [97] gives definitions of all of the operators of A in terms of the
formal specification language Z.



Copyright © 2005 C. J. Date and Hugh Darwen page a.13

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

 Let s be r REMOVEA. It is required that there exist some
type T such that <A,T>  Hr.
Hs = Hr minus { <A,T> }
Bs = { ts : exists tr exists v

( tr  Br and v  T and <A,T,v>  tr and
ts = tr minus { <A,T,v> } ) }

The REMOVEoperator yields a relation s formed by removing a
given attribute A from a given relation r. The operation is
equivalent to taking the projection of r over all of its
attributes except A. The heading of s is the heading of r
minus the ordered pair <A,T>. The body of s contains every
tuple that conforms to the heading of s and is a subset of some
tuple of r.

 Let s be r RENAME(A,B). It is required that there exist
some type T such that <A,T>  Hr and that there exist no type
T such that <B,T>  Hr.
Hs = ( Hr minus { <A,T> } ) union { <B,T> }
Bs = { ts : exists tr exists v

( tr  Br and v  T and <A,T,v>  tr and
ts = ( tr minus { <A,T,v> } )

union { <B,T,v> } ) }

The RENAMEoperator yields a relation s that differs from a
given relation r only in the name of one of its attributes,
which is changed from A to B. The heading of s is the heading
of r except that the ordered pair <A,T> is replaced by the
ordered pair <B,T>. The body of s consists of every tuple of
the body of r, except that in each such tuple the triple
<A,T,v> is replaced by the triple <B,T,v>.

 Let s be r1 ANDr2. It is required that if <A,T1>  Hr1 and
<A,T2>  Hr2, then T1 = T2.
Hs = Hr1 union Hr2
Bs = { ts : exists tr1 exists tr2

( ( tr1  Br1 and tr2  Br2 ) and
ts = tr1 union tr2 ) }

The ANDoperator is relational conjunction, yielding a
relation s that in previous literature has been referred to as
the (natural) join of the two given relations r1 and r2. The
heading of s is the union of the headings of r1 and r2. The
body of s contains every tuple that conforms to the heading of
s and is a superset of both some tuple in the body of r1 and
some tuple in the body of r2. We remark that the AND
operator might logically be called the conjoin.



Copyright © 2005 C. J. Date and Hugh Darwen page a.14

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

 Let s be r1 ORr2. It is required that if <A,T1>  Hr1 and
<A,T2>  Hr2, then T1 = T2.
Hs = Hr1 union Hr2
Bs = { ts : exists tr1 exists tr2

( ( tr1  Br1 or tr2  Br2 ) and
ts = tr1 union tr2 ) }

The ORoperator is relational disjunction, being a
generalization of what in previous literature has been referred
to as union (in the special case where the given relations r1
and r2 have the same heading, the result s is in fact the union
of those two relations in the traditional sense). The heading
of s is the union of the headings of r1 and r2. The body of s
contains every tuple that conforms to the heading of s and is a
superset of either some tuple in the body of r1 or some tuple
in the body of r2. We remark that the ORoperator might
logically be called the disjoin.

We also define the "macro" operator COMPOSE. Let s be r1
COMPOSEr2 (where r1 and r2 are as for AND). Let the
attributes common to r1 and r2 be A1, A2, ..., An (n 0). Then s
is the result of the expression

( r1 ANDr2 ) REMOVEAn ... REMOVEA2 REMOVEA1

Note that when n = 0, r1 COMPOSEr2 is the same as r1 ANDr2,
which is in turn the same as r1 TIMES r2 in Codd's algebra.

Finally, we remind you that the A operator TCLOSEis
essentially identical to the TCLOSE operator already discussed in
Chapters 2 and 6.

HOW Tutorial D BUILDS ON A

As noted in the body of the book, many──in fact, almost all──of the
built-in relational operators in Tutorial D are really just
shorthands. In this section we justify this remark by showing how
the operators in question7 map to those of the relational algebra A
defined in earlier sections. The notation is intended to be self-
explanatory, for the most part.
Transitive closure: The Tutorial D <tclose>

TCLOSE r
is semantically equivalent to the A expression

TCLOSEr

7 Or most of them, at any rate. For simplicity, however, we ignore operators
like <n-adic join> that are clearly equivalent to certain combinations of other
operators.



Copyright © 2005 C. J. Date and Hugh Darwen page a.15

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

Renaming: The Tutorial D <rename>
r RENAME ( A AS B )

is semantically equivalent to the A expression

r RENAME(A,B)

Other Tutorial D <rename> formats are just shorthand for
repeated application of the format shown above.
Projection: The Tutorial D <project>

r { ALL BUT A }
is semantically equivalent to the A expression

r REMOVEA
Other Tutorial D <project> formats are readily defined in terms

of the format shown above.

Join: The Tutorial D <dyadic join>
r1 JOIN r2

is semantically equivalent to the A expression

r1 ANDr2
The Tutorial D <dyadic intersect> r1 INTERSECT r2 is just that

special case of r1 JOIN r2 in which r1 and r2 have the same
heading, so the ANDoperator of A takes care of INTERSECT as
well.
Compose: The Tutorial D <compose>

r1 COMPOSE r2
is semantically equivalent to the A expression

r1 COMPOSEr2
Union: The Tutorial D <dyadic union>

r1 UNION r2

(where r1 and r2 have the same heading) is semantically equivalent
to the A expression

r1 ORr2
Minus: The Tutorial D <minus>

r1 MINUS r2
(where r1 and r2 have the same heading) is semantically equivalent
to the A expression

r1 AND( NOTr2 )
Semijoin: The Tutorial D <semijoin>

r1 SEMIJOIN r2 or r1 MATCHING r2



Copyright © 2005 C. J. Date and Hugh Darwen page a.16

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

is semantically equivalent to the Tutorial D expression
( r1 JOIN r2 ) { A, B, ..., C }

(where A, B, ..., C are all of the attributes of r1), and can
therefore be expressed in A. Since this latter expression involves
only operators that have already been shown to be expressible in A,
it follows that semijoin can also be expressed in A. Note: A
remark similar to the foregoing sentence applies to many of the
operators still to be discussed. We will let that one sentence do
duty for all.
Semidifference: The Tutorial D <semiminus>

r1 SEMIMINUS r2 or r1 NOT MATCHING r2
is semantically equivalent to the Tutorial D expression

r1 MINUS ( r1 SEMIJOIN r2 )
Division: The Tutorial D <divide>

r1 DIVIDEBY r2 PER ( r3 )
(a Small Divide) is shorthand for the Tutorial D expression

r1 { A1 }
MINUS ( ( r1 { A1 } JOIN r2 { A2 } )

MINUS r3 { A1, A2 } ) { A1 }
(where A1 is the set of attributes common to r1 and r3 and A2 is
the set of attributes common to r2 and r3), and can therefore be
expressed in A. Likewise, the Tutorial D <divide>

r1 DIVIDEBY r2 PER ( r3, r4 )
(a Great Divide) is shorthand for the Tutorial D expression

( r1 { A1 } JOIN r2 { A2 } )
MINUS ( ( r1 { A1 } JOIN r4 { A2, A3 } )

MINUS ( r3 { A1, A3 }
JOIN r4 { A2, A3 } ) ) { A1, A2 }

(where A1 is the set of attributes common to r1 and r3, A2 is the
set of attributes common to r2 and r4, and A3 is the set of
attributes common to r3 and r4), and can therefore be expressed in
A.

Extension: Let PLUS be a relation constant with heading
{ X INTEGER, Y INTEGER, Z INTEGER }

and with body consisting of all tuples such that the Z value is
equal to the sum of the X and Y values. Then the Tutorial D
<extend>

EXTEND r ADD ( A + B AS C )



Copyright © 2005 C. J. Date and Hugh Darwen page a.17

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

(where we assume without loss of generality that A and B are
attributes of r8 of type INTEGER) is semantically equivalent to the
Tutorial D expression

r JOIN ( PLUS RENAME ( X AS A, Y AS B, Z AS C ) )
and can therefore be expressed in A. Analogous equivalents can be
provided for all other forms of <extend> (including forms in which
the <exp> in the <extend add> is tuple- or relation-valued). For
example, the Tutorial D expression

EXTEND r ADD ( TUPLE { A A, B B } AS C )

is semantically equivalent to the Tutorial D expression
r JOIN s

where s is a relation with heading
{ A TA, B TB, C TUPLE { A TA, B TB } }

containing exactly one tuple for each possible combination of A and
B values, in which the C value is exactly the corresponding <A,B>
tuple (TA and TB here being the types of attributes A and B,
respectively).

Restriction: Let ONE be a relation constant with heading
{ X INTEGER }

and with body consisting of a single tuple, with X value one. Then
the Tutorial D <where>

r WHERE A = 1

(where A is an attribute of r of type INTEGER) is semantically
equivalent to the Tutorial D expression

r JOIN ( ONE RENAME ( X AS A ) )
and can therefore be expressed in A.

Now let GT be a relation constant with heading
{ X INTEGER, Y INTEGER }

and with body consisting of all tuples such that the X value is
greater than the Y value. Then the Tutorial D <where>

r WHERE A > B
(where A and B are attributes of r of type INTEGER) is semantically
equivalent to the Tutorial D expression

r JOIN ( GT RENAME ( X AS A, Y AS B ) )
and can therefore be expressed in A.

8 If they are not, we can effectively make them so by means of appropriate joins.
An analogous remark applies to many of our examples; for brevity, we will not
make it every time.



Copyright © 2005 C. J. Date and Hugh Darwen page a.18

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

More generally, consider the Tutorial D <where> r WHERE x,
where x is an arbitrarily complex <bool exp>. Let A, B, ..., C be
all of the attributes of r mentioned in x. Let rx be a relation
whose body consists of all tuples of the form <A,B,...,C> that
satisfy x. Then r WHERE x is equivalent to r JOIN rx.
Summarization: The Tutorial D <summarize>

SUMMARIZE r1 PER ( r2 ) ADD ( ss ( exp ) AS Z )
(where r2 has attributes A, B, ..., C; r1 has the same attributes
and possibly more; and ss is any <summary spec> except COUNT,
EXACTLY, or EXACTLYD) is semantically equivalent to the Tutorial D
expression

( EXTEND r2 ADD
( r1 JOIN RELATION { TUPLE { A A, B B, ..., C C } } AS Y,
agg ( ( EXTEND Y ADD ( exp AS X ) ) { X }, X ) AS Z ) )

{ ALL BUT Y }

(where agg is identical to ss unless ss is COUNTD, SUMD, or AVGD,
in which case agg is COUNT, SUM, or AVG, respectively, and where
the projection over X in the third line is included only if ss is
COUNTD, SUMD, or AVGD), and can therefore be expressed in A.

Similarly,

SUMMARIZE r1 PER ( r2 ) ADD ( ss ( exp1, exp2 ) AS Z )
(where ss is therefore EXACTLY or EXACTLYD) is semantically
equivalent to the Tutorial D expression

( EXTEND r2 ADD
( r1 JOIN RELATION { TUPLE { A A, B B, ..., C C } } AS Y,
EXACTLY ( exp1,

( EXTEND Y ADD ( exp2 AS X ) ) { X }, X ) AS Z ) )
{ ALL BUT Y }

(where the projection over X in the fourth line is included only if
ss is EXACTLYD), and can therefore be expressed in A.

Similarly,
SUMMARIZE r1 PER ( r2 ) ADD ( COUNT ( ) AS Z )

is semantically equivalent to the Tutorial D expression
( EXTEND r2 ADD
( r1 JOIN RELATION { TUPLE { A A, B B, ..., C C } } AS Y,
COUNT ( Y ) AS Z ) )

{ ALL BUT Y }
and can therefore be expressed in A.

Note: Each of the foregoing SUMMARIZE expansions involves an
invocation of some aggregate operator (COUNT, for example, in the
third case). But we have already seen, in the section "Treating
Operators as Relations," that read-only operators can be



Copyright © 2005 C. J. Date and Hugh Darwen page a.19

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

implemented in A, and our conclusion that SUMMARIZE can also be
expressed in A is thus not undermined by our reliance on those
aggregate operators in the expansions.

Wrapping and unwrapping: The Tutorial D <wrap>
r WRAP ( { A, B, ..., C } AS X )

is shorthand for the Tutorial D expression
( EXTEND r ADD ( TUPLE { A A, B B, ..., C C } AS X ) )

{ ALL BUT A, B, ..., C }

and can therefore be expressed in A. Likewise, the Tutorial D
<unwrap>

r UNWRAP ( X )

is shorthand for the Tutorial D expression
( EXTEND r ADD ( A FROM X AS A,

B FROM X AS B,
......

C FROM X AS C ) ) { ALL BUT X }
(where A, B, ..., C are all the attributes of X), and can therefore
also be expressed in A.

Grouping and ungrouping: Let relation r have attributes A, B, ...,
C, D, E, ..., F. Then the Tutorial D <group>

r GROUP ( { D, E, ..., F } AS X )
is shorthand for the Tutorial D expression

( EXTEND r
ADD ( r AS RR ,

RELATION { TUPLE { A A, B B, ..., C C } } AS TX ,
RR COMPOSE TX AS X ) )

{ A, B, ..., C, X }
(where RR and TX are attribute names not already appearing in r),
and can therefore be expressed in A. Likewise, the Tutorial D
<ungroup>

r UNGROUP ( X )
(where r has attributes A, B, ..., C, and X, and X in turn is a
relation-valued attribute with attributes D, E, ..., F) is
shorthand for the Tutorial D expression

( EXTEND ( r COMPOSE s )
ADD ( D FROM Y AS D, E FROM Y AS E, ..., F FROM Y AS F ) )

{ A, B, ..., C, D, E, ..., F }
where s is a relation with heading

{ X RELATION { D, E, ..., F }, Y TUPLE { D, E, ..., F } }



Copyright © 2005 C. J. Date and Hugh Darwen page a.20

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 361-376,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

and with body containing every possible tuple such that the Y value
(a tuple) is a member of the body of the X value (a relation). It
follows that the original <ungroup> can be expressed in A.

*** End of Appendix A ***


	A   N e w   R e l a t i o n a l   A l g e b r a

