
page 1

C o d d ’ s F i r s t R e l a t i o n a l P a p e r s :

A C r i t i c a l A n a l y s i s

C. J. Date

Jakob Bernoulli’s productive years coincided with Leibniz’s discovery of calculus,

and [he] was one of the chief popularizers of this immensely fruitful subject.

As with any developing theory, calculus benefited from those who followed in its creator’s

footsteps, scholars whose brilliance may have fallen short of Leibniz’s but whose

contributions toward tidying up the subject were indispensable.

Jakob Bernoulli was one such contributor.

—William Dunham, The Mathematical Universe (1974)

This paper was written as a companion to, and reference source for, Hugh Darwen’s paper “Why

Are There No Relational DBMSs?” (available in PDF at www.thethirdmanifesto.com). It has

benefited from Hugh’s careful review of earlier drafts. It’s intended as a contribution to the

history of the field of relational database technology; until further notice, however, I respectfully

request that distribution be restricted and carefully controlled. Thank you.

PRELIMINARIES

I’m hardly alone in my strong belief that relational theory is the right and proper foundation for

database technology in general. That theory was originally introduced by E. F. Codd in two

landmark papers:

 “Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks,”

IBM Research Report RJ599, August 19th, 1969—referred to throughout what follows as

the 1969 paper

 “A Relational Model of Data for Large Shared Data Banks,” CACM 13, No. 6, June

1970—referred to throughout what follows as the 1970 paper
1

And yet here we are, over 45 years later, and what do we find? Well:

 First, the teaching of relational theory, in universities in particular, seems everywhere to be

in decline. What’s more, what teaching does exist seems not to have caught up—at least,

1 The 1970 paper is usually credited with being the seminal paper in the field, but this characterization is a little unfair to its 1969
predecessor. In fact the 1970 paper was, and is, essentially just a somewhat revised and extended version of the 1969 paper.

http://www.thethirdmanifesto.com/

page 2

not properly—with the numerous developments in relational theory that have occurred

since publication of those first two papers of Codd’s.

 Second, no truly relational DBMS has ever been widely available in the marketplace.

Sadly, it seems to me that part of the blame for this depressing state of affairs has to be laid

at Codd’s own door. The fact is, the 1969 and 1970 papers, brilliantly innovative though they

were, did suffer from a number of defects, some of which I propose to examine in what follows.

And it’s at least plausible to suggest that some of the sins to be observed in the present database

landscape—sins of both omission and commission—can be regarded, with hindsight (always

perfect, of course), as deriving from the defects in question.

Before going any further, I’d like to make it clear that the criticisms in what follows are all

offered in, and should be construed in, the spirit of this paper’s epigraph. I admire and am

hugely grateful for the work Codd did in the late 60s and early 70s and documented in his 1969

and 1970 papers (as well as in certain subsequent papers, also published in the early 70s).

Indeed, I owe my very livelihood to him and that work! But I also feel it’s important not to be

blinded by such feelings into uncritical acceptance of everything Codd said or wrote, either at

that time or subsequently. Nor do I feel it appropriate to accept Codd as the sole authority on

relational matters. Indeed, it’s to his credit that Codd himself is on record as agreeing with this

position. In an interview in Data Base Newsletter 10, No. 2 (March 1982), he stated explicitly

that “I see relational theory as simply a body of theory to which many people are contributing in

different ways.”

Without further ado, then, I’d like to examine some of the defects—or what seem to me to

be defects, at any rate—in Codd’s early writings. I’ll buttress my arguments with a variety of

quotes from those writings, all of them taken from the 1970 paper unless otherwise indicated.

WHAT’S THE RELATIONAL MODEL?

It’s a curious fact that, despite its title, the 1970 paper nowhere says exactly what the relational

model consists of. (Actually the 1969 paper doesn’t do so either.) Indeed, what it does say in this

connection suggests rather strongly that it consists of a structural component only.
2
 For example:

 “A model based on n-ary relations ... and the concept of a universal data sublanguage are

introduced.”

That “and” suggests rather strongly that “the universal data sublanguage”—i.e., the

collection of operators, such as join—is distinct from the model as such. (Moreover, a later

2 And this is a misconception that seems to be quite widespread and persists to this day, as the following quotes from a variety of
well known database textbooks indicate: (a) “In this chapter, we first study the fundamentals of the relational model, which
provides a very simple yet powerful way of representing data. We then describe three formal query languages [viz., relational
algebra, tuple calculus, and domain calculus]” (from Abraham Silberschatz, Henry F. Korth, and S. Sudarshan, Database System
Concepts, McGraw-Hill, 4th edition, 2002); (b) “Chapter 5 The Relational Data Model and Relational Database Constraints ...
Chapter 6 The Relational Algebra and Relational Calculus” (from Ramez Elmasri and Shamkant B. Navathe, Fundamentals of
Database Systems, Addison-Wesley, 4th edition, 2004); (c) “This chapter presents two formal query languages [viz., relational
algebra and relational calculus] associated with the relational model” (Raghu Ramakrishnan and Johannes Gehrke, Database
Management Systems, McGraw-Hill, 3rd edition, 2003). And I could cite numerous further examples—including, I’m sorry to say,
somewhat similar text from the first two editions of my own book An Introduction to Database Systems (Addison-Wesley, 1975
and 1977).

page 3

remark in the same paper makes it quite clear that Codd isn’t just talking about syntax here—he

means an abstract language.)

 “[The model] provides a means of describing data with its natural structure only ...

Accordingly, it provides a basis for a high level data language”

These two sentences taken together again suggest rather strongly that the model and the

operators are different things.

 “The adoption of a relational model of data, as described above, permits the development

of a universal data sublanguage based on an applied predicate calculus.”

Once again there seems to be an implication that the model is concerned with structure

only.

 “The relational view (or model) of data described in Section 1”

That “relational view (or model)” is indeed described in Section 1 as claimed.
3
 However, it

isn’t properly defined there. Indeed, not only is it not defined there, but all that section does in

this connection is describe the structural features of the model (i.e., relations as such)—it has

nothing to say about either operators or integrity constraints, except for a brief discussion of keys

and foreign keys. (As an aside, I note that the fact that keys and foreign keys are briefly

discussed in this context might be one of the reasons why, in practice, key and foreign key

constraints are typically bundled in with structural definitions—as in SQL, for example—instead

of being treated in the same uniform manner as integrity constraints in general.)

To pursue the point a moment longer, what is defined in Section 1 is the term relation.

However, given that (a) that definition actually occurs in subsection 1.3 of that section, (b) that

subsection is titled “A Relational View of Data,” (c) that term view (as used by Codd here) has

already been equated with the term model, and (d) that subsection 1.3 makes no mention of the

operators, the clear implication once again is that the operators aren’t part of the model.

Note: The first of Codd’s papers to contain an actual definition of the relational model was

“Extending the Database Relational Model to Capture More Meaning” (ACM TODS 4, No. 4),

which didn’t appear until December 1979. What this latter paper said was this (paraphrasing

somewhat):

 “The relational model consists of (1) a collection of time-varying tabular relations, (2) the

entity and referential integrity rules, and (3) the relational algebra.”

This definition might be criticized on a variety of grounds—tabular in particular is a little odd—

but at least it does make it clear that the operators are included. As for that time-varying, see

later in the present paper.

3 I note in passing that the text quoted actually appears in Section 1.

page 4

“A” Relational Model?

The 1970 paper not only fails to give a proper definition of the relational model, it sometimes uses

the term “a relational model” to refer to some user’s perception of some specific database (hence,

perhaps, the modern and continuing confusion over the two quite distinct meanings of the term

data model). A couple of examples:

 “There are usually many alternative ways in which a relational model may be established

for a data bank.”

 “To sum up, it is proposed that ... users should interact with a relational model of the data

consisting of a collection of time-varying [relations].”

Incidentally, that phrase “consisting of” suggests once again that the—or a?—relational

model is concerned with structure only.

WHAT’S A RELATION?

Following on from the previous section, I now observe that the 1970 paper isn’t even totally clear

on what it means by the term relation. Subsection 1.3 (“A Relational View of Data”) begins thus:

 “The term relation here is used in its accepted mathematical sense. Given sets S1, S2, ..., Sn

(not necessarily distinct), R is a relation on these n sets if it is a collection of n-tuples each

of which has its first element from S1, its second element from S2, and so on. We shall refer

to Sj as the jth domain of R.”

Note in particular that the “domains” of any given relation—more on that topic in a few

moments—are here quite explicitly considered to have an ordering (“left to right”).
4
 Now, the

paper does subsequently go on to say that “users [should] deal, not with relations which are

domain-ordered but with relationships, which are their domain-unordered counterparts.” But

almost all of the subsequent discussions in the paper (in several later writings too), as well as the

title of the 1970 paper and indeed the very term relational model, emphasize relations as such, not

those “relationships” or “domain-unordered counterparts” to relations. Accordingly, it’s hard to

escape the conclusion that one of the biggest flaws to be observed in SQL today—namely, that its

tables have a left to right ordering to their columns—has its origin in Codd’s 1970 paper.

Here are some further quotes from the 1970 paper that have to do with what exactly a

relation is:

 “[See the] remarks below on domain-ordered and domain-unordered relations.”

But the paper has already stated explicitly that relations are domain-ordered by definition.

As far as that paper is concerned, therefore, domain-unordered relation is, or should be, simply a

contradiction in terms.

4 Note too the tacit assumption (made explicit later in other writings by Codd) that every relation has at least one domain, and
hence that the important relations TABLE_DUM and TABLE_DEE are excluded.

page 5

 “Consider an example [involving a relation] called part which is defined on the following

domains ... (5) quantity on hand, (6) quantity on order.”

“Quantity on hand” and “quantity on order” would surely be distinct attributes defined on

the same domain. Indeed, the 1970 paper very frequently uses domain when attribute would

clearly be correct, or at least much more appropriate. Unfortunately, however, it never mentions

the term attribute at all—at least, not as a component of a relation.
5
 (As a matter of fact, it never

mentions the term tuple as an abbreviation for n-tuple, either. Taken together, these omissions

are more than a little surprising, since relations in the relational model are today universally

understood to consist specifically of attributes and tuples.)

 “... simple domains—domains whose elements are atomic (nondecomposable) values.”

The 1970 paper fails to define the term atomic value adequately.
6
 This failure led to a

massive misunderstanding in the database community at large as to what exactly it means to say a

relation is in first normal form—a misunderstanding that persists, widely, to the present day.

Indeed, it’s not unreasonable to suggest that Codd himself might have been a little confused over

this issue, to judge not only by the 1970 paper but also by certain of his later writings.

 “Nonatomic values can be discussed within the relational framework. Thus, some domains

may have relations as elements.”

Two questions here. First, what about other “nonatomic” values, such as lists or sets? Are

they permitted? Second, are relations allowed to contain such “nonatomic” values or aren’t

they? The 1970 paper never really gives a clear, straightforward answer to this question.
7

 “For expository reasons, we shall frequently make use of an array representation of

relations, but it must be remembered that this particular representation is not an essential

part of the relational view being expounded.”

First of all, it’s interesting to see that Codd suggests representing relations as arrays, not

tables (in fact, it’s a little surprising to find that the term table doesn’t occur in the paper at all).

Second, to suggest that relations might be thought of in terms of arrays is really rather strange—

not to say actively misleading—given that it’s a sine qua non of arrays that they have both an

ordering to their rows and an ordering to their columns, and relations have nothing analogous to

either. As a consequence, Codd’s caveat, to the effect that the array representation “is not an

essential part of the relational view being expounded,” seems to me much too weak. What is an

5 Oddly enough, the 1969 paper does mention the domain vs. attribute distinction.

6 The closest it gets to such a definition is in the following loose characterization of the distinction between what it calls“simple”
and “nonsimple” domains: “The terms attribute and repeating group in present database terminology are roughly analogous to
simple domain and nonsimple domain, respectively.” That being said, however, it seems virtually certain that what Codd meant by
“atomic values” was nothing more nor less than what in programming language circles are referred to as scalar values. But as I’ve
had occasion to remark elsewhere—see, e.g., my book SQL and Relational Theory: How to Write Accurate SQL Code (O’Reilly,
2nd edition, 2012)—“scalarness” isn’t an absolute. It isn’t even formally defined (indeed, the very same value might be regarded
as scalar in some contexts and nonscalar in others). Now, it would surely be unwise to require the formal relational model to rely
on such a fuzzy notion in any formal way; thus, if this understanding of what Codd meant by “atomic values” is in fact correct, then
I think it must be rejected.

7 It’s relevant to note that the 1969 paper explicitly does allow relations to contain such values.

page 6

essential part of the “view being expounded” is that the row and column ordering inherent in the

suggested array representation must be explicitly ignored.

Unfortunately, the 1970 paper then goes on to make matters worse by frequently and

repeatedly talking in terms of arrays and columns when what it really means is relations and

attributes. For example:

 “A binary relation has an array representation with two columns. Interchanging these

columns yields the converse relation.”

No, it doesn’t—it yields an array representation of “the converse relation” (not to mention

that the very term converse relation is meaningless in the context of the relational model

anyway!).
8
 This is just one of several places where the paper itself falls into the very trap it

explicitly warns us against, of confusing a relation with its array representation. No wonder so

many people continue to make the same mistake to this very day.

 “A relation whose domains are all simple can be represented in storage by a two-

dimensional column-homogeneous array of the kind discussed above.”

Represented in storage (specifically, in the form of an array) is unfortunate, suggesting as it

does a “direct image” style of implementation (which is, sadly, the style found in all mainstream

SQL products today, to a first approximation). Two-dimensional is unfortunate too—to this day,

far too many people seem to think that “two-dimensional relations” are incapable of representing

“n-dimensional data” (or indeed most other data that occurs in practice, come to that).

 “Some more complicated [storage representation] is necessary for a relation with one or

more nonsimple domains.
9
 For this reason ... the possibility of eliminating nonsimple

domains appears worth investigating.”

The stated reason is a very bad one!—suggesting as it does that representation in storage is

the major concern. Also, does “appears worth investigating” mean that “eliminating nonsimple

domains” must be done (assuming it’s possible), or are we merely talking about something that

might be desirable but isn’t absolutely required?

 “The simplicity of the array representation ... is not only an advantage for storage purposes

... but also for communication of bulk data between systems ... The communication form ...

would have the following advantages ... :”

Again the phrase for storage purposes is unfortunate. (So too is the phrase communication

of bulk data between systems, come to that.) Anyway, the first of the advantages the paper goes on

to mention is: “It would be devoid of pointers.” Of course, this state of affairs clearly implies that

the arrays seen by the user are also devoid of pointers, but this latter fact, strangely enough, is not

8 Note, incidentally, that Codd is quite definitely talking about “domain-ordered relations” here, not their “domain-unordered
counterparts.”

9 The paper uses the term data structure, not storage representation, but it’s clear from the context that storage representation is
what’s meant.

page 7

cited as an advantage. In other words, the crucially important fact that database relations per se

are supposed to “be devoid of pointers” is nowhere spelled out explicitly.
10

 “A first-order predicate calculus suffices if [every relation in the] the collection of relations

is in [first] normal form.”

There seems to be a suggestion here that second-order logic is necessary otherwise. It’s not

clear to me whether such is in fact the case, but I do think this remark is the source of some

further confusion. And while I’m on the subject of logic, let me also point out what seems to be

a fairly major omission: namely, the omission, from both the 1970 paper and its 1969

predecessor, of any mention of the crucial connection between relations and predicates.
11

WHAT’S A DOMAIN?

I’ve already mentioned the 1970 paper’s lack of clarity over domains vs. attributes. In fact,

however, there’s a further point of confusion that arises from the notion of domains as described

in Codd’s writings. To elaborate: As far as I and many other writers are concerned, domains in

the relational world are indistinguishable from types in the programming languages world.
12

 But

the 1970 paper doesn’t discuss this equivalence at all; in fact, it doesn’t even mention it. Au

contraire, in fact: In later writings Codd went to great lengths to argue the opposite point of

view—viz., that domains and types are different things. For example, in his paper “Domains,

Keys, and Referential Integrity in Relational Databases” (InfoDB 3, No. 1, Spring 1988), he

draws a distinction between what he calls “basic data types” and “extended data types,” and goes

on to say that “extended data types” are domains but “basic data types” aren’t. Here’s a quote

from that paper:

 “Each domain is declared as an extended data type (not as a mere basic data type) ... The

distinction between extended ... and basic data types is NOT that the first is user-defined

and the second is built into the system.”

The following table from that same paper purports to summarize the differences between

the two—the differences as seen by Codd, that is—though as far as I’m concerned all it manages

to do is raise a host of further questions:

10 Indeed, this fact doesn’t seem to have been spelled out explicitly in any of Codd’s writings until 1979, when the following text
appeared in his paper “Extending the Database Relational Model to Capture More Meaning” (ACM TODS 4, No. 4, December
1979): “Between ... relations there are no structural links such as pointers. Associations between relations are represented solely
by values.” However, a couple of remarks can be found in his 1971 paper “Normalized Data Base Structure: A Brief Tutorial,”
Proc. ACM SIGFIDET Workshop on Data Description, Access, and Control (San Diego, Calif., November 11th-12th, 1971), that
do at least strongly hint at such a state of affairs.

11 The first of Codd’s writings to spell out this connection explicitly seems to have been the paper I’ve mentioned a couple of times
already, “Extending the Database Relational Model to Capture More Meaning” (ACM TODS 4, No. 4, December 1979).

12 This observation does not apply to what SQL calls domains, which aren’t domains in the relational sense at all. Rather, they’re
merely a kind of factored out “common column definition,” with a number of rather strange properties that have nothing to do with
the relational model as such and hence are beyond the scope of this paper.

page 8

┌───┬───────────────────────────────────────┬───────────────────────────────────┐
│ # │ Basic Data Type │ Extended Data Type │

├═══┼───────────────────────────────────────┼───────────────────────────────────┤
│ 1 │ property-oriented name │ object-oriented name │
│ 2 │ a property of an object │ an object │

│ 3 │ not independently declarable │ independently declarable │
│ 4 │ range of values NOT specifiable │ range of values specifiable │
│ 5 │ applicability of >, < not specifiable │ applicability of >, < specifiable │

│ 6 │ two database values with the same │ │
│ │ basic data type need not have the │ │
│ │ same extended data type │ │

└───┴───────────────────────────────────────┴───────────────────────────────────┘

A detailed discussion of these alleged differences would be out of place in the present

paper; suffice it to say that all that’s happening here is that Codd is confusing types and

representations (or so it seems to me, at any rate).
13

 Further evidence in support of this claim is

provided by several further remarks in that same InfoDB paper. I’ll content myself with quoting

just one of those remarks here:

 “With special authorization ... a user may employ the DOMAIN CHECK OVERRIDE

qualifier in his [sic] command, if a special need arises to ‘compare apples with oranges’.”

The “apples and oranges comparisons” Codd is referring to here are comparisons involving

domains that are (by definition) logically distinct but share the same physical representation—for

example, a comparison to see whether the physical representation of a certain supplier number is

the same as that of a certain part number. Note: In other writings, Codd (rather unfortunately, in

my opinion) used the term “semantic override” in place of “domain check override.” The term

“command” is unfortunate too—“expression” would be much better.

Actually, there’s at least one remark in the 1970 paper that does touch on these matters:

 “It is a remarkable fact that several existing information systems ... fail to provide data

representations for relations which have two or more identical domains.”

This remark is clearly incorrect on its face; a relation with, e.g., two attributes both defined

on the domain of integers surely can’t give rise to any special difficulties of implementation.

From the context, however, it seems that what Codd was really getting at here is that systems often

provide special support for one to many relationships between “entity types” but fail to provide

special support for many to many relationships between such “entity types.” This criticism might

apply to XML, for example, though of course XML didn’t exist in 1970. Incidentally, it’s

interesting to note that, by contrast, it doesn’t apply to IMS (which did exist at the time), despite

the fact that IMS is usually perceived as being a hierarchic system.
14

13 The significance of this important logical difference (i.e., between types and representations) is nicely captured in the following
quote from “On Understanding Types, Data Abstraction, and Polymorphism” (ACM Comp. Surv. 17, No. 4, December 1985), by
Luca Cardelli and Peter Wegner: “A major purpose of type systems is to avoid embarrassing questions about representations, and
to forbid situations in which these questions might come up.”

14 And despite the fact also that the very next sentence in the 1970 paper, immediately following the sentence already quoted, is:
“The present version of [IMS] is an example of such a system”!

page 9

WHAT’S A TIME-VARYING RELATION?

Ever since the early 1990s, Hugh Darwen and I have been calling attention to the fact that there’s

a logical difference between relations as such (meaning relation values), on the one hand, and

relation variables (which we abbreviate to just relvars) on the other. Codd’s 1970 paper uses the

qualifier time-varying in an attempt to get at the same distinction. For example:

 “The totality of data in a data bank may be viewed as a collection of time-varying

relations.”

However, it’s my belief that the phrase time-varying relation has been the source of a very

great deal of confusion. Since relations simply don’t vary with time (as indeed the definition of

the term relation in the first paragraph of subsection 1.3 of the 1970 paper makes quite clear), it

follows that a “time-varying relation,” whatever else it might be, certainly isn’t a relation. In

particular, therefore, given that the operators—join, projection, and so on—defined elsewhere in

the paper all apply to relations as such, what does it mean to apply them to a “time-varying

relation”? Note that Codd certainly does assume they do apply, as is evidenced by several

remarks in Section 2.2 (“Redundancy”) of the 1970 paper and elsewhere.

 “As time progresses, each n-ary relation may be subject to insertion of additional n-tuples,

deletion of existing ones, and alteration of components of any of its existing n-tuples.”

“Relation” here ought really to be “time-varying relation” or (better) “relation variable”

(variables can be updated, values can’t). Also, the 1970 paper nowhere mentions the

fundamental operation of relational assignment, an oversight that perhaps led to the omission of

that operator from SQL, as well as from most other proposed relational or would-be relational

languages. As I’ve had occasion to remark elsewhere, INSERT, DELETE, and UPDATE are

convenient shorthands, but they’re all, in the final analysis, defined in terms of relational

assignment. And a model as such—which after all is what the 1970 paper is supposed to be all

about—ought surely to be concerned with fundamentals, not with mere shorthands that might

happen to be convenient for the user.

Note: While I’m on the subject of updates, the 1970 paper also has this to say:

 “Deletions which are effective for the community (as opposed to the individual user or

subcommunities) take the form of removing elements from declared relations.”

It’s frankly not clear what this remark is supposed to mean (especially given the

qualification in parentheses)—it looks a little mysterious to me. As far as I know, however, it

didn’t lead to anything, so perhaps we can simply ignore it.

WHAT’S A KEY?

The 1970 paper is quite muddled over the concept of keys in general and primary keys in

particular. Consider the following:

page 10

 “Normally, one domain (or combination of domains) of a given relation has values which

uniquely identify each element (n-tuple) of that relation. Such a domain (or combination)

is called a primary key ... A primary key is nonredundant if it is either a simple domain (not

a combination) or a combination such that none of the participating simple domains is

superfluous in uniquely identifying each element. A relation may possess more than one

nonredundant primary key ... Whenever a relation has two or more nonredundant primary

keys, one of them is arbitrarily selected and called the primary key of that relation.”

I have several comments on this extract.

1. First of all, keys of any kind represent certain integrity constraints, and integrity constraints

apply to variables, not values (since they constrain the effects of updates, and updates apply

to variables, not values). Thus, “relation” should be “time-varying relation” or (better)

“relation variable” throughout.

2. “Domain” should be “attribute” throughout.

3. The term simple domain doesn’t mean here what it means elsewhere in the paper (viz., a

domain whose values are “atomic”).

4. The “combination” consisting of no attributes at all should be allowed. Note: Of course,

this possibility isn’t explicitly excluded by the text quoted. But the term “combination”

(used here and elsewhere in the paper), rather than the term “set,” does tend to suggest that

the intended interpretation is “one or more,” not “zero or more.”
15

5. That opening “Normally” is quite puzzling—it suggests that what the paper calls a primary

key is in fact optional.
16

 Worse, it actually suggests that “a given relation” might not have

a “domain (or combination of domains) which uniquely identify each [tuple]” at all, and

hence that duplicate tuples might be legitimate! Of course, I’m quite certain this

interpretation isn’t what Codd intended, but it would surely have been better to have used

more careful wording. As it is, he lays himself open to attack by critics of the

deconstructionist persuasion.
17

6. Note that the extract allows a “relation” to have any number of primary keys, and moreover

that such keys are allowed to be “redundant” (better: reducible). In other words, what the

paper calls a primary key is what later (and better) became known as a superkey, and what

the paper calls a nonredundant (better: irreducible) primary key is what later became

known as a candidate key or (better) just a key.

15 Further evidence that this interpretation is the one intended can be found in various later writings by Codd. For example, in his
book The Relational Model for Database Management Version 2 (Addison-Wesley, 1990), we find this: “A primary key may
consist of a simple column or a combination of columns. When it consists of a combination of columns, the key is said to be
composite.” It’s hard to believe that Codd intended that a key of degree zero should be thought of as composite.

16 But the paper does later say “Each [relation] declaration ... identifies the primary key for that relation,” which suggests that
primary keys are mandatory after all.

17 Deconstruction in general is a useful and effective technique of literary criticism. This isn’t the place for a detailed explanation,
but what it boils down to is this: You can judge a writer’s intent only by what he or she has actually said, not by what you might
possibly think he or she might possibly have wanted to have possibly said, but didn’t.

page 11

7. Finally, “the primary key” as defined in the final sentence of the extract quoted is indeed

what the term primary key later came to denote. But I reject that concept anyway. I don’t

believe the kind of arbitrariness involved (i.e., in selecting the primary key) has any place

in a formal system such as the relational model is supposed to be.

Here’s another quote on primary keys (though actually what it says is surely intended to

apply to keys in general, not just to primary keys in particular):

 “No primary key has a component domain which is nonsimple.”

And the paper goes on to say “The writer knows of no application” that would require this

condition to be relaxed. Well, we could perhaps argue over the precise meaning of the term

require here; however, there are certainly applications for which keys defined on “nonsimple

domains” do seem to be the most natural design.
18

So much for keys as such; now I turn to foreign keys. I have just one quote on this subject:

 “We shall call a domain (or domain combination) of relation R a foreign key if it is not the

primary key of R but its elements are values of the primary key of some relation S”

Foreign keys were invented by Codd, but his definition of the concept changed several

times over the years.
19

 The first definition, in the 1970 paper, was the one just quoted. That

definition includes the strange and clearly unnecessary restriction that a foreign key not be the

primary key of its containing relation (or relation variable, rather). Codd later and silently

dropped that restriction, but he never dropped the restriction that the target of a foreign key had

to be a primary key specifically.
20

WHAT ABOUT THE OPERATORS?

Although (as I’ve tried to show) the 1970 paper is at best unclear as to whether the relational

operators are part of the model—not to mention whether they apply to “time-varying

relations”—it does have a lot to say about such operators. With hindsight, however, it seems to

me that some of the things it does say are a little strange. For example:

 “Since relations are sets, all of the usual set operations are applicable to them.

Nevertheless, the result may not be a relation; for example, the union of a binary relation

and a ternary relation is not a relation.”

These remarks are undoubtedly true, but they constitute the sole mention of “the usual set

operations” (union in particular) in the entire paper. The clear implication is that (a) union and

the rest are included in the proposed set of operators, and (b) there’s no requirement for what

18 Examples of such applications can be found in the paper “What First Normal Form Really Means,” in my book Date on
Database: Writings 2000-2006 (Apress, 2006).

19 An annotated history of those changes can be found in the paper “Inclusion Dependencies and Foreign Keys,” in the book
Database Explorations: Essays on The Third Manifesto and Related Topics (Trafford, 2010), by Hugh Darwen and myself.

20 To its credit, SQL never abided by either of these restrictions.

page 12

Codd referred to in later papers as union compatibility.
21

 A further implication is that there’s no

requirement for what later came to be called closure (relational closure, that is, meaning that the

result of every relational operation is itself a relation). Indeed, this latter notion—which later

came to be regarded as crucial—isn’t mentioned in the paper at all. (It might be germane to

mention here that SQL as originally defined in fact failed to abide by the closure requirement, a

shortcoming that wasn’t corrected, at least in the standard version of that language, until 1992.)

 “Join. Suppose we are given two binary relations, which have some domain in common.

Under what circumstances can we combine these relations to form a ternary relation which

preserves all of the information in the given relations?”

The join concept is in many ways one of Codd’s most important contributions. It’s

unfortunate, therefore, that—in my opinion, at any rate—the discussion of that topic in the 1970

paper is a little confusing:
22

 so much so, in fact, that it can be quite hard in places to see the

forest for the trees. For example, it might not be immediately obvious to a modern reader—

though the foregoing quote, which opens the discussion, does suggest as much—that the paper is

primarily, albeit not exclusively, concerned with what we would now call nonloss joins.
23

Nonloss joins are crucially important in what’s now called normalization theory, but that theory

isn’t part of the relational model; rather, it’s a separate theory that’s built on top of the relational

model.
24

 To put the point another way: Join as such is just an operator. Whether some

particular join is nonloss is a separate question, one that’s significant in certain important

contexts but is, or should be, irrelevant as far as the relational model itself is concerned.

 “A binary relation R is joinable with a binary relation S if there exists a ternary relation U

such that [the projection of U on its first and second attributes is equal to R and the

projection of U on its second and third attributes is equal to S].
25

 Any such ternary relation

is called a join of R with S.”

Observe that, quite apart from the fact that it assumes that relations have a left to right

ordering to their attributes,
26

 this definition implies the following: If X is the second attribute of

relation R and Y is the first attribute of relation S (and if those two attributes are defined on the

same domain, of course), then R and S can be joined only if the set of X values in R is the same as

the set of Y values in S (equivalently, only if the projections of R and S on X and Y, respectively,

21 In fact I reject “union compatibility” as such anyway. In our work on The Third Manifesto—see our book Databases, Types,
and the Relational Model: The Third Manifesto (Addison-Wesley, 3rd edition, 2007)—Hugh Darwen and I replaced, and
subsumed, that notion by a carefully thought out notion of relation type.

22 The discussion in the 1969 paper is essentially identical.

23 Actually the term nonloss join has at least two different meanings. In the present paper I use it in the following sense (and the
following sense only): The join j of relations r1 and r2 is nonloss if and only if the projection of j on the attributes of r1 is equal to
r1 and the projection of j on the attributes of r2 is equal to r2.

24 It is, however, only fair to mention that it was Codd himself who established the foundations of normalization theory (now more
commonly known as dependency theory). See his paper “Further Normalization of the Data Base Relational Model,” in Randall J.
Rustin (ed.), Data Base Systems: Courant Computer Science Symposia Series 6 (Prentice-Hall, 1972).

25 Our modern understanding of the term is rather different; today we would say that two relations are joinable if and only if
attributes with the same name are of the same type.

26 And quite apart also from the fact that it implies that R and S might be joinable while S and R aren’t—and even if they are, that
the join of R and S and the join of S and R will, in general, be distinct (as indeed the 1970 subsequently and explicitly admits).

page 13

are equal).
27

 Oddly, however, the paper then goes on to give a definition of the natural join of R

and S that doesn’t require R and S to be “joinable” in the foregoing sense!—indeed, that definition

is close to the one we use today.

The paper then gets into a fairly extensive discussion of what it calls cyclic joins. But that

discussion is back to front, in a sense. What it really has to do with is not so much join as such but

what we now know as join dependencies, and in particular with the possibility that a given relation

might be nonloss decomposable into (say) three projections but not into two. Indeed, the very fact

that no one at the time seemed to realize that such matters were the real topic lends weight to my

claim that the discussion overall wasn’t as clear as it might have been. Be that as it may, the paper

gives an example, in Figs. 8 and 9, to illustrate the foregoing possibility (the possibility, that is,

that a relation might be nonloss decomposable into three projections but not into two).

Unfortunately, however, Fig. 8 contains at least one mistake, which makes it difficult to

understand exactly what’s going on. At the very least, the fourth row of T in Fig. 8 should either

be changed (but how?) or be deleted.
28

 “[It] appears that an adequate collection [of operators is] projection, natural join, tie, and

restriction.” Note: Codd’s restriction operator here isn’t quite the same as the operator of

that name as now understood, but the differences aren’t important for present purposes. As

for the tie operator, it can be defined as follows: Given a relation r with attributes A1, A2, ...,

An, the tie of r returns the relation containing just those tuples of r for which A1 = An.

(Incidentally, note the reliance on left to right attribute ordering in this definition.)

Here Codd is touching on what would later come to be called relational completeness. But

that “adequate” list of operators should certainly include (relational) union and difference. (By

contrast, it’s hard to see why tie is included, or even what purpose that operator serves at all.)

 “Arithmetic functions may be needed in the qualification or other parts of retrieval

statements. Such functions can be defined in [the host language] H and invoked in [the

data sublanguage] R.”

It’s good to see that the 1970 paper tacitly endorses the idea of supporting relational

operators such as EXTEND and SUMMARIZE. Unfortunately, the paper fails to give further

guidance as to how those “arithmetic functions” might actually be “invoked in R” (the relational

operators defined in the paper don’t seem to have room for any such invocations).

By the way, the terms arithmetic, retrieval, and statements in the foregoing quote are all

somewhat misleading, in my view. For my part, I would greatly prefer to replace the first

sentence by something along the following lines: “Relational expressions might need to contain

invocations of computational functions” (and that qualifier computational might not be

necessary, either).

27 This condition is sufficient to guarantee that the join is nonloss, in the sense in which I’m using the term nonloss join in this
paper.

28 Oddly enough, the counterpart to Fig. 8 in the 1969 paper does appear to be correct (to be specific, it omits that fourth row of T).
On the other hand, at least one republished version of the 1970 paper (viz., the one in Phillip LaPlante, Great Papers in Computer
Science, West Publishing, 1996) manages to introduce an additional mistake of its own. Caveat lector.

page 14

 “It is well known that ... it is unnecessary to [be able to] express every formula of the

selected predicate calculus [in the data sublanguage]. For example, just those in prenex

normal form are adequate.”

Actually prenex normal form is not adequate, as I’ve shown elsewhere.
29

 “The network model ... has spawned a number of confusions, not the least of which is

mistaking the derivation of connections for the derivation of relations.” [Later:] “A lack

of understanding of relational composition has led several system designers into what may

be called the connection trap.
30

 This trap may be described in terms of the following

example. Suppose each supplier description is linked by pointers to the descriptions of

each part supplied by that supplier, and each part description is similarly linked to the

descriptions of each project which uses that part. A conclusion is now drawn which is, in

general, erroneous: namely that, if all possible paths are followed from a given supplier via

the parts he [sic] supplies to the projects using those parts, one will obtain a valid set of all

projects supplied by that supplier.”

Far be it from me to defend “the network model,” but this criticism really has nothing to do

with the network model as such—it applies equally to the relational model, mutatis mutandis.
31

“Derivation of connections” is “derivation of relations”! The mistake consists in misinterpreting

the relations so derived. It’s the quoted text that’s confused.

And What About Relational Comparisons?

The algebra of sets is usually thought of as including a partial ordering operator called set

inclusion, denoted by the symbol “⊆”. Here's the definition: The expression s1 ⊆ s2, where s1

and s2 are sets, evaluates to TRUE if and only if every element of s1 is also an element of s2 (i.e.,

if and only if s1 is a subset of s2). So if, as seems likely, Codd meant to pattern his algebra of

relations after the algebra of sets, it would have been reasonable to define an analogous relational

inclusion operator. More generally, it would have been reasonable, and indeed useful, to define a

full array of relational comparison operators: equality, inclusion, proper inclusion, and so on.

Sadly, however, neither the 1970 paper nor its 1969 predecessor mentioned any such operators (at

least, not explicitly).
32

Note: Actually the foregoing omission is a trifle odd, inasmuch as the discussion of

redundancy in both papers certainly assumed the ability to compare two relations for equality if

29 See the paper “A Remark on Prenex Normal Form,” in the book Database Explorations: Essays on The Third Manifesto and
Related Topics (Trafford, 2010), by Hugh Darwen and myself.

30 Relational composition is a generalization of conventional functional composition. In its simplest form it can be defined as
follows: Let relation r1 have attributes A and B and let relation r2 have attributes B and C, and let attributes r1.B and r2.B be of the
same type (i.e., let r1 and r2 be joinable, either in Codd’s sense or as that term is now understood). Then the composition of r1 and
r2 is the join of r1 and r2, projected on A and C.

31 By the way, Codd really shouldn’t have used the phrase “the network model” here if, as he later argued, no abstract network
model even existed at the time. See his remarks on such matters in his paper “Data Models in Database Management” (ACM
SIGMOD Record 11, No. 2, February 1981).

32 Codd did subsequently require such operators to be supported in what he called Version 2 of the model—see his book The
Relational Model for Database Management Version 2 (Addison-Wesley, 1990)—but he didn’t discuss them in detail or even
define them. (The pertinent text, on page 365 of that book, reads in its entirety thus: “[The relational language] also includes set
comparators such as SET INCLUSION.”)

page 15

nothing else. What’s more, the definitions Codd himself gave for his relational division operator

in various later publications all explicitly invoked the operation of relational inclusion! Be that as

it may, the fact that relational comparisons are still to this day omitted from nearly all database

textbooks (and from the SQL language as well, come to that) can, I think, fairly be traced back to

the lack of any mention of such operators in Codd’s first two papers.

WHAT ABOUT DATA INDEPENDENCE?

Here’s the opening sentence from the abstract to the 1970 paper:

 “Future users of large data banks must be protected from having to know how the data is

organized in the machine (the internal representation).”

I agree strongly with this position, implying as it does that there must be a rigid distinction

between model and implementation. But several later remarks in the paper blur that distinction

considerably. For example, subsection 1.6 is titled “Expressible, Named, and Stored Relations.”

Clearly, any notion of some given relation being stored—i.e., physically stored, in some kind of

“direct image” form, with each stored record corresponding to a single tuple from the relation in

question
33

—is counter to the objective of users being “protected from having to know how the

data is organized in the machine.” In fact, subsection 1.6 nowhere discusses “stored relations”

anyway! The title is presumably a hangover from the 1969 paper, where such a notion was

discussed. (Here’s a quote from that earlier paper: “The large, integrated data banks of the

future will contain many relations of various degrees in stored form”—emphasis added.) Indeed,

the whole idea of some relations being “stored” ones was a mistake in that earlier paper, a

mistake partially but not totally excised from the 1970 paper. For example, here are some more

quotes from this latter:

 “[The host language] permits declarations which indicate ... how these relations are

represented in storage.”

 “Once a user is aware that a certain relation is stored ...”

 “... [then that user will] expect to be able to exploit it using any combination of its

arguments as ‘knowns’ and the remaining arguments as ‘unknowns’ ... This is a system

feature ... which we shall call ... symmetric exploitation of relations. Naturally, symmetry

of performance is not to be expected.”

Actually there’s no a priori reason why symmetry of performance shouldn’t be expected,

unless—as the extract quoted here does tacitly seem to assume—we’re dealing with a “direct

image” style of implementation (which is indeed, as noted earlier, what we do find in most if not

33 One reviewer objected here that Codd’s talk of stored relations didn’t necessarily imply a “direct image” style of implementation
(especially since the very next bullet item—another quote from the 1970 paper—in the present paper explicitly refers to
“declarations which indicate how relations are represented in storage,” suggesting some degree of choice and variability in physical
representation). But other remarks of Codd’s, quoted elsewhere in the present paper, do strongly suggest a direct image style. And
in any case (and more to the point), that very phrase stored relation implies—at least to me—that there’s some kind of one to one
mapping between relations and storage structures, and in my view the assumption of such a mapping has already prejudiced the
debate. In my book Go Faster! The TransRelationalTM Approach to DBMS Implementation (2002, 2011, http://bookboon.com), I
argue strongly that it’s a good idea that there not necessarily be any such one to one mapping.

page 16

all mainstream SQL products today). Thus, once again we find the 1970 paper tacitly endorsing

the notion that certain relations will be physically stored as such (or, rather, the notion that their

array representation will be physically stored as such). Note: By the way, “arguments” in the

foregoing quote ought really to be parameters or (perhaps better) attributes.

As an aside, I note that the paper goes on to say “To support symmetric exploitation ... [for]

a relation of degree n, the number of [access] paths to be named and controlled is n factorial.”

It’s a little hard to argue with this claim since the term access path isn’t defined, but shouldn’t

the number of paths be 2
n
, not n factorial? (There are 2

n
 combinations of attributes that might be

used as “knowns.”)

WHAT ABOUT INTEGRITY?

The 1970 paper has quite a lot to say about integrity. However, it mostly doesn’t use that term, it

uses the term consistency instead—not unreasonably, because the only integrity constraints it

considers in any detail
34

 are ones having to do with data redundancy specifically, as the

following quote (from subsection 2.3 of the paper, “Consistency”) makes clear:

 “Whenever the named set of relations is redundant ... we shall associate with that set a

collection of statements which define all of the redundancies which hold independent of

time between the member relations
35

 ... Given a collection of C of time-varying relations,

an associated set Z of constraint statements, and an instantaneous value V for C, we shall

call the state (C, Z, V) consistent or inconsistent according as V does or does not satisfy Z.”

There’s just one issue—a very important one!—arising in connection with this topic that

I’d like to comment on here. Here first is the relevant extract from the paper:

 “There are, of course, several possible ways in which a system can detect inconsistencies

and respond to them. In one approach the system checks for possible inconsistency

whenever an insertion, deletion, or key update occurs.
36

 Naturally, such checking will slow

these operations down. If an inconsistency has been generated ... and if it is not remedied

within some reasonable time interval, either the user or someone responsible for the ...

integrity of the data is notified. Another approach is to conduct consistency checking as a

batch operation once a day or less frequently.”

I regard these remarks as unfortunate in the extreme. Indeed, I regard them as the source of

a serious mistake to be observed in SQL and elsewhere: namely, the decision to allow the

checking of certain integrity constraints to be “deferred,” typically to the end of the transaction

(i.e., “COMMIT time”). In strong contrast, it’s my very firm position that all integrity checking

needs to be “immediate” (i.e., done whenever an update is requested that might cause the

34 Apart from key and foreign key constraints, discussed earlier in both this paper and Codd’s 1970 paper.

35 It’s a sad comment on the state of the database industry that, to this day, no mainstream product actually provides this
functionality.

36 I don’t know why Codd singles out key updates specifically here; surely integrity checking should be performed on all updates
(all pertinent updates, at any rate)?

page 17

constraint in question to be violated, at the time the request in question is made). Let me

elaborate:

 First of all, to say the database is consistent merely means, formally speaking, that it

conforms to all declared integrity constraints. But it’s crucially important that databases

always be consistent in this sense; indeed, a database that’s not consistent in this sense, at

some particular time, is like a logical system that contains a contradiction. And in a logical

system with a contradiction, you can prove anything; for example, you can prove that 1 = 0.

What this means in database terms is that if the database is inconsistent in the foregoing

sense, you can never trust the answers you get to queries (they may be false, they may be

true, and you have no way in general of knowing which they are); all bets are off. As far as

declared constraints are concerned, in other words, the system simply must do the checking

whenever a pertinent update occurs; there’s no alternative, because (to say it again) not to

do that checking is to risk having a database for which all bets are off. In other words,

immediate integrity checking is logically required.

 What’s more, I don’t agree that immediate checking will necessarily slow the system down.

If the user has bothered to declare the constraint, presumably he or she wants it enforced—

for otherwise there’s no point in declaring it in the first place. And if the user wants the

constraint enforced, and if the system isn’t going to do it (by which I mean do it properly,

by which I mean doing immediate checking on all pertinent updates), then the user is going

to have to do it instead. Either way, the checking does have to be done. And I would hope

that the system could do that checking more efficiently than the user! Thus, I think that, far

from the operations being slowed down, they should be speeded up, just so long as the

system does the right thing and shoulders its responsibility properly.

Now, to be charitable, what I think Codd might have been getting at by his suggestion that

integrity checking might be deferred was what has since come to be known as “eventual

consistency.” But if so, then I think he was confusing consistency in the formal sense and

consistency as conventionally (and informally) understood—meaning consistency as understood

in conventional real world terms, outside the world of databases. Suppose there are two items A

and B in the database that, in the real world, we believe should have the same value. They might,

for example, both be the selling price for some given commodity, stored twice because stored

data replication is being used to improve availability. If A and B in fact have different values at

some given time, we might certainly say, informally, that there’s an inconsistency in the data as

stored at that time. But that “inconsistency” is an inconsistency as far as the system is concerned

only if the system has been told that A and B are supposed to be equal—i.e., only if “A = B” has

been stated as a formal integrity constraint. If it hasn’t, then (a) the fact that A ≠ B at some time

doesn’t in and of itself constitute a consistency violation as far as the system is concerned, and

(b) importantly, the system will nowhere rely on an assumption that A and B are equal. In other

words, if all we want is for A and B to be equal “eventually”—i.e., if we’re content for that

requirement to be handled in the application layer—all we have to do as far as the database

system is concerned is omit any declaration of “A = B” as a formal constraint. No problem, and

in particular no violation of the relational model.

page 18

AND WHAT ABOUT NULLS?

I’ve deliberately saved until last one of the biggest mistakes of all: nulls. One of my reasons for

doing so is that the 1969 and 1970 papers actually have nothing at all to say about the issue—

quite correctly, in my view, since nulls (at least in the sense in which they’re usually understood,

involving a foundation in n-valued logic for some n > 2) have no part to play in a formal system

like the relational model, which is firmly based on conventional two-valued logic. Indeed, Codd

never discussed nulls in any detail until the 1979 paper I’ve mentioned several times already:

viz., “Extending the Database Relational Model to Capture More Meaning” (ACM TODS 4, No.

4). In other words, Codd’s relational model did perfectly well without nulls for some ten years.

I would prefer to keep it that way.

——— ———

