
391

Chapter 24

T h e M u l t i r e l a t i o n a l A p p r o a c h

Do I contradict myself?
Very well then I contradict myself,
(I am large, I contain multitudes.)

—Walt Whitman: Song of Myself

If we had some ham, we could have ham and eggs,
if we had some eggs.

—Anon.

Quite a few of the various approaches that have been proposed at one time or another to the “missing information”
problem involve data structures that look like relations but aren’t—they look like relations in that their bodies
consist of tuples, but they differ from relations in that tuples in the same body don’t all have to have the same
heading. The latest such proposal (and the one that prompted the investigations described in this chapter) is in
reference [10], where once again the idea is floated that such structures be admitted to the database, subject to
certain restrictions I don’t need go into here. An earlier proposal can be found in reference [12], by my friend the
late Adrian Larner. Larner did discuss his ideas with me at the time, but I failed to understand them properly then
and I still fail to understand them fully now.

Fig. 1 overleaf depicts in tabular form a couple of examples of the kinds of structures all such approaches
involve (table S represents suppliers and table SP shipments).1 Please note, however, that the gaps or vacant
spaces in the tables in that figure aren’t meant to represent SQL-style nulls; nor are they meant to represent blanks
or the empty character string. Rather, they’re meant to represent the complete absence of the attribute in question
from the tuple in question—where, of course, the attribute in question is the one whose name appears at the top of
the column in which the gap appears, and the tuple in question is the one whose attribute values appear in the row
in which the gap appears. Thus, to spell the point out (and to adopt an obvious shorthand notation for tuples), the
tuples <S3,Blake,30> and <Smith,20,London>, although they both appear in whatever it is that table S is
supposed to represent, have different headings and are therefore of different types. What’s more, the heading of
the first of these tuples in particular is different from the heading of whatever it is that table S is supposed to
represent.

1 If those tables represented relations and those relations were meant to be values of relvars, then I would normally mark certain attributes by
double underlining to show they were components of the primaryor at any rate solekey for the relvar in question. I omit such double
underlining in this chapter (except when the table in question really does represent a relation), for reasons to be explained in the discussion of
MR-keys in the section “Constraints,” later in the chapter.

392 Part IV / Missing Information

S SP
┌────┬───────┬────────┬────────┐ ┌────┬────┬─────┐
│ S# │ SNAME │ STATUS │ CITY │ │ S# │ P# │ QTY │
├────┼───────┼────────┼────────┤ ├────┼────┼─────┤
│ S1 │ Smith │ 20 │ London │ │ S1 │ P1 │ 300 │
│ S2 │ Jones │ 10 │ Paris │ │ S1 │ P2 │ 200 │
│ S3 │ Blake │ 30 │ │ │ S2 │ P1 │ │
│ S4 │ Clark │ │ London │ │ S3 │ P2 │ 200 │
│ S5 │ Adams │ 30 │ Athens │ │ S4 │ P4 │ │
│ S6 │ │ │ Rome │ └────┴────┴─────┘
│ S7 │ │ │ │
└────┴───────┴────────┴────────┘

Fig. 1: Suppliers and shipments—sample values

At first glance, it would seem that such schemes mean we have to abandon relations, which is why in the
past I’ve tended to reject them out of hand. But the publication of reference [10], an article criticizing some of my
own (joint) work, more or less compelled me to produce a detailed justification for those rejections. To do that, I
needed to work out in more detail what such a scheme might look like in practice; that exercise, I thought, would
clearly expose the flaws in the idea. In thinking about this question, however, it occurred to me that the kind of
structure under consideration, though not itself a relation, does in a sense include certain relations, and those
relations might somehow be extracted from it. And if we did all our real work (as it were) in terms of those
extracted relations, then it might be argued that we would have preserved the relational model, and we would have
abided by Codd’s Information Principle (which requires that all information in the database be cast in the form of
relations, and nothing but relations).2 But—and it is a big but—it must still be understood that the kind of object
that includes those relations is, to repeat, not itself a relation. With that caveat in mind, I still wished to see where
the idea might lead.

It’s easy to spot the five nonempty relations included in table S in Fig. 1. One contains the tuples with S#
values S1, S2, and S5; each of these three tuples has all four of the attributes S#, SNAME, STATUS, and CITY.
The other four relations, which happen to contain just one tuple each, are as follows:

 One contains just the tuple for supplier S3, with attributes S#, SNAME, and STATUS.

 One contains just the tuple for supplier S4, with attributes S#, SNAME, and CITY.

 One contains just the tuple for supplier S6, with attributes S# and CITY.

 And one contains just the tuple for supplier S7, with S# as its sole attribute.

But how many empty relations does that table include in that same sense? And what exactly is that sense?
Such questions, and many more, needed to be answered, I thought, before I could begin to think about the
operators that might be defined for operating on such objects.

What to call these objects? Because I was expecting my investigations to show why the idea should be
rejected, I first considered the somewhat derogatory term pseudorelation. As my investigations proceeded,
however, I became less convinced that the idea should be rejected out of hand—though I hasten to add that I’m
certainly not yet arguing in favor of the idea either—and so I decided to call them multirelations instead.

2 As reference [5] points out, this principle might more appropriately be called The Principle of Uniform Representation, or even The Principle
of Uniformity of Representation.

Chapter 24 / The Multirelational Approach 393

Unfortunately, I then found that this term has been used before, for purposes that are (a) different from the one at
hand and (b) multifarious. Because of (b), and also because of my inability to think of any suitable alternative, I
decided to stick with multirelation for the time being. I do think my use of that term is more appropriate than
some others I’ve found; some people apparently even use it to mean an SQL table, on the grounds that the body of
such a table is (in general) a bag or, as the SQL international standard has it, a “multiset.” See also references [9]
and [11], with which I might or might not be significantly at odds.

I’ve said I’m not currently advocating support for multirelations. In fact, I’d like to emphasize that I don’t
regard the problem that multirelations address as a previously unsolved one. To be specific, I still stand by the
“decomposition” solution presented in reference [1], which is in full conformance with the prescriptions of The
Third Manifesto [6]. A similar though not identical approach is described by David McGoveran in reference [13]
(the two approaches are briefly compared in reference [4]). In addition, Fabian Pascal discusses McGoveran’s
approach in reference [14] and might possibly be moving toward developing it along lines similar to those of the
present chapter, though putting the decomposition under the covers (so to speak). But he doesn’t attempt to spell
out the details in the way I do here.

Of course, many people have raised psychological objections to these decomposition approaches, though
without proposing any alternatives (apart from abandoning relations altogether, as SQL does).3 The most
commonly expressed objections are that they give rise to an excessive number of relvars and an excessive number
of associated constraints. I can sympathize with these objections, somewhat. In 1982, the very first customer of
Business System 12 (a relational DBMS available at that time to users of IBM’s timesharing Bureau Service) was
an organization offering information to investors about various companies. Over 300 separate items of
information were identified as being of possible interest to investors, but only a very few of those items were
available for every company. Under both my proposal [1] and McGoveran’s [13], at least 300 separate relvars
would be needed, together with a huge number of foreign key and other constraints. So we crammed everything
into a single relvar, using “impossible” values such as –9999999.99 to indicate missing information. As we soon
learned, however, those “impossible” values gave rise to all sorts of traps for the unwary and led to all sorts of
complications in attempts to avoid those traps.

So the crucial question is: Can multirelations solve the “missing information” problem while addressing
such objections and avoiding such traps and complications? As a basis for discussing this question, I now present
the results of my investigations, without at this time offering much in the way of my own opinion on them. In
other words, the chapter should be regarded not as a definitive statement but, rather, as a kind of discussion paper.
You’re invited to consider the following questions:

1. Are there any fatal flaws in the scheme? (I won’t attempt to define exactly what I mean by “fatal flaws”
here, but lack of logical soundness would certainly qualify.)

2. Is the scheme too complicated?

3. Does it suffer from too much that is counterintuitive?

4. If the answer to any of the foregoing questions is yes, can the scheme be suitably revised? (Presumably
not if the answer to the first one is yes.)

Finally, the following list of major section headings gives some idea of the scope of the chapter:

 Some relational terminology

 What’s a multirelation?

3 Many have raised performance objections also; however, these latter objections invariably assume the approach to implementation found in
current SQL DBMSs, which tends to punish decomposition instead of encouraging it.

394 Part IV / Missing Information

 Selector operators

 Comparison operators

 Algebraic operators

 Multirelation variables

 Constraints

 Normal forms

 Update operators

 Virtual relvars and multirelvars

 Interpretation

 Potential applications

 Some outstanding questions

SOME RELATIONAL TERMINOLOGY

In this section I define for reference purposes some terms from relational theory that I’ll be relying on heavily in
the pages to come. The definitions are based for the most part on ones to be found in reference [5].

 Definition (common attribute): An attribute that’s common to two or more tuples or relations. To be
specific, attribute <A,T> is (a) a common attribute of relations r1, r2, ..., rn (n > 1) if and only if each of r1,
r2, ..., rn has an attribute named A of type T, and (b) a common attribute of tuples t1, t2, ..., tn (n > 1) if
and only if each of t1, t2, ..., tn has an attribute named A of type T.

 Definition (joinable): Relations r1, r2, ..., rn (n 0) are joinable if and only if the set theory union of the
headings of those relations is a heading. Tuples t1, t2, ..., tn (n 0) are joinable if and only if the set
theory union of those tuples is a tuple. Note: The term joinable might better be mutually joinable, since as
we’ve just seen it’s always defined with respect to a given context (viz., a given set of relations or a given
set of tuples), and I’ll use this latter term occasionally in what follows. Note too that it follows from the
definitions that attributes of the relations or tuples in question that have the same name (a) must be of the
same type—i.e., must be common attributes—and (b) in the tuple case, must have the same value.

 Definition (join): 1. (Dyadic case) Let relations r1 and r2 be joinable. Then the join of r1 and r2, r1
JOIN r2, is a relation with heading the set theory union of the headings of r1 and r2 and with body the set
of all tuples t such that t is the set theory union of a tuple from r1 and a tuple from r2. 2. (N-adic case) Let
relations r1, r2, ..., rn (n 0) be joinable. Then the join JOIN {r1,r2,...,rn} is defined as follows: If n = 0,
the result is TABLE_DEE; if n = 1, the result is r1; otherwise, choose any two distinct relations from the
set r1, r2, ..., rn and replace them by their dyadic join, and repeat this process until the set consists of just
one relation r, which is the overall result.

 Definition (union): 1. (Dyadic case) The union of two relations r1 and r2, r1 UNION r2, where r1 and r2
are of the same type T, is a relation of type T with body the set of all tuples t such that t appears in either or
both of r1 and r2. 2. (N-adic case) The union of n relations r1, r2, ..., rn (n 0), UNION {r1,r2,...,rn},
where r1, r2, ..., rn are all of the same type T, is a relation of type T with body the set of all tuples t such
that t appears in at least one of r1, r2, ..., rn. Note: If n = 0, (a) some syntactic mechanism, not shown
here, is needed to specify the pertinent type T and (b) the result is the empty relation of that type.

 Definition (tuple join): 1. (Dyadic case) Let tuples t1 and t2 be joinable. Then the tuple join of t1 and t2,
t1 UNION t2, is the set theory union of t1 and t2. 2. (N-adic case) Let tuples t1, t2, ..., tn (n 0) be
joinable. Then the tuple join UNION {t1,t2,...,tn} is defined as follows: If n = 0, the result is the empty

Chapter 24 / The Multirelational Approach 395

tuple; if n = 1, the result is t1; otherwise, choose any two distinct tuples from the set t1, t2, ..., tn and
replace them by their dyadic tuple join, and repeat this process until the set consists of just one tuple t,
which is the overall result. Note: Use of the keyword UNION rather than JOIN in the foregoing definition
is not a mistake—tuple join could equally well be called tuple union; in fact, for reasons that aren’t
important here, Tutorial D in particular does use the keyword UNION rather than JOIN to denote the
tuple join operation.

 Definition (subtuple): Tuple t1 is a subtuple of tuple t2 if and only if t1 is a subset of t2. Note: Since
every set is a subset of itself, every tuple is a subtuple of itself.

 Definition (supertuple): Tuple t2 is a supertuple of tuple t1 if and only if t2 is a superset of t1. Note:
Since every set is a superset of itself, every tuple is a supertuple of itself.

WHAT’S A MULTIRELATION?

Now I need to pin down precisely what a multirelation is. First of all, observe that I talked earlier in terms of
multirelations including relations (as subsets), not containing them (as elements)—though in fact I think it would
be possible to come down on either side of this debate, if debate it is.4 Indeed, when I get to the multirelational
operators later in this chapter, I sometimes give two distinct but equivalent definitions, one based on the inclusion
perception and one on the containment perception. A trifle arbitrarily, however, I do tend to favor, if only for
definiteness, the inclusion perception, where relations are subsets of the pertinent multirelation instead of being
elements of it. Note: I’m speaking a little loosely here. It would be more correct to say those included relations
have headings that are subsets of the “heading” of the multirelation and bodies that are subsets of the “body” of
the multirelation—where “heading” and “body” are in quotes because, as we’ll see in a few moments, those
relational terms as such don’t really apply to multirelations.

Given some multirelation, the included relations are the participants in that multirelation. Fig. 2 overleaf
shows the same multirelations as Fig. 1, but with the rows in the tables rearranged slightly and with separator lines
to show the participants more clearly (and I’ll use this style throughout the remainder of this chapter to depict
multirelations as opposed to relations). As the figure indicates, the body of a participant with heading H consists
of those tuples in the pertinent multirelation that have heading H.5 Note, therefore, that (a) no proper subset of a
participant body is itself a participant body, and (b) every tuple of a multirelation is contained in exactly one
participant body.

Here now are precise definitions:

1. Let mr be a multirelation; then mr has an MR-heading and an MR-body.6 The MR-heading of mr (referred
to below as MRH) is identical in appearance to a relational heading but doesn’t mean quite the same thing
as such a heading; hence my use of a different term. Similarly, the MR-body of mr (referred to below as
MRB) looks a bit like a relational body—certainly it’s a set of tuples—but it differs from such a body in
that those tuples don’t all have to have the same heading, and so again I use a different term.

4 An analogy that comes to mind is the well known duality principle in quantum theory, according to which the very same phenomenon is
interpreted sometimes in terms of particles, sometimes in terms of waves.

5 Elsewherein reference [6] in particularheadings are denoted {H} instead of H. The simpler notation is more convenient for present
purposes, however. An analogous remark applies to bodies also.
6 I use the prefix “MR” ubiquitously in what follows. It can be pronounced either “emm are” or “mister” according to taste (and perhaps
context).

396 Part IV / Missing Information

S SP
┌────┬───────┬────────┬────────┐ ┌────┬────┬─────┐
│ S# │ SNAME │ STATUS │ CITY │ SP │ S# │ P# │ QTY │
├────┼───────┼────────┼────────┤ ├────┼────┼─────┤
│ S1 │ Smith │ 20 │ London │ │ S1 │ P1 │ 300 │
│ S2 │ Jones │ 10 │ Paris │ │ S1 │ P2 │ 200 │
│ S5 │ Adams │ 30 │ Athens │ │ S3 │ P2 │ 200 │
│....│.......│........│........│ │....│....│.....│
│ S3 │ Blake │ 30 │ │ │ S2 │ P1 │ │
│....│.......│........│........│ │ S4 │ P4 │ │
│ S4 │ Clark │ │ London │ └────┴────┴─────┘
│....│.......│........│........│
│ S6 │ │ │ Rome │
│....│.......│........│........│
│ S7 │ │ │ │
└────┴───────┴────────┴────────┘

Fig. 2: The suppliers and shipments multirelations and their nonempty participants

2. The degree of mr is the number of attributes in MRH; the cardinality of mr is the number of tuples in
MRB; and the type of mr is MULTIRELATION MRH. For example, the multirelation S depicted in Figs.
1 and 2 has degree 4 and cardinality 7 and—following the syntactic style of Tutorial D—is (let’s agree) of
the following type:

MULTIRELATION { S# S# , SNAME NAME , STATUS INTEGER , CITY CHAR }

3. The heading of each tuple in MRB is a subset of MRH.

4. Relation p is a participant in mr if and only if (a) the heading PH of p is a subset of MRH and (b) the body
PB of p consists of just those tuples of MRB that have heading PH. It follows that if the degree of mr is n,
then the number of participants in mr is 2n (some of which will be empty, in general; for example,
multirelation S from Figs. 1 and 2 has 11 empty participants as well as five nonempty ones). In particular,
if the degree of mr is 0, then mr has exactly one participant (because 20 = 1), and that participant is either
TABLE_DEE or TABLE_DUM.7 Also, since each tuple in MRB appears in exactly one participant, the
bodies of the nonempty participants form a partitioning of MRB.

5. Multirelation mr is empty if and only if MRB is empty—equivalently, if and only if every participant in mr
is empty. Note that emptiness here refers to a lack of tuples, not participants, because (to repeat) a
multirelation of degree n always has 2n participants, even if some or all of those participants are themselves
empty.

6. If at most one participant in mr is nonempty, then the tuples in MRB all have the same heading (namely,
some specific subset of MRH), in which case MRB is in fact the body of a relation with heading that
subset, and it’s tempting to say that mr is a relation, to all intents and purposes. Of course, that temptation
should be resisted; after all, there’s certainly a logical difference between the two concepts. But such

7 In fact, every multirelation has either TABLE_DEE or TABLE_DUM (and not both) as a participant. For example, the multirelation S
depicted in Figs. 1 and 2 has TABLE_DUM as one of its 11 empty participants. If it had TABLE_DEE as a participant instead (a nonempty
one, of course), then the tabular representation of that multirelation would have a row of all gapsi.e., a row with vacant spaces in every
attribute position.

Chapter 24 / The Multirelational Approach 397

multirelations might well have a special role to play if we were to try to define a mapping between
relational theory and the theory whose development I sketch in the remainder of this chapter. I therefore
define an operator HAMONEP (“has at most one nonempty participant”), as follows: HAMONEP(mr)
returns TRUE if at most one participant in mr is nonempty and FALSE otherwise.

7. When HAMONEP(mr) is TRUE, one of the participants in mr is called the prime participant. That
participant is the sole nonempty participant if such exists, otherwise it’s the (empty) participant whose
heading is MRH. For example, if multirelation S contained just the tuple shown for supplier S4 in Figs. 1
and 2, then HAMONEP(S) would be TRUE, and the prime participant in S would be the relation
containing just that tuple. As it is, however (i.e., given multirelation S as actually depicted in those
figures), HAMONEP(S) is FALSE, and there is no prime participant.

8. I define RELATION(mr) to return the prime participant in mr if HAMONEP(mr) is TRUE and to be
undefined otherwise.8 I also define MULTIRELATION(r), where r is a relation, to return the multirelation
whose MR-heading is the heading of r and whose MR-body is the body of r. Note that
HAMONEP(MULTIRELATION(r)) is necessarily TRUE, and r itself is the prime participant in
MULTIRELATION(r) (even if r is empty). But note too that it’s not the case that
MULTIRELATION(RELATION(mr)), even if it’s defined, is necessarily equal to mr, because the heading
of the prime participant of mr might be a proper subset of the MR-heading of mr. By contrast, it is
necessarily the case that RELATION(MULTIRELATION(r)) is equal to r, thanks in part to the definition
of “prime participant” in the case where mr is empty.

9. It follows from the definitions of MRH and MRB that if relations r1 and r2 are participants in mr, then r1
and r2 are joinable. Because of this fact, we can use multirelation attribute names in ways very similar to
those in which we use relational attribute names in the relational context, as we’ll soon see. In particular,
we can extend the definition of the term common attribute in the obvious way to apply to multirelations as
well as relations and tuples.

SELECTOR OPERATORS

The Third Manifesto [6] requires every value to be denotable by some literal, where a literal of type T is an
invocation of some selector operator for type T in which each argument to the invocation is itself denoted by a
literal in turn. Clearly, just as the relation selector invocation denoting relation r needs to specify—either
explicitly or implicitly—both the heading and the body of r, so the multirelation selector invocation denoting
multirelation mr needs to specify both the MR-heading and the MR-body of mr. So again we can follow the style
of Tutorial D:

MULTIRELATION [<MR-heading>] { <tuple exp commalist> }

For example:

MULTIRELATION { S# S# , SNAME NAME , STATUS INTEGER , CITY CHAR }
{ TUPLE { S# S#('S3') , SNAME NAME('Blake') , STATUS 30 } ,
{ TUPLE { S# S#('S4') , SNAME NAME('Clark') , CITY 'London' } }

8 RELATION(mr) is used in this chapter for expository purposes only. It couldn’t be part of a language like Tutorial D that supports static
type checking, becauseassuming mr to be specifiable in such a language by means of an arbitrary multirelation expressionthe heading of
the prime participant wouldn’t be known at compile time (in general). If the user knows that heading, however, then he or she can achieve the
effect of RELATION(mr) by means of the operator PARTICIPANT FROM (see the section “Algebraic Operators,” later).

398 Part IV / Missing Information

Note in this example that (a) an explicit MR-heading has been specified, and (b) the specified MR-body
contains two tuples with different headings. If no explicit MR-heading is specified, a default MR-heading equal
to the set theory union of the headings of the specified tuples is specified implicitly.9 (By definition, those tuples
must be such that the default MR-heading is well defined; that is, they must be such that attributes with the same
name are of the same type.) In the foregoing example, therefore, the explicit MR-heading could have been
omitted, thus:

MULTIRELATION
{ TUPLE { S# S#('S3') , SNAME NAME('Blake') , STATUS 30 } ,
{ TUPLE { S# S#('S4') , SNAME NAME('Clark') , CITY 'London' } }

In general, any superset of the default MR-heading would be valid as an explicit MR-heading in a
multirelation selector invocation. More generally, in fact, we can observe the following:

If MRB is the MR-body of a multirelation with MR-heading MRH, then for every MR-heading MRH+ that
is a superset of MRH there is a multirelation with MR-heading MRH+ and MR-body MRB. Moreover, if A
is an attribute of MRH but not of the heading of any tuple in MRB, then MRB is the MR-body of some
multirelation with heading MRH-, where MRH- is the set theory difference between MRH and {A} (in that
order).

It follows from these observations that (to spell the point out) distinct nonempty multirelations can have
the same MR-body. For example, the MR-body of multirelation S as shown in Figs. 1 and 2 is also a possible
MR-body for every multirelation whose MR-heading is a proper superset of the MR-heading of that multirelation
S. This state of affairs contrasts sharply with that found in connection with relations, where two nonempty
relations can (and do) have the same body only if they’re in fact the very same relation.10 Note: You might find
this last claim surprising, especially if you’re used to SQL; you might be thinking that surely two SQL tables can
have the same set of rows and yet be distinct. Well, yes, indeed they can—but that’s just another reason why SQL
tables aren’t relations. To be specific, rows in SQL tables, unlike tuples in relations, don’t carry their heading
around with them. (In fact, it would be more correct to say that rows in SQL tables, unlike tuples in relations,
don’t really have a heading.) As a consequence, and just by way of illustration, if SQL tables T1 and T2 both
have just one column—of type INTEGER, say—but that column is called C1 in T1 but C2 in T2, then their bodies
could indeed be equal in SQL, but the bodies of their relational analogs wouldn’t be.

Consider now the empty MR-heading {}. There are just two multirelations with that MR-heading (i.e., just
two multirelations of type MULTIRELATION {}): one whose MR-body contains exactly one tuple (necessarily
the empty tuple), and one whose MR-body contains no tuples at all. I call them MR_DEE and MR_DUM,
respectively. In other words, MR_DEE is MULTIRELATION{}{TUPLE {}} and MR_DUM is
MULTIRELATION{}{}.

It should be clear that MR_DEE and MR_DUM are multirelational counterparts of TABLE_DEE and
TABLE_DUM, respectively. In fact:

 TABLE_DEE is the sole participant, and thus the prime participant, in MR_DEE; so
HAMONEP(MR_DEE) is TRUE, and RELATION(MR_DEE) is TABLE_DEE.

9 Except in the case where the specified MR-body is empty, when the desired MR-heading must be specified explicitly.

10 To state the matter precisely: Let the MR-heading MRH1 of multirelation mr1 be a proper subset of the MR-heading MRH2 of multirelation
mr2, but let the corresponding MR-bodies MRB1 and MRB2 be the same. Then (a) for all tuples t, t appears in MRB1 if and only if it appears
in MRB2; (b) for all relations r1, if r1 is a participant in mr1, then r1 is a participant in mr2; but (c) there exist relations r2 such that r2 is a
participant in mr2 and not a participant in mr1 (though all such relations r2 are empty).

Chapter 24 / The Multirelational Approach 399

 Likewise, TABLE_DUM is the sole participant, and thus the prime participant, in MR_DUM; so
HAMONEP(MR_DUM) is also TRUE, and RELATION(MR_DUM) is TABLE_DUM.

COMPARISON OPERATORS

Let mr, mr1, and mr2 be multirelations with MR-headings MRH, MRH1, and MRH2, respectively, and MR-bodies
MRB, MRB1, and MRB2, respectively. If every participant in mr1 is such that its body is a subset of the body of
some participant in mr2, then MRB1 is a subset of MRB2. Clearly, then, just as in Tutorial D we can write “r1 ⊆

r2” (loosely, “r1 is a subset of r2” or “r1 is included in r2”), where r1 and r2 are relations, we can also write “mr1
⊆ mr2” (loosely, “mr1 is a subset of mr2” or “mr1 is included in mr2”).

Now, in the relational case, r1 and r2 are required to be relations of the same type, but there’s no need to
impose an analogous rule in the multirelational case (in fact, it would be counterproductive to do so). We might
perhaps require MRH1 and MRH2 not to be disjoint, but the advantages of doing so seem too slight to warrant
such a rule. (If they are disjoint, then mr1 ⊆ mr2 will be TRUE if and only if mr1 is empty.)

In the relational case, again, it’s easy to see that the comparison operator “⊆” is logically sufficient.11 But
it isn’t sufficient for all of the comparisons we might imagine for multirelations. For example, additional
operators would be required to support tests such as the following, if there’s any need for them:

 Is every tuple in MRB1 a subtuple of some tuple in MRB2?

 Is every tuple of MRB1 a supertuple of some tuple in MRB2?

 Is no tuple of MRB1 a subtuple of some tuple in MRB2?

 Is no tuple of MRB1 a supertuple of some tuple in MRB2?

Seeing no compelling need for such tests, I offer no suggestions for supporting them at this time.

ALGEBRAIC OPERATORS

In this rather lengthy section I define a number of read-only—in fact, algebraic—operators on multirelations, with
an eye to what might be needed for practical purposes in a language like Tutorial D. However, I do not attempt,
here, to develop a formal specification for an algebra of multirelations. Where applicable I do note some
interesting algebraic properties, such as commutativity, associativity, and the like, but I make no attempt to
identify a minimal or otherwise agreeable set of primitive operators.

Some of the operators have obvious relational counterparts. Where a relational counterpart exists, a
concrete syntax might well use the same name for both the relational operator and its multirelational counterpart.
I choose not to indulge in such operator name overloading here, however, because I think distinct names are
preferable for expository purposes.

Notation: I assume again throughout this section (and I’ll continue to make this assumption throughout the
rest of the chapter, where appropriate) that mr, mr1, and mr2 are multirelations with MR-headings MRH, MRH1,
and MRH2, respectively, and MR-bodies MRB, MRB1, and MRB2, respectively. Also, for the sake of examples I
take the names S and SP to refer not (as previously) to multirelations but, rather, to multirelation variables or
multirelvars;12 thus, for example, the expression “S” is now a multirelvar reference, and it denotes the

11 Though for ergonomic reasons Tutorial D does also support the operators “⊂” (“is properly included in”), “⊇” (“includes”), “⊃”

(“properly includes”), “=” (“equals”), and “≠” (“not equals”). Clearly, we would expect to see multirelation analogs of all of these operators
to be supported as well, if multirelations are supported.

12 Multirelvars are discussed in more detail in a series of sections toward the end of the chapter.

400 Part IV / Missing Information

multirelation that’s the current value of the multirelvar with that name. As stated earlier (in the section “What’s a
Multirelation?”), the type of multirelvar S is:

MULTIRELATION { S# S# , SNAME NAME , STATUS INTEGER , CITY CHAR }

And the type of multirelvar SP is:

MULTIRELATION { S# S# , P# P# , QTY QTY }

I’ll also assume when I show sample results that the current values of these multirelvars are as shown in Figs. 1
and 2 (barring explicit statements to the contrary, of course).

Now I begin my discussion of the operators. The ones described in the two subsections immediately
following (“Participant Extraction” and “Multiprojection”) each yield a relation as their output; all of the rest
yield a multirelation.

Participant Extraction

The PARTICIPANT FROM operator extracts a given participant (specified by means of its heading) from a given
multirelation. For example:

PARTICIPANT { S# , P# } FROM SP

Result (a relation):

┌────┬────┐
│ S# │ P# │
├════┼════┤
│ S2 │ P1 │
│ S4 │ P4 │
└────┴────┘

 Definition (participant extraction): Let r = PARTICIPANT {A1,A2,...,An} FROM mr. Then the
heading RH of r is the subset of MRH specified by A1, A2, ..., An, and the body RB of r consists of just
those tuples of MRB that have heading RH. Equivalently, r is that participant in mr whose heading is the
subset of MRH specified by A1, A2, ..., An.

Note: In Tutorial D, wherever a commalist of attribute names can appear, denoting attributes of some
relation r, that commalist can be preceded by ALL BUT to denote the attributes of r other than those mentioned.
The same rule can obviously be used here, thereby allowing the example above to be expressed thus:

PARTICIPANT { ALL BUT QTY } FROM SP

Similar remarks apply, where appropriate, to all of the operators discussed in this chapter.
As noted earlier, if HAMONEP(mr) is TRUE and the heading of the prime participant is known, then

PARTICIPANT FROM can be used to extract the prime participant from mr.

Multiprojection

Multiprojection is just a generalization of relational projection, but for clarity I won’t use the relational projection
syntax of Tutorial D; instead, I’ll use a keyword, ONTO (since we often speak of projecting onto a given set of
attributes). In essence, multiprojection works by first picking out just those tuples that have a specified set of

Chapter 24 / The Multirelational Approach 401

attributes (as well as others, possibly), and then projecting those tuples onto those attributes.13 For example:

S ONTO { S# , SNAME , CITY }

Or equivalently:

S ONTO { ALL BUT STATUS }

Result (a relation):

┌────┬───────┬────────┐
│ S# │ SNAME │ CITY │
├════┼───────┼────────┤
│ S1 │ Smith │ London │
│ S2 │ Jones │ Paris │
│ S5 │ Adams │ Athens │
│ S4 │ Clark │ London │
└────┴───────┴────────┘

 Definition (multiprojection): Let r = mr ONTO {A1,A2,...,An}. Then the heading RH of r is the subset
of MRH specified by A1, A2, ..., An, and the body RB of r is such that tuple t appears in RB if and only if t
has heading RH and is a subtuple of some tuple in MRB. Equivalently, RB is the union of the bodies of the
projections onto {A1,A2,...,An} of just those participants in mr that have heading some superset of RH.

Note that if HAMONEP(mr) is TRUE, then mr ONTO {A1,A2,...,An} = (RELATION(mr)) {A1,A2,...,An}
if each of A1, A2, ..., An is an attribute of RELATION(mr), or an empty relation otherwise.

Now I turn to operators that return multirelations. Most of the operators I describe are multirelational
counterparts of some familiar relational operator. I have little to say regarding their possible usefulness; I choose
them rather for their teachability, on the grounds that—if multirelations turn out to be useful at all—the operators
in question are likely to be as useful in the context of multirelations as their relational counterparts are in the
context of relations.

MR-projection

MR-projection (MR_ONTO) applied to multirelation mr yields a multirelation ms formed by discarding all
attributes not specified for retention. For example:

S MR_ONTO { STATUS , CITY }

Or equivalently:

S MR_ONTO { ALL BUT S# , SNAME }

Result (a multirelation):

13 I follow The Third Manifesto here [5] here in taking projection to be an operator that can be applied to individual tuples as well as to
relations.

402 Part IV / Missing Information

┌────────┬────────┐
│ STATUS │ CITY │
├────────┼────────┤
│ 20 │ London │
│ 10 │ Paris │
│ 30 │ Athens │
│........│........│
│ 30 │ │
│........│........│
│ │ London │
│ │ Rome │
│........│........│
│ │ │
└────────┴────────┘

By definition, this result has four participants (4 = 2²), all of which happen to be nonempty (though one of
them is TABLE_DEE and contains nothing but the empty tuple). It also happens to have the same cardinality as
its input, but that’s because no two tuples in that input have (a) the same combination of values for attributes
STATUS and CITY, or (b) the same value for STATUS and no CITY attribute, or (c) the same value for CITY
and no STATUS attribute.

Note: It’s perhaps a trifle unfortunate that the operators ONTO and MR_ONTO have such similar names
(multiprojection and MR-projection, respectively); it might be desirable to find a better name for at least one of
them. At any rate, it’s important to be clear over the logical differences between the two:

 First, ONTO ignores tuples that lack one or more of the specified attributes; MR_ONTO doesn’t.

 Second, ONTO returns a relation; MR_ONTO returns a multirelation.

Here to illustrate these differences is the result (a relation) returned if we replace MR_ONTO by ONTO in
the foregoing example—i.e., the result returned by S ONTO {STATUS, CITY}:

┌────────┬────────┐
│STATUS │ CITY │
├════════┼════════┤
│ 20 │ London │
│ 10 │ Paris │
│ 30 │ Athens │
└────────┴────────┘

 Definition (MR-projection): Let ms = mr MR_ONTO {A1,A2,...,An}. Then the MR-heading MSH of ms
is the subset of MRH specified by A1, A2, ..., An, and the MR-body MSB of ms is such that tuple t appears
in MSB if and only if t has heading some subset of MSH and is a subtuple of some tuple in MRB.

Note that if HAMONEP(mr) is TRUE, then HAMONEP(ms) is also TRUE, and RELATION(ms) is then
some relational projection of RELATION(mr). Note too that TABLE_DEE is a participant in ms whenever the
heading of some nonempty participant in mr contains none of the attributes A1, A2, ..., An. (This latter point was
illustrated in the case of S MR_ONTO {STATUS,CITY}, because the input multirelation included a nonempty
participant—namely, that whose MR-body contained just the tuple for supplier S7—whose heading contained
neither of the attributes STATUS and CITY.)

Chapter 24 / The Multirelational Approach 403

MR-join

MR-join is the multirelational counterpart of relational join; it joins every participant in one operand to every
participant in the other, and then returns the set theory union of those joins. For example:

S MR_JOIN SP

Result (a multirelation):

┌────┬───────┬────────┬────────┬────┬─────┐
│ S# │ SNAME │ STATUS │ CITY │ P# │ QTY │
├────┼───────┼────────┼────────┼────┼─────┤
│ S1 │ Smith │ 20 │ London │ P1 │ 300 │
│ S1 │ Smith │ 20 │ London │ P2 │ 200 │
│....│.......│........│........│....│.....│
│ S2 │ Jones │ 10 │ Paris │ P1 │ │
│....│.......│........│........│....│.....│
│ S3 │ Blake │ 30 │ │ P2 │ 200 │
│....│.......│........│........│....│.....│
│ S4 │ Clark │ │ London │ P4 │ │
└────┴───────┴────────┴────────┴────┴─────┘

By the way, you might be thinking that joining every participant to every participant, as MR-join does, has
the potential to produce a very large result—a kind of cartesian product of participants, as it were. As the
example illustrates, however, it’s likely in practice that the majority of those individual joins will yield empty
results.

Here now is the definition:

 Definition (MR-join): Let ms = mr1 MR_JOIN mr2. The MR-headings MRH1 and MRH2 must be such
that their set theory union is an MR-heading; equivalently, each participant in mr1 must be joinable with
each participant in mr2. Then ms is the multirelation whose MR-heading MSH is the set theory union of
MRH1 and MRH2 and whose MR-body MSB is the set of all tuples t such that t is the set theory union of a
tuple of MRB1 and a tuple of MRB2.

It follows from this definition that (as previously indicated) p1 JOIN p2 is a participant in ms if and only if
p1 is a participant in mr1 and p2 is a participant in mr2.

Now, it so happens in the example above that every tuple in the operand multirelations has a value for the
sole common attribute (S#, in that example). Here by contrast is an example in which such is not the case:

(SP MR_ONTO { S# , QTY })
MR_JOIN

(SP MR_ONTO { P# , QTY })

Result (a multirelation):

404 Part IV / Missing Information

┌────┬────┬─────┐
│ S# │ P# │ QTY │
├────┼────┼─────┤
│ S1 │ P1 │ 300 │
│ S1 │ P2 │ 200 │
│ S2 │ P1 │ 300 │
│ S2 │ P2 │ 200 │
│ S3 │ P2 │ 200 │
│ S4 │ P1 │ 300 │
│ S4 │ P2 │ 200 │
│....│....│.....│
│ S2 │ P1 │ │
│ S2 │ P4 │ │
│ S4 │ P1 │ │
│ S4 │ P4 │ │
└────┴────┴─────┘

Note that if HAMONEP(mr1) and HAMONEP(mr2) are both TRUE, then HAMONEP(ms) is also TRUE.
And if mr1 and mr2 have prime participants p1 and p2, respectively, then RELATION(ms) = p1 JOIN p2.

Like relational join, MR-join is both commutative and associative. It also has an identity value: viz.,
MR_DEE. As a consequence, an n-adic version of the operator, MR_JOIN {mr1,mr2,...,mrn}, can also be
defined, thus: If n = 0, the result is MR_DEE; if n = 1, the result is mr1; otherwise, choose any two distinct
multirelations from the set mr1, mr2, ..., mrn and replace them by their dyadic MR-join, and repeat this process
until the set consists of just one multirelation ms, which is the overall result.

Unlike relational join, however, MR-join is not idempotent, even though S MR_JOIN S does happen to
return its input given the sample values from Figs. 1 and 2. By way of a counterexample, let mr be the following
multirelation:

MULTIRELATION { X INTEGER , Y INTEGER } { TUPLE { X 1 } ,
TUPLE { Y 1 } }

Then the MR-body of mr MR_JOIN mr contains the tuple

TUPLE { X 1 , Y 1 }

in addition to the two tuples in the MR-body of mr.
Note: I considered defining a second kind of multirelation join in which only those participants that

actually had values for the common attributes participated (if you see what I mean). But this operation can easily
be expressed using MR_WHERE—see later—and MR_JOIN. The following example, a revised version of one of
those given above, illustrates the point (the semantics of the “PRESENT{QTY}” construct are explained in the
subsection “MR-restriction” but are in any case intuitively obvious):

((SP MR_ONTO { S# , QTY }) MR_WHERE PRESENT { QTY })
MR_JOIN

((SP MR_ONTO { P# , QTY }) MR_WHERE PRESENT { QTY })

Result (a multirelation):

Chapter 24 / The Multirelational Approach 405

┌────┬────┬─────┐
│ S# │ P# │ QTY │
├────┼────┼─────┤
│ S1 │ P1 │ 300 │
│ S1 │ P2 │ 200 │
│ S3 │ P2 │ 200 │
└────┴────┴─────┘

(No separator lines are shown because HAMONEP happens to be TRUE for this result.)

MR-union

Relational union requires its operands to be of the same type, but there’s no need to impose such a rule on its
multirelational counterpart MR_UNION; again, in fact, it would be counterproductive to do so. In other words,
MR_UNION is very close to the conventional unfettered union of set theory. (An analogous remark applies to
MR_INTERSECT and MR_MINUS also, q.v.) For example:

S MR_UNION SP

Result (a multirelation):

┌────┬───────┬────────┬────────┬────┬─────┐
│ S# │ SNAME │ STATUS │ CITY │ P# │ QTY │
├────┼───────┼────────┼────────┼────┼─────┤
│ S1 │ Smith │ 20 │ London │ │ │
│ S2 │ Jones │ 10 │ Paris │ │ │
│ S5 │ Adams │ 30 │ Athens │ │ │
│....│.......│........│........│....│.....│
│ S3 │ Blake │ 30 │ │ │ │
│....│.......│........│........│....│.....│
│ S4 │ Clark │ │ London │ │ │
│....│.......│........│........│....│.....│
│ S6 │ │ │ Rome │ │ │
│....│.......│........│........│....│.....│
│ S7 │ │ │ │ │ │
│....│.......│........│........│....│.....│
│ S1 │ │ │ │ P1 │ 300 │
│ S1 │ │ │ │ P2 │ 200 │
│ S3 │ │ │ │ P2 │ 200 │
│....│.......│........│........│....│.....│
│ S2 │ │ │ │ P1 │ │
│ S4 │ │ │ │ P4 │ │
└────┴───────┴────────┴────────┴────┴─────┘

 Definition (MR-union): Let ms = mr1 MR_UNION mr2. The MR-headings MRH1 and MRH2 must be
such that their set theory union is an MR-heading. Then ms is the multirelation whose MR-heading MSH
is the set theory union of MRH1 and MRH2 and whose MR-body MSB is the set theory union of MRB1 and
MRB2—i.e., MSB is the set of all tuples t such that t appears in MRB1 or MRB2 or both.

It follows from this definition that p1 UNION p2 is a participant in ms if (but not only if) p1 is a
participant in mr1, p2 is a participant in mr2, and p1 and p2 are of the same (relation) type. Also, if p3 is a

406 Part IV / Missing Information

participant in mr1 such that no participant in mr2 is of the same type as p3, then p3 is a participant in ms;
likewise, if p4 is a participant in mr2 such that no participant in mr1 is of the same type as p4, then p4 is a
participant in ms. In fact, each participant in ms is at least one, and possibly more than one, of the following: a
participant in mr1, a participant in mr2, or the relational union p1 UNION p2 of a participant p1 in mr1 and a
participant p2 in mr2.

Note that if HAMONEP(mr1) and HAMONEP(mr2) are both TRUE and have prime participants p1 and
p2, respectively, then HAMONEP(ms) is also TRUE and RELATION(ms) = p1 UNION p2.

Like relational union, MR-union is both commutative and associative; it is also, unlike MR-join,
idempotent. Also, unlike relational union, it has an identity value: viz., MR_DUM. As with MR-join, therefore,
an n-adic version of the operator, MR_UNION {mr1,mr2,...,mrn}, can be defined, as follows: If n = 0, the result
is MR_DUM; if n = 1, the result is mr1; otherwise, choose any two distinct multirelations from the set mr1, mr2,
..., mrn and replace them by their dyadic MR-union, and repeat this process until the set consists of just one
multirelation ms, which is the overall result.14

MR-intersection

Relational intersection requires its operands to be of the same type, but MR-intersection does not. For example:

S MR_INTERSECT SP

Result (a multirelation):

┌────┐
│ S# │
├────┤
└────┘

As you can see, this result is empty. But if multirelation SP were to include (say) an additional tuple with
S# value S7 and no other attributes, then that tuple would be common to the two multirelation operands and
would therefore appear in the result.

 Definition (MR-intersection): Let ms = mr1 MR_INTERSECT mr2. The MR-headings MRH1 and
MRH2 must be such that their set theory union is an MR-heading. Then ms is the multirelation whose
MR-heading MSH is the set theory intersection of MRH1 and MRH2 and whose MR-body MSB is the set
theory intersection of MRB1 and MRB2—i.e., MRB is the set of all tuples t such that t appears in both
MRB1 and MRB2.

It follows from this definition that p1 INTERSECT p2 is a participant in ms if and only if p1 is a
participant in mr1, p2 is a participant in mr2, and p1 and p2 are of the same (relation) type.

Note that if HAMONEP(mr1) and HAMONEP(mr2) are both TRUE, then HAMONEP(ms) is also TRUE.
In fact, HAMONEP(ms) is TRUE in several other circumstances as well—e.g., when either MRB1 and MRB2 is
empty, or more generally when MRB1 and MRB2 are disjoint (which they certainly are if one is empty).

Like relational intersection, MR-intersection is commutative, associative, and idempotent; however,
whereas relational intersection is a special case of relational join, MR-intersection is not a special case of
MR-join. As with MR-join, an n-adic version of the operator, MR_INTERSECT {mr1,mr2,...,mrn}, can be

14 Of course, we can and do define an n-adic version of relational union, too. What we mean when we say relational union has no identity
value is this: UNION (unlike MR_UNION) requires its operand relations all to be of the same type; as a consequence, there’s no “universal”
identity value for relational union in general. But there is an identity value for any given relation typenamely, the empty relation of that
type.

Chapter 24 / The Multirelational Approach 407

defined, as follows: If n = 1, the result is mr1; if n > 1, choose any two distinct multirelations from the set mr1,
mr2, ..., mrn and replace them by their dyadic MR-intersection, and repeat this process until the set consists of just
one multirelation ms, which is the overall result. Note, however, that the case n = 0 is not allowed.15

MR-difference

Relational difference requires its operands to be of the same type, but MR-difference does not. For example:

S MR_MINUS SP

Result (a multirelation):

┌────┬───────┬────────┬────────┐
│ S# │ SNAME │ STATUS │ CITY │
├────┼───────┼────────┼────────┤
│ S1 │ Smith │ 20 │ London │
│ S2 │ Jones │ 10 │ Paris │
│ S5 │ Adams │ 30 │ Athens │
│....│.......│........│........│
│ S3 │ Blake │ 30 │ │
│....│.......│........│........│
│ S4 │ Clark │ │ London │
│....│.......│........│........│
│ S6 │ │ │ Rome │
│....│.......│........│........│
│ S7 │ │ │ │
└────┴───────┴────────┴────────┘

As you can see, this result is identically equal to the current value of multirelvar S. But if the current value
of multirelvar SP were to include (say) an additional tuple with S# value S7 and no other attributes, then that tuple
would be common to the two multirelation operands and would therefore not appear in the result.

 Definition (MR-difference): Let ms = mr1 MR_MINUS mr2. The MR-headings MRH1 and MRH2 must
be such that their set theory union is an MR-heading. Then ms is the multirelation whose MR-heading
MSH is MRH1 and whose MR-body MSB is the set theory difference between MRB1 and MRB2 (in that
order)—i.e., MSB is the set of all tuples t such that t appears in MRB1 and not in MRB2.

It follows from this definition that p1 MINUS p2 is a participant in ms if (but not only if) p1 is a
participant in mr1, p2 is a participant in mr2, and p1 and p2 are of the same (relation) type. Also, if p3 is a
participant in mr1 such that no participant in mr2 is of the same type as p3, then p3 is a participant in ms. In fact,
each participant in ms is either or both of the following: a participant in mr1, or the relational difference p1
MINUS p2 between a participant p1 in mr1 and a participant p2 in mr2 (in that order).

Note that if HAMONEP(mr1) is TRUE, then HAMONEP(ms) is also TRUE. And if mr1 has prime
participant p1, then (a) if mr2 has a participant p2 of the same type as p1, then RELATION(ms) = p1 MINUS p2;
(b) otherwise, RELATION(ms) = p1.

Finally, if mr1 and mr2 are multirelations of the same type, then mr1 MR_MINUS (mr1 MR_MINUS

15 Alternatively, we might introduce some syntactic mechanism in this case to specify the type of the result, in which case that result would be
the universal multirelation of that typei.e., the multirelation whose MR-body contains all possible tuples with MR-heading some subset of
the MR-heading for that multirelation type. Even if we did, however, the implementation might very well want to outlaw (or at least flag) any
expression requiring such a multirelation to be materialized.

408 Part IV / Missing Information

mr2) is identically equal to mr1 MR_INTERSECT mr2. However, it’s easy to see that the same is not true, in
general, if mr1 and mr2 are of different types.

MR-semijoin

Semijoin (MATCHING, in Tutorial D) takes two relational operands and returns those tuples from the first
operand that are joinable with at least one tuple in the second, and the multirelational analog does essentially the
same thing for multirelations. For example:

S MR_MATCHING SP

Result (a multirelation):

┌────┬───────┬────────┬────────┐
│ S# │ SNAME │ STATUS │ CITY │
├────┼───────┼────────┼────────┤
│ S1 │ Smith │ 20 │ London │
│ S2 │ Jones │ 10 │ Paris │
│....│.......│........│........│
│ S3 │ Blake │ 30 │ │
│....│.......│........│........│
│ S4 │ Clark │ │ London │
└────┴───────┴────────┴────────┘

 Definition (MR-semijoin): Let ms = mr1 MR_MATCHING mr2. The MR-headings MRH1 and MRH2
must be such that their set theory union is an MR-heading. Then ms is the multirelation whose
MR-heading MSH is MRH1 and whose MR-body MSB is the set of all tuples t such that t appears in MRB1
and there exists a tuple in MRB2 that is joinable with t.

It follows from this definition mr1 MR_MATCHING mr2 is identically equal to (mr1 MR_JOIN mr2)
MR_ONTO {A1,A2,...,An}, where A1, A2, ..., An are all of the attributes in MRH1.

Note that if HAMONEP(mr1) is TRUE, then HAMONEP(ms) is also TRUE. And if mr1 has prime
participant p and mr2 has participants p1, p2, ..., pn, then RELATION(ms) = UNION {(p MATCHING p1),(p
MATCHING p2),...,(p MATCHING pn)}.

Now, relational intersection is a special case of relational semijoin (i.e., r1 MATCHING r2 degenerates to
r1 INTERSECT r2 if r1 and r2 are of the same type). But MR-intersection is not a special case of MR-semijoin
(i.e., there exist multirelations mr1 and mr2 such that mr1 MR_INTERSECT mr2 and mr1 MR_MATCHING mr2
are both defined but yield different results, even if mr1 and mr2 are of the same type). The reason is that there
might be a tuple t in MRB1 that’s not also in MRB2 but is nevertheless joinable with some tuple in MRB2, in
which case that tuple t appears in the result of mr1 MR_MATCHING mr2 but not in the result of mr1
MR_INTERSECT mr2.

MR-semidifference

Semidifference (NOT MATCHING, in Tutorial D) takes two relational operands and returns those tuples from
the first operand that aren’t joinable with any tuples at all in the second, and the multirelational analog does
essentially the same thing for multirelations. For example:

S NOT MR_MATCHING SP

Result (a multirelation):

Chapter 24 / The Multirelational Approach 409

┌────┬───────┬────────┬────────┐
│ S# │ SNAME │ STATUS │ CITY │
├────┼───────┼────────┼────────┤
│ S5 │ Adams │ 30 │ Athens │
│....│.......│........│........│
│ S6 │ │ │ Rome │
│....│.......│........│........│
│ S7 │ │ │ │
└────┴───────┴────────┴────────┘

 Definition (MR-semidifference): Let ms = mr1 NOT MR_MATCHING mr2. The MR-headings MRH1
and MRH2 must be such that their set theory union is an MR-heading. Then ms is the multirelation whose
MR-heading MSH is MRH1 and whose MR-body MSB is the set of all tuples t such that t appears in MRB1
and there does not exist a tuple in MRB2 that is joinable with t.

It follows from this definition that mr1 NOT MR_MATCHING mr2 is identically equal to mr1
MR_MINUS (mr1 MR_MATCHING mr2).

Note that if HAMONEP(mr1) is TRUE, then HAMONEP(ms) is also TRUE. And if mr1 has prime
participant p and mr2 has participants p1, p2, ..., pn, then RELATION(ms) = p NOT MATCHING p1 NOT
MATCHING p2 ... NOT MATCHING pn (where the NOT MATCHINGs are evaluated in sequence left to right).

Now, relational difference is a special case of relational semidifference (i.e., r1 NOT MATCHING r2
degenerates to r1 MINUS r2 if r1 and r2 are of the same type). But MR-difference is not a special case of
MR-semidifference (i.e., there exist multirelations mr1 and mr2 such that mr1 MR_MINUS mr2 and mr1 NOT
MR_MATCHING mr2 are both defined but yield different results, even if mr1 and mr2 are of the same type).
The reason is that there might be a tuple t in MRB1 that’s not also in MRB2 but is nevertheless joinable with some
tuple in MRB2, in which case that tuple t appears in the result of mr1 MR_MINUS mr2 but not in the result of
mr1 NOT MR_MATCHING mr2.

MR-restriction

Restriction is one of the simplest of the conventional relational operators. In Tutorial D, it’s expressed as
follows:

r WHERE cond

Here (a) r is a relation, represented by a relational expression of arbitrary complexity, and (b) cond is a restriction
condition on r—i.e., it’s a boolean expression in which every attribute reference identifies some attribute of r and
there aren’t any relvar references.16 Each tuple t in r provides a value for each referenced attribute, thus allowing
cond to be evaluated for that tuple, and that tuple t then appears in the body of the result if and only if the result of
that evaluation is TRUE.

By contrast with the foregoing, multirelational restriction is a rather more complicated affair. The reason
is that if mr is a multirelation, then (in general) some tuples in the MR-body MRB of mr will lack some of the
attributes in the MR-heading MRH of mr. As a consequence, a simple expression such as

S MR_WHERE STATUS > 10

16 Like many other languages, Tutorial D actually allows WHERE clauses to contain boolean expressions of arbitrary complexity (in
particular, it allows them to contain relvar references). But if the boolean expression cond isn’t of the particular simple form under discussion,
then technically speaking the expression r WHERE cond doesn’t represent a relational restriction as such.

410 Part IV / Missing Information

will, typically, fail; to be specific, it’ll fail at run time if the evaluation process encounters a tuple of S that lacks a
STATUS attribute. (Of course, syntax of the even simpler form S WHERE STATUS > 10 would be doubly
incorrect, because “S” isn’t a relational expression but a multirelational one.)

Now, we could try adopting a rule to the effect that such tuples are simply ignored, but it’s easy to see that
such a rule quickly leads to worse problems. I’ll just point out one such problem here (though there are countless
others): The expression

S MR_WHERE NOT (STATUS > 10)

will presumably, in accordance with the hypothetical rule, also have to overlook tuples without a STATUS
attribute—with the consequence that such tuples “fall through the cracks,” as it were. Indeed, despite the fact that
multirelations are quite definitely based on classical two-valued logic, the suggested rule seems to lead directly to
just the kinds of difficulties that SQL’s three-valued logic gets us into! And if there were no way around that
problem, then the entire multirelations exercise would become rather pointless.

The most straightforward approach to avoiding such problems—though I feel bound to observe
immediately that although the approach might be straightforward, the consequences in practice might not be—is
to provide a means of testing, within an “MR_WHERE clause,” for the presence of a particular attribute within a
particular tuple. For example:

S MR_WHERE CASE
WHEN PRESENT { STATUS } THEN STATUS > 10
ELSE FALSE

END CASE

Result (a multirelation):

┌────┬───────┬────────┬────────┐
│ S# │ SNAME │ STATUS │ CITY │
├────┼───────┼────────┼────────┤
│ S1 │ Smith │ 20 │ London │
│ S5 │ Adams │ 30 │ Athens │
│....│.......│........│........│
│ S3 │ Blake │ 30 │ │
└────┴───────┴────────┴────────┘

Explanation: Imagine the expression following MR_WHERE being evaluated for each tuple of S in turn,
in some arbitrary sequence. For such a tuple t, PRESENT {STATUS} will evaluate to TRUE if and only if that
tuple t actually has a STATUS attribute; thus, the CASE expression overall will evaluate to TRUE for just those
tuples that do have a STATUS attribute with value greater than 10.

Note, incidentally, that the following syntax does not work:

S MR_WHERE PRESENT { STATUS } AND STATUS > 10

The reason is, of course, that AND is commutative; at run time, therefore, the system might legitimately
try to evaluate the expression STATUS > 10 before it determines whether the tuple in question actually has a
STATUS attribute. Testing for STATUS > 10 on a tuple with no STATUS attribute will raise an error.17

17 Whether the compiler could detect the possibility that some attributes might be absent from some tuples, and could thus perhaps avoid
certain run time errors, is an open question. See the section “Constraints” later in this chapter.

Chapter 24 / The Multirelational Approach 411

 Partial definition (PRESENT):18 Consider the MR-restriction mr MR_WHERE cond. The construct
PRESENT {A1,A2,...,An} is allowed to appear within cond wherever a boolean expression is allowed to
appear, and that construct evaluates to TRUE for tuple t in MRB if and only if, for all i (1 i n), attribute
Ai is present in t.

Note, therefore, that the construct PRESENT {...} is expressly defined in terms of some specific tuple of
some specific multirelation. As a consequence, it can’t appear in all possible contexts in which boolean
expressions in general can appear, but only in certain specific contexts: namely, those in which the pertinent
multirelation and pertinent tuple are well defined. (It’s precisely for such reasons that I refer to PRESENT {...} as
a “construct” and not an expression.19) Such contexts include MR_WHERE clauses in MR-restrictions;
MR-extractions (see the next subsection); MR_WHERE clauses in DELETE and UPDATE (see the section
“Update Operators”; and possibly others, if the need arises.

Now, sometimes we wish to test not for the presence, but rather the absence, of some particular attribute
with respect to some tuple. Of course, we might simply use a negated form of PRESENT—for example:

S MR_WHERE NOT (PRESENT { STATUS })

But it’s natural to provide a more direct formulation:

S MR_WHERE ABSENT { STATUS }

Result (a multirelation):20

┌────┬───────┬────────┬────────┐
│ S# │ SNAME │ STATUS │ CITY │
├────┼───────┼────────┼────────┤
│ S4 │ Clark │ │ London │
│....│.......│........│........│
│ S6 │ │ │ Rome │
│....│.......│........│........│
│ S7 │ │ │ │
└────┴───────┴────────┴────────┘

There are some traps for the unwary here, however. I’ve implied, in effect (though I didn’t say as much
explicitly), that PRESENT {A1,A2,...,An} is equivalent to

PRESENT { A1 } AND PRESENT { A2 } AND ...
AND PRESENT { An } AND TRUE

It follows that NOT (PRESENT {A1,A2,...,An}) is equivalent to

NOT (PRESENT { A1 }) OR NOT (PRESENT { A2 }) OR ...
OR NOT (PRESENT { An }) OR FALSE

So if we define ABSENT {A1,A2,...,An} to be equivalent to NOT (PRESENT {A1,A2,...,An}), we could run into

18 The definition is partial because PRESENT (and ABSENT, q.v.) can be used in other contexts as well, as we’ll see in a moment.

19 Actually such constructs are expressions, but they’re so called open expressions, and the unqualified term expression is usually taken to
mean one that’s closed. See Chapter 11 for further explanation.

20 As you can see, the heading of this result includes an attribute (STATUS) for which no result tuple has a value. To eliminate that
attributewhich we would surely want to do in practicewe can use MR_WITH (see the next subsection) in place of MR_WHERE.

412 Part IV / Missing Information

some problems. Thus, it seems preferable to define ABSENT {A1,A2,...,An} to be equivalent to

ABSENT { A1 } AND ABSENT { A2 } AND ... AND ABSENT { An } AND TRUE

Now ABSENT {A1,A2,...,An} is equivalent to NOT (PRESENT {A1,A2,...,An}) only in the special case when n =
1. So we have:

 Partial definition (ABSENT): Consider the MR-restriction mr MR_WHERE cond. The construct
ABSENT {A1,A2,...,An} is allowed to appear within cond wherever a boolean expression is allowed to
appear, and that construct evaluates to TRUE for tuple t in MRB if and only if, for all i (1 i n), attribute
Ai is absent from t.

Note in particular that, perhaps a little counterintuitively, PRESENT {} and ABSENT {} both evaluate to
TRUE for every tuple of every multirelation. By way of explanation, consider first the case of PRESENT {}.
This construct does not mean no attributes are present; rather, it means the set of no attributes is a subset of the set
of attributes that are present. Likewise, ABSENT {} means the set of no attributes is a subset of the set of
attributes that are absent. Since the empty set is a subset of every set, the result follows.

Here now are some more examples of MR-restriction (syntax only; I leave it to you to work out what the
results look like, given our usual sample values):

 S MR_WHERE S# ≠ S#('S2') AND S# ≠ S#('S4') AND
CASE

WHEN PRESENT { STATUS , CITY }
 THEN STATUS = 20 OR CITY ≠ 'London'

ELSE FALSE
END CASE

 S MR_WHERE CASE
WHEN PRESENT { STATUS , CITY } THEN STATUS = 20
WHEN PRESENT { CITY } THEN CITY = 'London'
ELSE FALSE

END CASE

 S MR_WHERE CASE
WHEN PRESENT { CITY } THEN CITY = 'London'
WHEN PRESENT { STATUS , CITY } THEN STATUS = 30
ELSE FALSE

END CASE

 S MR_WHERE CASE
WHEN PRESENT { CITY }

THEN CASE
WHEN ABSENT { STATUS } THEN TRUE
ELSE FALSE

END CASE
WHEN ABSENT { CITY }

THEN CASE
WHEN ABSENT { SNAME } THEN FALSE
ELSE TRUE

END CASE
END CASE

Chapter 24 / The Multirelational Approach 413

With all of the foregoing by way of preamble, the following definition of MR-restriction might come as
something of an anticlimax:

 Definition (MR-restriction): Let ms = mr MR_WHERE cond. Then ms is the multirelation whose
MR-heading is MRH and whose MR-body consists of just those tuples in MRB for which cond is TRUE.

Note, however, that (to repeat) an error will occur if the evaluation of cond on some tuple involves an
attempt to reference a nonexistent attribute (unless the reference appears in the context of PRESENT or ABSENT,
of course). Note too that if HAMONEP(mr) is TRUE, then HAMONEP(ms) is also TRUE; and if mr has prime
participant p, then RELATION(ms) is some relational restriction of p.

MR-extraction

Consider the following example:

(S MR_WHERE ABSENT { STATUS } AND PRESENT { CITY })
MR_ONTO { ALL BUT STATUS }

Result (a multirelation):

┌────┬───────┬────────┐
│ S# │ SNAME │ CITY │
├────┼───────┼────────┤
│ S4 │ Clark │ London │
│....│.......│........│
│ S6 │ │ Rome │
└────┴───────┴────────┘

As you can see, what’s happened here is that multirelation S has been restricted to just those tuples that
don’t contain a STATUS value but do contain a CITY value, and attribute STATUS has then been “projected
away,” as it were. Such a combination of operations seems likely to occur quite frequently, and so it seems worth
considering a shorthand for it as suggested by the following example:

S MR_WITH ABSENT { STATUS } PRESENT { CITY }

Recall now the participant extraction operator (PARTICIPANT FROM) discussed earlier in this section,
which extracted a specified participant from a specified multirelation. The foregoing MR_WITH expression can
also be regarded as performing an extraction operation of a kind, but it extracts not a specified participant but,
rather, a specified multirelation. For that reason, I call it MR-extraction.

 Definition (MR-extraction): Let ms = mr MR_WITH ABSENT {A1,A2,...,An} PRESENT
{B1,B2,...,Bm}. The sets {A1,A2,...,An} and {B1,B2,...,Bm} must be disjoint. Then ms is defined to be
equal to the result of (mr MR_WHERE ABSENT {A1,A2,...,An} AND PRESENT {B1,B2,...,Bm})
MR_ONTO {ALL BUT A1,A2,...,An}. Equivalently, let excl and incl be the attributes specified by A1, A2,
..., An and B1, B2, ..., Bm, respectively; then the MR-heading MSH of ms is the set theory difference
between MRH and excl (in that order), and the MR-body MSB of ms is such that tuple t appears in MSB if
and only if t appears in MRB and has a heading that is both a superset of incl and a subset of MSH.

The ABSENT and PRESENT constructs can be specified in either order and need not both appear.
Omitting PRESENT is equivalent to specifying PRESENT {}; omitting ABSENT is equivalent to specifying
ABSENT {}. A couple of examples:

S MR_WITH PRESENT { S# , CITY }

414 Part IV / Missing Information

Result (a multirelation):

┌────┬───────┬────────┬────────┐
│ S# │ SNAME │ STATUS │ CITY │
├────┼───────┼────────┼────────┤
│ S1 │ Smith │ 20 │ London │
│ S2 │ Jones │ 10 │ Paris │
│ S5 │ Adams │ 30 │ Athens │
│....│.......│........│........│
│ S4 │ Clark │ │ London │
│....│.......│........│........│
│ S6 │ │ │ Rome │
└────┴───────┴────────┴────────┘

S MR_WITH ABSENT { SNAME , STATUS }

Result (a multirelation):

┌────┬────────┐
│ S# │ CITY │
├────┼────────┤
│ S6 │ Rome │
│....│........│
│ S7 │ │
└────┴────────┘

Note that if HAMONEP(mr) is TRUE, HAMONEP(ms) is also TRUE. HAMONEP(ms) is also TRUE
whenever the set theory union of incl and excl is all of the attributes in MRH (in which case every tuple in the
result certainly has the same heading: namely, the heading that consists of just the attributes of incl).

MR-extension

Relational extension is expressed in Tutorial D as follows:

EXTEND r : { X := exp }

Here (a) r is a relation, represented by a relational expression of arbitrary complexity; (b) exp is an expression in
which attribute references identifying attributes of r are permitted; (c) X is the name of a new attribute;21 and (d)
tuple t appears in the result if and only if it’s a tuple from r extended with a value for X that’s computed by
evaluating exp on t. Now, elsewhere this book proposes incorporating SUMMARIZE functionality into the
relational EXTEND operator. I have not yet investigated the implications of that proposal for the multirelational
analog of EXTEND; apart from such considerations, however, that analog is essentially straightforward. Here’s
an example:

MR_EXTEND (S MR_WHERE PRESENT { STATUS }) : { NT := STATUS + 10 }

Result (a multirelation):

21 Usually, at any rate. I omit consideration of the case where it isn’t for simplicity.

Chapter 24 / The Multirelational Approach 415

┌────┬───────┬────────┬────────┬────┐
│ S# │ SNAME │ STATUS │ CITY │ NT │
├────┼───────┼────────┼────────┼────┤
│ S1 │ Smith │ 20 │ London │ 30 │
│ S2 │ Jones │ 10 │ Paris │ 20 │
│ S5 │ Adams │ 30 │ Athens │ 40 │
│....│.......│........│........│....│
│ S3 │ Blake │ 30 │ │ 40 │
└────┴───────┴────────┴────────┴────┘

 Definition (MR-extension): Let ms = MR_EXTEND mr : {X := exp}. Then ms is the multirelation whose
MR-heading is MRH extended with attribute X and whose MR-body consists of all tuples t such that t is a
tuple of MRB extended with a value for attribute X that’s computed by evaluating exp on that tuple of r.
Note: In fact, this definition is essentially identical to the definition of relational extension, except that mr
and ms are multirelations, not relations. Note too that if attribute A is referenced in exp but is absent from
some tuple of mr, then attempting to evaluate exp on that tuple will give a run time error.22

Note that if HAMONEP(mr) is TRUE, then HAMONEP(ms) is also TRUE; and if mr has prime
participant p, then RELATION(ms) is some relational extension of p.

As with relational extension, a multiple form of MR-extension can also be defined, but I omit the details
here. An “outer” version might also be defined (see the subsection immediately following).

MR-renaming

At first sight, the multirelational analog of relational renaming appears quite straightforward. Here’s an example:

S MR_RENAME { S# AS SNO }

Result (a multirelation):

┌─────┬───────┬────────┬────────┐
│ SNO │ SNAME │ STATUS │ CITY │
├─────┼───────┼────────┼────────┤
│ S1 │ Smith │ 20 │ London │
│ S2 │ Jones │ 10 │ Paris │
│ S5 │ Adams │ 30 │ Athens │
│.....│.......│........│........│
│ S3 │ Blake │ 30 │ │
│.....│.......│........│........│
│ S4 │ Clark │ │ London │
│.....│.......│........│........│
│ S6 │ │ │ Rome │
│.....│.......│........│........│
│ S7 │ │ │ │
└─────┴───────┴────────┴────────┘

However, one of the most vexing aspects of the whole multirelation idea is trying to decide when

22 As noted earlier, whether the compiler could detect the possibility that some attributes might be absent from some tuples and thus avoid
certain run time errors is an open question.

416 Part IV / Missing Information

references to absent attributes (within specific tuples) should be treated as an error and when they should simply
be ignored. In the case at hand (viz., MR_RENAME), it might seem harmless on the face of it just to ignore
them. If we do, then, e.g., the following expression—

S MR_RENAME { STATUS AS XX }

—will yield:

┌────┬───────┬────┬────────┐
│ S# │ SNAME │ XX │ CITY │
├────┼───────┼────┼────────┤
│ S1 │ Smith │ 20 │ London │
│ S2 │ Jones │ 10 │ Paris │
│ S5 │ Adams │ 30 │ Athens │
│....│.......│....│........│
│ S3 │ Blake │ 30 │ │
│....│.......│....│........│
│ S4 │ Clark │ │ London │
│....│.......│....│........│
│ S6 │ │ │ Rome │
│....│.......│....│........│
│ S7 │ │ │ │
└────┴───────┴────┴────────┘

In conventional relational algebra, however, the following identity holds:

R RENAME { A AS B } ≡ (EXTEND R : { B := A }) { ALL BUT A }

So what about a multirelational counterpart of this identity? More specifically, what happens with the
following expression, which ought perhaps to be equivalent to S MR_RENAME {STATUS AS XX}?

(MR_EXTEND S : { XX := STATUS }) MR_ONTO { ALL BUT STATUS }

Answer: It fails as soon as a tuple is encountered in S without a STATUS attribute—see the definition of
MR-extension in the previous subsection. So perhaps we should reconsider that definition, so that MR_EXTEND
simply ignores tuples for which attributes mentioned on the right side of the assignment in braces are absent. If
we do, then at least the multirelational counterpart of the foregoing identity will hold. But now consider the
following example:

S MR_WHERE STATUS + 10 = i

(where i is some integer). Now, we’ve already agreed, for very good reasons, that this expression will fail as soon
as a tuple is encountered in S without a STATUS attribute (see the subsection “MR-restriction,” earlier). But this
expression is, or at least ought to be, equivalent to the following one:

(MR_EXTEND S : { I := STATUS + 10 }) MR_WHERE I = i

And this expression doesn’t fail, if MR_EXTEND just ignores tuples as suggested above. So what should we do?
My own strong inclination, in situations like the one under consideration here, is to follow The Principle of

Cautious Design [3] and to insist, even with MR_RENAME, that references to absent attributes be considered an
error. If we take this path, then the example shown earlier—

S MR_RENAME { STATUS AS XX }

Chapter 24 / The Multirelational Approach 417

—will have to be rewritten thus:

(S MR_WHERE PRESENT { STATUS }) MR_RENAME { STATUS AS XX }
MR_UNION

(S MR_WHERE ABSENT { STATUS })

I note in passing, however, that it would be possible to define a shorthand—we might perhaps call it outer
MR_RENAME—for the foregoing combination of operations. Similarly, we might define “outer” shorthand
versions of MR_EXTEND and MR_WHERE, if such operations were thought to be sufficiently useful.

Here then is my preferred definition for MR_RENAME:

 Definition (MR-renaming): The expression mr MR_RENAME {A AS B} is equivalent to

(MR_EXTEND mr : { B := A }) MR_ONTO { ALL BUT A }

Note that if HAMONEP(mr) is TRUE, then HAMONEP(ms) is also TRUE; and if mr has prime
participant p, then RELATION(ms) is some relational renaming of p.

As with relational renaming, a multiple form of MR-renaming can also be defined. I omit the details here.

Internal Join

The multirelation operators I’ve described in this section so far have all been counterparts of familiar relational
operators. By contrast, the operators I describe in this subsection and the next don’t have any relational
counterpart. The operators in question both have to do with certain canonical forms for multirelations, canonical
forms that might possibly be of use in connection with database design.

As a basis for illustrating the first of these operators, I’ll use a different, and much simpler, value for
multirelvar S (see Fig. 3 below). Note: Let me point out immediately that this multirelation would be prohibited
as a value for S if certain obvious constraints were in effect for that multirelvar. See the section “Constraints,”
later.

S
┌────┬───────┬────────┬────────┐
│ S# │ SNAME │ STATUS │ CITY │
├────┼───────┼────────┼────────┤
│ S1 │ Smith │ │ London │
│....│.......│........│........│
│ S3 │ Blake │ 30 │ │
│....│.......│........│........│
│ S1 │ │ 20 │ │
│ S3 │ │ 30 │ │
│....│.......│........│........│
│ S1 │ │ │ London │
└────┴───────┴────────┴────────┘

Fig. 3: Another suppliers multirelation

As you can see, the three tuples for supplier S1 in the multirelation in Fig. 3 are joinable, and so are the
two tuples for supplier S3. The internal join operation (INTRAJOIN) essentially just performs the corresponding
tuple joins; that is, the expression

INTRAJOIN S

produces the following result (a multirelation):

418 Part IV / Missing Information

┌────┬───────┬────────┬────────┐
│ S# │ SNAME │ STATUS │ CITY │
├────┼───────┼────────┼────────┤
│ S1 │ Smith │ 20 │ London │
│....│.......│........│........│
│ S3 │ Blake │ 30 │ │
└────┴───────┴────────┴────────┘

 Definition (internal join): Let ms = INTRAJOIN (mr). Then ms is a multirelation with MR-heading
MSH equal to MRH and MR-body MSB defined as follows: Let t1, t2, ..., tn be a set of tuples within MRB
such that t1, t2, ..., tn are (a) mutually joinable and (b) not joinable with any other tuple in MRB. Then t is
a tuple within MSB if and only if it’s the join of the tuples in some such set t1, t2, ..., tn.

Informally, mr and ms can be regarded as “information equivalent” (i.e., they effectively both represent the
same set of propositions). However, they differ inasmuch as ms has the following property: If t1 and t2 are
distinct tuples of ms, then they’re not joinable. By contrast, mr doesn’t necessarily have this property (in fact, if it
does, then mr = ms). As a consequence, mr might involve some redundancy (in the case at hand, the fact that
supplier S1 is located in London appears twice, and so does the fact that supplier S3 has status 30), while mr
doesn’t exhibit redundancy of this same kind. In other words, one of the effects of INTRAJOIN is to eliminate
certain redundancies.

Note that if HAMONEP(mr) is TRUE, then HAMONEP(ms) is also TRUE; and if mr has prime
participant p, then RELATION(ms) is equal to p. Note too that TABLE_DEE is a participant—in fact, the sole
participant—in ms if and only if it’s the sole participant in mr.

Internal Decomposition

Loosely speaking, internal decomposition (INTRADECOMPOSE) is a kind of inverse of internal join.23 Here’s
an example:

INTRADECOMPOSE S ON { S# }

Suppose S denotes the result of the internal join example from the previous section. Then this expression
produces the following result (a multirelation):

┌────┬───────┬────────┬────────┐
│ S# │ SNAME │ STATUS │ CITY │
├────┼───────┼────────┼────────┤
│ S1 │ │ │ │
│ S3 │ │ │ │
│....│.......│........│........│
│ S1 │ Smith │ │ │
│ S3 │ Blake │ │ │
│....│.......│........│........│
│ S1 │ │ 20 │ │
│ S3 │ │ 30 │ │
│....│.......│........│........│
│ S1 │ │ │ London │
└────┴───────┴────────┴────────┘

23 In fact, we might reasonably consider calling it “internal projection,” and using syntax such as INTRA_ONTO to denote it.

Chapter 24 / The Multirelational Approach 419

 Definition (internal decomposition): Let ms = INTRADECOMPOSE mr ON {A1,A2,...,An}. Then ms is
a multirelation with MR-heading MSH equal to MRH and MR-body MSB defined as follows: Tuple t
appears in MSB if and only if (a) it’s a subtuple of some tuple in MRB and (b) its heading includes the
attributes A1, A2, ..., An and at most one additional attribute.

Note that if t appears in MSB and has some attribute B over and above A1, A2, ..., An, then the projection of
t onto {A1,A2,...,An} also appears in MSB. Note too that ms and mr are information equivalent if and only if
every tuple of mr has all of the attributes A1, A2, ..., An. Note finally that HAMONEP(ms) is TRUE if and only if
mr is empty or the only nonempty participant in mr is the one whose heading consists precisely of attributes A1,
A2, ..., An.

Other Operators

Tutorial D supports a variety of other relational operators in addition to the ones mentioned earlier in this section
(examples include GROUP, UNGROUP, SUMMARIZE, and TCLOSE). However, I deliberately haven’t yet
defined multirelational analogs of those operators—but all of those operators except TCLOSE are defined in
terms of ones for which I have defined multirelational analogs, and so it seems reasonable to assume that
multirelation analogs could be defined for those operators as well if desired. I also deliberately haven’t yet
considered possible multirelation analogs of GROUP and UNGROUP involving multirelation valued attributes in
place of relation valued attributes.

MULTIRELATION VARIABLES

The syntax for defining a multirelation variable, or multirelvar, can obviously follow the Tutorial D pattern for
defining a relvar. Here’s an example:

VAR S BASE MULTIRELATION
{ S# S# , SNAME NAME , STATUS INTEGER , CITY CHAR }

MR_KEY { S# } ;

The type of this multirelvar is MULTIRELATION {S# S#, SNAME NAME, STATUS INTEGER, CITY
CHAR}, but the MR_KEY specification (see the section “Constraints” immediately following) further constrains
the values that can be assigned to it, just as a relational KEY specification further constrains the values that can be
assigned to a relvar. Note, however, that (as we’ll see) whereas every relvar has at least one key, not every
multirelvar has an MR-key.

Note: If MR is a multirelvar, then its value at any given time (which is a multirelation, of course) has a set
of participant relations, one for each subset of the MR-heading of MR. It’s convenient to extend the “participant”
terminology to multirelvars too in the obvious way (just as, in the relational context, we use terminology such as
“the body of relvar R,” by which we really mean the body of the relation that’s the current value of R).

CONSTRAINTS

Multirelvar constraints of arbitrary complexity can be formulated as boolean expressions with multirelational
operands. As in the relational case, however, shorthands to address certain common requirements will probably
be desirable in practice. I consider a few possibilities in this connection.

MR_IS_EMPTY

MR_IS_EMPTY(mr) is TRUE if and only if MRB is empty—in other words, if and only if, for every participant p
in mr, IS_EMPTY(p) is TRUE (in which case mr has an empty prime participant). In other words, the expression

MR_IS_EMPTY (mr)

420 Part IV / Missing Information

is shorthand for the following expression:

mr MR_ONTO { } = MR_DUM

One particularly common application of MR_IS_EMPTY is likely to be in connection with required
attributes—where an attribute is “required” if and only if it’s required to be present in every tuple of the pertinent
multirelvar. For example:

CONSTRAINT MRC1 MR_IS_EMPTY (S MR_WHERE ABSENT { S# }) ;

This constraint requires multirelvar S to have as its value at all times a multirelation in which attribute S#
is present in every tuple. It might be nice to introduce a further shorthand that expresses the same constraint as
part of the definition of the multirelvar in question, perhaps like this:

VAR S BASE MULTIRELATION
{ S# S# , SNAME NAME , STATUS INTEGER , CITY CHAR }

.....
PRESENT { S# } ;

However, this further shorthand is clearly not adequate in itself to express all possible constraints of this
same general nature, and additional shorthands based on it might well be desired. For example, suppose certain
pairs of attributes are mutually exclusive; suppose, for example, that multirelvar S has an additional attribute,
REASON, which has a value if and only the STATUS value is absent and indicates the reason for that absence:

CONSTRAINT MRC2 MR_IS_EMPTY
(S MR_WHERE PRESENT { STATUS , REASON }

OR ABSENT { STATUS , REASON }) ;

Observe in particular that MR_WITH isn’t particularly helpful with examples like this one—a fact that
might raise questions about the usefulness of that operator in general.

By way of a third example, consider the case of a soccer club. It has a fixture list. For each match in the
fixture list, the result is eventually entered. So we might imagine a multirelvar, FIXTURE, whose nonempty
participants at all times number no more than three: one for those matches that need to be scheduled but have no
date assigned yet, one for those that are scheduled but haven’t yet been played, and one for those that have been
played.24 Let FIXTURE have attributes GOALS_FOR and GOALS_AGAINST, with the obvious meanings.
Clearly, whenever one of these attributes has a value for a particular match, then so must the other:

CONSTRAINT MRC3 MR_IS_EMPTY
(FIXTURE MR_WHERE NOT (PRESENT { GOALS_FOR , GOALS_AGAINST })

AND NOT (ABSENT { GOALS_FOR , GOALS_AGAINST })) ;

Clearly, such constraints will get increasingly complex as the number of attributes involved increases—
suggesting, again, that further shorthands might be desirable.

MR-keys

I strongly suspect that if multirelvars are to be used at all, then they should always have at least one MR-key as a
matter of good practice—meaning, to spell the point out, that no two distinct tuples in the same MR-body have the
same value for the MR-key in question. (By multirelvars here, I mean multirelvars in the database, not
necessarily ones that might exist from time to time merely to hold the result of some query.) Here’s the

24 Do you see any particular advantages here over a conventional three-relvar design?

Chapter 24 / The Multirelational Approach 421

definition:

 Definition (MR-key): Specifying MR_KEY {A1,A2,...,An} for multirelvar MR defines an MR-key for
MR. It’s equivalent to imposing the following constraint on MR:

MR_IS_EMPTY (MR MR_WHERE NOT (PRESENT { A1 , A2 , ... , An }))
AND COUNT (MR ONTO { A1 , A2 , ... , An }) = MR_COUNT (MR)

Note that this definition implies that attributes A1, A2, ..., An are all required ones. Also, it’s worth
pointing out explicitly that the expression MR ONTO {A1,A2,...,An}—the argument expression in the COUNT
invocation on the left side of the equality comparison—returns a relation, not a multirelation. However, the
argument expression to the MR_COUNT invocation on the right side is a multirelvar reference (MR_COUNT is,
of course, the multirelational analog of COUNT).

Now, I’ve already indicated that not every multirelvar has an MR-key. By way of example, consider the
following multirelation (repeated from the discussion of internal decomposition in the previous section):

┌────┬───────┬────────┬────────┐
│ S# │ SNAME │ STATUS │ CITY │
├────┼───────┼────────┼────────┤
│ S1 │ │ │ │
│ S3 │ │ │ │
│....│.......│........│........│
│ S1 │ Smith │ │ │
│ S3 │ Blake │ │ │
│....│.......│........│........│
│ S1 │ │ 20 │ │
│ S3 │ │ 30 │ │
│....│.......│........│........│
│ S1 │ │ │ London │
└────┴───────┴────────┴────────┘

Clearly, this multirelation could be the current value of some relvar; equally clearly, it doesn’t satisfy any
MR-key constraint at all.

In general, an MR-key has the same properties of uniqueness and irreducibility as relational keys do.
However, note that “uniqueness” here means “uniqueness across several relations”: namely, all of the relations
that are participants in the multirelation currently assigned to the multirelvar with the MR-key in question. In the
case of multirelvar S, for example, with its MR-key {S#}, no two tuples are ever allowed to have the same S#
value, even if the tuples in question would have appeared in distinct participants.

Participant Keys

It seems natural to introduce another kind of key, one that’s unique within participants but not necessarily across
them, as it were. Here’s the definition:

 Definition (participant key): Specifying PARTICIPANT KEY {A1,A2,...,An} for multirelvar MR defines
a participant key for MR. Such a specification implies that attributes A1, A2, ..., An are all required. If PK
is such a key, then every nonempty participant p in MR at any given time is such that (a) PK is a subset of
the heading of p and (b) no two distinct tuples in p have the same value for PK.

Note that if MK is an MR-key for MR, then MK is a participant key for MR a fortiori. However, if PK is a
participant key for MR, then PK isn’t necessarily an MR-key for MR.

422 Part IV / Missing Information

Foreign MR-keys

The relational concept of foreign keys and, more generally, the relational inclusion dependency concept (see
Chapter 13 of the present book) will need multirelational counterparts. For example, in the suppliers-and-
shipments database (with sample values as shown in Figs. 1 and 2), multirelvars S and SP are subject to the
constraint that, at all times, the MR-body of the MR-projection of SP onto {S#} is a subset of the MR-body of the
MR-projection of S onto {S#}:

SP MR_ONTO { S# } ⊆ S MR_ONTO { S# }

Clearly, we might want to define a shorthand according to which a specification of the form

FOREIGN MR_KEY { S# } REFERENCES S

could appear as part of the definition of multirelvar SP.

MR-DNF

An MR-DNF constraint (DNF = “decomposed normal form”—see the section immediately following) is a
constraint on a multirelvar to the effect that the only participants allowed to be nonempty are those whose
headings have no more than one attribute in addition to those of a participant key (the same participant key in
every such participant).

NORMAL FORMS

As I mentioned a few pages back, there are two obvious canonical forms, or normal forms, that can be defined for
multirelvars. I’ll call them MR-JNF and MR-DNF, for joined normal form and decomposed normal form,
respectively. They aren’t mutually exclusive, by the way (i.e., a given multirelvar can be in both at the same
time). Their definitions are simple:

 Definition (MR-JNF): Multirelvar MR is in MR-JNF if and only if it’s subject to an MR-key constraint.

 Definition (MR-DNF): Multirelvar MR is in MR-DNF if and only if it’s subject to an MR-DNF
constraint.

If multirelvar MR1 has a participant key PK, then its MR-JNF equivalent MR2, with MR-key PK, can be
obtained by the following assignment:

MR2 := INTRAJOIN MR1 ;

Likewise, its MR-DNF equivalent MR3 can be obtained by the following assignment:

MR3 := INTRADECOMPOSE MR1 ON { PK } ;

Both normal forms prevent “accidents” such as the following (an impossible value for multirelvar S,
because the two tuples effectively contradict one another):25

25 The point is, stating the constraints to prevent such accidents in the case of a multirelvar not in one of the two normal forms is a rather tricky
business.

Chapter 24 / The Multirelational Approach 423

┌────┬───────┬────────┬────────┐
│ S# │ SNAME │ STATUS │ CITY │
├────┼───────┼────────┼────────┤
│ S1 │ Smith │ │ London │
│....│.......│........│........│
│ S1 │ │ │ Paris │
└────┴───────┴────────┴────────┘

With reference to this particular example, enforcing MR-JNF for S prevents the appearance of two or more
tuples for the same supplier; enforcing MR-DNF prevents the appearance of two or more CITY values for the
same supplier. More generally, the two normal forms both prevent two or more tuples from appearing in the same
multirelvar at the same time with the same value for the same MR-key value and with different values for some
other attribute. Equivalently, for every pair of participants (p1 and p2, say) in the multirelvar in question, no tuple
in p1 has the same value for the same MR-key value as more than one tuple—or, in the case of MR-JNF, any
tuple—in p2 at any given time.

Note: As you might have realized, there are some interesting parallels to be observed between multirelvars
in either of the two normal forms, on the one hand, and relvars obtained by means of the decomposition approach
[1] on the other. To be specific, the various constraints (on keys, to be precise) that relvars obtained by means of
decomposition are required to satisfy are very similar to the constraints on MR-keys and participant keys that
apply when either MR-JNF or MR-DNF is in effect.

Now, it’s easy to see that a multirelvar that’s in neither MR-JNF nor MR-DNF (such as a single
multirelvar constituting the entire database!) would be subject to all sorts of difficulties in connection with update
operations. In practice, therefore, I think the only multirelvars (base or virtual) that might not be in one of those
two normal forms would be ones used for holding query results. For that reason, at this time I discuss, in the
section immediately following, only such update operators as might usefully be defined under the assumption that
one of those normal forms is in effect.

UPDATE OPERATORS

Assignment is defined for variables of all types, and multirelvars are no exception; I’ve already given a couple of
examples.26 As usual, however, certain shorthands are likely to be desirable in practice. The shorthands in
question are very similar to the familiar (relational) INSERT, DELETE, and UPDATE shorthands of Tutorial D.

MR-INSERT

 Definition (MR_INSERT): Let MR be a multirelvar and let mr be a multirelation with MR-heading some
subset of that of MR. Then MR_INSERT MR mr is equivalent to

MR := MR MR_UNION mr ;

For example:

26 Note, however, that whereas relational assignment requires the source relation and target relvar to have the same heading (in other words, to
be of the same type), multirelational assignment requires only that the source multirelation have a heading that’s some subset of that of the
target multirelvar.

424 Part IV / Missing Information

MR_INSERT S MULTIRELATION { TUPLE { S# S#('S2') ,
SNAME NAME('Jones') ,
CITY 'Paris' } ,

{ TUPLE { S# S#('S3') ,
SNAME NAME('Blake') } ,

{ TUPLE { S# S#('S3') ,
CITY 'Paris' } } ;

Result (assuming for simplicity that multirelvar S was empty before the MR_INSERT):

┌────┬───────┬────────┬────────┐
│ S# │ SNAME │ STATUS │ CITY │
├────┼───────┼────────┼────────┤
│ S2 │ Jones │ │ Paris │
│....│.......│........│........│
│ S3 │ Blake │ │ │
│....│.......│........│........│
│ S3 │ │ │ Paris │
└────┴───────┴────────┴────────┘

This result violates both MR-JNF and MR-DNF. In general, therefore, if the target multirelvar MR is
required to be in MR-JNF, we will probably want a shorthand for the following:

MR := INTRAJOIN (MR MR_UNION mr) ;

Similarly, if MR is required to be in MR-DNF, then we will probably want a shorthand for the following:

MR := INTRADECOMPOSE (MR MR_UNION mr) ;

However, I offer no suggestions for such shorthands at this time.
Other possibilities that might be worth considering include:

 Allowing the mr operand to be a relation instead of a multirelation

 Supporting a multirelational analog of Tutorial D’s D_INSERT (in which case we’d presumably need a
multirelational analog of Tutorial D’s D_UNION as well)

MR-DELETE

Note: For completeness, analogs of the first (less commonly used) form of Tutorial D’s DELETE, as well as its
I_DELETE, might be desirable in addition to the following, but I omit consideration of those possibilities here.

 Definition (MR_DELETE): Let MR be a multirelvar and let cond be a boolean expression. Then
MR_DELETE MR MR_WHERE cond is equivalent to

MR := MR MR_WHERE NOT (cond) ;

For example:

MR_DELETE S MR_WHERE CASE
WHEN PRESENT { CITY } THEN CITY = 'Paris'
ELSE FALSE

END CASE ;

Note the need to be able to use the PRESENT and ABSENT constructs once again. In the example, the effect is

Chapter 24 / The Multirelational Approach 425

to delete every tuple with an attribute named CITY whose value is Paris (loosely speaking). Tuples without a
CITY attribute are not deleted.

Here’s another example:

MR_DELETE S MR_WHERE ABSENT { SNAME , STATUS } ;

This MR_DELETE is equivalent to:

S := S MR_WHERE NOT (ABSENT { SNAME , STATUS }) ;

Observe in particular that it’s not equivalent to:

S := S MR_WHERE PRESENT { SNAME , STATUS } ;

No special varieties of MR_DELETE are needed for normal form preservation.

MR-UPDATE

I omit a precise definition of MR_UPDATE; the details are tedious, though essentially straightforward, and the
effect is (I hope) intuitively obvious.27 Here’s an example:

MR_UPDATE (S MR_WHERE S# = S#('S1') AND PRESENT { STATUS }) :
{ STATUS := 10 } ;

No special varieties of MR_UPDATE are needed for normal form preservation.

VIRTUAL RELVARS AND MULTIRELVARS

This subject needs further investigation, but one observation can be made right away. Clearly, if A1, A2, ..., An
are attributes of multirelvar MR, then a virtual relvar—not multirelvar—PV can be defined over the participant in
MR whose heading is just those attributes:

VAR PV VIRTUAL (PARTICIPANT { A1 , A2 , ... , An } FROM MR) ;

Certain updates on MR can now be expressed in terms of updates on PV. As I more or less suggested
earlier (in the section “What’s a Multirelation?”), such virtual relvars might thus provide the basis for a mapping
from a database design based on multirelvars to a relational design based on the proposals of either reference [1]
or reference [13].

INTERPRETATION

Consider the multirelation MSC shown in Fig. 4, which is intended to be a sample value for a multirelvar MSCV
of the following multirelation type:

MULTIRELATION { S# S# , CITY CHAR }

Since MSCV is of degree two, every multirelation (including the one in Fig. 4 in particular) that’s a
possible value of that multirelvar necessarily has four participants. For the sake of the example—but completely
arbitrarily—I’ve chosen to make each of the participants in the multirelation in the figure nonempty. (One of
them is TABLE_DEE, represented in the figure by a row with a vacant space in every attribute position.)

Now let s# and c be range variables, ranging over the set S# (the underlying type for attribute S#) and the

27 Though we might need an additional form of MR_UPDATE for adding attributes to, and/or removing attributes from, specified tuples
(please forgive the loose manner of speaking here). Again I omit the details.

426 Part IV / Missing Information

set CHAR (the underlying type for attribute CITY), respectively. I’ll consider the four participants one at a time.
(You can interpret the discussion that follows in terms of the multirelation in Fig. 4, but of course it’s meant to
apply to every multirelation that’s a possible value for multirelvar MSCV.)

MSC
┌────┬────────┐
│ S# │ CITY │
├────┼────────┤
│ S1 │ London │
│ S2 │ Paris │
│....│........│
│ S3 │ │
│ S4 │ │
│....│........│
│ │ Athens │
│....│........│
│ │ │
└────┴────────┘

Fig. 4: Multirelation MSC

First of all, the body of the participant with heading {S#,CITY} consists of just those tuples of the form
<s#,c> that satisfy predicate p1(s#,c), where p1 is some predicate with parameters s# and c. (Intuitively, we might
expect predicate p1 to be Supplier s# is located in city c, but its exact form is irrelevant here.) So we can say the
participant with heading {S#,CITY} is defined by the following domain calculus expression:28

<s#,c> : p1(s#,c)

Similarly, the defining expression for the participant with heading {S#} is

<s#> : p2(s#)

for some predicate p2 with sole parameter s#. Likewise, the defining expression for the participant with heading
{CITY} is

<c> : p3(c)

for some predicate p3 with sole parameter c. And the defining expression for the participant with heading {} is

<> : p4()

for some predicate p4 with no parameters at all (in other words, p4 is in fact a proposition).
So what’s the predicate for multirelvar MSCV overall? Well, let MSCH and MSCB be the MR-heading

and current MR-body, respectively, of that multirelvar, and let t be a tuple in MSCB. Clearly, t has a heading
that’s some subset of MSCH. Let H1, H2, H3, and H4, denote the four subsets of MSCH, thus:

H1 = { S# , CITY }

H2 = { S# }

H3 = { CITY }

28 The domain calculus is slightly better suited to my purpose here than the possibly more familiar tuple calculus.

Chapter 24 / The Multirelational Approach 427

H4 = { }

Then we can say that the predicate for MSCV overall—let’s call it MSCP—looks something like this:

IF heading(t) = H1 THEN p1(t) AND
IF heading(t) = H2 THEN p2(t) AND
IF heading(t) = H3 THEN p3(t) AND
IF heading(t) = H4 THEN p4(t)

Observe that:

a. This predicate is a conjunction of implications.

b. For any given tuple t with heading Hi for some i (1 i 4), exactly one of those implications has an
antecedent (“the IF part”) that evaluates to TRUE.

c. Each of the other three implications has an antecedent that evaluates to FALSE and thus evaluate to TRUE
overall.

d. For that tuple t, in other words, the predicate reduces to just pi(t).

Note: We can simplify the formulation of this predicate slightly by introducing the notation PS(MSCH) to
denote the power set of MSCH:

FORALL Hi ∈ PS(MSCH) (IF heading(t) = Hi THEN pi(t))

A final observation: Consider a conventional relational database RDB containing just four relvars RV1,
RV2, RV3, and RV4, with relvar predicates p1, p2, p3, and p4, respectively. Then what we might call “the
database predicate” for database RDB will again be essentially just predicate MSCP—which is surely just as we
should expect.

POTENTIAL APPLICATIONS

Since the first publication of The Third Manifesto in early 1995 [2], we’ve seen a gratifying amount of interest—
and it’s still growing—in the idea of providing an interface to existing SQL databases that conforms to the
proposals of the Manifesto (i.e., is truly relational). Now, the tables shown throughout this chapter, depicting
multirelations, could alternatively be understood as depicting SQL tables, with nulls occupying the vacant spaces.
It seems, therefore, that there’s a straightforward mapping between SQL tables and multirelations. The existence
of such a mapping creates an obvious opportunity to provide an alternative language for operating on SQL tables.
The operators described in the present chapter are, unlike SQL’s operators, based firmly on classical logic and set
theory. As a result, they should be significantly easier than SQL’s operators to teach, learn, and use, and they
should also be capable of serving as a bridge to true relations and their operators.

In my opinion, the main application for multirelation operators is likely to be in connection with
constraints that would be needed if the database were to contain multirelvars. The usefulness of those operators
for query purposes is, I think, somewhat debatable; to be specific, I think their comparative complexity makes
them more subject to misinterpretation than their relational counterparts (even though, to repeat, I do think they’re
simpler than their SQL counterparts).

That said, however, I note that the often perceived requirement for “relational” outer operations (especially
outer join) can be addressed by means of MR-union in particular. In particular, for a certain kind of report—one
commonly required in practice—MR-union might be more suitable than relational join. Such requirements have
occasionally given rise to suggestions that “relational” operators might be needed that yield sets of relations
instead of just a single relation as their result. Speaking a trifle loosely, the key difference between such
suggestions and the multirelation approach seems to be this (though I readily admit the difference in question

428 Part IV / Missing Information

might be more apparent than real):

 In those suggestions, the result relations are effectively elements of those result sets.

 In the multirelation approach, by contrast, relations—that is, participant relations in a multirelation—are
subsets of that multirelation, not elements of it.

To illustrate, here’s what McGoveran has to say regarding such matters in reference [13] (italics and
boldface in the original):

[This discussion] suggests some extensions to the relational algebra to support more general versions of the relational
operators. In particular, relational union is a restricted version of the general set union. I propose that the system
should automatically create several tables in the output (when appropriate), grouping like rows together by performing
the “restrict and project away nulls” operation in the user’s behalf ... In effect, such set operations would be many-
table-result versions of existing relational operations; they would avoid the need for users to simulate such operations
manually, via several SQL statements. Whether many-table operands (as opposed to results) should be permitted
deserves additional and careful consideration, however. For the time being, I propose that such many-table values
be supported only for output.

Here’s an example of what I mean when I claim that MR-union can be used to address the “outer join”
problem. Let S, SP, and SPJ be relvars (not multirelvars) for suppliers, shipments of parts, and shipments of parts
to projects, respectively. Relvar S has key {S#}; relvar SP has key {S#,P#}; and relvar SPJ has key {S#,P#,J#}.
Now suppose we want a report showing (a) suppliers in supplier number order, each such supplier being followed
by (b) a list of parts in part number order, showing parts shipped by that supplier, each such part being followed
by (c) a list of projects in project number order showing the projects that supplier supplies that part to. The
multirelation denoted by the following expression provides all of the information needed for that report:

MR_UNION { MULTIRELATION (S) ,
MULTIRELATION (SP) ,
MULTIRELATION (SPJ) }

The tuples resulting from evaluation of this expression would have to be processed in a suitable sequence
in order to meet McGoveran’s requirement of “grouping like rows together.” Perhaps that sequence could be
specified like this:

ORDER (ASC S# , ASC P# , ASC J#)

The semantics of such a specification would have to be defined in such a way that (among other things) each S
tuple comes immediately before its first matching SP tuple if any, and each SP tuple comes immediately before its
first matching SPJ tuple if any. Of course, if the intuitively obvious foreign key constraints from SPJ to SP and
from SP to S don’t apply, then the report might display some anomalies.

SOME OUTSTANDING QUESTIONS

As noted near the beginning, this chapter is meant as a kind of discussion paper, not as any kind of definitive
statement. Certainly there are quite a few loose ends to be tidied up. And I feel bound to say that, if the scheme
overall is seen principally as an approach to the “missing information” problem—a problem to which, I say again,
purely relational solutions already exist—then it does seem to involve a degree of complexity out of proportion to
the problem it’s meant to address. In particular, the possibility that certain attributes might be absent from certain
tuples leads to a lot of complexity in connection with MR_WHERE clauses and related matters.

On the other hand, if the approach is felt to be worth pursuing, then there are many topics that need further
investigation. Here are some of them (in no particular order):

Chapter 24 / The Multirelational Approach 429

 Is there a better way of dealing with absent attributes (in MR_WHERE clauses in particular)?

 Do we need additional multirelation comparison operators?

 Do we need additional constraint shorthands?

 What about the possibility of compensatory actions, such as cascade delete?

 What issues are raised by the possibility of defining virtual relvars on multirelvars?

 What about the possibility of virtual multirelvars?

 Can we pin down the specifics of the putative mapping between relations and multirelations in more detail?

 What are the implications for multirelations of the inheritance model as defined in reference [7]—
especially with respect to “specialization by constraint”?

 How do aggregation and summarization work with multirelations?

 What’s the relationship, if any, between multirelations and support for temporal data as described in
reference [8]?

 Can we define a formal multirelation algebra?

 Can the compiler determine when attributes might be absent from one or more tuples in the results of
arbitrary multirelational expressions?

 Can the compiler perform any other constraint inferencing—for example, determining that some MR-key
constraint applies to the result of some multirelational expression?

 More generally, what problems, if any, can be solved with multirelations that can’t be solved without
them? (We think: None.)

ACKNOWLEDGMENTS

I’d like to thank Chris Date for his careful review of several earlier drafts of this chapter. Adrian Hudnott also
reviewed an earlier draft and gave me useful comments. Dennis Ashley provided me with references [9] and [11],
both of which are mathematical treatises that use the term multirelation (though it’s not clear to me whether their
use of the term refers to exactly the same concept, nor how close either of them is to the concept I’ve defined
here).

REFERENCES AND BIBLIOGRAPHY

1. Hugh Darwen: “How to Handle Missing Information Without Using Nulls” (presentation slides),
www.thethirdmanifesto.com (May 9th, 2003; revised May 16th, 2005). See also Chapter 23 of the present book.

2. Hugh Darwen and C. J. Date: “The Third Manifesto,” ACM SIGMOD Record 24, No. 1 (March 1995).

3. C. J. Date: “The Principle of Cautious Design,” in C. J. Date and Hugh Darwen, Relational Database Writings 1989-
1991. Reading, Mass.: Addison-Wesley (1992).

4. C. J. Date: “The Closed World Assumption,” in Logic and Databases: The Roots of Relational Theory. Victoria, B.C.:
Trafford Publishing (2007).

5. C. J. Date: The Relational Database Dictionary, Extended Edition. Berkeley, Calif.: Apress (2008).

430 Part IV / Missing Information

6. C. J. Date and Hugh Darwen: Databases, Types, and the Relational Model: The Third Manifesto (3rd edition). Boston,
Mass.: Addison-Wesley (2006). See also Chapter 1 of the present book.

7. C. J. Date and Hugh Darwen: “The Inheritance Model” (Chapter 19 of the present book).

8. C. J. Date, Hugh Darwen, and Nikos A. Lorentzos: Temporal Data and the Relational Model. San Francisco, Calif.:
Morgan Kaufmann (2003).

9. Roland Fraïssé and Norbert Sauer: Theory of Relations. New York, N.Y.: Elsevier Science (2000).

10. Maurice Gittens: “On Logical Mistakes and The Third Manifesto” (English version of an article that appeared in Dutch
in DB/M Magazine, No. 2. Array Publications, Netherlands, April 2007). See Chapters 4-9 of the present book
(Chapter 9 in particular is relevant to the theme of the present chapter).

11. Wim H. Hesselink: “Multirelations Are Predicate Transformers,” http://www.cs.rug.nl/~wim/pub/ whh318.pdf (February
23rd, 2004).

12. Adrian Larner: “A New Model of Data,” http://www.btinternet.com/~adrian.larner/ database.htm (undated).

13. David McGoveran: “Nothing from Nothing” (in four parts), in C. J. Date, Hugh Darwen, and David McGoveran,
Relational Database Writings 1994-1997. Reading, Mass.: Addison-Wesley (1998).

14. Fabian Pascal: “The Final Null in the Coffin,” http://www.dbdebunk.com/publications.html (September 2004).

431

