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xv

P r e f a c e

This book consists of a collection of exploratory essays on database management—more specifically, on issues
arising from and related to The Third Manifesto, which is a proposal by the authors for a foundation for data and
database management systems (DBMSs). Like Codd’s original papers on the relational model, The Third
Manifesto—“the Manifesto” for short—can be seen as a blueprint for the design of a DBMS. It consists in
essence of a rigorous set of principles, stated in the form of a series of prescriptions and proscriptions, that we
require adherence to on the part of a hypothetical database programming language that we call D. We’ve
described those prescriptions and proscriptions in detail in our book Databases, Types, and the Relational Model:
The Third Manifesto, 3rd edition (Addison-Wesley, 2006)—referred to throughout the present book as “the
Manifesto book” for short. Note: More information relating to the Manifesto can be found on the website
www.thethirdmanifesto.com. In particular, information can be found on that website regarding a number of
experimental—and, in at least one case, commercial—implementations of the Manifesto ideas (see later in this
preface).

The present book is arranged into five parts, as follows:

I. Foundations

II. Language Design

III. Type Inheritance

IV. Missing Information

V. Miscellaneous Topics

Each part has its own introduction, and further details of individual chapters are left to those introductions.
Most of the chapters were originally meant to stand alone; as a result, some of them contain references and
examples—sometimes even appendixes—whose numbering is unique only within the chapter in question. To a
large extent, we’ve preserved the independence of individual chapters; thus, all references within a given chapter
to, say, Example 3 or Appendix A are to be taken as references to the indicated example or appendix within the
chapter in question. Also, some of the chapters overlap each other a little; we apologize for this fact, but we felt it
was better, as already indicated, to preserve the independence of individual chapters as far as possible.

Note: Most of the chapters started out in life as single-author papers, which explains the use in certain
cases of the first person singular. However, the first person singular can always be interpreted to mean both of us,
barring explicit statements to the contrary. For the record, Chris was the original author for Chapters 3-4, 7-8, 10,
12-15, 17-18, 22, and 27-31; Hugh was the original author for Chapters 2, 5-6, 9, and 23-26; and Chapters 1, 11,
16, and 19-21 were joint productions.

Examples throughout the book are expressed in a language called Tutorial D, which is the language used
for examples in the Manifesto book. The specific version of that language used herein—the most recent version,
in fact, which differs in certain important respects from earlier versions—is defined in Chapter 11 of the present
book. (The differences with respect to those earlier versions are also explained in that chapter.)

Prerequisites

Our target audience is database professionals. Thus, we assume you’re somewhat familiar with both the relational
model and the SQL language (though certain relational and/or SQL concepts are reviewed briefly here and
there—basically wherever we felt such explanations might be helpful). Prior familiarity with The Third Manifesto
would also be advantageous.
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P a r t I

F O U N D A T I O N S

This part of the book consists of ten chapters. Chapter 1 is a self-contained and updated definition of The Third
Manifesto as such (“the Manifesto” for short). Chapter 2 is an investigation into a question that underpins the
Manifesto, as well as just about everything else in the book: viz., what exactly is a predicate? Chapters 3-9 are
detailed responses to certain criticisms of the Manifesto that have appeared in the literature in the past couple of
years. Chapter 10 consists of an extended argument in support of the position that, contrary to popular belief,
there’s no such thing as a view that’s intrinsically nonupdatable.
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monadic and 16 dyadic logical operators, directly or indirectly, for this type.

2. All scalar values shall be typed—i.e., such values shall always carry with them, at least conceptually,
some identification of the type to which they belong.

3. A scalar operator is an operator that, when invoked, returns a scalar value (the result of that invocation).
D shall provide facilities for users to define and destroy their own scalar operators (user defined scalar
operators). Other scalar operators shall be provided by the system (built in or system defined scalar
operators). Let Op be a scalar operator. Then:

a. Op shall be read-only, in the sense that invoking it shall cause no variables to be updated other than
ones local to the code that implements Op.

b. Every invocation of Op shall denote a value (“produce a result”) of the same type, the result type—
also called the declared type—of Op (as well as of that invocation of Op in particular). The
definition of Op shall include a specification of that declared type.

c. The definition of Op shall include a specification of the type of each parameter to Op, the declared
type of that parameter. If parameter P is of declared type T, then, in every invocation of Op, the
expression that denotes the argument corresponding to P in that invocation shall also be of type T,
and the value denoted by that expression shall be effectively assigned to P. Note: The
prescriptions of this paragraph c. shall also apply if Op is an update operator instead of a read-only
operator (see below).

It is convenient to deal with update operators here as well, despite the fact that such operators are
not scalar (nor are they nonscalar—in fact, they are not typed at all). An update operator is an operator
that, when invoked, is allowed to update at least one variable that is not local to the code that implements
that operator. Let V be such a variable. If the operator accesses V via some parameter P, then that
parameter P is subject to update. D shall provide facilities for users to define and destroy their own
update operators (user defined update operators). Other update operators shall be provided by the system
(built in or system defined update operators). Let Op be an update operator. Then:

d. No invocation of Op shall denote a value (“produce a result”).

e. The definition of Op shall include a specification of which parameters to Op are subject to update.
If parameter P is subject to update, then, in every invocation of Op, the expression that denotes the
argument corresponding to P in that invocation shall be a variable reference specifically, and, on
completion of the execution of Op caused by that invocation, the final value assigned to P during
that execution shall be effectively assigned to that variable.

4. Let T be a scalar type, and let v be an appearance in some context of some value of type T. By definition, v
has exactly one physical representation and one or more possible representations (at least one, because
there is obviously always one that is the same as the physical representation). Physical representations for
values of type T shall be specified by means of some kind of storage structure definition language and
shall not be visible in D. As for possible representations:

a. If T is user defined, then at least one possible representation for values of type T shall be declared
and thus made visible in D. For each possible representation PR for values of type T that is visible
in D, exactly one selector operator S, of declared type T, shall be provided. That operator S shall
have all of the following properties:

1. There shall be a one to one correspondence between the parameters of S and the components
of PR (see RM Prescription 5). Each parameter of S shall have the same declared type as the
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applicable operators shall include operators analogous to the RENAME, project, EXTEND, and JOIN
operators of the relational algebra (see RM Prescription 18), together with tuple assignment (see RM
Prescription 21) and tuple comparisons (see RM Prescription 22); they shall also include (a) a tuple
selector operator (see RM Prescription 9), (b) an operator for extracting a specified attribute value from a
specified tuple (the tuple in question might be required to be of degree one—see RM Prescription 9), and
(c) operators for performing tuple “nesting” and “unnesting.”

Note: When we say “the name of [a certain tuple type] shall be, precisely, TUPLE H,” we do not
mean to prescribe specific syntax. The Manifesto does not prescribe syntax. Rather, what we mean is that
the type in question shall have a name that does both of the following, no more and no less: First, it shall
specify that the type is indeed a tuple type; second, it shall specify the pertinent heading. Syntax of the
form “TUPLE H” satisfies these requirements, and we therefore use it as a convenient shorthand; however,
all appearances of that syntax throughout this Manifesto are to be interpreted in the light of these remarks.

7. D shall support the RELATION type generator. That is, given some heading H (see RM Prescription 9),
D shall support use of the generated type RELATION H as the basis for defining (or, in the case of
values, selecting):

a. Values of that type (see RM Prescription 10)

b. Variables of that type (see RM Prescription 13)

c. Attributes of that type (see RM Prescriptions 9 and 10)

d. Components of that type within declared possible representations (see RM Prescription 5)

e. Read-only operators of that type (see RM Prescription 20)

f. Parameters of that type to user defined operators (see RM Prescriptions 3 and 20)

The generated type RELATION H shall be referred to as a relation type, and the name of that type shall
be, precisely, RELATION H. The terminology of degree, attributes, and heading introduced in RM
Prescription 9 shall apply, mutatis mutandis, to that type, as well as to values and variables of that type
(see RM Prescription 13). Relation types RELATION H1 and RELATION H2 shall be equal if and only if
H1 = H2. The applicable operators shall include the usual operators of the relational algebra (see RM
Prescription 18), together with relational assignment (see RM Prescription 21) and relational comparisons
(see RM Prescription 22); they shall also include (a) a relation selector operator (see RM Prescription 10),
(b) an operator for extracting the sole tuple from a specified relation of cardinality one (see RM
Prescription 10), and (c) operators for performing relational “nesting” and “unnesting.”

Note: When we say “the name of [a certain relation type] shall be, precisely, RELATION H,” we
do not mean to prescribe specific syntax. The Manifesto does not prescribe syntax. Rather, what we mean
is that the type in question shall have a name that does both of the following, no more and no less: First, it
shall specify that the type is indeed a relation type; second, it shall specify the pertinent heading. Syntax of
the form “RELATION H” satisfies these requirements, and we therefore use it as a convenient shorthand;
however, all appearances of that syntax throughout this Manifesto are to be interpreted in the light of these
remarks.



8 Part I / Foundations

8. D shall support the equality comparison operator “=” for every type T. Let v1 and v2 be values, and
consider the equality comparison v1 = v2. The values v1 and v2 shall be of the same type T. The
comparison shall return TRUE if and only if v1 and v2 are the very same value. Note: It follows from
this prescription that if (a) there exists an operator Op (other than “=” itself) with a parameter P of declared
type T such that (b) two successful invocations of Op that are identical in all respects except that the
argument corresponding to P is v1 in one invocation and v2 in the other are distinguishable in their effect,
then (c) v1 = v2 must evaluate to FALSE.

9. A heading H is a set of ordered pairs or attributes of the form <A,T>, where:

a. A is the name of an attribute of H. No two distinct pairs in H shall have the same attribute name.

b. T is the name of the declared type of attribute A of H.

The number of pairs in H—equivalently, the number of attributes of H—is the degree of H.
Now let t be a set of ordered triples <A,T,v>, obtained from H by extending each ordered pair

<A,T> to include an arbitrary value v of type T, called the attribute value for attribute A of t. Then t is a
tuple value (tuple for short) that conforms to heading H; equivalently, t is of the corresponding tuple type
(see RM Prescription 6). The degree of that heading H shall be the degree of t, and the attributes and
corresponding types of that heading H shall be the attributes and corresponding declared attribute types
of t.

Given a heading H, exactly one selector operator S, of declared type TUPLE H, shall be provided
for selecting an arbitrary tuple conforming to H. That operator S shall have all of the following properties:

1. There shall be a one to one correspondence between the parameters of S and the attributes of H.
Each parameter of S shall have the same declared type as the corresponding attribute of H.

2. Every tuple of type TUPLE H shall be produced by some invocation of S in which every argument
expression is a literal.

3. Every successful invocation of S shall produce some tuple of type TUPLE H.

10. A relation value r (relation for short) consists of a heading and a body, where:

a. The heading of r shall be a heading H as defined in RM Prescription 9; r conforms to that heading;
equivalently, r is of the corresponding relation type (see RM Prescription 7). The degree of that
heading H shall be the degree of r, and the attributes and corresponding types of that heading H
shall be the attributes and corresponding declared attribute types of r.

b. The body of r shall be a set b of tuples, all having that same heading H. The cardinality of that
body shall be the cardinality of r. Note: Relation r is an empty relation if and only if the set b is
empty.

Given a heading H, exactly one selector operator S, of declared type RELATION H, shall be
provided for selecting an arbitrary relation conforming to H. That operator S shall have all of the
following properties:

1. The sole argument to any given invocation of S shall be a set b of tuples, each of which shall be
denoted by a tuple expression of declared type TUPLE H.

2. Every relation of type RELATION H shall be produced by some invocation of S for which the tuple
expressions that together denote the argument to that invocation are all literals.

3. Every successful invocation of S shall produce some relation of type RELATION H: to be specific,
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the relation of type RELATION H with body b.

11. D shall provide facilities for users to define scalar variables. Each scalar variable shall be named and
shall have a specified (scalar) declared type. Let scalar variable V be of declared type T; for so long as
variable V exists, it shall have a value that is of type T. Defining V shall have the effect of initializing V to
some value—either a value specified explicitly as part of the operation that defines V, or some
implementation defined value otherwise. Note: Omitting an explicit initialization value does not preclude
the implementation from checking that no reference is made to scalar variable V until an explicit
assignment to V has occurred. Analogous remarks apply to tuple variables (see RM Prescription 12), real
relvars (see RM Prescription 14), and private relvars (again, see RM Prescription 14).

12. D shall provide facilities for users to define tuple variables. Each tuple variable shall be named and shall
have a specified declared type of the form TUPLE H for some heading H. Let variable V be of declared
type TUPLE H; then the degree of that heading H shall be the degree of V, and the attributes and
corresponding types of that heading H shall be the attributes and corresponding declared attribute types
of V. For so long as variable V exists, it shall have a value that is of type TUPLE H. Defining V shall have
the effect of initializing V to some value—either a value specified explicitly as part of the operation that
defines V, or some implementation defined value otherwise.

13. D shall provide facilities for users to define relation variables (relvars for short)—both database relvars
(i.e., relvars that are part of some database) and application relvars (i.e., relvars that are local to some
application). D shall also provide facilities for users to destroy database relvars. Each relvar shall be
named and shall have a specified declared type of the form RELATION H for some heading H. Let
variable V be of declared type RELATION H; then the degree of that heading H shall be the degree of V,
and the attributes and corresponding types of that heading H shall be the attributes and corresponding
declared attribute types of V. For so long as variable V exists, it shall have a value that is of type
RELATION H.

14. Database relvars shall be either real or virtual. A virtual relvar V shall be a database relvar whose value
at any given time is the result of evaluating a certain relational expression at that time; the relational
expression in question shall be specified when V is defined and shall mention at least one database relvar
other than V. A real relvar (also known as a base relvar) shall be a database relvar that is not virtual.
Defining a real relvar V shall have the effect of initializing V to some value—either a value specified
explicitly as part of the operation that defines V, or the empty relation of type RELATION H otherwise
(where RELATION H is the type of relvar V).

Application relvars shall be either public or private. A public relvar shall be an application relvar
that constitutes the perception on the part of the application in question of some portion of some database.
A private relvar shall be an application relvar that is completely private to the application in question and
is not part of any database. Defining a private relvar V shall have the effect of initializing V to some
value—either a value specified explicitly as part of the operation that defines V, or the empty relation of
type RELATION H otherwise (where RELATION H is the type of relvar V).

15. Every relvar shall have at least one candidate key. At least one such key shall be defined, explicitly or
implicitly, at the time the relvar in question is defined, and it shall not be possible to destroy all of the
candidate keys of a given relvar other than by destroying the relvar itself.

16. A database shall be a named container for relvars; the content of a given database at any given time shall
be a set of database relvars. The necessary operators for defining and destroying databases shall not be
part of D (in other words, defining and destroying databases shall be done “outside the D environment”).

17. Each transaction shall interact with exactly one database. However, distinct transactions shall be allowed
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( DBC1 ) AND ( DBC2 ) AND ... AND ( DBCn ) AND TRUE

Then DBC shall be the total database constraint for DB.

25. Every database shall include a set of database relvars that constitute the catalog for that database. D shall
provide facilities for assigning to relvars in the catalog. Note: Since assignments in general are allowed to
be multiple assignments in particular (see RM Prescription 21), it follows that D shall permit any number
of operations of a definitional nature—defining and destroying types, operators, variables, constraints, and
so on—all to be performed as a single semantically atomic operation.

26. D shall be constructed according to well established principles of good language design.

RM PROSCRIPTIONS

1. D shall include no concept of a “relation” whose attributes are distinguishable by ordinal position. Instead,
for every relation r expressible in D, the attributes of r shall be distinguishable by name.

2. D shall include no concept of a “relation” whose tuples are distinguishable by ordinal position. Instead, for
every relation r expressible in D, the tuples of r shall be distinguishable by value.

3. D shall include no concept of a “relation” containing two distinct tuples t1 and t2 such that the comparison
“t1 = t2” evaluates to TRUE. It follows that (as already stated in RM Proscription 2), for every relation r
expressible in D, the tuples of r shall be distinguishable by value.

4. D shall include no concept of a “relation” in which some “tuple” includes some “attribute” that does not
have a value.

5. D shall not forget that relations with no attributes are respectable and interesting, nor that candidate keys
with no components are likewise respectable and interesting.

6. D shall include no constructs that relate to, or are logically affected by, the “physical” or “storage” or
“internal” levels of the system.

7. D shall support no tuple level operations on relvars or relations.

8. D shall not include any specific support for “composite” or “compound” attributes, since such functionality
can more cleanly be achieved, if desired, through the type support already prescribed.

9. D shall include no “domain check override” operators, since such operators are both ad hoc and
unnecessary.

10. D shall not be called SQL.

OO PRESCRIPTIONS

1. D shall permit compile time type checking.

2. If D supports type inheritance, then such support shall conform to the inheritance model defined in Part
IV of the Manifesto book (as revised in Chapter 19 of Database Explorations).

3. D shall be computationally complete. D may support, but shall not require, invocation from “host
programs” written in languages other than D. D may also support, but shall not require, the use of other
languages for implementation of user defined operators.

4. D shall provide explicit transaction support, according to which:
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components thereof) for some specified relvar are supplied by the system. It should also provide a
mechanism according to which an arbitrary relation can be extended to include an attribute whose values
(a) are unique within that relation (or within certain partitions of that relation), and (b) are once again
supplied by the system.

2. Let RX be a relational expression. By definition, RX can be thought of as designating a relvar, R say—
either a user defined relvar (if RX is just a relvar name) or a system defined relvar (otherwise). It is
desirable, though perhaps not always feasible, for the system to be able to infer the candidate keys of R,
such that:

a. If RX constitutes the defining expression for some virtual relvar R', then those inferred candidate
keys can be checked for consistency with the candidate keys explicitly defined for R' (if any) and—
assuming no conflict—become candidate keys for R'.

b. Those inferred candidate keys can be included in the information about R that is made available (in
response to a “metaquery”) to a user of D.

D should provide such functionality, but without any guarantee (a) that such inferred candidate keys are
not proper supersets of actual candidate keys (“proper superkeys”) or (b) that such an inferred candidate
key is discovered for every actual candidate key.

3. D should support transition constraints—i.e., constraints on the transitions that a given database can
make from one value to another.

4. D should provide some shorthand for expressing quota queries. It should not be necessary to convert the
relation concerned into (e.g.) an array in order to formulate such a query.

5. D should provide some shorthand for expressing the generalized transitive closure operation, including
the ability to specify generalized concatenate and aggregate operations.

6. D should provide some means for users to define their own generic operators, including in particular
generic relational operators.

7. SQL should be implementable in D—not because such implementation is desirable in itself, but so that a
painless migration route might be available for current SQL users. To this same end, existing SQL
databases should be convertible to a form that D programs can operate on without error.

OO VERY STRONG SUGGESTIONS

1. Type inheritance should be supported (in which case, see OO Prescription 2).

2. Let operator Op have a parameter of declared type T. Then the definition of Op should be logically
distinct from the definition of T, not “bundled in” with this latter definition. Note: The operators required
by RM Prescriptions 4, 5, 8, and 21 might be exceptions in this regard.

3. D should support the concept of single level storage.

RECENT MANIFESTO CHANGES

As indicated in the introduction to this chapter, there are several differences between the Manifesto as defined
herein and the version defined in Chapter 4 of the Manifesto book. For the benefit of readers who might be
familiar with that earlier version, we summarize the main differences here. Notes concerning subsequent changes
in the present version have been added. Of course, wherever there’s a discrepancy, the present version should be
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our sense); a free variable is a variable that isn’t bound. So if the “variable” terminology is to be
used at all, using the “free” and “bound” qualifiers as and when appropriate is probably a good idea,
for clarity. On the other hand, I feel bound to add (pun intended) that the “free vs. bound variables”
terminology isn’t very good, because the terms really apply not to variables as such, but rather to
variable references or occurrences. For example, in the expression

FORALL x ( x > 0 ) AND x > 3

there are three references to x, of which the last is free and the first two are bound. Equivalently,
we might say there are two distinct variables here, both called x, one of which is free and one
bound.2

5. Predicate variable: In the programming languages world, a “type T variable” is a variable whose
values are values of type T. For example, an integer variable is a variable of type INTEGER, and
its values are integer values, or just integers for short. Therefore, programmers at least would
surely expect a predicate variable to be a variable of type PREDICATE, whose values are
predicates per se. Note: As a matter of fact, some of the logic texts I consulted do use the term
predicate variable in exactly this sense. Those same texts also use the term predicate constant to
mean a predicate per se, a usage with which I have no quarrel. However, other writers apparently
use the term predicate constant to mean what I would greatly prefer to call a predicate name (again,
see the section “Overlooking the Distinction,” later, regarding this latter term).

6. Placeholder: I have no argument (pun intended) with this term, except for the fact that we already
have a perfectly good term, parameter, for the concept.

As you can see, then, there’s certainly, as claimed, a considerable lack of consensus in the logic literature
over the use of terms. But perhaps more important is the fact that we in the database community have certain
requirements that the logicians don’t have, of which the most significant, here, is the need to be able to specify
names and types for the parameters in terms of which a given predicate is defined. Given this state of affairs, I
think it’s reasonable for us to adopt our own terms and definitions where necessary (just so long as we don’t do
violence to the underlying logical concepts, of course). More specifically, in this chapter I intend to use terms and
definitions that accord as much as possible with those used in reference [2]. Note: For interest, the appendix to
this chapter contains some additional discussion of the various terms and definitions to be found in the logic
literature.

PREDICATES AND SENTENCES

What does it mean for two predicates to be equal? Well, obviously enough, they’re equal if and only if they’re
actually one and the same predicate. So if “a < b” and “x < y” are predicates—and let’s assume for the moment
that they are—and if they’re equal, then they must be one and the same. And if they’re one and the same, then
wherever one of them appears it must be possible to replace it by the other without any significant effect. But
now consider the following expression, which under my assumption is another predicate:

a < b AND x < y

Observe now that this latter predicate is tetradic, whereas

2 But the following quote from reference [6] shows that logicians wouldn’t always say there are two distinct variables, either, in examples like
this one: “A variable is free in a formula if and only if at least one occurrence of it is free, and a variable is bound in a formula if and only if
at least one occurrence of it is bound. A variable may be both free and bound in a formula.”
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So much for “a est moins que b,” then! To be fair, however, the author of reference [4] does make it pretty
clear in his opening chapter that for convenience he assumes English to be the human language to which he relates
his formal discourse. More to the point, observe that his definition says a predicate is “a string of ... words ...”
(from the context, clearly a string of words that form a sentence); as far as he’s concerned, therefore, a predicate is
indeed a sentence.6 Note: The term designator refers to an expression that identifies some specific object (some
“individual,” in logic parlance). For example, in the sentence “The Queen of England is married to the Duke of
Edinburgh,” “The Queen of England” and “the Duke of Edinburgh” are designators. So are “1” and “2” in the
sentence “1 < 2,” and so is “Relvar S” in the sentence “Relvar S must not be empty.” (Thus, a designator too is
basically just a name—a name for an “individual value,” in fact.)

Now, the foregoing definition does imply that “a < b” and “x < y” are distinct. Unfortunately, it also
implies that “a < b” and “a is less than b” are distinct as well ... Perhaps we should look for another definition. I
tried reference [5]. That book doesn’t actually give a definition, but on page 179—of the 188 that constitute the
main body of the book—I did find the following (lightly edited here):

If we select a sentence and drop from it a proper name, we obtain a predicate. For example, if we drop the proper
name “oxygen” from “oxygen is an element,” we obtain the predicate “... is an element.”

Again, then, we have an assertion to the effect that a predicate is a sentence, albeit one that’s allowed to
contain “holes,” as it were. But notice the sleight of hand in the example: We’ve haven’t just dropped the proper
name “oxygen,” we’ve put a “hole” (an ellipsis) in its place. Now, reference [5] does go on to explain that
dropping two or more proper names in like manner yields a dyadic (or, more generally, polyadic) predicate.
Presumably, therefore, neither “a < b” nor just “<” alone is a predicate according to that reference. Rather, the
following is:

... < ...

But if parameters are to be represented by “holes” in this manner, how can we ever represent the fact that
the same parameter is supposed to appear in two distinct “holes”—i.e., at two distinct positions? For example,
consider what’s involved in representing the predicate “x² = x + 1” (which is monadic but would presumably have
to involve two “holes”).

Here’s one more quote (from the Oxford English Dictionary again):

1973 H. Hermes Introd. Math. Logic i. 40 In the statement The crown jewels are kept in the Tower of London, The
crown jewels and the Tower of London can be understood as names for individuals and are kept in as a name for a
predicate ...

I would prefer values or arguments in place of individuals here, but otherwise I rather like this quote. The
nested sentence in italics is (more precisely, denotes) a proposition; that proposition is an instantiation of a
predicate named are kept in; and the phrases The crown jewels and the Tower of London are designators, or in
other words names for the actual arguments to that proposition. In particular, as I’ve already mentioned, I like the
idea that things like are kept in (and “<” and “is less than” and so on) are predicate names—though I’d prefer to
distinguish between what we might call abstract names and concrete ones, so that, e.g., are kept in and is kept in
and se tiennent à (and so on) are all concrete forms of the same abstract name.

6 He also says elsewhere that he'll use declarative sentence to mean a proposition, thereby defining a proposition too to be a sentence as such,
instead of something denoted by a sentence.
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EQUAL PREDICATES

I’ve said I’m going to overlook the distinction between a predicate P and a sentence S that denotes it, and simply
say, in effect, that predicate P is sentence S (or the other way around). But I still haven’t pinned down exactly
what kind of sentence a predicate “is.” As we’ve seen, there’s no consensus on this matter in the literature: It
might be just a name (like are kept in—which isn’t much of a sentence, of course, but I’ll ignore that point); or it
might be such a name accompanied by “holes”; or it might be such a name accompanied by explicit parameter
specifications. So I’m going to set a stake in the ground and state categorically that as far as I’m concerned, it’s
the last of these three (as in fact I suggested earlier, in connection with that definition from reference [4]).

If we accept this position, then it follows that two predicates will be equal only if they have the same
predicate name and involve the same parameter specifications. But I want that predicate name to be a semantic
construct rather than a syntactic one, so that (to repeat my earlier example) the concrete names “<”, “is less than,”
and “est moins que” are all understood as denoting the same abstract name.

Just having the same parameter specifications (the same parameters, for short) and the same abstract name
is still inadequate, however—for if those were the only requirements, then “a < b” and “b < a” would be, or would
denote, the same predicate. Clearly, when there are two or more parameters, we need to know which one is
which—i.e., we need to know which role is being played by which parameter (where, of course, the roles played
by distinct parameters are themselves distinct). Syntactically, we can specify those roles by writing the parameter
names in the appropriate places in a sentence that denotes the predicate. (In particular, we can write the same
name in more than one place if we need to.) Once again, however, I don’t want to depend on syntax; so let me
define two predicates to be equal if and only if they have the same name and same parameters and each parameter
plays the same role in each predicate.

Given this definition, the following sentences do all denote the same predicate:

a < b

a is less than b

a est moins que b

By contrast, the following sentences all denote different predicates:

a < b

x < y

b < a

a < a

What’s more, I think the sentences “a < b” and “b > a” denote different predicates, too. However, you
might unkindly point out that “<” and “>” could be considered distinct concrete forms of the same abstract name
and a and b could be considered to be playing the same roles in both “a < b” and “b > a,” in which case I would
have to suppose you were right. In any case, “a < b” and “b > a” certainly have something very interesting in
common, even if “<” and “>” don’t denote the same abstract name. And that observation brings me to the second
question posed in the text I cited from reference [1] at the very beginning of this chapter.

EQUIVALENT PREDICATES

What does it mean for two predicates to be equivalent, as opposed to equal? Well, actually it can mean whatever
we want it to mean, so long as we understand exactly what equivalence relation we’re appealing to. For example,
we might—though I don’t want to—define an equivalence relation on predicates that makes predicates p1 and p2
equivalent if and only if they have the same abstract predicate name. In that sense the predicates denoted by
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sentence vs. predicate distinction, too, inasmuch as exactly the same kind of distinction applies to functions as
well (of course, a function is basically just a special case of a predicate). Note the use of another term (argument
place) for parameter, though.

By way of contrast, here’s an excerpt, from Johan Kerstens, Eddy Ruys, and Joost Zwarts (eds.): Lexicon
of Linguistics (Utrecht, Netherlands: http://www2.let.uu.nl/UiL-OTS/Lexicon, 1996-2001), that illustrates what we
might call the pre Hilbert definition of predicate (and much else besides):

Predicate

SEMANTICS: traditionally, an expression which takes a subject to form a sentence. The predicate ascribes a
property to the subject.

EXAMPLE: Socrates is the subject in the sentence Socrates is mortal and is mortal is the predicate. In predicate
logic, a predicate designates a property or a relation. P in P(a) and R in R(b,c) are called predicates. P in P(a) assigns
a property to a and R in R(b,c) designates a relation between b and c. The expressions a, b and c are called the
arguments of the predicates P and R.

Predicate constant

SEMANTICS: a basic expression in predicate logic denoting properties of or relations between individuals. One-
place predicate constants combine with one individual term: P(a), two-place predicates with two individual terms:
R(b,c), etcetera [sic]. One-place predicates are interpreted as sets, n-place predicates with n > 1 as sets of ordered
pairs. In “higher-order” predicate logic and in type logic, it is also possible for a predicate to take another predicate as
an argument. Predicates which take other predicates as their argument are called second-order predicates.

These definitions tacitly make the terms predicate and predicate constant synonymous, a position I agree
with (see the body of the chapter); indeed, the second uses them interchangeably. I disagree with the definitions
in other respects, however; in particular, I disagree with the idea that a predicate is, in effect, just a name. (The
very next definition after the ones just given reads as follows: “Predicate letter: see Predicate constant.”) It’s
also somewhat surprising to learn that, e.g., triadic predicates are “interpreted as sets of ordered pairs,” rather than
as sets of ordered triples.

Now another quote from the OED:

1969 D. J. Foulis Fund. Concepts Math. i. 14 Suppose that P(x) ... becomes a proposition whenever x takes on any
particular value in U. Then P(x) is called a predicate or a propositional function, and the object variable x is called its
argument.

Observe that this quote (a) supports the position that a proposition is a special case of a predicate (or more
precisely, perhaps, that a predicate is a generalized proposition), and (b) mentions the rather attractive term
propositional function as a synonym for predicate. I say “rather attractive” because, after all, a predicate can
certainly be thought of as a proposition valued, or propositional, function: It returns a proposition when
arguments are substituted for its parameters (just as, e.g., an integer valued function returns an integer when
arguments are substituted for its parameters).9 But I still prefer parameter to argument (and note that the quote
gives yet another term for parameter, viz., object variable).

One more quote from the OED:

1965 Hughes & Londey Elem. Formal Logic xxxix. 270 We shall ... speak of the expressions, such as “greater than”
and “between”, which stand for two-place, three-place, etc., relations, as two-place, three-place, etc., predicates
respectively.

9 And in fact, since a proposition in turn has a truth value, we often define a predicate simply, though a trifle informally, to be a truth valued
function: Substituting arguments for its parameters yields a truth value, albeit indirectly. I’ve given such a definition in numerous other
writings.
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substitution instance function.)
The term propositional function also appears in the book by Pospesel:

[Things like] “is greedy” are predicates ... We call the letters that abbreviate English predicates predicate letters (or
just predicates) ... A propositional function is a formula which results when zero or more (contiguous) quantifiers are
deleted from the front of a formula which is a wff.

Frankly, I can’t tell from this quote whether a propositional function and a predicate are to be regarded as
the same thing or not (or indeed whether one is to be regarded as a special case of the other).

I’ll close with a lightly edited extract from the book by Carnap:

To form sentences we need designations for the properties and relations predicated of the individuals—we call these
predicates ... For predicates we use the letters ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’. For example, ‘P’ might designate the property
Spherical ... Now suppose we take ‘a’ to designate the sun ... We write the sentence ‘P(a)’ for “the sun is spherical” ...
‘P(a)’ is a sentence and a is an argument-expression ... ‘P’ is a one-place (or monadic) predicate ... Generally, a
predicate is said to be n-adic (or n-place, or of degree n) in case it has n argument-positions ... We say that ‘P(a)’ is a
sentence-completion or full-sentence of the predicate ‘P’.

Well, it’s very tempting to close with the well known folk saying If you’re not confused by all this, you
can’t have been paying attention. But that would be very naughty of me, so I won’t.
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type generator itself (as opposed to synonyms for relation types as such). For example, we might define REL to
be a synonym for RELATION; then REL {H} would be a synonym for RELATION {H}, for all possible
headings {H}. Such a scheme appears to have no serious consequences for relation type inference, so I see no
reason to outlaw it; in fact, Chapter 11 of the present book, q.v., proposes the introduction of exactly such a
scheme into Tutorial D.

Net of the discussions so far: A type does have N different names, but N is always equal to one.

SCALAR VALUES

The Manifesto states (in RM Prescription 2) that “scalar values shall ... carry with them, at least conceptually,
some identification of the type to which they belong.” In other words, the underlying model looks something like
this:

1. There exists an underlying set of objects which I’ll refer to for present purposes as individuals.5

2. Defining a scalar type involves specifying some subset of the set of individuals and assigning a unique
name to that subset. Such definitions are provided either by some user (via the TYPE statement, in
Tutorial D) or by the system. Note that the provisions of this paragraph allow the same individual to be
specified as belonging to more than one scalar type—but see paragraph 8 below.

3. A scalar type can thus be formalized as an ordered pair <T,{I}>, where T is the type name and {I} is a set
of individuals. The scalar type in question is referred to in less formal contexts as “type T.” Observe that
this nomenclature is unambiguous, because (in accordance with paragraph 2 and the proposals discussed in
the section “Scalar Types,” earlier) type names are unique—no two distinct types, scalar or otherwise, have
the same name.

4. A value of scalar type T can be formalized as an ordered pair <T,i>, where i is an individual from the
applicable set {I}. Such values are called scalar values (scalars for short).

5. Scalar value <T,i> is said to have, or be of, type T.

6. Scalar types <T1,{I1}> and <T2,{I2}> are equal—i.e., they’re the same type—if and only if the names T1
and T2 are the same (in which case the corresponding sets of individuals {I1} and {I2} are the same too,
necessarily). Note: This paragraph and the next two will need some slight refinement if type inheritance is
supported.

7. Scalar values <T1,i1> and <T2,i2> are equal—i.e., they’re the same value—if and only if the names T1
and T2 are the same and the individuals i1 and i2 are the same. It follows that if scalar types <T1,{I1}>
and <T2,{I2}> are distinct, then they’re disjoint (i.e., no scalar value is of both type T1 and type T2).

8. Let T1 and T2 be distinct scalar types, and let <T1,i1> and <T2,i2> be values of those types. Then it might
be the case that the individuals i1 and i2 are one and the same, i say—but if so, this fact has no significance
whatsoever as far as the model is concerned. In particular, there’s no sense in which the scalar values
<T1,i> and <T2,i> are “the same” as far as the model is concerned.

9. In fact, if T1 and T2 are distinct scalar types, it could even be the case that the corresponding sets of
individuals {I1} and {I2} are identical. In particular, this state of affairs could arise if the sets {I1} and
{I2} are specified by distinct but equivalent predicates;6 as a simple example, suppose {I1} is defined as

5 Taking a leaf here out of the logicians’ book (see Chapter 2).
6 See Chapter 2 regarding what it might mean for distinct predicates to be equivalent.
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Chapter 4

S e t t i n g t h e R e c o r d S t r a i g h t

( P a r t 1 o f 6 ) :

T h e T w o G r e a t B l u n d e r s

The Third Manifesto—“the Manifesto” for short—is a formal proposal by the present writers for a solid
foundation for database management systems and the language interface to such systems. We’ve described it in
(among other things) a series of books, the most recent of which is reference [1]. Here’s a lightly edited extract
from the opening chapter of that reference:

The Manifesto rests squarely in the classical relational tradition ... The ideas are in no way intended to supersede those
of the relational model, nor do they do so; rather, they use the ideas of the relational model as a base on which to build.
The relational model is still highly relevant to database theory and practice and will remain so for as far out as anyone
can see. Thus, we see our Manifesto as being very much in the spirit of Codd’s original work and continuing along the
path he originally laid down. We are interested in evolution, not revolution.

The Manifesto has had its critics, of course—many writers have commented on it over the years, some
favorably, others less so. As a general rule we welcome such commentaries; peer review is part of the mechanism
by which progress is made in scientific endeavors, and serious and informed discussion of the issues can only be
beneficial. Indeed, those commentaries have sometimes caused us to make changes to our proposal (though only
at the level of detail, we hasten to add—we’ve never changed our overall direction).

The latest such commentary is a paper by Maurice Gittens [2].1 It deals with six somewhat separate issues,
each of which (it claims) constitutes a significant defect in the Manifesto in its present form. Unfortunately,
however, it does not, in our opinion, offer “serious and informed discussion” of those issues. Rather, it appears to
be based on a series of misconceptions and misunderstandings of our ideas; at least, it certainly misrepresents
those ideas in a variety of ways. Given this state of affairs, we feel obliged to respond to Gittens’s criticisms, and
such is the purpose of this series of chapters (i.e., the present chapter and the next five).

Gittens’s issues are as follows (verbatim):

1. No more Great Blunders
2. Treating operations as relations without rigor
3. No adherence to the principle of semantic compositionality
4. No semantic integrity in the presence of relational assignment
5. Undermining issues with relation valued attributes
6. No sound substantiation for the rejection of unknown values

Our response is divided into six parts accordingly. Note: In order to allow our response to stand on its
own as much as possible, we’ve included certain portions of Gittens’s text here and there in the various chapters.
The portions in question are basically as provided to us by Gittens in various English language versions of his
paper, but we’ve edited them slightly for reasons of flow and continuity. Of course, it goes without saying that

1 Our responses are based on various English language versions of this paper. A Dutch version appeared in DB/M Magazine (Array
Publications, Netherlands, April 2007). For an online version, see reference [2].
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Well, of course we can’t be sure our work is 100 percent consistent, but—as noted earlier in the present
chapter—whenever we’re shown it isn’t, we do our best to correct it; in particular, an errata list for reference [1] is
maintained and available at www.thethirdmanifesto.com. As for the specific inconsistencies that Gittens accuses
us of, however, we believe he’s mistaken, and in this series of chapters we’ll try to show why. We’ll also provide
some in depth discussion of each of the issues he raises, including in particular the justifications he asks for in
connection with the last two (relation valued attributes and “unknown values”). We’ll also explain why some of
his observations about our book are factually incorrect.
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Chapter 5

S e t t i n g t h e R e c o r d S t r a i g h t

( P a r t 2 o f 6 ) :

T r e a t i n g O p e r a t o r s a s R e l a t i o n s

Gittens asserts in his paper [4] that The Third Manifesto “[treats] operators as relations without rigor.” The
pertinent section of that paper is quite brief, and we cite it here in its entirety:

In Appendix A of The Third Manifesto, Date and Darwen repeatedly make the unqualified statement that operators can
be treated as relations. This idea, which they claim as their own, is used as grounds for dispensing with a few
operators from Codd’s algebra as can be read in the following quote taken from Appendix A.

We now claim that, given the fact that operators can be treated as relations, and given also the availability of the A operators
AND, REMOVE, and RENAME (the latter two still to be discussed), it is indeed the case that we can dispense with restrict,
EXTEND, and SUMMARIZE. We will justify this claim in the next section but one.

First, it seems fair to assume that many people familiar with, for example, truth tables as they are known in the
context of boolean algebra, have for many years appreciated the fact that commutative operators can be treated as
relations. So, Date and Darwen seem to have discovered hot water here. Second and more significantly, while making
claims about operators in general, Date and Darwen attempted to motivate their dispensing of specific operators from
Codd’s algebra based on an example involving the commutative operator PLUS. Rigor would require them to show
that pertinent operators from Codd’s algebra are also commutative. Alternatively, rigor would require an elaboration
on noncommutative operators such as SUBTRACT as well. Attempting to view noncommutative operators as
relations one soon encounters the problem that it is necessary not only to identify the operands of noncommutative
operators but it is also necessary to designate their respective roles. Information about the roles of operands is lacking
in the relational representation of noncommutative operators and Date and Darwen would need to illustrate how this
information could be catered for without violating their proscriptions and prescriptions.

Note: Gittens’s phrase “Appendix A of The Third Manifesto” refers to Appendix A of reference [1], which
isn’t The Third Manifesto as such but is, rather, a book that describes it (The Third Manifesto as such [2] is just
one chapter, Chapter 4, in that book). As noted in the previous chapter, however, the phrase The Third Manifesto
is often used, incorrectly, to mean reference [1] in its entirety.

Anyway, our overall reaction to the foregoing extract from Gittens’s paper is threefold:

1. First of all, Gittens seems not to have understood what we were trying to do when we claimed in
“Appendix A of The Third Manifesto”—i.e., the present chapter’s reference [3]—that we could dispense
with certain operators. We certainly weren’t saying the operators in question should be removed from the
user language, as even a cursory examination of our own language Tutorial D should make clear. Rather,
we were saying those operators weren’t primitive, and so could be removed from the foundations for such
a language without any loss of functionality. In other words, we were trying to provide a solid basis for
defining those operators. That’s all.

2. Gittens asserts that our treatment of such matters “lacks rigor” and/or is otherwise incomplete (with respect
to commutativity in particular). Part at least of what he says here is simply incorrect, as we will show.

3. What’s more, we believe our treatment is rigorous as far as it goes—but we can certainly make it more so,
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name B and value 3,” and so on. But of course we now no longer need to refer to elements by their position—the
names are sufficient. So we can write, instead, {A 2, B 3, C 5} (or, equivalently, {B 3, C 5, A 2}, say), where the
braces signify that the elements they enclose denote those of a set. The original ordered triple has become an
unordered 3-tuple—i.e., a set of cardinality three. And the set of all such unordered 3-tuples constitutes (the body
of) a TTM-relation: more precisely, a TTM-relation that conveys exactly the same information as the original
m-relation. And so we have demonstrated a mapping from the original function PLUS to an n-ary TTM-relation,
as required: a mapping for which n = 3, as it happens.

We remark in passing that, starting with the very same function or binary m-relation, we can obtain a TTM-
relation representing a – b = c by assigning the name A to position 3, the name B to position 2 (or 1), and the
name C to position 1 (or 2), respectively. (And “–” is noncommutative, of course; pace Gittens, therefore, we can
obviously represent noncommutative operators, as well as commutative ones, as TTM-relations.) We remark also
that the TTM-relation for a + b = c is also the TTM-relation for both c – b = a and c – a = b (as well as for b + a =
c).

Note: In practice, we will be guided in the foregoing process—the process, that is, of mapping some
function to an n-ary TTM-relation—by the specific predicate we wish to represent. Our ultimate goal will be to
come up with a TTM-relation whose attributes are in one to one correspondence with the parameters of that
predicate. For example, with reference to the function PLUS and the ordered pair <<2,3>,5>, we could
conceivably have decided not to unwrap the element <2,3> after all—in which case the corresponding unordered
2-tuple might have looked like this: {AB <2,3>, C 5}. And then we could have gone a step further to obtain, say,
{AB {A 2, B 3}, C 5} (i.e., an unordered 2-tuple one of whose elements is an unordered 2-tuple in turn).
However, we chose to unwrap the element <2,3> for the very good psychological reason that we normally write
the predicate for PLUS as a + b = c, and hence we prefer to have a TTM-relation with three attributes A, B, and C.

MAPPING TTM-RELATIONS TO BINARY m-RELATIONS

We have shown that for every binary m-relation there’s at least one TTM-relation that represents the same
predicate; in fact, a given binary m-relation usually has several corresponding TTM-relations.5 But what about the
inverse question? That is, could there exist TTM-relations that have no corresponding binary m-relation?

Well, the process described in the previous section can clearly be applied in the inverse direction (as it
were), implying that any TTM-relation of degree two or more can certainly be mapped to some binary m-relation.
But what about TTM-relations of degree one or zero? Could it be that such TTM-relations have no corresponding
binary m-relation?

Consider the case of a TTM-relation of degree one. Let r be such a relation; let its sole attribute be named
A; and suppose (just to be definite) that {A 42} is a tuple in r. Now consider the ordered tuple <42,<>>, where
the symbol “<>” denotes the ordered (!) 0-tuple, or in other words the “ordered” tuple that contains no elements at
all. Clearly, unwrapping that 0-tuple yields no elements at all; so if we replace the tuple <42,<>> by the tuple
obtained by unwrapping its second element, we obtain the “ordered” 1-tuple <42>. From such considerations, it
follows immediately that the TTM-relation r can be mapped to a binary m-relation containing (a) an ordered pair
<a,<>> for every tuple {A a} in r and (b) no other ordered pairs. What’s more, that binary m-relation is in fact a
function, albeit a somewhat degenerate one. To be specific, it’s a function that returns the empty ordered tuple <>
(or equivalently the empty unordered tuple {}), no matter what its argument happens to be; in other words, it’s a
function whose range Y is a singleton set whose sole element is the empty set.

Suppose now that our TTM-relation r of degree one is also of cardinality one; i.e., suppose it contains just
one tuple, say the tuple {A 42}. By the argument of the previous paragraph, then, r maps to a binary m-relation

5 The differences between distinct TTM-relations that correspond to the same binary m-relation can lie in the attribute names, the amount of
unwrapping, or both.
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containing just the ordered pair <42,<>>. By an essentially similar argument, however, it can alternatively be
considered as mapping to a binary m-relation containing just the ordered pair <<>,42>—and this latter m-relation
is (by definition) precisely the m-relation that is the niladic function that returns the value 42 whenever it’s
invoked.6 So not only can the special case of a TTM-relation of degree one and cardinality one be mapped to
some binary m-relation, but it can be mapped to a binary m-relation that represents, very specifically, a niladic
function (its domain X and range Y are both singleton sets; the sole element of X is the empty set, and the sole
element of Y is the value the function returns whenever it’s invoked—42, in the example).

Going one step further, consider now the ordered pair <<>,<>>, which pairs the ordered 0-tuple with itself.
The set whose sole element is this ordered pair is a function once again: namely, the function that has, as both its
domain X and its range Y, the singleton set whose sole element is the empty set. If we unwrap both elements of
the only ordered pair in this function, <<>,<>>, we obtain the empty ordered tuple <>, which, as we already
know, is logically equivalent to the empty unordered tuple {} (and note that this latter tuple, since it has no
attributes, obviously has no attribute names either).

Now, the TTM-relation that contains just the empty unordered tuple is TABLE_DEE (the sole TTM-
relation of degree zero and cardinality one). So a TTM-relation of degree zero certainly has a corresponding
binary m-relation if the TTM-relation in question is TABLE_DEE, meaning it contains just one tuple. But what if
it’s TABLE_DUM, which is the TTM-relation of degree zero that contains no tuples at all? (TABLE_DEE and
TABLE_DUM are, of course, the only TTM-relations of degree zero.) Well, any empty TTM-relation, including
TABLE_DUM in particular, clearly corresponds to an empty binary m-relation. Such an m-relation represents a
function whose domain X and range Y are both the empty set (in other words, a function for which the pertinent
set of ordered pairs is itself empty).

OPERATOR INVOCATION

In this, the final section of the chapter, we take the term relation to mean a TTM-relation specifically. We also
take the name PLUS to refer to the relation (with attributes A, B, and C) that represents the operator usually
denoted “+”. To invoke that operator (as in 2 + 3, for example), we must provide a value for A and a value for B,
and the result of the invocation will be the unique corresponding value for C. We need to show that such an
invocation can be represented by some relational expression.

Now, we’ve claimed that treating operators as relations allows us to dispense with the operator restrict in
particular. For that reason, we mustn’t use that operator in our attempt to represent an invocation of “+”. In other
words, we can’t begin our attempt to compute 2 + 3 like this:

PLUS WHERE A = 2 AND B = 3

But nor do we need to; instead, we can join the relation PLUS and the relation that contains just the 2-tuple
{A 2, B 3}. In Tutorial D, that join can be expressed thus:

PLUS JOIN RELATION { TUPLE { A 2 , B 3 } }

This expression evaluates to the following relation of cardinality one:

RELATION { TUPLE { A 2 , B 3 , C 5 } }

The desired result is in sight now, but we have to “extract” it from the tuple in which it occurs as the C
value, and in order to do that we must first “extract” that tuple from the relation that contains just that tuple. The
Tutorial D operator TUPLE FROM lets us do the tuple extraction:

6 A niladic function is a function that takes no arguments and hence returns the same result on every invocation.
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TUPLE FROM ( RELATION { TUPLE { A 2 , B 3 , C 5 } } )

This expression yields (surprise, surprise):

TUPLE { A 2 , B 3 , C 5 }

And then the Tutorial D operator <attribute name> FROM lets us do the attribute value extraction:

C FROM ( TUPLE { A 2 , B 3 , C 5 } )

This step completes the desired computation (it yields the result value 5). Putting it all together, then (and
using WITH to show the steps clearly), then, we have:

WITH ( T1 := PLUS JOIN RELATION { TUPLE { A 2 , B 3 } } ,
T2 := TUPLE FROM T1 ) :

C FROM T2

As for the noncommutative operator “–”, as in (e.g.) 2 – 3, we can just use PLUS again, substituting 2 for
C and 3 for either A or B. E.g.:

WITH ( T1 := PLUS JOIN RELATION { TUPLE { C 2 , B 3 } } ,
T2 := TUPLE FROM T1 ) :

A FROM T2

Now, the Tutorial D operators TUPLE FROM and <attribute name> FROM aren’t relational operators as
such, because they return a result that isn’t a relation.7 For that reason, the relational algebra A doesn’t include
them, nor anything like them. But it doesn’t need to, precisely because it does always produce results that are
relations. For example, it never produces a scalar result like the integer 5; but it can certainly produce a result
that’s a relation that contains such a scalar value (or, more precisely, a result that’s a relation of degree and
cardinality both one that contains a tuple that contains such a scalar value). And it can certainly make use of
operators (or relations) such as PLUS in computing those results. For example, suppose we’re given a relation—
let’s call it EMP—with attributes EMP#, SALARY, and BONUS, and we wish to obtain the total pay (salary plus
bonus) for each employee. In Tutorial D:

( EXTEND EMP : { PAY := SALARY + BONUS } ) { EMP# , PAY }

If the operator “+” is unavailable to us but the relation PLUS is available, we can write:

( EMP JOIN
( PLUS RENAME

{ A AS SALARY , B AS BONUS , C AS PAY } ) ) { EMP# , PAY }

We can also save ourselves from having to write out that final projection explicitly by using COMPOSE
instead of JOIN, thus:

EMP COMPOSE ( PLUS RENAME { A AS SALARY , B AS BONUS , C AS PAY } )

These last two Tutorial D expressions both have a direct analog in A. For example, here’s an A version of
the second one:

7 Actually, the expression A FROM t does return a relation in the special case in which attribute A of tuple t is relation valued, but this point is
irrelevant to the overall message of the chapter.
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Chapter 6

S e t t i n g t h e R e c o r d S t r a i g h t

( P a r t 3 o f 6 ) :

“ S e m a n t i c C o m p o s i t i o n a l i t y ”

Gittens asserts in his paper [3] that The Third Manifesto displays “no adherence to the principle of semantic
compositionality.” The pertinent section of that paper is quite brief, and we cite it here in its entirety:

It is a general principle of language design that the substitution of variables for their corresponding values should not
change the meaning of expressions containing them. In the third edition of The Third Manifesto Date and Darwen are
in violation of this principle. Consider that the type of a relvar is determined by the header of the relvar. The
candidate keys associated with a relvar are not part of their type according to The Third Manifesto. This choice by
Date and Darwen, represents a serious logical error because it causes variables and values of the same type to not be
interchangeable. This is evident when one considers that a relation value C of type T may not be assignable to a
relational variable V of type T. More specifically, the assignment of C to V is not allowed when there are candidate
key constraints defined on V to which C is not in adherence. Put another way, even though V and C share the same
type, the assignment V = C may or may not be allowed depending on whether or not C is in adherence with all
candidate key constraints defined for V.

Similarly, nested relation values and non nested relation values, cannot play the role of parent in foreign key
relations using facilities provided by The Third Manifesto. This is obviously true because according to The Third
Manifesto, relation values have no associated candidate keys and foreign keys are defined in terms of candidate keys of
the parent relation variable. Thus, [in] The Third Manifesto, relvars cannot be in general replaced by their values and
are consequentially not referentially transparent. Finally, it can also be noted that Date and Darwen are in violation of
the principle of conceptual integrity and of their own RM Prescription number 21. This is obvious because the
assignment of a value v to a variable V denoted V := v, where both V and v share the same type T, does not in general
imply that the equality expression V = v yields true. Again the reason for this inconsistency is because the type of
relation variables does not include their associated candidate keys.

To be frank, we find this text quite hard to follow (though we strongly dispute the allegations in the parts
we do understand). Because of this state of affairs, the best we can do in response is to offer a kind of blow by
blow deconstruction of Gittens’s text—which we now proceed to do, starting with the section title. We’ve
numbered the points for purposes of subsequent reference.

DETAILED RESPONSES

1. No adherence to the principle of semantic compositionality.

Wikipedia [4] defines The Principle of Compositionality—not semantic compositionality as such, but it’s
clear from other sources that this principle is indeed the one to which Gittens refers—as “the principle that the
meaning of a complex expression is determined by the meanings of its constituent expressions and the rules used
to combine them.” And it goes on to say:

This principle is sometimes called Frege’s Principle, because Frege is widely credited for the first modern
formulation of it. However, the idea appears already among Indian philosophers of grammar such as Yaska, and also
in Plato’s work such as in Theaetetus ... [It] also exists in a similar form in the compositionality of programming
languages.
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the expression R1 UNION R2 denotes the union of the relations that are the current values of R1 and R2. If those
current values are RELATION {TUPLE {X 1}} and RELATION {TUPLE {X 2}}, respectively—more precisely,
if those current values are denoted by the literals RELATION {TUPLE {X 1}} and RELATION {TUPLE
{X 2}}, respectively—the expression R1 UNION R2 effectively becomes:

RELATION { TUPLE { X 1 } } UNION RELATION { TUPLE { X 2 } }

And this expression denotes the union of those current values of those variables R1 and R2.

4. Consider that the type of a relvar is determined by the header of the relvar.

Correct, except that the term is heading, not header. Also, for clarity (as well as other reasons, beyond the
scope of the present chapter), we normally use the term declared type instead of just type, unqualified, for the type
of a variable. Specifically, if the heading of the relvar is {H}, where H is a commalist of attribute-name/type-
name pairs, then the declared type of that variable is RELATION {H}, meaning that only values of type
RELATION {H} can be assigned to that variable. We call the variable a relation variable, or relvar, precisely
because its declared type is a relation type, meaning its permitted values are relation values of that type.

5. The candidate keys associated with a relvar are not part of their type according to The Third Manifesto.

By definition, a key K for relvar R is some subset of the heading of R (note that we usually abbreviate the
term candidate key to just key); more precisely, it’s a subset that satisfies the properties of uniqueness and
irreducibility. In a certain sense, then, we might say K is “part of” the declared type of R, because it’s part of the
heading and the heading is part of the declared type. Almost certainly, however, Gittens is referring here not to
keys per se, but rather to the constraints implied by the definitions of such keys: that is to say, to the
corresponding key constraints. Now, the set of relations constituting the declared type of R will be a superset,
probably a proper superset,1 of the set of relations of that type that satisfy that relvar’s key constraints. In other
words, there’ll almost certainly be relations of the declared type of R that fail to satisfy the key constraints for R
(and/or any other constraints that apply to R, come to that)—and any attempt to assign such a relation to R will
fail at run time on a violation of the pertinent constraint. (By contrast, any attempt to assign a relation to R that
isn’t of the declared type of R will fail at compile time.)

6. This choice by Date and Darwen, represents a serious logical error because it causes variables and
values of the same type to not be interchangeable.

We don’t understand what Gittens means by interchanging a value and a variable. Under point 2—which
we also didn’t understand!—he talked about substituting a variable for its value: in other words, replacing one by
the other (actually, we suspect he might have meant replacing a variable by its value and not the other way
around, but it’s not what he said). But when two things are interchanged, each takes the other’s place; i.e., each
replaces the other (?).

7. This is evident when one considers that a relation value C of type T may not be assignable to a
relational variable V of type T.

“This” here presumably refers to Gittens’s previous point, although assignment isn’t interchange. Nor is it
substitution, though it might perhaps be said to “substitute” some “new” value of the variable in question for the
“old” value (better: replace the “old” value by some “new” value). Note, however, that—to use Gittens’s
example—the assignment of relation C to relvar V is certainly legal from a syntactic point of view, precisely
because C and V are of the same type T. As previously explained, however, it will fail at run time if it would

1 It will fail to be a proper superset only in the special case where the entire heading is the only key.
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cause any constraint to be violated otherwise.
Now, we do understand why some people might (wrongly) think of key constraints as being part of the

pertinent type definition. However, integrity constraints in general can’t possibly be so perceived. One obvious
reason is that some constraints refer to more than one relvar (for example, foreign key constraints usually do), and
the notion of some type being defined in terms of some variable clearly makes no sense. In fact, it’s well known
(not to say obvious) that—precisely because constraints do refer to variables—certain relational assignments will
succeed at some times and fail at others, depending on the values of the variables in question at the time in
question.

Perhaps we should say a little more about types and database constraints. The purpose of a type is to
determine the operators that are available for operating on values and variables of that type. The purpose of a
database constraint is to preserve the logical integrity, in the face of updates, of the collection of interrelated
variables that constitute a database. There’s a logical difference between the two!—and any attempt to muddle
them should be resisted, firmly.

8. More specifically, the assignment of C to V is not allowed when there are candidate key constraints
defined on V to which C is not in adherence.

We repeat: Such an assignment is syntactically legal but fails at run time. Also, as we’ve already said,
other constraints might also cause it to fail at run time. It isn’t a logical error (see point 6) to enforce a constraint.
It is a logical error not to.

9. Put another way, even though V and C share the same type, the assignment V = C may or may not be
allowed depending on whether or not C is in adherence with all candidate key constraints defined for V.

Correct, except that (a) the syntax is V := C (the expression V = C denotes an equality comparison, not an
assignment) and (b) as we’ve said before, the assignment can fail on violation of any constraint, not just key
constraints specifically.

10. Similarly, nested relation values and non nested relation values, cannot play the role of parent in
foreign key relations using facilities provided by The Third Manifesto.

The Third Manifesto does not “provide facilities.” Rather, it provides a set of prescriptions that (we
propose) a relational database language should conform to. Moreover, we don’t understand the repeated use of
the emphasized term values here. A foreign key involves two relation variables, usually distinct. The two are
normally called the referencing relvar (to which the foreign key belongs) and the referenced relvar (to which the
referenced key belongs). Note: As Gittens suggests, the referenced relvar is sometimes called the parent, but we
don’t use that term (and in fact regard it as deprecated, for more reasons than we have room to go into here).

Now, The Third Manifesto certainly requires a conforming language to support the expression of every
constraint that can be stated in terms of a Tutorial D expression of the form IS_EMPTY(rx), where rx is a
relational expression of arbitrary complexity. In particular, suppose the definition for relvar R2 includes the
following (hypothetical) Tutorial D specification:2

FOREIGN KEY { A } REFERENCES R1

(Of course, R1 here is another relvar, and {A} is a set of attributes that are common to R1 and R2.) This
specification is defined to be shorthand for the following expression:

IS_EMPTY ( R2 { A } NOT MATCHING R1 { A } )

2 Hypothetical, because Tutorial D doesn't currently support such specifications; nor does The Third Manifesto require such support.
Proposals to add such support to Tutorial D are under active consideration, however [1].
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As the foregoing equivalence shows, The Third Manifesto does indeed require the constraint to be
expressible. (What’s more, it does so even in the case where the declared type of one or more of the attributes in
the set of attributes {A} is some relation type. We make this point in case it’s relevant to Gittens’s criticisms
regarding “nested” and “non nested” relations, which we don’t understand at all.)

To sum up, point 10 seems to be saying that certain constraints would not be expressible in a conforming
language. If so, then point 10 is quite simply, and badly, wrong.

11. This is obviously true because according to The Third Manifesto, relation values have no associated
candidate keys and foreign keys are defined in terms of candidate keys of the parent relation variable.

We don’t understand what Gittens is driving at. Nor, because of our failure to understand point 10, do we
know exactly what it is that he claims to be “obviously true.”

As an aside, we remark that a relation that satisfies a key constraint might be said, loosely, to “have” the
key that implies that constraint—but the term “key” is much better reserved for relvars. In any case, the term
superkey would be more appropriate.3 For example, consider the fact that a relation containing no more than one
tuple satisfies every key constraint that could possibly be defined for a relvar of its type; in particular, it “has” the
empty set as a key, implying that all other keys it might be said to “have” are really proper superkeys. Note too
that relvars to which it might be assigned would typically have nonempty keys.

12. Thus, [in] The Third Manifesto, relvars cannot be in general replaced by their values and are
consequentially not referentially transparent.

We had to look up referentially transparent. From Wikipedia [4]: “An expression is said to be
referentially transparent if it can be replaced with its value without changing the program (in other words, yielding
a program that has the same effects and output on the same input).” This definition is a bit loose—a value isn’t a
piece of program text!—but we get the gist. In fact, “referential transparency” doesn’t seem to be anything more
than a rather grand term for the notion that a variable reference in an expression denotes the current value of the
variable in question (and if so, then it’s something we’ve always just taken for granted). In particular, and
contrary to Gittens’s complaints, it certainly doesn’t seem to require every value of type T to be legally assignable
at all times to an arbitrary variable of declared type T.

13. Finally, it can also be noted that Date and Darwen are in violation of the principle of conceptual
integrity and of their own RM Prescription number 21.

Conceptual integrity is being true to one’s chosen concepts. We believe we’ve achieved that, and we’re
relieved to have been able to refute Gittens’s attempted demonstrations to the contrary. As for RM Prescription
21, see the point immediately following.

14. This is obvious because the assignment of a value v to a variable V denoted V := v, where both V and v
share the same type T, does not in general imply that the equality expression V = v yields true.

Here Gittens is invoking RM Prescription 21 directly, which reads as follows (in part):

After assignment of v to V, the equality comparison V = v shall evaluate to TRUE.

Gittens has failed to demonstrate in his critique that there’s anything in The Third Manifesto that violates this
prescription.

At this point we would like to offer a piece of advice to anyone wishing to criticize, question, or just
discuss aspects of computer language design or some particular computer language: Wherever appropriate,

3 A superkey for relvar R is a subset of the heading of R that possesses the uniqueness property but not necessarily the irreducibility property.
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illustrate your points by examples, preferably using concrete syntax. After all, in the case of The Third Manifesto
in particular, we provided Tutorial D for that very purpose! With respect to the topic at hand (“semantic
compositionality”), we believe we’ve refuted Gittens’s criticisms, but we’ve also admitted to not fully
understanding all of the points he wanted to make. For all we know he does have a valid issue for us to consider
after all—in which case we warmly invite him to resubmit, but with examples to demonstrate the inconsistencies
he perceives.

15. Again the reason for this inconsistency is because the type of relation variables does not include their
associated candidate keys.

And if it did, exactly which assignments V := v would then result in V = v evaluating to TRUE that don’t
have the same effect under The Third Manifesto?
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3. Updating the AUTHOR relvar such that (a) its value after the update differs from its previous value
only in that tuple t is replaced by tuple t1, and (b) tuple t1 differs from tuple t only in that it has a
different FIRST_NAME component, can be regarded as reflecting a change to the first name of
author x.

4. Under such an interpretation, however, we probably wouldn’t want to permit keys to be updated
(apologies for the sloppy phrasing, but we hope our meaning is clear). For suppose we were to
update the AUTHOR relvar such that (a) its value after the update differs from its previous value
only in that tuple t is replaced by tuple t2, and (b) tuple t2 differs from tuple t only in that it has a
different SURNAME component (y, say, instead of x). Then we could hardly regard that update as
reflecting a change to the surname of author x—because authors are identified by surname, and after
the update the phrase “author x” apparently doesn’t denote any real world author at all. Certainly it
doesn’t denote any real world author now represented in the AUTHOR relvar.

5. So we might want to introduce a convention according to which certain attributes—certain key
attributes in particular—are explicitly defined to be nonupdatable (apologies for the sloppy phrasing
once again). Suppose SURNAME is such an attribute in the case at hand. Then it would appear
that an UPDATE statement such as

UPDATE AUTHOR WHERE SURNAME = x : { SURNAME := y } ;

would be illegal. (Note that if our interpretation of Gittens’s criticism is correct, there doesn’t seem
to be any need to drag multiple assignment into the picture at all. For simplicity, therefore, we limit
ourselves to single assignments only in the remainder of this discussion.)

6. Gittens might then complain that relational assignment (which is the sole relational update operator
actually prescribed by the Manifesto) just isn’t fine grained enough for rules like “Attribute A is
nonupdatable” to make sense, because it simply replaces the entire value of a target relvar by
another such value lock, stock, and barrel. Certainly it would be hard to state precisely which
assignments would be illegal under such a rule.

7. Accordingly, Gittens might further complain that an explicit UPDATE statement must be supported
(instead of being just an optional shorthand form of assignment as it is in the Manifesto), in order
for rules like “Attribute A is nonupdatable” to make sense.

8. But even if we accept the argument of the previous paragraph, defining an attribute to be
nonupdatable actually achieves nothing! Let the tuple with SURNAME value x have
FIRST_NAME value z. Then the effect of the UPDATE

UPDATE AUTHOR WHERE SURNAME = x : { SURNAME := y } ;

(which will presumably fail under the proposed nonupdatability rule) can clearly be obtained by the
following entirely legal DELETE / INSERT sequence:

DELETE AUTHOR WHERE SURNAME = x ;

INSERT AUTHOR
RELATION { TUPLE { SURNAME y , FIRST_NAME z } } ;

(Or by a logically equivalent pair of explicit relational assignments, of course.)
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A POSSIBLE DISCIPLINE

Gittens continues: “The problem is that assignment lacks facilities for keeping track of specific tuples, because
Date and Darwen have chosen to reject the concept of tuple identity” (somewhat reworded once again). On its
face this sentence does not make sense; more precisely, the phrase “keeping track of specific tuples” does not
make sense. To paraphrase Gertrude Stein, a tuple is a tuple is a tuple; it’s a value; and, like all values, it simply
is—it has no location in time and space, and the question of “keeping track of it” simply doesn’t arise. What
Gittens really wants, we believe, is a means of keeping track of the history of values of tuple variables. But we
agree with Codd in not permitting any kind of variable in the database except relation variables, and we therefore
reject such a requirement.

All of that being said, there’s absolutely nothing in the Manifesto to prevent the adoption of a convention,
or discipline, that does achieve something like what Gittens seems to want. In terms of his example:

1. We could adopt the convention that all tuples that have ever appeared, appear right now, or ever will
appear within the AUTHOR relvar having the same specific SURNAME value x all refer to “the same”
real world author (or, more accurately, the convention that we interpret all such tuples as referring to the
same real world author).

2. We could keep a log showing when such tuples appear in and disappear from the relvar.

3. That log could additionally indicate the values of the other attributes of those tuples. (Of course, there’s
just one such “other attribute,” FIRST_NAME, in the example.)

4. That log could also show who and what caused those appearances and disappearances.

5. Alternatively, we could add a surrogate key to the AUTHOR relvar and reinterpret Steps 1-4 above in
terms of values of that key instead of SURNAME values. (Although the Manifesto doesn’t actually
require support for surrogate keys, it does strongly suggest that they be supported—see reference [1], RM
Very Strong Suggestion 1.) Then a given real world author could remain “the same author” even if his or
her surname changes: a realistically desirable state of affairs, in fact, since people do change their surname
from time to time.

What’s more, not only do we believe a convention like the foregoing could easily be adopted, we also
believe it would often be a good idea to do so. What we don’t believe, however, is that the Manifesto can or
should legislate on such matters; by definition, such matters are beyond its purview.
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discussion of these matters, see reference [5].

A REMARK ON CONSTRAINTS

Following his list of questions as quoted near the beginning of the present chapter, Gittens continues:

[The foregoing] questions are ... pertinent in the light of the fact that [values of] these relation valued attributes are
[relations] and as such they lack associated candidate keys. In addition relation valued attributes cannot play any role
in foreign key constraints given the facilities provided by The Third Manifesto. Which is to say that alternatives to
relation valued attributes have more facilities to accurately constrain databases to adhere to requirements of business
and other applications.

We respond to these comments as follows. First of all, of course it’s true—by definition!—that RVA
values are relations (i.e., relation values) and not relvars, and hence that, as Gittens says, they have no candidate
keys (keys for short). To say that something—R, say—has a key is to say that (a) that R is a variable (again by
definition) and (b) updates to R are constrained in a certain way (they will fail if they attempt to assign a value to
R that fails to satisfy the associated key constraint). So a relation—meaning, to repeat, a relation value—has no
key, by definition. However, it does at least make sense to say of some given relation that it either does or does
not satisfy some key constraint; we might even go further and say, a trifle sloppily, that if the relation in question
does satisfy the key constraint in question, then that relation actually “has” that key—though such a manner of
speaking is likely to cause confusion, and we wouldn’t recommend it.

Now, The Third Manifesto certainly requires support for any constraint that can be stated in terms of a
Tutorial D expression of the form IS_EMPTY(rx), where rx is a relational expression of arbitrary complexity,
and the constraints that Gittens is concerned about in the passage quoted above can certainly be so expressed,
even if RVAs are involved; so his concerns in this connection are groundless. (It’s true that Tutorial D provides
no syntactic shorthands to simplify the task of expressing those particular constraints, but that’s because we
believe, as mentioned earlier, that base relvars with RVAs should be discouraged. But the Manifesto doesn’t
prohibit the provision of such shorthands, just so long as they’re logically and psychologically well designed; as a
matter of fact, a possible shorthand is suggested, albeit very tentatively, in Chapter 26 of the present book.)

ARE WE COMPLICATING THE RELATIONAL MODEL?

Gittens continues:

So, the question remains, why should the relational model be complicated for dubious gain relative to Codd’s
alternative? Appendix B of The Third Manifesto represents an elaboration of sorts on this topic. This [appendix]
digresses much but provides little that is of substance. I quote:

What then is the criterion for making something a type and not a relvar? In our opinion this question is still somewhat open.

Put another way, Date and Darwen do not seem to know (!), in any definite sense, what the advantages of relation
valued attributes are relative to alternative solutions. The disadvantages, however, are clear: The employment of
relation valued attributes as introduced by The Third Manifesto provides less opportunity for the expression of
candidate key and foreign key constraints in databases, relative to alternatives not involving relation valued attributes.

Is it not up to Date and Darwen to provide proper arguments for adding relation valued attributes to the
relational model? Until logically valid advantages of relation valued attributes can be illustrated, relative to
alternatives, support for such attributes, as defined by The Third Manifesto, seem[s] not only a solution in search of a
problem but also a needless and pointless complication. Consequently, given the current state of affairs on this issue, I
maintain that support for relation valued attributes as defined by The Third Manifesto represents a violation of at least
the parsimony requirement of RM Prescription 26.

We respond to these criticisms as follows. First of all, it could be argued that permitting RVAs not only
fails to complicate the relational model, it actually simplifies it, by removing a restriction on the permitted types
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record, however, the answer to the first question is no; the answer to the second is maybe, with the rider that we’re
not sure it’s the right question to ask, anyway. Detailed discussions of these issues can be found in references [5]
and [8].
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Chapter 9

S e t t i n g t h e R e c o r d S t r a i g h t

( P a r t 6 o f 6 ) :

N u l l s a n d T h r e e - V a l u e d L o g i c

Gittens asserts in his paper [8] that The Third Manifesto displays “no sound substantiation for [its] rejection of
unknown values.” The implicit reference is to RM Proscription 4 (“No Nulls”) of reference [7], which reads as
follows:

D shall include no concept of a “relation” in which some “tuple” includes some “attribute” that does not have a value.

The name D here refers generically to any language that conforms to the prescriptions of The Third
Manifesto. The proscriptions (RM Proscription 4 in particular) are included in the Manifesto for purposes of
clarification and emphasis only—they all follow logically from the prescriptions (in fact, most of them are
included precisely because SQL violates the relevant prescription, as is the case here).

Further discussion of the RM Proscriptions appears in Chapter 7 of reference [7]. The discussion of RM
Proscription 4 is brief:

By definition, tuples, and therefore relations, do not contain nulls (nulls are not values!). SQL, however, does permit
nulls in its tables—yet another reason why SQL tables are not true relations. In the Manifesto, by contrast, nulls are
absolutely, categorically, and unequivocally outlawed (and so too therefore is n-valued logic for any n > 2).

Note: The reason for the remark in parentheses is that, as is well known, SQL’s support for nulls is based on
three-valued logic specifically (hereinafter abbreviated 3VL).

There’s one important point to be made before we elaborate on our rejection of nulls and 3VL and respond
to Gittens’s criticisms in connection with this issue. The fact is, the problem that nulls are supposed to address
has been shown (e.g., in reference [4]) to be solvable without them, and indeed without recourse even to “special
values” (which were suggested in earlier editions of reference [7] but were dropped from the third edition). So
it’s certainly not the case that a problem that might be perceived as solvable using nulls and 3VL can’t be solved
using a D.

GENERAL OBSERVATIONS

We find Gittens’s criticisms on this topic quite hard to follow. Throughout reference [8] he appears to agree with
Codd—in particular, with reference [1], which we refer to throughout the present chapter as “Codd’s 1979
proposal”—and he does note in Section 6 of his paper that Codd himself proposed a form of support for nulls in
reference [1] that’s very similar to what we find in SQL. On the other hand, he also appears to agree with our
rejection of 3VL and with our outlawing what he calls “instances” of null (we prefer the term appearances):

Date and Darwen seem to have rejected the concept of the unknown based on issues with nulls encountered in SQL.
For example, since many agree that nulls are not values, it just might be possible that a language with consistent
semantics can be designed that accommodates the concept of the unknown in databases while, at the same time, the
same language would have no notion of an instance of a null value. Such a language would accommodate Codd’s
concept of an attribute whose value is not known without mandating three valued logic.
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Chapter 10

H o w t o U p d a t e V i e w s

The duke of Ormond took a view yesterday of his troop,
and ordered all that had bay or grey horses to change them for black.

—earliest known example (1693) of view updating,
quoted in the Oxford English Dictionary from

“A Brief Historical Relation of State Affairs 1678-1714,”
by Narcissus Luttrell (1857)

Conventional database wisdom has it that some views, at least, are intrinsically nonupdatable. I disagree with this
position, and in this chapter I want to show why.1 It’ll take me quite a while to get to my main point, however,
because I need to build up to it gradually (there are some important preliminary matters I need to get out of the
way first), so please bear with me. Note: I’ve written on these matters before, in references [1] and [3] in
particular, but certain recent experiences have made me realize I need to try to explain my position yet one more
time. Apologies if you’ve heard this all before.

THE RUNNING EXAMPLE

I’ll base my examples as usual on the familiar suppliers-and-parts database, with definition as follows:2

VAR S BASE RELATION /* supplier is under contract */
{ S# S# , SNAME NAME , STATUS INTEGER , CITY CHAR }

KEY { S# } ;

VAR P BASE RELATION /* part is of interest */
{ P# P# , PNAME NAME , COLOR COLOR , WEIGHT WEIGHT , CITY CHAR }

KEY { P# } ;

VAR SP BASE RELATION /* supplier supplies (or ships) part */
{ S# S# , P# P# , QTY QTY }

KEY { S# , P# }
FOREIGN KEY { S# } REFERENCES S
FOREIGN KEY { P# } REFERENCES P ;

Sample values are shown in Fig. 1 overleaf (and I’ll assume these particular values in examples throughout
the chapter, barring explicit statements to the contrary).

1 The first person singular in this chapter refers to Chris Date specifically.
2 The definition is expressed in Tutorial D (more precisely, a dialect of Tutorial D that includes explicit foreign key support). Tutorial D is
the language used in reference [7] to illustrate the ideas of The Third Manifesto. I assume you’re reasonably familiar with that language,
though in fact it’s more or less self-explanatory.
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1. The user requesting deletion of the S tuple for supplier S1 is aware of that cascade delete rule.

2. The user is unaware of that rule.

Well, if the user is unaware of the rule (possibility 2), then, as I’ve already explained, the user will
perceive a violation of The Assignment Principle—and that fact in itself is a strong argument in favor of the
position that the user mustn’t be unaware of the rule. (Of course, I’m assuming here that the user is at least aware
that relvar SP exists; i.e., I’m assuming that relvar SP is part of the database as seen by the user. If it isn’t, then
the user won’t perceive a violation of The Assignment Principle after all. But this possibility seems unlikely in
practice; it doesn’t seem reasonable to give the user the authority to perform deletes on relvar S without that user
being aware that such deletes will cascade to perform deletes on relvar SP as well. We surely don’t want data to
be deleted “by accident,” after all.)

Note, incidentally, that if the cascade delete rule weren’t in effect and the delete therefore did fail, the very
fact that it failed—or the exception code associated with that failure, perhaps—would tell the user that a certain
foreign key constraint had been violated. The user would therefore be aware that at least one relvar with a foreign
key referencing relvar S did exist. Again, therefore, it seems reasonable to assume that a user holding delete
authority on relvar S would be aware of any such referencing relvars, and aware also of any corresponding
cascade delete rules.

I conclude, therefore, that the user must be aware of the rule (possibility 1)—in which case, the cascading
isn’t exactly “under the covers” after all. In other words, the user must be aware that his or her original request—

DELETE S WHERE S# = S#('S1') ;

—is really shorthand for the following double delete (note the comma separator, which indicates syntactically that
the end of the overall statement hasn’t yet been reached):5

DELETE S WHERE S# = S#('S1') ,
DELETE SP WHERE S# = S#('S1') ;

In practice, of course, it’s virtually certain that the user will indeed be aware of the cascade delete rule,
because as I mentioned earlier it’s probably stated explicitly as part of the pertinent foreign key specification,
perhaps like this:

VAR SP BASE RELATION ...
FOREIGN KEY { S# } REFERENCES S ON DELETE CASCADE ... ;

I observe, however, that although it is indeed what’s typically done in practice, this placement for the rule
isn’t very logical, because it defines what’s supposed to happen when a delete is performed on relvar S, not relvar
SP, and yet it’s specified as part of the definition of relvar SP, not relvar S. In what follows, therefore, I’ll define
such rules by means of a hypothetical new standalone statement as suggested by the following example:6

ON DELETE s FROM S : DELETE ( SP MATCHING s ) FROM SP ;

5 A double delete is really a double assignment, of course; I’m appealing here to the fact that The Third Manifesto requires support for a
multiple form of assignment, according to which any number of individual assignments can all be performed as a single operation, without any
integrity checking being done until the entire operation has completed. See reference [8] for detailed discussions and further explanation.
6 If the rule really does have to be bundled with some other definition, then the logical place is the definition of the pertinent integrity
constraint. Given current practice, however, there are at least two problems with this idea. First, in the example under consideration, the
“pertinent constraint” is a foreign key constraint, and foreign key constraints in particular are already bundled (perhaps unfortunately) with the
definition of the pertinent referencing relvar. Second, in the case of views (see the section “More on Compensatory Actions” later), the
“pertinent constraint” is stated only implicitly anyway!
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some redundancy; but redundancy in logical design is harmless, just so long as it’s controlled. To quote reference
[2]:

Redundancy is controlled if it does exist (and the user is aware of it), but the task of “propagating updates” to ensure
that it never leads to any inconsistencies is managed by the DBMS, not the user. Uncontrolled redundancy can be a
problem, but controlled redundancy shouldn’t be. As a general rule, databases shouldn’t include any uncontrolled
redundancy.

The whole point—or a large part of the point, at any rate—of the notion of compensatory updates in
general is to ensure that redundancy is indeed controlled and doesn’t lead to inconsistencies (which are just
integrity constraint violations by another name, of course).

Let me try to summarize what I’ve covered in this chapter. The fundamental point, as I see it, is that views
are no more intrinsically nonupdatable than base relvars are—or, to put it equally correctly but a little more
positively, views are no less intrinsically updatable than base relvars are. In my opinion, the key to understanding
this whole issue—the key, that is, to determining how updates should work on any given view V—is to consider
what would happen if that view V were defined as a base relvar instead, living alongside (as it were) the base
relvars in terms of which it’s defined. Thinking about the issue in this way shows clearly that (a) updates on
views, just like updates on base relvars, will fail if they violate The Golden Rule but will succeed otherwise; (b)
updates on views, just like updates on base relvars, will fail if appropriate compensatory actions aren’t in effect
but will succeed otherwise. And for views (as opposed to base relvars) suitable compensatory actions can often,
though not always, be determined “automatically” by the system.

One last point: I know from experience that even when they’re presented with examples like the ones
discussed in this chapter, many people continue to doubt whether view updating in its full generality will ever be
possible. Well, I certainly make no claim that the treatment in this chapter has been exhaustive; there are
numerous loose ends, and the devil is always in the details. But I remain optimistic; I don’t believe there are any
showstoppers, and at the very least I think the ideas described herein deserve further, and careful, investigation.
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INSERT 5 INTO V , UPDATE V WHERE n = 5 : { n := 7 } ;

Note that, loosely speaking, the INSERT here is trying to insert a value—viz., 5—that violates the
constraint on V, but the UPDATE then tries to repair the damage (as it were) by replacing that 5 by 7. So what
happens?

Well, for clarity, let’s convert the update (which is, of course, a multiple assignment) to pure assignment
form:

V := V UNION 5 , V := ( V MINUS 5 ) UNION 7 ;

Now suppose for a moment that V is a base relvar instead of a view. According to the rules for multiple
assignment, then (see reference [8]), we would first combine the two individual assignments to V into a single
assignment, thus:

V := WITH ( V := V UNION 5 ) : ( V MINUS 5 ) UNION 7 ;

As I hope you can see, the overall effect of this assignment is simply to insert 7 into V, as is apparently
required. But what happens if V is a view and not a base relvar? Well, if we begin by combining the two
individual assignments into one, we clearly obtain the same assignment as before:

V := WITH ( V := V UNION 5 ) : ( V MINUS 5 ) UNION 7 ;

Now we replace the references to view V by the corresponding view defining expression:

A UNION B := WITH ( V := ( A UNION B ) UNION 5 ) :
( V MINUS 5 ) UNION 7 ;

(The remaining references to V on the right side here denote not view V but a temporary variable of the
same name.) Thus, the overall expression on the right denotes the set of integers 0 3 6 7 8 9 (all of which satisfy
the pertinent constraint, please observe). Then, by the rules for updating unions, integers from this set that are less
than 5 are assigned to A and integers from this set that are greater than 5 are assigned to B. The net effect is thus
to insert 7 into B and hence into V, as required.

But now suppose by contrast that we start with the original update (i.e., the multiple assignment) and
expand the references to V before we combine individual assignments. We obtain:

A := A UNION 5 , B := B UNION 5 ,
A := ( ( A UNION B ) MINUS 5 ) UNION 7 ,
B := ( ( A UNION B ) MINUS 5 ) UNION 7 ;

Next we combine the two assignments to A into one, and likewise for B:

A := WITH ( A := A UNION 5 ) :
( ( ( A UNION B ) MINUS 5 ) UNION 7 ,

B := WITH ( A := A UNION 5 ) :
( ( ( A UNION B ) MINUS 5 ) UNION 7 ;

Clearly, the expressions on the right sides of the two individual assignments are identical, both denoting
the set of integers 0 3 6 7 8 9. In other words, we’re attempting to assign that entire set of integers to both A and
B—and those assignments will both fail, because in both cases we’re trying to violate the pertinent constraint.

I conclude from this example that (as indeed I previously suggested in reference [1]) we need to add
another step to the multiple assignment algorithm—see Chapter 1, RM Prescription 21—according to which
distinct assignments to the same virtual relvar are combined before Step a. (the syntactic expansion step) is
performed.









P a r t I I

L A N G U A G E D E S I G N

This part of the book consists of eight chapters. Chapter 11 is a self-contained and updated definition of Tutorial
D, which is a particular D we use in the Manifesto book (i.e., Databases, Types, and the Relational Model: The
Third Manifesto, 3rd edition, by C. J. Date and Hugh Darwen, Addison-Wesley, 2006) to illustrate the
Manifesto’s ideas. Chapters 12-15 discuss four specific database topics in depth—the relational divide operator,
foreign keys, “image relations,” and n-adic operators—and makes a series of language proposals based on those
discussions. Chapter 16 examines the question of upgrading Tutorial D to what might be called Industrial D.
Chapter 17 considers the topic of prenex normal form, which could be relevant to the design of a D based on
relational calculus instead of relational algebra (which is what Tutorial D is based on). Finally, Chapter 18 might
be considered a little light relief, except that what it describes isn’t really funny at all.
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<scalar with exp>
::= WITH ( <name intro commalist> ) : <scalar exp>

Let SWE be a <scalar with exp>, and let NIC and SE be the <name intro commalist> and the <scalar
exp>, respectively, immediately contained in SWE. The individual <name intro>s in NIC are evaluated in
sequence as written. As the next production rule shows, each such <name intro> immediately contains an
<introduced name> and an <exp>. Let NI be one of those <name intro>s, and let the <introduced name> and
the <exp> immediately contained in NI be N and X, respectively. Then N denotes the value obtained by
evaluating X, and it can appear subsequently in SWE wherever the expression (X)—i.e., X in parentheses—would
be allowed. Note: Everything in this paragraph applies to <tuple with exp>s and <relation with exp>s as well,
mutatis mutandis.

<name intro>
::= <introduced name> := <exp>

<nonscalar exp>
::= <tuple exp>

| <relation exp>

<tuple exp>
::= <tuple with exp>

| <tuple nonwith exp>

For further details of <tuple nonwith exp>s, see the section “Tuple Operations,” later.

<tuple with exp>
::= WITH ( <name intro commalist> ) : <tuple exp>

<relation exp>
::= <relation with exp>

| <relation nonwith exp>

For further details of <relation nonwith exp>s, see the section “Relational Operations,” later.

<relation with exp>
::= WITH ( <name intro commalist> ) : <relation exp>

<user op drop>
::= DROP OPERATOR <user op name>

<selector inv>
::= <scalar selector inv>

| <nonscalar selector inv>

<nonscalar selector inv>
::= <tuple selector inv>

| <relation selector inv>

<var ref>
::= <scalar var ref>

| <nonscalar var ref>

<scalar var ref>
::= <scalar var name>
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<scalar type or init value>
::= <scalar type spec> | INIT ( <scalar exp> )

| <scalar type spec> INIT ( <scalar exp> )

If <scalar type spec> and the INIT specification both appear, the declared type of <scalar exp> must be
the type specified by <scalar type spec>. If <scalar type spec> appears, the declared type of the scalar variable
is the specified type; otherwise it’s the same as that of <scalar exp>. If the INIT specification appears, the scalar
variable is initialized to the value of <scalar exp>; otherwise it’s initialized to the example value of the pertinent
type.

TUPLE DEFINITIONS

<tuple type name>
::= TUPLE <heading>

<heading>
::= { <attribute commalist> }

<attribute>
::= <attribute name> <type spec>

<tuple var def>
::= VAR <tuple var name> <tuple type or init value>

<tuple type or init value>
::= <tuple type spec> | INIT ( <tuple exp> )

| <tuple type spec> INIT ( <tuple exp> )

If <tuple type spec> and the INIT specification both appear, the declared type of <tuple exp> must be the
type specified by <tuple type spec>. If <tuple type spec> appears, the declared type of the tuple variable is the
specified type; otherwise it’s the same as that of <tuple exp>. If the INIT specification appears, the tuple variable
is initialized to the value of <tuple exp>; otherwise it’s initialized to the tuple with the default initialization value
for each of its attributes, where (a) the default initialization value for a scalar attribute is the example value of the
pertinent scalar type; (b) the default initialization value for a tuple valued attribute is the tuple with the default
initialization values for each of the attributes of the tuple type in question; and (c) the default initialization value
for a relation valued attribute is the empty relation of the pertinent type.

RELATIONAL DEFINITIONS

<relation type name>
::= RELATION <heading>

<relation var def>
::= <database relation var def>

| <application relation var def>

<database relation var def>
::= <real relation var def>

| <virtual relation var def>

A <database relation var def> defines a database relvar—i.e., a relvar that’s part of the database. In
particular, therefore, it causes an entry to be made in the catalog. Note, however, that neither databases nor
catalogs are explicitly mentioned anywhere in the syntax of Tutorial D.
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<real relation var def>
::= VAR <relation var name> <real or base>

<relation type or init value> <key def list>

An empty <key def list> is equivalent to a <key def list> of the form KEY {ALL BUT}.

<real or base>
::= REAL | BASE

<relation type or init value>
::= <relation type spec> | INIT ( <relation exp> )

| <relation type spec> INIT ( <relation exp> )

An INIT specification can appear only if either REAL (or BASE) or PRIVATE is specified for the relvar
in question (see <application relation var def>, later, for an explanation of PRIVATE). If <relation type spec>
and the INIT specification both appear, the declared type of <relation exp> must be the type specified by
<relation type spec>. If <relation type spec> appears, the declared type of the relation variable is the specified
type; otherwise it’s the same as that of <relation exp>. If and only if the relvar is either real or private, then (a) if
the INIT specification appears, the relvar is initialized to the value of <relation exp>; (b) otherwise it’s initialized
to the empty relation of the appropriate type.

<key def>
::= KEY { [ ALL BUT ] <attribute ref commalist> }

Tutorial D uses the unqualified keyword KEY to mean a candidate key specifically. It doesn’t explicitly
support primary keys as such; in fact, it makes no distinction between primary and alternate keys. Note:
Elsewhere this book proposes introducing explicit syntax for foreign keys in addition to candidate keys. See
references [5] and [9].

<virtual relation var def>
::= VAR <relation var name> VIRTUAL

( <relation exp> ) <key def list>

The <relation exp> must mention at least one database relvar and no other variables. An empty <key def
list> is equivalent to a <key def list> that contains exactly one <key def> for each key that can be inferred by the
system from <relation exp>.

<application relation var def>
::= VAR <relation var name> <private or public>

<relation type or init value> <key def list>

An empty <key def list> is equivalent to a <key def list> of the form KEY {ALL BUT}.

<private or public>
::= PRIVATE | PUBLIC

<relation var drop>
::= DROP VAR <relation var ref>

The <relation var ref> must denote a database relvar, not an application one.

<constraint def>
::= CONSTRAINT <constraint name> <bool exp>

A <constraint def> defines a database constraint. The <bool exp> must not reference any variables other
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BOOLEAN; for UNION, D_UNION, INTERSECT, and XUNION, it must be some relation type.

Note: We include this production rule in this section because in practice we expect most <agg op inv>s to
denote scalar values. In fact, however, an <agg op inv> will be a <scalar exp>, a <tuple exp>, or a <relation
exp> depending on the type of the operator denoted by <agg op name>.

<agg op name>
::= COUNT | SUM | AVG | MAX | MIN

| AND | OR | EQUIV | XOR | EXACTLY
| UNION | D_UNION | INTERSECT | XUNION

COUNT returns a result of declared type INTEGER; SUM, AVG, MAX, MIN, UNION, D_UNION,
INTERSECT, and XUNION return a result of declared type the same as that of the attribute denoted by the
applicable <attribute ref>;9 AND, OR, EQUIV, XOR, and EXACTLY return a result of declared type
BOOLEAN. Note: Tutorial D also includes support for certain conventional operators (as opposed to aggregate
operators) that are n-adic versions of (a) AND, OR, EQUIV, XOR, and EXACTLY (see the section “Scalar
Definitions,” earlier) and (b) UNION, D_UNION, INTERSECT, JOIN, TIMES, XUNION, and COMPOSE (see
the section “Relational Operations,” later).10 Analogously, it also includes support for n-adic versions of COUNT,
SUM, AVG, MAX, and MIN (see the production rule immediately following).

<n-adic count etc>
::= <agg op name> { <exp commalist> }

The <agg op name> must be COUNT, SUM, AVG, MAX, or MIN, and the <exp>s must all be of the
same declared type. For SUM, that type must be one for which the operator “+” is defined; for AVG, it must be
one for which the operators “+” and “/” are defined; for MAX and MIN, it must be some ordered type. Note: For
SUM, MAX, and MIN, the <agg op name> can optionally have a suffix of the form _T, where T is a scalar type
name (as in, e.g., SUM_INTEGER or, equivalently, SUM_INT) and every <exp> in the <exp commalist> is of
declared type T. Such a suffix must be specified if the <exp commalist> is empty.

<scalar assign>
::= <scalar target> := <scalar exp>

| <scalar update>

<scalar target>
::= <scalar var ref>

| <scalar THE_ pv ref>

The abbreviation pv stands for pseudovariable. The grammar presented in this chapter doesn’t say as
much explicitly, but the general intent is that a pseudovariable reference should be allowed to appear wherever a
variable reference is allowed to appear (speaking a trifle loosely).

<scalar THE_ pv ref>
::= <THE_ pv name> ( <scalar target> )

9 It might be preferable in practice to define AVG in such a way that, e.g., taking the average of a collection of integers returns a rational
number. We do not do so here merely for reasons of simplicity.
10 It would be possible to define JOIN, TIMES, and COMPOSE aggregate operators also. However, JOIN would always be equivalent to
INTERSECT; TIMES would always raise an error, except in the degenerate special case in which the pertinent relations were of degree zero;
and COMPOSE would always be equivalent to INTERSECT followed by a projection on no attributes.
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<dyadic other built in relation op inv>
::= <dyadic union> | <dyadic disjoint union>

| <dyadic intersect> | <minus> | <included minus>
| <dyadic join> | <dyadic times> | <dyadic xunion>
| <dyadic compose> | <matching> | <not matching>
| <divide> | <summarize>

<dyadic union>
::= <relation exp> UNION <relation exp>

The <relation exp>s must not be <monadic or dyadic other built in relation op inv>s, except that either or
both can be another <dyadic union>.

<dyadic disjoint union>
::= <relation exp> D_UNION <relation exp>

The <relation exp>s must not be <monadic or dyadic other built in relation op inv>s, except that either or
both can be another <dyadic disjoint union>. The operand relations must have no tuples in common.

<dyadic intersect>
::= <relation exp> INTERSECT <relation exp>

The <relation exp>s must not be <monadic or dyadic other built in relation op inv>s, except that either or
both can be another <dyadic intersect>.

<minus>
::= <relation exp> MINUS <relation exp>

The <relation exp>s must not be <monadic or dyadic other built in relation op inv>s.

<included minus>
::= <relation exp> I_MINUS <relation exp>

The <relation exp>s must not be <monadic or dyadic other built in relation op inv>s. The second
operand relation must be included in the first.

<dyadic join>
::= <relation exp> JOIN <relation exp>

The <relation exp>s must not be <monadic or dyadic other built in relation op inv>s, except that either or
both can be another <dyadic join>.

<dyadic times>
::= <relation exp> TIMES <relation exp>

The <relation exp>s must not be <monadic or dyadic other built in relation op inv>s, except that either or
both can be another <dyadic times>.

<dyadic xunion>
::= <relation exp> XUNION <relation exp>

The dyadic XUNION operator (“exclusive union”) is essentially symmetric difference as usually
understood. The <relation exp>s must not be <monadic or dyadic other built in relation op inv>s, except that
either or both can be another <dyadic xunion>.
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<dyadic compose>
::= <relation exp> COMPOSE <relation exp>

The <relation exp>s must not be <monadic or dyadic other built in relation op inv>s (not even another
<dyadic compose>).

<matching>
::= <relation exp> MATCHING <relation exp>

The <relation exp>s must not be <monadic or dyadic other built in relation op inv>s. The keyword
MATCHING can alternatively be spelled SEMIJOIN.

<not matching>
::= <relation exp> NOT MATCHING <relation exp>

The <relation exp>s must not be <monadic or dyadic other built in relation op inv>s. The keywords
NOT MATCHING can alternatively be spelled SEMIMINUS.

<divide>
::= <relation exp> DIVIDEBY <relation exp> <per>

The <relation exp>s must not be <monadic or dyadic other built in relation op inv>s. Note: Elsewhere
this book proposes that DIVIDEBY should be dropped. See references [4] and [9].

<per>
::= PER ( <relation exp> [ , <relation exp> ] )

Reference [1] defines two distinct “divide” operators that it calls the Small Divide and the Great Divide,
respectively. In Tutorial D, a <divide> in which the <per> contains just one <relation exp> is a Small Divide, a
<divide> in which it contains two is a Great Divide.

<summarize>
::= SUMMARIZE <relation exp> [ <per or by> ] :

{ <attribute assign commalist> }

The individual <attribute assign>s are effectively executed in parallel. Further explanation appears in the
prose following the next three production rules. Note: Elsewhere this book proposes that SUMMARIZE should
be dropped. See references [4] and [9].

<per or by>
::= <per>

| BY { [ ALL BUT ] <attribute ref commalist> }

If <per> is specified, it must contain exactly one <relation exp>. Let p be the relation denoted by that
<relation exp>, let r be the relation denoted by the <relation exp> immediately following the keyword
SUMMARIZE, and let B1, B2, ..., Bm and A1, A2, ..., An be the attributes of p and r, respectively. Every Bi (i = 1,
2, ..., m) must be some Aj (j = 1, 2, ..., n). Specifying BY {Bx,By,...,Bz} is equivalent to specifying PER
(r{Bx,By,...,Bz}). Omitting <per or by> is equivalent to specifying PER (TABLE_DEE).

Every <attribute assign>, AA say, in the <attribute assign commalist> is syntactically identical to an
<assign> (i.e., a <scalar assign>, a <tuple assign>, or a <relation assign>, as applicable), except that the target
must be an <introduced name>, distinct from every Bi (i = 1, 2, ..., m), and the source is allowed to contain a
<summary> wherever a <selector inv> would be allowed (see the production rule immediately following). Steps
a. and b. of the definition given for multiple assignment under RM Prescription 21 (see Chapter 1 of the present
book) are applied to the <attribute assign commalist>. The result of that application is an <attribute assign





Chapter 11 / Tutorial D 153

COUNT returns a result of declared type INTEGER; SUM, AVG, MAX, MIN, UNION, D_UNION,
INTERSECT, and XUNION return a result of declared type the same as that of the applicable <exp>;14 AND,
OR, EQUIV, XOR, and EXACTLY return a result of declared type BOOLEAN.

<relation assign>
::= <relation target> := <relation exp>

| <relation insert>
| <relation d_insert>
| <relation delete>
| <relation i_delete>
| <relation update>

<relation target>
::= <relation var ref>

| <relation THE_ pv ref>

<relation THE_ pv ref>
::= <THE_ pv name> ( <scalar target> )

The declared type of the <possrep component> corresponding to <THE_ pv name> must be some relation
type. Note: Let rx be a <relation exp> that could appear in the <virtual relation var def> that defines some
updatable virtual relvar V (see references [3] and [8], also Chapter 10 of the present book). Then it would be
possible to allow rx to serve as a relation pseudovariable also. However, this possibility is not reflected in the
grammar defined in this chapter.

<relation insert>
::= INSERT <relation target> <relation exp>

<relation d_insert>
::= D_INSERT <relation target> <relation exp>

The difference between INSERT and D_INSERT is that, loosely speaking, an attempt to insert a tuple that
already exists succeeds with INSERT but fails with D_INSERT. (In other words, INSERT is defined in terms of
UNION, while D_INSERT is defined in terms of D_UNION.)

<relation delete>
::= DELETE <relation target> <relation exp>

| DELETE <relation target> [ WHERE <bool exp> ]

Let RT be a <relation target>. Then the <relation delete> DELETE RT WHERE bx is shorthand for the
<relation delete> DELETE RT rx, where the <relation exp> rx is a <where> of the form RT WHERE bx.

<relation i_delete>
::= I_DELETE <relation target> <relation exp>

The relation denoted by the <relation exp> must be included in the current value of the <relation target>.

14 It might be preferable in practice to define AVG in such a way that, e.g., taking the average of a collection of integers returns a rational
number. We do not do so here merely for reasons of simplicity.
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can appear subsequently in WSB wherever the expression (X)—i.e., X in parentheses—would be allowed.

<nonwith statement body>
::= <previously defined statement body commalist>

| <begin transaction> | <commit> | <rollback>
| <call> | <return> | <case> | <if> | <do> | <while>
| <leave> | <no op> | <compound statement body>

<previously defined statement body>
::= <assignment>

| <user op def> | <user op drop>
| <user scalar type def> | <user scalar type drop>
| <scalar var def> | <tuple var def>
| <relation var def> | <relation var drop>
| <constraint def> | <constraint drop>
| <array var def> | <relation get> | <relation set>

<begin transaction>
::= BEGIN TRANSACTION

BEGIN TRANSACTION can be issued when a transaction is in progress. The effect is to suspend the
current transaction and to begin a new (“child”) transaction. COMMIT or ROLLBACK terminates the transaction
most recently begun, thereby resuming the suspended “parent” transaction, if any. Note: An industrial strength D
might usefully allow BEGIN TRANSACTION to assign a name to the transaction in question and then require
COMMIT and ROLLBACK to reference that name explicitly. However, we choose not to specify any such
facilities here.

<commit>
::= COMMIT

<rollback>
::= ROLLBACK

<call>
::= CALL <user op inv>

The user defined operator being invoked must be an update operator specifically. Arguments
corresponding to parameters that are subject to update must be specified as <scalar target>s, <tuple target>s, or
<relation target>s, as applicable.

<return>
::= RETURN [ <exp> ]

A <return> is permitted only within a <user read-only op def> or a <user update op def>. The <exp> is
required in the former case and prohibited in the latter. Note: A <user update op def> need not contain a
<return> at all, in which case an implicit <return> is executed when the END OPERATOR is reached.

<case>
::= CASE ; <when spec list> [ ELSE <statement> ]

END CASE

<when spec>
::= WHEN <bool exp> THEN <statement>
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<user update op def>
::= OPERATOR <user op name> ( <parameter def commalist> )

UPDATES { [ ALL BUT ] <parameter name commalist> } ;
<statement>

END OPERATOR

If and only if the <parameter def commalist> is empty, then the update operator being defined is niladic
and must always be invoked with an empty <argument exp commalist>. Also, let the UPDATES specification
(either form) identify exactly n parameters as being subject to update. If the update operator being defined is
niladic, then n must be zero. If n is zero, then the operator being defined is still an update operator, but it isn’t
allowed to assign to any of its parameters (it might, however, assign to some “global variable”).

<user read-only op def>
::= OPERATOR <user op name> ( <parameter def commalist> )

RETURNS <type spec> ;
<statement>

END OPERATOR

If and only if the <parameter def commalist> is empty, then the read-only operator being defined is niladic
and must always be invoked with an empty <argument exp commalist>.

<user op inv>
::= <user op name> ( <argument exp commalist> )

If the <argument exp commalist> is empty, then the operator being invoked must be niladic and vice
versa.

<scalar with exp>
::= WITH ( <name intro commalist> ) : <scalar exp>

<tuple with exp>
::= WITH ( <name intro commalist> ) : <tuple exp>

<relation with exp>
::= WITH ( <name intro commalist> ) : <relation exp>

For all expressions x, the expression WITH () : x is logically equivalent to the expression x (regardless of
whether x is a scalar, tuple, or relation expression).

<assignment>
::= <assign commalist>

An <assignment> with an empty <assign commalist> is a <no op>.

<n-adic bool op name> { <bool exp commalist> }

AND {} and EQUIV {} both return TRUE, OR {} and XOR {} both return FALSE.

EXACTLY ( <integer exp> , { <bool exp commalist> } )

EXACTLY (n,{}) returns FALSE unless n = 0, in which case it returns TRUE.



164 Part II / Language Design

<user scalar root type def>
::= TYPE <user scalar type name>

[ <ordering> ] <possrep def list>
INIT ( <literal> )

The <possrep def list> is allowed to be empty if and only if type inheritance is supported, in which case, if
the <possrep def list> is in fact empty, then the scalar root type being invoked must be a dummy type and vice
versa. See Chapter 21 for further explanation.

<possrep def>
::= POSSREP [ <possrep name> ]

{ <possrep component def commalist>
[ <possrep constraint def> ] }

If the <possrep component def commalist> is empty, then the scalar root type being defined has at most
one value—in fact, exactly one value, since there are no user defined empty scalar types (see RM Prescription 1).

<heading>
::= { <attribute commalist> }

The (sole) heading with an empty <attribute commalist> is the heading of a tuple or relation of degree
zero (in particular, it’s the heading for TABLE_DEE and TABLE_DUM).

<real relation var def>
::= VAR <relation var name> <real or base>

<relation type or init value> <key def list>

To repeat from the body of the chapter: An empty <key def list> is equivalent to a <key def list> of the
form KEY {ALL BUT}.

<key def>
::= KEY { [ ALL BUT ] <attribute ref commalist> }

The <key def> KEY {} implies that the pertinent relvar can never contain more than one tuple. The <key
def> KEY {ALL BUT} implies that every relation of the pertinent type is a legitimate value for the pertinent
relvar (unless prevented by some further constraint, of course).

<virtual relation var def>
::= VAR <relation var name> VIRTUAL

( <relation exp> ) <key def list>

To repeat from the body of the chapter: An empty <key def list> is equivalent to a <key def list> that
contains exactly one <key def> for each key that can be inferred by the system from <relation exp>.

<application relation var def>
::= VAR <relation var name> <private or public>

<relation type or init value> <key def list>

To repeat from the body of the chapter: An empty <key def list> is equivalent to a <key def list> of the
form KEY {ALL BUT}.

CASE <when def list> [ ELSE <scalar exp> ] END CASE

If ELSE <scalar exp> is omitted, the <when def list> must not be empty. The expression
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CASE ELSE x END CASE

is equivalent to x.

<scalar selector inv>
::= <possrep name> ( <argument exp commalist> )

An empty <argument exp commalist> is allowed (in fact, required) if and only if the <possrep def>
identified by <possrep name> has an empty <possrep component def commalist>—in which case the <scalar
selector inv> returns the sole value of the applicable type.

<n-adic count etc>
::= <agg op name> { <exp commalist> }

COUNT {} and SUM_T {} return zero (of type INTEGER in the case of COUNT and type T in the case of
SUM); MAX_T {} and MIN_T {} return the smallest value and the largest value, respectively, of type T; AVG {}
raises an exception.

<scalar update>
::= UPDATE <scalar target> :

{ <possrep component assign commalist> }

The <scalar update> UPDATE ST : {}, where ST is a <scalar target>, is equivalent to the <scalar
assign> ST := ST.

<tuple selector inv>
::= TUPLE { <tuple component commalist> }

The <tuple selector inv> TUPLE {} denotes the 0-tuple.

<tuple project>
::= <tuple exp> { [ ALL BUT ] <attribute ref commalist> }

The <tuple project> tx {}, where tx is a <tuple exp>, returns the 0-tuple. The <tuple project> tx {ALL
BUT} is equivalent to tx.

<n-adic tuple union>
::= UNION { <tuple exp commalist> }

The <n-adic tuple union> UNION {} returns the 0-tuple.

<tuple rename>
::= <tuple exp> RENAME { <renaming commalist> }

The <tuple rename> tx RENAME {}, where tx is a <tuple exp>, is equivalent to tx.

<tuple extend>
::= EXTEND <tuple exp> : { <attribute assign commalist> }

The <tuple extend> EXTEND tx : {}, where tx is a <tuple exp>, is equivalent to tx.

<wrapping>
::= { [ ALL BUT ] <attribute ref commalist> }

AS <introduced name>

The <tuple wrap> tx WRAP {} AS A, where tx is a <tuple exp>, is equivalent to EXTEND tx : {A := {}};
the <tuple wrap> tx WRAP {ALL BUT} AS A, where again tx is a <tuple exp>, is equivalent to EXTEND tx :
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{A := {X}}, where {X} is all of the attributes of tx. Analogous remarks apply to the <wrap> rx WRAP {} AS A
and the <wrap> rx WRAP {ALL BUT} AS A, where rx is a <relation exp>.

<tuple update>
::= UPDATE <tuple target> :

{ <attribute assign commalist> }

The <tuple update> UPDATE TT : {}, where TT is a <tuple target>, is equivalent to the <tuple assign>
TT := TT.

<relation selector inv>
::= RELATION [ <heading> ] { <tuple exp commalist> }

| TABLE_DEE
| TABLE_DUM

If an empty <tuple exp commalist> is specified, then <heading> must be specified, and the <relation
selector inv> returns the empty relation with the specified heading.

<project>
::= <relation exp> { [ ALL BUT ] <attribute ref commalist> }

The <project> rx {}, where rx is a <relation exp>, returns TABLE_DUM if rx is empty and
TABLE_DEE otherwise. The <project> rx {ALL BUT} is equivalent to rx.

<n-adic union>
::= UNION [ <heading> ] { <relation exp commalist> }

If the <relation exp commalist> is empty, then <heading> must be specified, and the <n-adic union>
returns the empty relation with the specified heading.

<n-adic disjoint union>
::= D_UNION [ <heading> ] { <relation exp commalist> }

If the <relation exp commalist> is empty, then <heading> must be specified, and the <n-adic disjoint
union> returns the empty relation with the specified heading.

<n-adic intersect>
::= INTERSECT [ <heading> ] { <relation exp commalist> }

If the <relation exp commalist> is empty, then <heading> must be specified, and the <n-adic intersect>
returns the universal relation with the specified heading (i.e., the relation whose body contains every tuple with
the specified heading). In practice, the implementation might want to outlaw, or at least flag, any expression that
requires such a value to be materialized.

<n-adic join>
::= JOIN { <relation exp commalist> }

JOIN {} returns TABLE_DEE.

<n-adic times>
::= TIMES { <relation exp commalist> }

TIMES {} returns TABLE_DEE.

<n-adic xunion>
::= XUNION [ <heading> ] { <relation exp commalist> }
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If the <relation exp commalist> is empty, then <heading> must be specified, and the <n-adic xunion>
returns the empty relation with the specified heading.

<n-adic compose>
::= COMPOSE { <relation exp commalist> }

COMPOSE {} returns TABLE_DEE.

<rename>
::= <relation exp> RENAME { <renaming commalist> }

The <rename> rx RENAME {}, where rx is a <relation exp>, is equivalent to rx.

<extend>
::= EXTEND <relation exp> : { <attribute assign commalist> }

The <extend> EXTEND rx : {}, where rx is a <relation exp>, is equivalent to rx.

<grouping>
::= { [ ALL BUT ] <attribute ref commalist> }

AS <introduced name>

The <group> rx GROUP {} AS A, where rx is a <relation exp>, is equivalent to EXTEND rx : {A :=
TABLE_DEE}; the <group> rx GROUP {ALL BUT} AS A, where again rx is a <relation exp>, is equivalent to
EXTEND rx{} : {A := rx}.

<summarize>
::= SUMMARIZE <relation exp> [ <per or by> ] :

{ <attribute assign commalist> }

The <summarize> SUMMARIZE rx PER (px) : {}, where rx and px are <relation exp>s, is equivalent to
px. The <summarize> SUMMARIZE rx BY {X} : {}, where rx is a <relation exp>, is equivalent to rx {X}.

<per or by>
::= <per>

| BY { [ ALL BUT ] <attribute ref commalist> }

The <summarize> SUMMARIZE rx BY {} : {...}, where rx is a <relation exp>, is equivalent to
SUMMARIZE rx PER (rx {}) : {...}. The <summarize> SUMMARIZE rx BY {ALL BUT} : {...}, where again
rx is a <relation exp>, is equivalent to SUMMARIZE rx PER (rx) : {...}.

<relation update>
::= UPDATE <relation target> [ WHERE <bool exp> ] :

{ <attribute assign commalist> }

The <relation update> UPDATE RT [WHERE bx] : {}, where RT is a <relation target> and bx is a <bool
exp>, is equivalent to the <relation assign> RT := RT.

<relation get>
::= LOAD <array target> FROM <relation exp>

ORDER ( <order item commalist> )

The <relation get> LOAD AT FROM rx ORDER (), where AT is an <array target> and rx is a <relation
exp>, causes tuples from the relation denoted by rx to be loaded into the array variable designated by AT in an
implementation defined order.
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<with statement body>
::= WITH ( <name intro commalist> ) : <statement body>

The <with statement body> WITH () : S, where S is a <statement body>, is logically equivalent to the
<statement body> S.

<nonwith statement body>
::= <previously defined statement body commalist>

| <begin transaction> | <commit> | <rollback>
| <call> | <return> | <case> | <if> | <do> | <while>
| <leave> | <no op> | <compound statement body>

The <nonwith statement body> consisting of an empty <previously defined statement body commalist> is
a <no op>.

<case>
::= CASE ; <when spec list> [ ELSE <statement> ]

END CASE

The statement

CASE ; ELSE S ; END CASE ;

(where S is a <statement body>) is equivalent to

S ;

The statement

CASE ; END CASE ;

is equivalent to a <no op>.

<compound statement body>
::= BEGIN ; <statement list> END

The compound statement

BEGIN ; END ;

is equivalent to a <no op>.
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albeit in revised form: Like Codd’s divide, the Small Divide as just defined still typically has to be either
preceded or followed by a join; and, again like Codd’s divide (at least the abridged version), the Small Divide is
still limited in its application, in that it applies only to relations whose headings satisfy a certain rather demanding
set of requirements.

Before I can address these issues properly, I need to step back a little and consider another early version of
divide, due to Stephen Todd [17], which among other things was an attack on the fact that Codd’s divide (at least
in its abridged form) was, as I’ve said, “limited in its application.” But before I can do that, I need to point out
that the Small Divide, while it does obviously solve one big problem, also introduces a small problem of its own:
to be specific, a small problem of nomenclature.

As I’ve already said, Codd’s original divide was called divide because it was a kind of inverse of the
cartesian product operator: If r0 and r2 are relations with no attribute names in common and we form the
cartesian product r1 = r0 TIMES r2, and then divide r1 by r2, we get back to r0 (except in the case where r2 is
empty). But the Small Divide involves three relations, not two, and no obvious analog of this property holds (or
can hold); the term “divide” is thus no longer very apt. (Well, as we’ve seen, it wasn’t very apt in the first place,
but it’s even less so now.) As I said earlier, however, I’ll stay with it for historical reasons.

There’s one last point I’d like to discuss briefly in closing this section—a question of intuition. I’ve shown
that the Small Divide behaves correctly on queries like “Get supplier numbers for suppliers who supply all purple
parts,” even when the divisor is empty. But people not trained in formal logic might be forgiven for finding that
behavior somewhat counterintuitive. For example, how do you think an only child ought to respond to the
question “Are your siblings all boys?” The logically correct answer is, of course, yes (though I observe that yes is
the logically correct answer to the question “Are your siblings all girls?” as well). In practice, however, we would
surely expect some more informative response, along the lines of “Well, actually I don’t have any siblings.” What
this thought experiment suggests—at least to me—is that while the relational algebra, or its predicate logic
equivalent, is certainly necessary as a basis on which to build a user friendly interface to the database, it surely
isn’t sufficient; some additional mechanism is needed that will enable the system to explain its answers, at least if
it’s asked to do so.

TODD’S DIVIDE

The big difference between Todd’s divide and Codd’s—at least as the latter is usually understood—is that Todd’s
allows any relation to be divided by any relation (just so long as the relations in question satisfy the usual
requirement that attributes with the same name are of the same type). I’ll begin with an example, or rather two
examples. Suppose we’re given the following variation on the suppliers-and-parts database (where, as the
comments indicate, J stands for projects):

S { S# } /* supplier is under contract */
SP { S#, P# } /* supplier supplies part */
P { P# } /* part is of interest */
PJ { P#, J# } /* part is used in project */
J { J# } /* project is in progress */

Note that, in this version of the database, all nonkey attributes have been discarded from S, SP, and P; in
fact, I’ll assume for simplicity from this point forward that S, SP, P, PJ, and J contain just the attributes shown
above and no others, barring explicit statements to the contrary.

Given this database, then, the expression

SP DIVIDEBY PJ

gives <s#,j#> pairs such that supplier s# supplies all parts used in project j#, and the expression
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