
File: Multirelations.d8.doc
Printed at: 12:07 on Thursday, 30 September, 2010

Multirelations — Page 1 of 37

Multirelations

by Hugh Darwen

*** REVIEW DRAFT ***
(now superseded: please see Note to Reviewers on page 2)

Reviewers are expected to be familiar with the relational model of data and preferably with
The Third Manifesto ([2]) and Tutorial D.

CONTENTS

1. Introduction 2
2. Terminology 5
3. The multirelation 6
4. Multirelation types 9
5. The multirelation selector 9
6. Multirelation operators 10

6.1 Participant extraction 11
6.2 Multiprojection 11
6.3 MR-projection 12
6.4 MR-extraction 12
6.5 MR-join 13
6.6 MR-union 14
6.7 MR-intersection 15
6.8 MR-difference 15
6.9 NOT MR_MATCHING 16
6.10 MR-restriction 17
6.11 MR_extension 22
6.12 MR_renaming 22
6.13 Internal join 23
6.14 Internal decomposition 25

7. Multirelation comparison 26
8. Multirelation variables 27
9. Multirelvar constraints 27

9.1 IS_EMPTY 27
9.2 MR-keys 29
9.3 Participant keys 29
9.4 MR-6NF 29

10. Normal forms for multirelvars 30
11. Multirelvar update operators 30

11.1 Assignment 30
11.2 MR-insertion 31
11.3 MR-deletion 31
11.4 MR-update 32

12. Virtual relvars based on multirelvars 32
13. Interpretation of a multirelation 32
14. Applications of multirelations 34
15. Some topics for further investigation 35
16. Acknowledgements 36
17. References 37

Page 2 of 37 —Multirelations

Note to reviewers:

Chris Date is collaborating with me on a revision of this paper for possible inclusion in a
forthcoming book.1 Among the points to be addressed are:

1. Section 13, Interpretation of a multirelation, proposes a predicate in which one of
the parameters, P, stands for a predicate. This is nonsense: the tuples of a
multirelation do not contain attribute values denoting predicates. The section will be
either revised or dropped.

2. The problematical section 6.10, MR-restriction, will be revised to address some of the
problems.

3. The structure of the paper will be revised to present the operators in a more
appropriate sequence.

4. The operator definitions will be accompanied by illustrative examples to aid
comprehension.

5. The Introduction will be updated to mention other approaches that have recently come
to light: Darren Duncan’s approach in Muldis D (http://www.muldis.com), and an
approach using subtyping suggested by Erwin Smout (see his joint paper with me,
How to Handle Missing Information Using S-by-C at
http://www.thethirdmanifesto.com).

Suggestions from reviewers of previous drafts have been taken into account and further
suggestions are still welcome.

1. Introduction

In connection with the so-called “missing information” problem, we have seen several
suggestions over the years involving data structures that look somewhat like relations in that
their bodies consist of tuples, but differ from relations in that not all the tuples in the same
body are necessarily of the same heading. The latest, which prompted this discussion paper,
is in reference [6], where the author floats the idea that such structures be admitted to the
database, subject to certain restrictions on their use which I do not need to mention here. An
earlier one is reference [9], by my friend the late Adrian Larner. Larner did discuss his idea
with me but I failed to understand it properly and I still fail to understand it fully now.

Examples are given in Figure 1 on the next page of the kind of thing I (and presumably the
others I have referred to) have in mind, shown in tabular form.

The vacant spaces in these tables do not represent appearances of NULL, as they might if it
were an SQL table. Nor do they represent the empty character string, ''. Rather, they
represent the complete absence of the attribute in question from the tuple in question. The

1 The book, Database Explorations: Essays on The Third Manifesto and Related Topics, was published in 2010.
Further information is at www.thethirdmanifesto.com.

Multirelations — Page 3 of 37

attribute in question is of course the one whose name appears at the top of the column in
which the gap appears; and the tuple in question is the one whose attribute values are given by
the row in which the gap appears.

S# SNAME STATUS CITY

S1 Smith 20 London

S2 Jones 10 Paris

S3 Blake 30

S4 Clark London

S5 Adams 30 Athens

S6 Rome

S7

S# P# QTY

S1 P1 300

S1 P2 200

S2 P1

S3 P2 200

S4 P4

Figure 1: The Suppliers and Shipments multirelations

Superficially it would seem that the idea means abandoning relations, and that is why in the
past I have tended to reject such proposals out of hand. The publication of reference [6], an
article criticizing some of my own (joint) work, compelled me to produce a detailed
justification of my rejection of it. To do that I needed to work out exactly what such a scheme
would have to look like in a database language; that, I thought, would clearly expose the fatal
flaws in the idea. However, it occurred to me that the kind of structure under consideration,
whose body is a set of tuples, does in a sense include one or more relations that could be
extracted from it. If we can extract from such a structure whatever relations we wish to work
with, then the relational model might be considered to be preserved. But—and it is a big
“but”—although it could be argued that Codd’s “Information Principle”2 (that all information
in the database shall be cast in the form of relations) is adhered to, the kind of object we are
now talking about is certainly not a relation. With that caveat in mind, I still wished to see
where the idea might lead.

It is easy to spot the five nonempty relations “included” in my “suppliers” example. One of
them consists of the tuples with S# values S1, S2, and S5, all of which have the same four

2 A more appropriate name is The Principle of Uniform Representation (or The Principle of Uniformity of
Representation), as proposed in [3].

Page 4 of 37 —Multirelations

attributes. Another consists of the single (ternary) tuple with S# S3, and so on. But how
many empty relations does it “include” in that same sense? And what exactly is that sense?
Such questions, and many more, need to be answered, I thought, before I can begin to think
about the operators that might be defined for operating on such objects.

What to call these objects? Because I was expecting that my paper would show why the idea
should be rejected, I first considered the derogatory term pseudorelation, but as something
approaching a precise definition began to unfold I became less convinced that the idea should
be rejected out of hand; so I decided instead to call them multirelations. Unfortunately I then
found that this term has been used before, for purposes that are (a) different from the one at
hand and (b) multifarious. Because of (b), and my inability to think of any suitable
alternative, I have decided to stick with multirelation for the time being. I do think my use of
it is more appropriate than some others that I have found (one of them being apparently for an
SQL table, the body of which is in general a bag or, as the SQL international standard has it, a
multiset). See also references [5] and [7], with which I may or may not be significantly at
odds.

I am now presenting my findings, such as they are, for discussion, without at this time
offering much in the way of my own opinion of them. The reader is invited to consider the
following questions:

1. Are there any “fatal flaws” in the scheme? (I realize the term is undefined, but
it certainly subsumes logical unsoundness and inconsistency.)

2. Is the scheme too complicated?

3. Does the scheme suffer from too much that is counterintuitive?

4. If the answer of any of the above is “yes”, can the scheme be suitably revised?
(Presumably not if the answer to the first is “yes”.)

I should stress the point that I do not regard the problem addressed by multirelations as a
previously unsolved one. For example, I still stand by the solution I described in reference
[1], which conforms to reference [2], Chapter 4: The Third Manifesto (TTM). David
McGoveran adopts a similar approach in reference [10] and the two approaches are briefly
compared by C.J. Date in reference [4]. However, many people have raised psychological
objections3 to that kind of approach without proposing any alternative approaches, apart from
abandoning relations altogether (as SQL does). Fabian Pascal ([11]) discusses McGoveran’s
approach and appears to be moving towards developing it along the lines of the present paper,
putting the decomposition “under the covers”, so to speak. But he doesn’t spell out any
details in the way I attempt to spell them out here.

The most commonly expressed objections to decomposition are that it gives rise to an
excessive multiplicity of relvars and an excessive multiplicity of required constraints. From
bitter experience, I can to some extent understand those objections. In 1982 the very first

3 Some people also raise performance objections, but these tend to assume the common SQL DBMS designs of
the present time, which tend to punish decomposition instead of encouraging it.

Multirelations — Page 5 of 37

customer of the relational DBMS Business System 12, available to users of IBM’s time-
sharing Bureau Service, was an organization offering information to investors about various
companies. Over 300 separate items of information were identified as of possible interest to
investors but only a very few of those items were available for every company. Under both
my proposal and McGoveran’s at least 300 separate relvars would be needed, together with a
huge number of foreign key and other constraints. In 1982 we crammed everything into a
single relvar, using “impossible” values such as -9999999.99 to indicate missing information.
Those “impossible” values gave rise to all sorts of traps for the unwary and all sorts of
complications in queries to avoid those traps.

Multirelations are intended to address those objections and to avoid those traps and
complications.4 Whether they can succeed in doing so is the matter on which this paper seeks
to open discussion.

2. Terminology

In this paper I use some terms that may not be familiar to all my reviewers. These are:

common attribute An attribute <an, at> is a common attribute of relations
r1…rn (n>1) or of tuples t1…tm (m>1) if and only if each of
r1…rn (or t1…tm) has an attribute named an of type at.

joinable (a) Relations r1 and r2 are joinable if and only if the set theory
union of their headings is a heading (i.e., they are joinable unless
r1 and r2 each have an attribute with the same name that is not a
common attribute).

(b) Tuples t1 and t2 are joinable if and only if their set theory
union is a tuple. It follows from this definition that (a) the union
of the headings of t1 and t2 is a heading, and (b) for each
common attribute of t1 and t2 the value of that attribute in t1 is
equal to its value in t2.

(c) Relations r1, ..., rn are joinable if and only if for every
pair {rj, rk} (1≤j≤n and 1≤k≤n), rj and rk are joinable;
similarly, tuples t1, ..., tm are joinable if and only if for
every pair {tj, tk} (1≤j≤m and 1≤k≤m), tj and tk are
joinable.

4 One of my reviewers (Adrian Hudnott) has pointed out that multirelations save the designer not only from
having to name each relvar in the decomposition approach, but also from having to decide exactly how to do that
decomposition. Also, the structure of a given decomposition might have to be changed if the business rules
change with regard to what attribute values can be missing and what combinations of attribute values must be
either all absent or all present. With multirelations, such changes can be reflected just in the constraints, without
any change to the database structure.

Page 6 of 37 —Multirelations

join From [3]: 1. (Dyadic case) Let relations r1 and r2 be [joinable].
Then the join of r1 and r2, r1 JOIN r2, is a relation with
heading the set theory union of the headings of r1 and r2 and
with body the set of all tuples t such that t is the set theory union
of a tuple from r1 and a tuple from r2. 2. (N-adic case) Let
relations r1, r2, ..., rn (n≥0) be [joinable]. Then the
join JOIN { r1, r2, ..., rn } is defined as follows: if
n=0, the result is TABLE_DEE; if n=1, the result is r1;
otherwise, choose any two relations from the set and replace
them by their (dyadic) join and repeat this process until the set
consists of only one relation r, which is the overall result.

union From [3]: 1. (Dyadic case) The union of two relations r1 and
r2, r1 UNION r2, where r1 and r2 are of the same type T, is
a relation of type T with body the set of all tuples t such that t
appears in either or both of r1 and r2. 2. (N-adic case) The
union of n relations r1, r2, ..., rn (n≥0), UNION
{ r1, r2, ..., rn }, where r1, r2, ..., rn are all
of the same type T, is is a relation of type T with body the set of
all tuples t such that t appears in at least one of r1, r2,
..., rn. Note: If n=0, (a) some syntactic mechanism, not
shown here, is needed to specify the pertinent type T, and (b) the
result is the empty relation of that type.

subtuple Tuple t1 is a subtuple of tuple t2 if and only if t1 is a subset of
t2. If in addition t1 ≠ t2, then t1 is a proper subtuple of t2.

supertuple Tuple t1 is a supertuple of tuple t2 if and only if t1 is a
superset of t2. If in addition t1 ≠ t2, then t1 is a proper
supertuple of t2.

3. The multirelation

Now I need to pin down precisely what a multirelation is. First, notice that I wrote that a
multirelation includes relations, rather than containing them. That is because it turns out to be
more convenient to regard such relations as subsets5 of the including6 multirelation, rather
than as elements of it. I use the term participant (or participating relation, when a need for
clarity demands) for such a relation. Note that the body of a participant with heading H
consists of those tuples in the including multirelation that have heading H; thus, no proper

5 Loosely speaking. Really it is the bodies of such relations that are subsets of the “body” of the multirelation
(“body” in quotes because it is not a real body in the sense in which that term is defined for relations). And the
headings of such relations are subsets of the “heading” of the multirelation.
6 Also loosely speaking, for the same reason.

Multirelations — Page 7 of 37

subset of a participant’s body is itself the body of some participant. Note also that every tuple
of a multirelation is a member of the body of exactly one of its participants. More precisely:

1. Let mr be a multirelation. Like a relation, mr has a heading and a body. The
heading of mr is identical in appearance to that of a relation but does not mean
quite the same thing as the heading of a relation. I therefore call it an MR-
heading. The body of a multirelation, like that of a relation, is a set of tuples,
but it differs from the body of a relation in that the tuples do not have to have
the same heading. I therefore call it an MR-body.

Let MRH be the MR-heading of mr and MRB its MR-body. The degree of mr is
the number of attributes in MRH and the cardinality of mr is the number of
tuples in MRB.

2. The heading of each tuple in MRB is a subset of MRH.

3. A relation pr is a participant (or participating relation) in mr if and only if (a)
the heading PH of pr is a subset of MRH and (b) the body PB of pr consists of
all and only those tuples in MRB whose heading is PH. It follows that if the
degree of MRH is n, then the number of participants in mr is 2n. It also follows
that if the degree of MRH is 0, then there is exactly one participant, this being
either TABLE_DEE or TABLE_DUM. As each tuple in MRB appears in exactly
one participant, the bodies of the nonempty participants form a partitioning of
MRB.

Note that the Supplier multirelation depicted in Figure 1 has 11 empty
participants7 in addition to the 5 visible, nonempty ones.

We say that mr is empty if and only if MRB is empty (contains no tuples)—
equivalently, if and only if every participant in mr is empty. It should be clear
that emptiness here refers to a lack of tuples, not participants, because, as we
have already noted, the number of participants in mr is 2n, where n is the
cardinality of MRH.

4. It follows from the definitions of MRH and MRB that if relations r1 and r2 are
participants in mr, then r1 and r2 are joinable. This fact allows the attribute
names of mr to be used for purposes very similar to those of a relation, as we
shall see.

5. If no more than one participant in mr is nonempty, then the tuples in MRB have
all the same heading, a subset of MRH. So MRB is the body of a relation, whose
heading is that subset. One is tempted to remark that mr is to all intents and
purposes a relation.

7 One of these is TABLE_DUM. If, instead, TABLE_DEE were a participant, then an all-blank row would appear
in the table.

Page 8 of 37 —Multirelations

I define IS_RELATION(mr)8 to be true if no more than one participant in
mr is nonempty, otherwise false.

When IS_RELATION(mr) is true, one of the participants in mr is called the
prime participant. This is the single nonempty participant if it exists;
otherwise it is the participant whose heading is MRH.

For expository purpose only I define RELATION(mr) to denote the prime
participant in mr if IS_RELATION(mr) is true and to be otherwise
undefined. (Note that this construct cannot appear in a language that supports
static type checking, because the heading of the prime participant is not known
at compile time. However, the effect of RELATION(mr) can be obtained
using the operator defined later in Section 6.1, Participant Extraction.)

RELATION(mr) clearly deserves a counterpart for converting in the opposite
direction, as it were, so MULTIRELATION(r), where r is a relation, will
denote the multirelation whose MR-heading is the heading of r and whose
MR-body consists of the tuples of r. Note that in general it is not the case that
MULTIRELATION(RELATION(mr)) = mr, because the heading of the
prime participant of mr might be a proper subset of the MR-heading of mr.
However, RELATION(MULTIRELATION(r)) = r for all relations r,
thanks to the careful choice of prime participant of mr in the case when mr is
empty.

6. The term common attribute, as defined for relations and tuples, is applicable in
the same sense to multirelations.

Note that it is wrong to say that mr actually is a relation when it satisfies the given condition
(hence the inaccuracy, previously noted, of the keyword IS_RELATION). Several of the
operators I propose in this paper for operating on multirelations are, for obvious reasons, not
normally defined as available for operating on relations; and those normally defined for
operating on relations are not defined for multirelations.

8 The keyword IS_RELATION is slightly but dangerously inaccurate, for reasons given later. Suggestions for
its replacement would be welcome.

Multirelations — Page 9 of 37

4. Multirelation types

Just as tuples and relations are subdivided into types distinguished by their headings, the set
of multirelations can usefully be subdivided into multirelation types distinguished by their
MR-headings. In the style of Tutorial D a specific multirelation type would be denoted by a
keyword followed by a list of attribute definitions enclosed in braces. For example:

MULTIRELATION { S# S#,
SNAME NAME,
STATUS INTEGER,
CITY CHAR }

5. The multirelation selector

TTM (reference [2]) requires every value to be denotable by some literal. In general, a literal
of type T is an invocation of some selector for type T in which each argument to the
invocation is itself a literal. Just as the selector invocation denoting relation r needs to
specify both the heading and the body of r, the multirelation selector invocation denoting mr
needs to specify both the MR-heading and the MR-body of mr. Again, the style of Tutorial
D can be followed closely. For example:

MULTIRELATION { TUPLE { S# S#('S1'),
SNAME NAME('Smith'),
CITY 'London' },

TUPLE { S# S#('S2'),
SNAME NAME('Jones'),
STATUS 30 } }

Here the MR-heading is implied by the headings of the tuples of the MR-body. Note that the
two tuples in this multirelation have different headings. Where two or more tuples have
attributes with the same name, those attributes must also be of the same type. This follows
from the joinability rule for the participating relations. The default MR-heading is the union
of the tuple headings (even if the tuple list is empty). The MR-heading could be given
explicitly; thus, the above example is short for

MULTIRELATION { S# S#,
SNAME NAME,
STATUS INTEGER,
CITY CHAR }

{ TUPLE { S# S#('S1'),
SNAME NAME('Smith'),
CITY 'London' },

TUPLE { S# S#('S2'),
SNAME NAME('Jones'),
STATUS 30 } }

Page 10 of 37 —Multirelations

but in fact any superset of the default MR-heading would be valid. This leads to the
following observation:

If MRB is the MR-body of a multirelation of heading MRH, then for every MR-heading
that is a superset MRH+ of MRH there is a multirelation of MR-heading MRH+ and MR-
body MRB. Moreover, if a is an attribute of MRH but not of the heading of any tuple in
MRB, then MRB is the body of some multirelation of heading MRH MINUS{a}.

There are just two multirelations of type MULTIRELATION{ }. They are called MR_DEE
and MR_DUM. MR_DEE is in fact MULTIRELATION{ }{TUPLE { }} and MR_DUM is
MULTIRELATION{ }{ } (which can be abbreviated to MULTIRELATION{ }). It can
clearly be seen that MR_DEE and MR_DUM are in fact multirelation counterparts of the well
known relations TABLE_DEE and TABLE_DUM. IS_RELATION(MR_DEE) and
IS_RELATION(MR_DUM) are both true. RELATION(MR_DEE) is TABLE_DEE and
RELATION(MR_DUM) is TABLE_DUM. In fact, TABLE_DEE is the only participant in
MR_DEE and TABLE_DUM is the only participant in MR_DUM.

6. Multirelation operators

I examine operators that operate on multirelations to yield relations and ones that operate on
multirelations to yield multirelations. My examination is with an eye to what might be
needed for practical purposes in a database language such as Tutorial D; I do not attempt,
here, to develop a formal specification for an algebra of multirelations. I do note some
interesting properties (such commutativity, associativity, idempotence) but I do not attempt to
identify some minimal or otherwise agreeable set of primitive operators.

Some of the operators are have obvious relational counterparts. Where a relational
counterpart exists, a concrete syntax might well use the same operator name for both the
relational operator and its multirelational counterpart. In this paper I do not employ such
“overloading”, because I think distinct names are more useful for the purposes of discourse.

The examples used in this section assume that S and SP are the names of multirelation
variables. The declared type of S is

MULTIRELATION { S# S#,
SNAME NAME,
STATUS INTEGER,
CITY CHAR }

and that of SP is

MULTIRELATION { S# S#,
P# P#,
QTY INTEGER }

Sample values for these variables are shown in Figure 1.

Multirelations — Page 11 of 37

Let mr, mr1, and mr2 be multirelations. Let their MR-headings be MRH, MRH1, and
MRH2, respectively and let their MR-bodies be MRB, MRB1, and MRB2, respectively.

I start with operators that yield relations.

6.1 Participant extraction

First, an operator to extract a participating relation pr of mr, given the attribute names of the
heading of pr. Example:

PARTICIPANT { S#, SNAME, STATUS } FROM S

Let relation r = PARTICIPANT {a1, ..., an} FROM mr. Then the heading HR of
r is the subset of MRH specified by {a1, ..., an} and the body of r consists of just
those tuples of MRB that have heading HR. Equivalently, r is that participant in mr whose
heading is {a1, ..., an}.

In Tutorial D, wherever a list of attribute names can appear, referring to attributes of a given
relation r, this list can be preceded by ALL BUT to denote the attributes of r other than those
listed. The same construct can be used here, so the given example is equivalent to

PARTICIPANT { ALL BUT CITY } FROM S

A similar observation applies, where appropriate, to all the operators proposed in this paper.

6.2 Multiprojection

This is just a generalization of relational projection but for distinctness I'll call it by the
preposition, ONTO, that is often used in connection with projection (we project a given
relation onto a given subset of its attributes). Example:

S ONTO { S#, SNAME, STATUS }

Let relation r = mr ONTO{a1, ..., an}. Then the heading HR of r consists of the
attributes {a1, ..., an} of MRH and the body BR of r is such that tuple t is an element
of BR if and only if t has heading HR and is a subtuple (subset) of some tuple in MRB.
Equivalently, the body of r is the union of the bodies of the projections onto {a1, ...,
an} of all and only those participants in mr whose heading is some superset of {a1, ...,
an}.

Note that multiprojection reduces to relational projection when IS_RELATION(mr) is true.

An SQL counterpart of the given example is

SELECT DISTINCT S#, SNAME, STATUS
FROM S
WHERE S# IS NOT NULL

Page 12 of 37 —Multirelations

AND SNAME IS NOT NULL
AND STATUS IS NOT NULL9

That's all I define, in this paper, by way of operators that operate on multirelations to yield
relations. I turn to operators for deriving multirelations from multirelations. To discover the
operators that I describe next, I first considered multirelational counterparts of the usual
relational operators. I do not say much about the possible usefulness of these operators. They
are chosen for their teachability, under an assumption that if multirelations are useful at all
then these operators are as useful in the context of multirelations as their relational
counterparts are in the context of relations.

6.3 MR-projection

Given multirelation mr, MR-projection yields a multirelation ms formed by discarding zero
or more attributes. The attributes to be discarded are either specified explicitly or implied by
specifying explicitly the ones to be retained

The syntax is as for ONTO apart from the operator name, which is MR_ONTO. Examples:

S MR_ONTO { S#, SNAME, STATUS }
S MR_ONTO { ALL BUT CITY }

These two examples are equivalent.

Let ms = mr MR_ONTO {a1, ..., an}. Then ms is the multirelation whose MR-
heading consists of the attributes specified in the invocation and whose MR-body consists of
just those tuples that appear in the body of the projection of some participant p in mr onto the
intersection of {a1, ..., an} and the attributes of p.

Note that IS_RELATION(ms) is true whenever IS_RELATION(mr) is true. In this case,
RELATION(ms) is some projection of RELATION(mr). Note also that TABLE_DEE is a
participant in ms whenever the heading of some nonempty participant in mr contains none of
the attributes a1, ..., an.

An SQL counterpart of the given examples is

SELECT DISTINCT S#, SNAME, STATUS
FROM S

6.4 MR-extraction

The purpose of this operator is to extract from a given multirelation all the tuples that contain
values for certain specified attributes and do not contain values for certain other attributes, the
result being presented as a multirelation.

9 The WHERE condition cab be abbreviated to (S#, SNAME, STATUS) IS NOT NULL, but this is rather
less clear.

Multirelations — Page 13 of 37

Note to reviewers: Section 6.11, MR-restriction suggests an alternative approach that might
be preferred as more intuitive and more flexible. It uses unconventional operators named
PRESENT and ABSENT, for use in conditional expressions in certain special contexts only. If
this approach is acceptable, then we can perhaps dispense with MR-extraction. End of note to
reviewers.

The syntax uses the operator name MR_WITH and the key words PRESENT and ABSENT
operand to specify attributes required to be present and absent, respectively. Example:

S MR_WITH PRESENT { S#, SNAME } ABSENT { STATUS }

Let ms = mr MR_WITH PRESENT {a1, ..., an} ABSENT {b1, ..., bm}.
Let incl be the attributes specified by {a1, ..., an} and let excl be the attributes
specified by {b1, ..., bm}. Then ms is the multirelation whose MR-heading MSH is
MRH - excl and whose MR-body consists of just those tuples in MRB whose heading is a
superset of incl and a subset of MSH.

If PRESENT is omitted, PRESENT { } is assumed by default. Similarly, if ABSENT is
omitted, ABSENT { } is assumed by default.

In the given example, MSH is {S# S#, SNAME NAME, CITY CHAR}. A counterpart of
the example in SQL would be

SELECT DISTINCT S#, SNAME, CITY
FROM S
WHERE S# IS NOT NULL
AND SNAME IS NOT NULL
AND STATUS IS NULL

Note that IS_RELATION(ms) is true whenever IS_RELATION(mr) is true. If in
addition ABSENT { } is specified or implied, then ms = mr. IS_RELATION(ms) is
also true whenever the union of incl and excl contains every attribute of mr.

6.5 MR-join

MR-join is the multirelational counterpart of relational join. The syntax is as for relational
join apart from the operator name, which is MR_JOIN. Example:

S MR_JOIN SP

Let ms = mr1 MR_JOIN mr2, where MRH1 and MRH2 are such that each participant in
mr1 is joinable with each participant in mr2. Then ms is the multirelation whose MR-
heading MSH is the union of MRH1 and MRH2 and whose MR-body MSB consists of just those
tuples that can be formed by taking the union of t1 and t2 where t1 is a tuple in MRB1 and
t2 is a tuple in MRB2 (in which case t1 and t2 are joinable). It follows that MSB is such that
pr1 JOIN pr2 is a participant in ms if and only if pr1 is a participant in mr1 and pr2 is
a participant in mr2.

Page 14 of 37 —Multirelations

Note that IS_RELATION(ms) is true whenever IS_RELATION(mr1) and
IS_RELATION(mr2)are both true. In this case, if pr1 and pr2 are the prime participants
in mr1 and mr2, respectively, then RELATION(ms) = pr1 JOIN pr2.

Like relational join, MR-join is commutative and associative. Moreover, MR_DEE is the
identity under MR-join, so an n-adic version with n≥0 can also be defined.
MR_JOIN { } = MR_DEE and MR_JOIN { mr } = mr.

Unlike relational join, MR-join is not idempotent, even though S MR_JOIN S does happen
to yield S if S has the value shown in Figure 1. For a counterexample, let MRX be
MULTIRELATION { TUPLE { X 1 }, TUPLE { Y 1 } }. Then the MR-body of
MRX MR_JOIN MRX contains the tuple TUPLE { X 1, Y 1 } in addition to those of
the MR-body of MRX.

I considered defining a second kind of multirelation join in which only those tuples whose
headings include the common attributes of the operand MR-headings participate and the
others are discarded (so to speak). But this can easily be expressed using MR_WITH and
MR_JOIN. For example:

(S MR_WITH PRESENT { S# })
MR_JOIN
(SP MR_WITH PRESENT { S# })

6.6 MR-union

The syntax is as for relational union apart from the operator name, which is MR_UNION.
Example:

S MR_UNION SP

Let ms = mr1 MR_UNION mr2. Then ms is the multirelation whose MR-heading MSH is
the union of MRH1 and MRH2 and whose MR-body is the union of MRB1 and MRB2. It
follows that pr1 UNION pr2, where pr1 and pr2 are of the same type, is a participant in
ms if pr1 is a participant in mr1 and pr2 is a participant in mr2. And if pr3 is a
participant in mr1 such that no participant in mr2 is of the same type as pr3, then pr3 is a
participant in ms. Similarly, if pr4 is a participant in mr2 such that no participant in mr1 is
of the same type as pr4, then pr4 is a participant in ms. In fact, each participant in ms is
either a participant in mr1, or a participant in mr2, or the relational union of participant in
mr1 and a participant in mr2 (and could be more than one of these three).

Note that IS_RELATION(ms) is true whenever IS_RELATION(mr1) and
IS_RELATION(mr2)are both true and mr1 and mr2 are of the same type. In this case, if
pr1 and pr2 are the prime participants in mr1 and mr2, respectively, then
RELATION(ms) = pr1 UNION pr2.

Multirelations — Page 15 of 37

Like relational union, MR-union is commutative and associative. It is also, in contrast with
MR-join, idempotent.

As with MR-join, an n-adic version of MR-union can be defined. As with relational union,
the type of the result must be specified for the niladic case.

6.7 MR-intersection

The syntax is as for relational intersection apart from the operator name, which is
MR_INTERSECT. Example:

S MR_INTERSECT SP

Let ms = mr1 MR_INTERSECT mr2. Then ms is the multirelation whose MR-heading
MSH is the intersection of MRH1 and MRH2 and whose MR-body MSB consists of just those
tuples that are contained in both MRB1 and MRB2. In other words, MSB is such that
pr1 INTERSECT pr2, where pr1 and pr2 are of the same type, is a participant in ms if
and only if pr1 is a participant in mr1 and pr2 is a participant in mr2.

Note that IS_RELATION(ms) is true whenever IS_RELATION(mr1) and
IS_RELATION(mr2) are both true, and also in several other circumstances (e.g., when
MRB1 and MRB2 are disjoint or either of them is empty).

Like relational intersection, MR-intersection is commutative, associative, and idempotent.
However, whereas relational intersection is a special case of join, MR-intersection is not a
special case of MR-join.

As with MR-join, an n-adic version of MR-intersection can be defined. As with relational
intersection, the type of the result must be specified for the niladic case.

6.8 MR-semijoin

The syntax is as for relational semijoin (MATCHING) apart from the operator name, which is
MR_MATCHING. Example:

S MR_MATCHING SP

Let ms = mr1 MR_MATCHING mr2. Then ms is the multirelation of MR-heading MRH1
whose MR-body MSB is such that for each tuple t1 of MRB1, t1 is a member of MSB if and
only if there is some tuple t2 in MRB2 that is joinable with t1.

Note that IS_RELATION(ms) is true whenever IS_RELATION(mr1) is true. In this
case, if pr1 is the prime participant in mr1 and pr2 ... prn are the participants in mr2,
then RELATION(ms) = UNION {(pr1 MATCHING pr2), ..., (pr1
MATCHING prn)}.

Whereas relational intersection is just a special case of relational semijoin, MR-intersection is
not a special case of MR-semijoin. For consider, there might be a tuple t1 in MRB1 that is

Page 16 of 37 —Multirelations

not also in MRB2 but is nevertheless joinable with some tuple in MRB2. In that case, t1
appears in the result of mr1 MR_MATCHING mr2 but does not appear in the result of
mr1 MR_INTERSECT mr2.

6.9 MR-difference

The MR-complement of mr is the multirelation whose participants are the relational
complements of the participants in mr. Its MR-body therefore consists of just those tuples
with heading some subset of MRH that do not appear in MRB.

We do not define an operator to denote the MR-complement of mr, the reason being the same
as that given for not defining one to denote relational complement. However, we can and do
define the multirelational counterpart of relational difference (MINUS). The syntax is as for
relational difference apart from the operator name, which is MR_MINUS. Example:

S MR_MINUS SP

Let ms = mr1 MR_MINUS mr2. Then ms is the multirelation whose MR-heading is
MRH1 and whose MR-body consists of just those tuples that are members of MRB1 and not
members of MRB2. It follows that pr1 MINUS pr2, where pr1 and pr2 are of the same
type, is a participant in ms if pr1 is a participant in mr1 and pr2 is a participant in mr2.
And if pr3 is a participant in mr1 such that no participant in mr2 is of the same type as pr3,
then pr3 is a participant in ms. In fact, each participant in ms is either a participant in mr1,
or the relational difference of a participant in mr1 and a participant in mr2 (and could be both
of these).

Note that IS_RELATION(ms) is true whenever IS_RELATION(mr1) is true. In this
case, if pr1 is the prime participant in mr1 and pr2 is a participant in mr2 with the same
heading as pr1, then RELATION(ms) = pr1 MINUS pr2. If there is no such
participant in mr2, then RELATION(ms) = pr1.

6.10 NOT MR_MATCHING

The syntax is as for relational NOT MATCHING apart from the operator name, which is NOT
MR_MATCHING. Example:

S NOT MR_MATCHING SP

Let ms = mr1 NOT MR_MATCHING mr2. Then ms is the multirelation of MR-heading
MRH1 whose MR-body MSB is such that for each tuple t1 of MRB1, t1 is a member of MSB
if and only if there is no tuple t2 in MRB2 that is joinable with t1.

Whereas relational difference is just a special case of relational NOT MATCHING, MR-
difference is not a special case of NOT MR_MATCHING. For consider, there might be a tuple
t1 in MRB1 that is not also in MRB2 but is nevertheless joinable with some tuple in MRB2. In

Multirelations — Page 17 of 37

that case, t1 does not appear in the result of mr1 NOT MR_MATCHING mr2 but does
appear in the result of mr1 MR_MINUS mr2.

Note that IS_RELATION(ms) is true whenever IS_RELATION(mr1) is true. In this
case, if pr1 is the prime participant in mr1 and pr2 ... prn are the participants in mr2,
then RELATION(ms) = (...(pr1 NOT MATCHING pr2)...) NOT MATCHING
prn.

6.11 MR-restriction

Note to reviewers: This operator has raised some particular difficulties and might even be the
one to kill the entire idea. My proposals are accompanied by much more discussion than I
have given with the other operators and should be treated as tentative; I ask you to consider
them especially carefullycountersuggestions would be most welcome! End of note to
reviewers.

Compared with its relational counterpart, multirelational restriction turns out to be a
complicated affair, reminiscent of SQL’s WHERE clause when appearances of NULL in the
input table need to be coped with. Relational restriction is usually expressed as

r WHERE cond

where r is a relation and cond is a conditional expression including zero or more references
to attributes of r. We can consider cond as a predicate, whose parameters are represented by
those attribute references. Each tuple t in r provides a value for each of those attributes,
allowing cond to be instantiated to give a truth-valued expression p. If p is true, then t is
said to satisfy cond and appears in the body of the result; otherwise t does not appear in that
body.

Note that each tuple of r appears in the result of either r WHERE cond or
r WHERE NOT (cond) and no tuple of r appears in both results. This is a
manifestation of the law of the excluded middle.

Note also that the relation r WHERE cond represents the extension of the predicate
pr AND pcond, where pr is a predicate whose extension is represented by r and pcond is
the predicate represented by cond as already described.

Now, a multirelational counterpart of relational restriction might be mr MR_WHERE cond.
Example:

S MR_WHERE STATUS = 20

Unfortunately, the attribute reference STATUS is not necessarily defined for each tuple of S.
In Figure 1, for example, it is undefined for suppliers S4, S6 and S7. We would normally
expect such cases to give rise to run-time exceptions. To avoid those exceptions the user
would have to write, for example,

(S MR_WITH PRESENT { STATUS }) MR_WHERE STATUS = 20

Page 18 of 37 —Multirelations

The result would contain all those tuples of S that have a STATUS value that is equal to 20
and would not contain any tuples having a STATUS value that is not equal to 20; nor would it
contain any tuples that do not appear in S. Those tuples in S that do not have a STATUS
attribute are also excluded from the result, by that invocation of MR_WITH. Intuitively, we
might say that such tuples cannot possibly be said to satisfy the given condition and therefore
should not appear in the result. So we might be tempted to make invocation of MR_WITH
implicit in the definition of MR_WHERE:

Let ms = mr MR_WHERE cond. Then ms is the multirelation of MR-heading MRH
whose MR-body consists of just those tuples in mr that satisfy cond. The heading of
a tuple that satisfies cond must contain every attribute referenced in cond.

This definition suffers from several problems.

First, consider

S MR_WHERE STATUS = 20 OR CITY = 'London'

Looking at Figure 1, we can see that the tuple for supplier S1 clearly satisfies the given
condition, but what about the tuple for supplier S4? That satisfies CITY = 'London' but
lacks a STATUS. And if Figure 1 represented an SQL table, the row for supplier S4 certainly
would satisfy SQL’s WHERE condition STATUS = 20 OR CITY = 'London'. It
seems, then, that the definition should be revised along lines such as this:

Let ms = mr MR_WHERE cond. Then ms is the multirelation of MR-heading MRH
whose MR-body consists of just those tuples in mr that satisfy cond. The heading of
a tuple that satisfies cond must contain such attributes as may be needed to permit
cond to be evaluated for that tuple.

There is gross arm-waving here but my assumption is that that system would make use of the
theorems of propositional logic to evaluate, for example, invocations of dyadic logical
operators where the truth value of one of the operands is sufficient to determine the truth
value of the result.

Note that IS_RELATION(ms) is true whenever IS_RELATION(mr) is true. In this case,
if pr is the prime participant in mr, then RELATION(ms) = pr WHERE cond, unless
the heading of pr fails to “contain such attributes as may be needed [etc.]”, in which case
RELATION(ms) is empty.

But the definition is still problematical. Next, note that if cond is a tautology, then the result
is not necessarily equal to the operand (as it is with relational restriction). For example:

S MR_WHERE STATUS = STATUS

The body of the result consists of all the tuples of S except for those that have no STATUS
attribute. Thus, in spite of our careful avoidance of 3-valued logic, we still suffer from some
of the counterintuitive phenomena that we have complained about in SQL’s treatment of
NULL. For the SQL counterpart of this example would be

Multirelations — Page 19 of 37

SELECT *
FROM S
WHERE STATUS = STATUS

and the result “loses” those rows of the table S where NULL appears in place of a value for
STATUS.

Next, note that the relation mr MR_WHERE cond does not in general represent a predicate
of the form pr AND pcond, as described for relational restriction. For consider what
happens when the proposition represented by an S tuple that lacks a STATUS value is ANDed
with the predicate “STATUS = 20”, as in

“Supplier S4 is named Clark and is located in London and STATUS = 20”

The extension of that monadic predicate consists of the following single proposition:

“Supplier S4 is named Clark and is located in London and 20 = 20”

If the restriction condition is STATUS < 20 instead, then the extension consists of as many
propositions as there are integers less than 20 (INTEGER being the declared type of the
attribute STATUS). By contrast, S MR_WHERE STATUS = 20 and S MR_WHERE
STATUS < 20 are both defined to contain no tuple at all for supplier S4.

Next, consider

S MR_WHERE NOT (STATUS = 20)

Under the proposed definition, the result would contain all and only those tuples of S that
have a STATUS value that is not equal to 20. But intuitively we would probably expect the
result to contain all the tuples of S apart from those that have a STATUS value that is equal to
20. That would require the tuples that have no STATUS value to appear in the result too. To
make that happen we would have to write something like

S MR_WHERE NOT (STATUS = 20)
MR_UNION
(S MR_WITH ABSENT { STATUS })10

Perhaps we need another shorthand to cater for such cases. One approach might be to provide
two restriction operators, according to the treatment required of tuples for which the
restriction condition cannot be evaluated. Suppose these two operators are MR_WHERE as
defined and MR_UNLESS, defined as follows:

10 and hope that the optimizer is clever enough to work out that this can be evaluated in one pass of the body of
S!

Page 20 of 37 —Multirelations

Let ms = mr MR_UNLESS cond. Let {a1, ..., an} be the attributes of mr
referenced in the condition cond. Then ms is the result of

MR_UNION {
(mr MR_WHERE NOT (cond)),
(mr MR_WITH ABSENT { a1 }),
...,
(mr MR_WITH ABSENT { an }) }

Recall that in general r WHERE cond and r WHERE NOT (cond) yield relations with
disjoint bodies whose union is the body of r; also that in SQL a similar observation does not
apply to SELECT * FROM t WHERE cond and SELECT * FROM t WHERE NOT
(cond). If both MR_WHERE and MR_UNLESS are available, then we can note with some
degree of satisfaction that in general mr MR_WHERE cond and mr MR_UNLESS cond
yield multirelations with disjoint MR-bodies whose union is the MR-body of mr.

Now we must consider cases where cond is a compound of negated and non-negated
elements, such as in

S MR_WHERE STATUS = 20 OR NOT (STATUS < 40)

If, as shown, we choose MR_WHERE, we will exclude S tuples that have no STATUS value
even though such tuples might be thought of as not having one that is less than 40; so
MR_UNLESS is probably a more suitable choice. However, the situation is less clear-cut
when the two disjuncts reference different attributes, as in

S MR_WHERE STATUS = 20 OR NOT (CITY = 'Paris')

This excludes S tuples that have no STATUS value but do have a CITY value other than
'Paris'. If we use MR_UNLESS instead, we will include S tuples that have
CITY = 'Paris' but have no STATUS value.

The situation is different again if conjunction is used instead of disjunction:

S MR_WHERE STATUS = 20 AND NOT (CITY = 'Paris')

This “correctly” excludes S tuples that have no STATUS value but do have a CITY value
other than ‘Paris’, but it also excludes tuples that have STATUS = 20 and no CITY
value. If we use MR_UNLESS instead, we will include S tuples that have no STATUS value.

It appears, then, that even offering a choice of MR-restriction operators does not satisfactorily
address the issue of appropriate treatment of tuples against which the restriction condition
cannot be evaluated. We might therefore need an additional operator to test for the absence,
from a tuple, of one or more attributes. For example, if t is a tuple,

ABSENT (t, { STATUS, CITY })

Multirelations — Page 21 of 37

evaluating to true if t lacks the specified attributes, otherwise false. Now, the tuple on which
a restriction condition operates is implied and in fact we have no way of denoting it explicitly,
but we could perhaps allow the tuple operand to be implied, as in

S MR_WHERE ABSENT { STATUS, CITY }

This would be equivalent to

S MR_WITH ABSENT { STATUS, CITY }

yielding the multirelation whose MR-body consists of those tuples of S whose headings lack
both STATUS and CITY. That would put the user in control over the inclusion or exclusion
of tuples that lack attributes referenced in restriction conditions. Examples:

S MR_WHERE NOT (STATUS = 20) OR ABSENT { STATUS }

S MR_WHERE STATUS = 20 OR NOT (CITY = 'Paris')
OR ABSENT { CITY }

S MR_WHERE STATUS = 20 AND (NOT (CITY = 'Paris')
OR ABSENT { CITY })

It is tempting but wrong to equate ABSENT with SQL’s IS NULL operator. IS NULL takes
a list of arbitrary expressions and returns true if and only if each expression is “the null
value”. ABSENT operates on a tuple and a list of attribute names, returning true if and only if
each of the specified attribute names is not the name of an attribute of that tuple.

Of course it would be natural to offer PRESENT as the inverse of ABSENT. In that case we
could perhaps dispense with MR_WITH (see Section 6.4, MR-extraction), because

mr MR_WITH PRESENT {a1, ..., am}

can now be expressed equally succinctly as

mr MR_WHERE PRESENT {a1, ..., am}

which would allow combinations of MR_WITH and MR_WHERE to be expressed in a single
MR_WHERE invocation, such as:

S MR_WHERE NOT (STATUS = 20) AND PRESENT { CITY, STATUS }

Note carefully that attribute references appearing as operands of ABSENT and PRESENT
denote attributes per se, not attribute values.

Page 22 of 37 —Multirelations

6.12 MR_extension

The syntax is as for relational extension11 apart from the operator name, which is
MR_EXTEND. Example:

MR_EXTEND S ADD (STATUS + 10 AS NEWSTATUS)

Let ms = MR_EXTEND mr ADD (expr1 AS a1). Then ms is the multirelation
whose MR-heading MSH is MRH extended with the attribute a1. The MR-body of ms consists
of tuples t' derived from each tuple t of MRB as follows:

 Each attribute value of t is an attribute value of t'.

 If and only if every attribute referenced in expr1 is an attribute of t, then a1 is an
attribute of t' with the value denoted by expr1. If the operators PRESENT and
ABSENT are provided, as suggested in connection with MR-restriction, then
invocations of those operators are allowed to appear in expr1.

Note that IS_RELATION(ms) is true whenever IS_RELATION(mr) is true. In this case,
if pr is the prime participant in mr, then RELATION(ms) is some extension of pr (possibly
the identity extension), depending on the attributes referenced in expr1.

As with relational extension, a multiple form of MR-extension can also be defined.
MR_EXTEND mr ADD (expr1 AS a1, ..., exprn AS an) is equivalent to
MR_EXTEND (... (MR_EXTEND mr ADD (expr1 AS a1)) ...)
ADD (exprn AS an).

6.13 MR_renaming

The syntax is as for relational renaming apart from the operator name, which is MR_RENAME.
Example:

MR_RENAME S (S# AS S1)

MR_RENAME mr (a1 AS b1) is equivalent to

(MR_EXTEND mr (a1 AS b1))
MR_ONTO { ALL BUT a1 }

Note that IS_RELATION(ms) is true whenever IS_RELATION(mr) is true. In this case,
if pr is the prime participant in mr, then RELATION(ms) is some renaming of mr (possibly
the identity renaming), depending on the attributes referenced by a1 ... an.

11 At the time of writing we are considering an extension to the EXTEND operator in Tutorial D (as defined in
[2]) to incorporate the functionality of SUMMARIZE.

Multirelations — Page 23 of 37

As with relational renaming, a multiple form of MR-renaming can also be defined.
MR_RENAME mr (a1 AS b1, ..., an AS bn) is equivalent to is equivalent to
MR_RENAME (... (MR_RENAME mr (a1 AS b1)) ...) (an AS bn).

I do not at this time define any further MR_ counterparts of relational operators. Apart from
TCLOSE, other relational operators in Tutorial D are all defined in terms of ones for which I
have defined MR_ counterparts and it is quite possible that MR_ counterparts could be defined
for these too. Examples are GROUP/UNGROUP, COMPOSE, MATCHING, and
SUMMARIZE. Nor, at this time, do I consider any possible MR_ counterparts of GROUP and
UNGROUP involving multirelation-valued attributes in place of relation-valued attributes.
Regarding SUMMARIZE,12 my current thinking is that the PER operand should remain a
relation, but I have not given a great deal of thought to the matter.

My next multirelational operator is one that has no relational counterpart. It looks rather
bizarre but it comes into its own later, when we consider a possibly useful role for
multirelation variables (“multirelvars”) in database designs.

6.14 Internal join

Consider the following multirelation:

MULTIRELATION { TUPLE { S# S#('S1'),
SNAME NAME('Smith'),

TUPLE { S# S#('S1'),
CITY 'London' } }

Those two tuples are joinable. If we join them and produce a result in which their join
appears in their place, we obtain (in this example) a multirelation of cardinality 1 from one of
cardinality 2, the result in this case being

MULTIRELATION { TUPLE { S# S#('S1'),
SNAME NAME('Smith'),
CITY 'London' } }

Internal join (INTRAJOIN) derives a multirelation from a given multirelation by joining
certain sets of its joinable tuples. For example:

INTRAJOIN (S)

Let ms = INTRAJOIN (mr). Then ms is a multirelation of MR-heading MRH. The
MR-body MSB of ms is defined as follows.

For each subset SSH of MRH, let {SS1, ..., SSn} be a set of participants in mr whose
common attributes are SSH. For each tuple x of heading SSH, let SST be the set of tuples
whose projection onto SSH is x such that each is taken from at most one of
{SS1, ..., SSn}. Then tuple t is a member of MSB if and only if

12 See footnote 11.

Page 24 of 37 —Multirelations

 t is the join of the tuples of some such SST and

 t is not a proper subtuple of t' where t' is the join of the tuples of some
such SST.

Intuitively, mr and ms can be regarded as “informationally equivalent” (see section 6.15,
Internal decomposition), but ms is such that if t1 and t2 are distinct tuples of ms, then the
union of t1 and t2 is not a tuple, whereas mr does not necessarily have that property (and if
it does, then mr = ms). Note that the result of the example, INTRAJOIN (S), is equal
to S, because there are no two distinct tuples in S that are joinable. However, if the
multirelation S' were as shown in Figure 2, then INTRAJOIN (S') would yield S. S'
deliberately exhibits some redundancy, as shown in the rows for S2 and S3 in Figure 2. S2's
city is shown twice, as is S3's status; and the third row for S2 merely confirms that supplier
S2 exists. One of the effects of internal join is to eliminate such redundancy.

S# SNAME STATUS CITY

S1 Smith

S1 20

S1 London

S2 Jones 10 Paris

S2 Paris

S2

S3 30

S3 Blake 30

S4 Clark London

S5 Adams 30 Athens

S6 Rome

S7

Figure 2: S'an alternative arrangement for suppliers
(not recommended!note redundancy)

Note that IS_RELATION(ms) is true whenever IS_RELATION(mr) is true, in which
case RELATION(ms) = RELATION(mr). The present author cannot help additionally
noticing the unimportant fact that TABLE_DEE is a participant in ms if and only if
mr = MR_DEE.

As we will see later, the internal join of a multirelation can be regarded as a useful canonical
form, based on a certain equivalence relationship that we can observe between mr and
INTRAJOIN (mr).

Multirelations — Page 25 of 37

6.15 Internal decomposition

Consider again the multirelation given by INTRAJOIN S:

MULTIRELATION { TUPLE { S# S#('S1'),
SNAME NAME('Smith'),
CITY 'London' } }

As we have seen, this is the internal join of

MULTIRELATION { TUPLE { S# S#('S1'),
SNAME NAME('Smith') },

TUPLE { S# S#('S1'),
CITY 'London' } }

and also of

MULTIRELATION { TUPLE { S# S#('S1'),
SNAME NAME('Smith') },

TUPLE { S# S#('S1'),
CITY 'London' },

TUPLE { S# S#('S1') } }

Each of these three multirelations can be interpreted as the single proposition, “S1 is a
supplier under contract and S1 is named Smith and S1 is located in London” and are thus
informationally equivalent. Like the internal join, that last form might be regarded as a useful
canonical form, in which case we will need an operator to yield it. The required form is
specified by giving that subset of the MR-heading that is to appear in the heading of each
tuple of the result. For example:

INTRADECOMPOSE S ON { S# }

Let ms = INTRADECOMPOSE mr ON {a1, ..., an}. Then ms is a multirelation of
MR-heading MRH. The MR-body MSB of ms is such that tuple t is a member of MSB if and
only if:

(a) t is a subtuple of some tuple in MRB, and

(b) the heading of t includes the attributes {a1, ..., an} and at most one
other attribute.

ms is informationally equivalent to mr only when each of the attributes a1, ..., an
appears in the heading of each tuple of mr.

Note that if the heading of t is a proper superset of {a1, ..., an}, then the tuple that is
the projection of t onto {a1, ..., an} also appears in MSB. IS_RELATION(ms) is
true whenever mr is empty or the only nonempty participant in mr is the one whose attributes
are precisely {a1, ..., an}.

Page 26 of 37 —Multirelations

7. Multirelation comparison

If every participant in mr1 is such that its body is a subset of the body of some participant in
mr2, then it follows that MRB1 is a subset of MRB2. Therefore, just as in Tutorial D we can

write r1 r2 where r1 and r2 are relations, we can also write mr1 mr2. However,
r1 and r2 are required to be relations of the same type. I propose no analogous restriction on
the types of mr1 and mr2, because none is logically necessary. It might be thought
appropriate at least to require the MR-headings of the comparands not to be disjoint, but it
cold be argued that the advantages of such a restriction are too slight to warrant it. If the MR-
headings are disjoint, then mr1 mr2 is true if and only if mr1 is empty.

Now, the relational concept of inclusion dependency will need a multirelational counterpart.
For example, in the suppliers-and-shipments database the relvar SP is subject to an inclusion
dependency to the effect that the projection of SP onto S# is at all times a subset of the
projection of S onto S# (and because S# is a key of S, this inclusion dependency is
commonly referred to as a foreign key constraint). When S and SP are multirelation variables
instead of being relvars, we can define the inclusion dependency in similar fashion but using
MR-projection instead of projection. We can say that body of the MR-projection of SP onto
S# must at all times be a subset of the MR-body of the MR-projection of S onto S#. The
comparison can be expressed thus:

SP MR_ONTO { S# } S MR_ONTO { S# }

Note that if S# is absent from any tuple of SP, then TABLE_DEE is a participant in the first
operand and the comparison yields true only if S# is also absent from some tuple of S.

It is easily shown that comparison using is sufficient for relations. For example, if we wish
to see if every tuple of relation r1 is a subtuple of some tuple of relation r2, we can first
check that every attribute of r1 is also an attribute of r2 and, that being the case, compare r1

with the projection of r2 onto the attributes of r1. However, is not sufficient for all the
comparisons that can be envisaged on multirelations. Additional operators would be needed
to support tests such as the following, if there is any need for them:

 every tuple of multirelation mr1 is a subtuple of some tuple of multirelation mr2

 every tuple of mr1 is a supertuple of some tuple of mr2

 no tuple of mr1 is a subtuple of some tuple of mr2

 no tuple of mr1 is a supertuple of some tuple of mr2

Seeing no compelling need for these tests, I offer no suggestions for supporting them at this
time.

Multirelations — Page 27 of 37

8. Multirelation variables

The declaration of a multirelation variable, or multirelvar, looks very similar to that of a
relvar. Here is an example:

VAR S BASE MULTIRELATION
{ S# S#, SNAME NAME, STATUS INTEGER, CITY CHAR }
MR_KEY { S# } ;

The declared type of this multirelvar is MULTIRELATION{S# S#, SNAME NAME,
STATUS INTEGER, CITY CHAR} but the MR_KEY specification (see Multirelvar
constraints, below) further constrains the values that can be assigned to it, just as a KEY
specification constrains the values that can be assigned to a relvar. Note, however, that
whereas every relvar has at least one key, not every multirelvar has an MR-key.

9. Multirelvar constraints

The single comparison operator ("is subset of") defined for relations theoretically suffices for
relational database constraint declarations, but in practice there is a compelling need for
useful shorthands to address certain common requirements. We have already seen, in
Section 7, Multirelation comparison, that there are certain tests that cannot be expressed
using just that single comparison operator. I do not address those possible requirements at
this time, but I do propose some shorthands that immediately spring to mind as needed in
connection with the problem that the author of [6] was addressing when he floated the idea.

9.1 IS_EMPTY

I see no reason to have a distinguishing name such as MR_IS_EMPTY for this shorthand.
IS_EMPTY(mr) is true if and only if the body of mr contains no tuples at all—in other
words, if and only if, for every participant pr in mr, IS_EMPTY(pr) is true (in which case
mr has a prime participant that is empty).

Consider our example multirelvar, S. If this is to be used as a replacement for the usual
relvar of that name, that decision will have been motivated by a desire to be able to record
information about suppliers for whom not all of the information that might be recorded about
a supplier is available. The totality of information that might be available for any given
supplier is indicated by the MR-heading of S. That MR-heading implies that every subset of
it is the heading of some participant in the multirelation assigned to S. In practice we will
want to make sure that certain of those participants are empty at all times. For example, we
will definitely want to make sure that every participant is empty whose heading does not
contain the attribute S#. We can express that like this:

IS_EMPTY (S MR_WITH ABSENT { S# })

or, if ABSENT is supported in MR_WHERE:

IS_EMPTY (S MR_WHERE ABSENT { S# })

Page 28 of 37 —Multirelations

I venture to think that constraints of this kind will be very common if multirelvars are used at
all. Indeed, further shorthands based on it will probably be desired. For consider the case of a
football club. It has a fixture list. For each match in the fixture list, the result is eventually
entered. So we could envisage a multirelvar whose nonempty participants at all times number
no more than three, one for the matches that need to be scheduled but for which no date has
been agreed yet, one for those that are scheduled but haven't yet been played, and one for the
ones that have been played. The multirelvar probably includes attributes named GOALS_FOR
and GOALS_AGAINST. Obviously whenever one of these attributes has a value for a
particular match, then so must the other. So we will need

IS_EMPTY (FIXTURE MR_WITH PRESENT { GOALS_FOR }
ABSENT { GOALS_AGAINST })

AND
IS_EMPTY (FIXTURE MR_WITH PRESENT { GOALS_AGAINST }

ABSENT { GOALS_FOR })

or, using ABSENT and PRESENT with MR_WHERE,

IS_EMPTY (FIXTURE MR_WHERE (PRESENT { GOALS_FOR }
AND
ABSENT { GOALS_AGAINST })

OR (ABSENT { GOALS_FOR }
AND
PRESENT { GOALS_AGAINST })

Such constraints get increasingly more complex as the number of attribute values that must
appear together if they appear at all increases.

The other side of the coin—cases where certain pairs of attributes are mutually exclusive in
the sense that if a value appears for one no value must appear for the other, in the same tuple,
can also be expressed using IS_EMPTY:

IS_EMPTY (S MR_WITH PRESENT { STATUS, REASON })

Here I have added the attribute REASON to multirelvar S. REASON is used only for cases
where there is no status value (for the reason given). But now we might want also to insist
that every tuple has either a STATUS value or a REASON value. This does it:

IS_EMPTY (S MR_WITH ABSENT { STATUS, REASON })

Using ABSENT and PRESENT with MR_WHERE these can be combined as

IS_EMPTY (S MR_WHERE PRESENT { STATUS, REASON }
OR ABSENT { STATUS, REASON })

Such constraints, however, will not by themselves serve the kind of purpose I have indicated.
They will need to be accompanied by the multirelvar analogue of relational keys ...

Multirelations — Page 29 of 37

9.2 MR-keys

An MR-key (of a multirelvar) has the same properties of uniqueness and irreducibility as are
defined for keys. Note in particular that the scope of uniqueness now covers several relations,
namely all the participants in the multirelation assigned to the variable to which the MR-key
constraint applies.

I propose the MR_KEY shorthand shown in the example because I strongly suspect that if
multirelvars are to be used at all, then at least one such constraint should be specified in every
case as a matter of good practice. (By "every case" here, I mean the variables that constitute
the database per se. I do not include ones that might exist from time to time to contain results
of evaluating queries.)

MR_KEY {k1, ..., kn} specified for multirelvar mrv is equivalent to

IS_EMPTY (mrv MR_WITH ABSENT {k1, ..., kn})
AND COUNT (mrv ONTO {k1, ..., kn}) = COUNT (mrv)

(I assume from here onwards that the operator COUNT, yielding the cardinality of its operand,
is defined for multirelations as well as relations.)

9.3 Participant keys

PARTICIPANT_KEY {k1, ..., kn} specified for multirelvar mrv, where
k1, ..., kn are names of attributes of mrv, defines a participant key for mrv.

A participant key PK of a multirelvar mrv is a subset of the MR-heading of mrv such that at
all times, for each nonempty participant p in mrv, PK is included in the heading of p and
constitutes a key13 of p.

Note that if K is an MR-key of mrv, then K is a fortiori a participant key of mrv. However, if
PK is a participant key of mrv, then PK is not necessarily an MR-key of mrv.

9.4 MR-6NF

MR-6NF is a constraint on a multirelvar to the effect that the only participants that are
permitted to be nonempty are those whose headings have no more than one attribute in
addition to those of a participant key. In other words, if mrv is a multirelvar that is in MR-
6NF and we decompose mrv by assigning each participant to a relvar, then each resulting
relvar that might be nonempty is in 6NF.

13 Loosely speaking. When we say that k is a key of participant p in multirelvar mrv we really mean that k
would be a superkey of a virtual relvar defined on the MR-extraction of mrv corresponding to p. For if p is
constrained at all times to be empty, then it has the empty set as key. In any case, even a relational KEY
constraint does not and cannot fully enforce the irreducibility property that is defined in the theory for keys, and
a similar observation applies to MR_KEY.

Page 30 of 37 —Multirelations

10. Normal forms for multirelvars

I propose two normal forms for multirelvars: MRK-NF and MR-6NF. Their definitions are
simple. A multirelvar is in MRK-NF if and only if it is subject to an MR-key constraint. And
a multirelvar is in MR-6NF if and only if it is subject to an MR-6NF constraint.

If k is a participant key for multirelvar mrv1, then its MR-6NF equivalent multirelvar mrv2
can be obtained by the assignment

mrv2 := INTRADECOMPOSE mrv1 ON { k } ;

and its MRK-NF equivalent multirelvar mrv3, with MR-key k, can be obtained by

mrv3 := INTRAJOIN mrv1 ;

I suggest that in practice the only multirelvars that are not in one of these two normal forms
will be those used for holding query results (i.e., snapshots). A multirelvar that is not in
MRK-NF or MR-6NF (such as a single multirelvar constituting the entire database!) will give
rise to all sorts of updating difficulties that I do not discuss in this paper. Rather, I discuss
update operators that might usefully be defined on the assumption that one of these normal
forms is in effect.

Under both normal forms it is impossible for two or more tuples to appear in the same
multirelation such that, for some nonkey attribute, more than one value appears paired with
the same key value. In other words, for every pair <pr1,pr2> of participants, every tuple
of pr1 has at most one matching tuple in pr2. Both normal forms prevent "accidents" such
as

MULTIRELATION { TUPLE { S# S#('S1'),
SNAME NAME('Smith'),
CITY 'London' },

TUPLE { S# S#('S1'),
CITY 'Paris' } }

in which two or more tuples appear to contradict each other. MRK-NF would prevent the
appearance of two or more tuples for the same supplier. MR-6NF would prevent the
appearance of more than one CITY value for the same supplier. The relevance of such
constraints to the so-called missing information problem is apparent. We are dealing here
solely with what the entity-relationship modellers call 1:1 relationships between entity types
and the special cases of such relationships that can be denoted by entity subtypes. Those
relationships are addressed in reference [1] by proposed constraint shorthands referred to as
distributed keys and foreign distributed keys.

11. Multirelvar update operators

11.1 Assignment

… is defined as for variables of all types.

Multirelations — Page 31 of 37

11.2 MR-insertion

Multirelvar insertion is very similar to relvar insertion. Example:

MR_INSERT S MULTIRELATION { TUPLE { S# S#('S2'),
SNAME NAME('Jones'),
CITY 'Paris' },

TUPLE { S# S#('S3'),
SNAME NAME('Blake') },

TUPLE { S# S#('S3'),
CITY 'Paris') } } ;

MR_INSERT mrv mr is equivalent to

mrv := mrv MR_UNION mr ;

However, if mrv is required to be in MRK-NF, then we would desire a shorthand for

mrv := INTRAJOIN (mrv MR_UNION mr) ;

Similarly, if mrv is required to be in MR-6NF, then we would desire a shorthand for

mrv := INTRADECOMPOSE (mrv MR_UNION mr) ;

As this is only a discussion paper, I do not at this time propose syntax for these desired
shorthands.

We might also want to allow the input operand to be a relation.

11.3 MR-deletion

Multirelvar deletion is very similar to relvar deletion. Example:

MR_DELETE S MR_WHERE CITY = 'Paris' ;

loosely speaking, deletes every tuple having an attribute named CITY whose attribute value is
'Paris'. If S is in MRK-NF, this will—even more loosely speaking—delete every supplier
located in Paris. If S is in MR-6NF, then every supplier located in Paris will become a
supplier of no particular location.

MR_DELETE mrv MR_WHERE cond is equivalent to

mrv := mrv MR_UNLESS (cond) ;

Note the use of MR_UNLESS in this expansion. We must keep every tuple that lacks a CITY
attribute.

Unless PRESENT and ABSENT are supported, some shorthand might be needed for deletion
of entire participants. For example:

MR_DELETE S MR_WHERE ABSENT { SNAME } ;

is equivalent to

Page 32 of 37 —Multirelations

S := S MR_WITH ABSENT { SNAME } ;

No special varieties of deletion operator are needed for normal form preservation. Whichever
normal form applies to mrv is always preserved.

11.4 MR-update

Multirelvar update is very similar to relvar update. Example:

MR_UPDATE S MR_WHERE S# = S#('S1') (STATUS := 10) ;

The expansion is difficult but the effect is intuitively obvious, I hope. As with MR_DELETE,
normal forms are guaranteed to be preserved.

12. Virtual relvars based on multirelvars

This subject needs further investigation, but one important observation can be made right
away. Clearly, if {a1, ..., an} are the attributes of some subset of the MR-heading of
multirelvar mrv, then a virtual relvar prv can be defined whose value is the participant, in
the current value of mrv, whose heading consists of those attributes. The definition would
look like this:

VAR prv VIRTUAL (PARTICIPANT { a1, ..., an }) FROM mrv;

Certain updates to mrv can now be expressed in terms of updates to prv. Such virtual
relvars could provide a mapping from a database design based on multirelvars to a relational
design based on the proposals of [1] or [10].

13. Interpretation of a multirelation

Note to reviewers: As mentioned in the Note to reviewers on page 2, this section is due for
deletion or major revision.

Recall that we interpret a relation in the context of some predicate whose parameters (free
variables) correspond to the attributes of the relation. A tuple is said to satisfy that predicate
if substitution of its attribute values for the parameters of the predicate yields a true
proposition. Each tuple having the same heading as the relation either satisfies or does not
satisfy that predicate. The relation body consist of those tuples that satisfy the predicate.

We can interpret a multirelation in similar fashion only by resorting to second-order logic.
The general predicate for an arbitrary multirelation mr is a dyadic one denoted by the English
sentence “tuple t satisfies predicate P”, where P stands for the predicate that gives the
interpretation of some participant in mr. This general predicate is not very informative, of
course. Its parameters, unlike those of a relation predicate, have no corresponding attributes.
If IS_RELATION(mr) is true we can substitute the prime participant’s intended predicate
for P.

Multirelations — Page 33 of 37

Note that P stands for the only predicate for a participant. Consider a multirelation with
attributes S#, SNAME, STATUS, and CITY. One of its participants has all of those
attributes. The predicate for that relation might be “Supplier S# is under contract, is named
SNAME, has status STATUS, and is located in CITY.” Another participant has just the
attributes S#, SNAME, and CITY. Which of the following predicates might be appropriate?

(a) Supplier S# is under contract, is named SNAME, and is located in CITY.

(b) Supplier S# is under contract, is named SNAME, and is located in CITY and
there does not exist a status STATUS such that supplier S# has status STATUS.

(c) There exists a status STATUS such that supplier S# is under contract, is named
SNAME, has status STATUS and is located in CITY (but we do not know S#'s
status).

I argue that of these three only (b) is appropriate.

If (a) is chosen and TUPLE {S# S#('S1'), SNAME NAME('Smith'), STATUS
20, CITY 'London'} appears in the multirelation, then TUPLE {S# S#('S1'),
SNAME NAME('Smith'), CITY 'London'} must also appear. For if it is true that
supplier S1 is named Smith, has status 20 and is located in London, then it is most definitely
true that supplier S1 is named Smith and is located in London!

If (c) is chosen and TUPLE {S# S#('S1'), SNAME NAME('Smith'), CITY
'London'} appears in the multirelation, then some tuple consisting of those attribute values
and an additional attribute value for STATUS must also appear! This observation raises a big
question mark in my own mind on all attempts that have been proposed to represent the
concept of something being "missing" because it "exists but its value is unknown". However,
the issue brings to mind Hodges's notion ([8]) that it is more accurate in general to think of a
proposition asserted to be true as representing a belief, rather than a fact.14 Then we could
rephrase (b) as follows:

(b) Supplier S# is named SNAME and is located in CITY and there does not exist a
status STATUS such that we believe that supplier S# has status STATUS.

We might believe that supplier S1 has some status but it does not follow that there is some
particular status s such that we believe S1’s status to be s.

There is a nice consequence of this interpretation when we consider the predicate represented
by a multiprojection. Take this example:

S ONTO { S#, SNAME, CITY }

Some tuples in the result might be derived from the participant whose predicate is “Supplier
S# is named SNAME, is located in CITY and has status STATUS.” The predicate for the
given projection of that participant is therefore “There exists a status STATUS such that

14 C.J. Date gives a more in-depth discussion of appealing to belief rather than fact in reference [4].

Page 34 of 37 —Multirelations

supplier S# is named SNAME, is located in CITY and has status STATUS.” Other tuples in
the result are derived from the participant whose predicate is “Supplier S# is named SNAME
and is located in CITY and there does not exist a status STATUS such that we believe that
supplier S# has status STATUS.” A predicate for the given multiprojection is therefore the
disjunction of these two:

Either there exists a status STATUS such that supplier S# is named SNAME, is located
in CITY and [we believe] has status STATUS or supplier S# is named SNAME and is
located in CITY and there does not exist a status STATUS such that we believe that
supplier S# has status STATUS.

which simplifies to

Supplier S# is named SNAME, and is located in CITY.

14. Applications of multirelations

Since publication of The Third Manifesto in the mid-1990s we have seen a gratifying amount
of interestand it is still growingin the idea of providing a TTM-conforming (i.e., truly
relational) interface to existing SQL databases. The tables in Figure 1, depicting
multirelations, could equally well be depicting SQL tables, with NULL assumed to be
occupying each of the vacant spaces. The apparently straightforward mapping from SQL
tables to multirelations creates an obvious opportunity to provide an alternative language for
operating on these objects. The operators proposed here are, unlike SQL’s, based firmly in
classical logic and set theory. That should make them significantly easier to teach, learn, and
use, as well as providing a bridge to true relations and their operators.

As we will see, the main applications I have in mind for multirelation operators are in
database constraints that would be needed if the database is to contain multirelation variables.
The usefulness of the multirelation operators for query purposes is somewhat open to question
because their complexity, as discussed in Section 13, Interpretation of a multirelation,
makes them in general more subject to misinterpretation than relations. I note, however, that
the often-perceived requirement for “outer” operations—especially outer join—can be
addressed by use of MR-union. Also, for a certain common kind of regular report, MR-union
might be more suitable than relational join. Requirements such as these have occasionally
given rise to suggestions that “relational” operators might be needed that yield sets of
relations, an idea that differs from the multirelation approach primarily in that a participating
relation in multirelation mr is a subset of the body of mr rather than an element of it. Here,
for example, is how David McGoveran floated the idea in reference [10] (the emphasis being
his):

[The foregoing discussion] suggests some extensions to the relational algebra to support more general
versions of the relational operators. In particular, relational union is a restricted version of the general
set union. I propose that the system should automatically create several tables in the output (when
appropriate), grouping like rows together by performing by performing the “restrict and throw away
nulls” operation in the user’s behalf. […] In effect, such set operations would be many-table result

Multirelations — Page 35 of 37

versions of existing relational operations; they would avoid the need for users to simulate such
operations manually, via several SQL statements. Whether many-table operands (as opposed to results)
should be permitted deserves additional and careful consideration, however. For the time being I
propose that such many-table values be supported only for output.15

For example, assume that S, SP and SPJ are the usual relvars for suppliers, shipments, and
shipments to projects and we want a report showing suppliers in supplier number order, each
one followed by a list showing shipments for that supplier, each one followed by a list of the
projects using such shipments. The multirelation denoted by the following expression
provides all the information needed for that report:

MR_UNION { S, SP, SPJ }

Its tuples would have to be fed to the report generator in a suitable order to meet
McGoveran’s “grouping like rows together” requirement. Perhaps that could be specified by

ORDER (ASC S#, ASC P#, ASC J#)

The resulting order would need to be defined such that an SP tuple comes immediately before
its first matching SPJ tuple (if any), and an S tuple comes immediately before its first
matching SP tuple (if any). Of course, if for some reason the usual “foreign key” constraints
have not been defined for SPJ and SP, then the report will display some anomalies.

15. Some topics for further investigation

1. Resolution of outstanding issues in connection with MR-restriction.

2. Multirelation comparison operators and constraints.

3. Virtual relvars defined on multirelvars, and virtual multirelvars.

4. Subtypes of multirelation types under specialization by constraint as described in [2].

5. Aggregation and summarization of multirelations.

6. Support for temporal data in multirelations.

7. A formally specified algebra of multirelations.

8. What problems, if any, can be solved with multirelations that cannot be solved without
them? (We think, none.)

15 I hope I have given the matter that “additional and careful consideration”, and that 13 years is sufficient to
satisfy McGoveran’s “[f]or the time being”.

Page 36 of 37 —Multirelations

16. Acknowledgements

Chris Date commented, more than once in detail, on several early drafts. I agreed with nearly
all of those comments. In one of his comments that I agree with but have not addressed he
remarks that my use of the term “normal form” for certain canonical forms is somewhat out of
kilter with its use in relational database design theory, where it applies to a series of such
forms, based on projection and join, such that each n-1th form in that series is implied by the
n-th such form. I agree with the observation but am reluctant to abandon the snappy terms
MRK-NF and MR-6NF. At least it is the case that MR-6NF is derived from MRK-NF by a
form of decomposition using projections.

Adrian Hudnott, of Warwick University, also reviewed an earlier draft and gave me some
useful comments.

Dennis Ashley provided references [5] and [7], both being mathematical treatises using the
term multirelation. It is not clear to me whether they are referring to exactly the same
concept, nor how close either of them is to the concept I have defined here.

Multirelations — Page 37 of 37

17. References

[1] Hugh Darwen. How to Handle Missing Information Without Using NULL at
http://www.thethirdmanifesto.com.

[2] C.J. Date and Hugh Darwen. Databases, Types, and The Relational Model: The Third
Manifesto (3rd edition). Addison-Wesley (2006).

[3] C.J. Date. The Relational Database Dictionary. O’Reilly (2006).

[4] C.J. Date. Chapter 4, “The Closed World Assumption” in Logic and Databases: The
Roots of Relational Theory. Trafford publishing (2007).

[5] Roland Fraïssé and Norbert Sauer. Theory of Relations. Elsevier (2000).

[6] Maurice Gittens. On Logical Mistakes and The Third Manifesto. An English
translation of an article in Dutch that appeared in the Database Magazine, Issue #2,
April 2007.

[7] Wim H. Hesselink. Multirelations are predicate transformers at
http://www.cs.rug.nl/~wim/pub/whh318.pdf

[8] Wilfrid Hodges. Logic, Penguin Books Ltd (1978)

[9] Adrian Larner. A New Model of Data at
http://www.btinternet.com/~adrian.larner/database.htm.

[10] David McGoveran. “Nothing from Nothing” (in four parts), in C.J. Date, Hugh
Darwen, and David McGoveran, Relational Database Writings 1994-1997. Addison-
Wesley (1998).

[11] Fabian Pascal. The Final Null in The Coffin at
http://www.dbdebunk.com/publications.html.

End of paper

