
NP-Hardness of
Learning Programs and

Partial MCSP

Shuichi Hirahara

National Institute of Informatics, Japan

@Oxford-Warwick complexity meeting August 25, 2022

Outline

1. History of MCSP

2. MINLT and Learning Programs

3. Proof Techniques

The Cook-Levin Theorem

SAT is NP-complete.

The Cook-Levin Theorem [Cook 1971, Levin 1973]

➢ One of the most fundamental theorems in complexity theory

➢ Independently proved by Cook (in the Western Bloc) and

by Levin (in Soviet Union) during the cold war.

Stephen Cook Leonid Levin

In the early 1970s… Some problems

are

NP-complete!

But these

problems are of

narrow interest.

The results would not be worth publishing

unless more popular problems can be

shown to be NP-complete.

Reference: https://www.cs.bu.edu/fac/lnd/research/hard.htm

For example:

1. Graph isomorphism

2. Factoring

3. The Minimum Circuit Size Problem

Unlikely to be

NP-complete.

Leonid,

PUBLISH IT!

Leonid LevinAndrey Kolmogorov

(MCSP, named by [Kabanets & Cai’00])

It is still open to prove NP-completeness!

Very interesting!

https://www.cs.bu.edu/fac/lnd/research/hard.htm

Levin’s 1973 paper (submitted in 1972)

➢ Levin presented six NP-complete problems.

Problem 1: the Set Cover problem

Problem 2: DNF-MCSP∗

(The partial variant of DNF-MCSP)

Problem 3: SAT

Problem 5: The Subgraph Isomorphism Problem

This work: NP-completeness of MCSP∗

Has been open over the last 50 years!The English translation from [Trakhtetenbrot’84].

MCSP (The Minimum Circuit Size Problem [Kabanets & Cai’00])

Fact: MCSP ∈ NP

Open: NP-hardness of MCSP

• The truth table of a function

𝑓: 0,1 𝑛 → 0, 1
(encoded as a string of length 2𝑛)

Is there a circuit of size ≤ 𝑠
that computes 𝑓?

Input Output

Example

• A size parameter 𝑠 ∈ ℕ

truthtable ⊕2 = 0110 size ⊕2 = 3

𝒙𝟏 𝒙𝟐 𝒙𝟏 ⊕ 𝒙𝟐

0 0 0

0 1 1

1 0 1

1 1 0

Here, we count the number of ∨ and ∧ gates.

(We may consider other measures of “circuit size”.)

MCSP∗ (Partial MCSP)

Fact: MCSP∗ ∈ NP

• The truth table of a partial function

𝑓: 0,1 𝑛 → 0, 1,∗
(𝑓 𝑥 =∗ indicates “I don’t care”)

Is there a circuit of size ≤ 𝑠 that outputs
𝑓(𝑥) on input 𝑥 ∈ 𝑓−1(0,1)?

Input Output

Example

• A size parameter 𝑠 ∈ ℕ

truthtable 𝑓 = 0 ∗ 1 ∗
size 𝑓 = 0

𝒙𝟏 𝒙𝟐 𝒇(𝒙𝟏, 𝒙𝟐)

0 0 0

0 1 ∗

1 0 1

1 1 ∗

A circuit 𝐶 𝑥1, 𝑥2 ≔ 𝑥1 computes 𝑓(𝑥1, 𝑥2) on input (0, 0) and 1, 0 .

MCSP∗ is NP-hard under

randomized poly-time reductions.

Main Theorem 1

Minimum DNF Size Problem (DNF-MCSP)

• The truth table of a Boolean function

𝑓: 0,1 𝑛 → 0, 1
(encoded as a string of length 2𝑛)

Input Output

• A size parameter 𝑠 ∈ ℕ

Is there a DNF formula of
size ≤ 𝑠 that computes 𝑓?

Example truthtable ⊕2 = 0110 DNFsize ⊕2 = 4

𝑥1 ⊕ 𝑥2 = 𝑥1 ∧ ¬𝑥2 ∨ ¬𝑥1 ∧ 𝑥2

Theorem [Masek’79]: DNF-MCSP is NP-complete.

Theorem [H.-Oliveira-Santhanam’18]: DNF ∘ XOR -MCSP is NP-complete.

Theorem [Ilango’20]: AC0 formula-MCSP is NP-complete.

MCSP∗ is hard under Exponential Time Hypothesis.

Theorem [Ilango’21]: Formula-MCSP is hard under Exponential Time Hypothesis.

MCSP versus MCSP∗

DNF-MCSP∗NP ≤𝑚
𝑝

≤𝑚
𝑝

DNF-MCSP

DNF ∘ XOR-MCSP∗ DNF ∘ XOR-MCSP≤𝑚
𝑝

≤𝑚
𝑝

NP

[H.-Oliveira-Santhanam’18]

[Allender, Hellerstein, McCabe, Pitassi, Saks‘08]

[Ilango’20]

SAT ≤𝑚
𝑒𝑥𝑝

Formula-MCSP∗

[Ilango’21]

≤𝑇
𝑒𝑥𝑝 Formula-MCSP

NP ≤𝑚
BPP MCSP∗ ≤

?

(open)
MCSP

This work

The Main Theorem

➢ In fact, initially I didn’t try to prove NP-hardness of MCSP∗.

➢ Our starting point was NP-hardness of MINLT [Ko’91],

which asks the Kolmogorov complexity of a partial function (succinctly encoded).

➢ NP-hardness of MCSP∗ has nothing to do with Kolmogorov complexity,

but it plays an important role in the proof.

MINLT,

Main Theorem

(listed in the order of the difficulty of the proofs)

are all NP-hardMINKT∗, MKTP∗, MCSP∗, NC1-MCSP∗

via a single reduction!

➢ Previously, no non-trivial reduction among them was known.

(even NC1-MCSP∗ ≤𝑚
BPP MCSP∗ was unknown.)

MINKT∗ (The partial variant of MINKT [Ko’91])

• A partial string 𝑥 ∈ 0,1,∗ 𝑛
Is there a 𝑡-time program of
size 𝑠 that prints 𝑦 ∈ 0,1 𝑛

consistent with 𝑥?

Input Output

• A time parameter 𝑡 ∈ ℕ (in unary)

• A size parameter 𝑠 ∈ ℕ

Example: 0 ∗ 11 ∗ is consistent with 00111

but not consistent with 10110

Informally, MINKT∗ is the problem of computing K∗,𝑡 − .

➢ Kolmogorov complexity K 𝑦 ≔ min 𝑀 ∶ 𝑀 prints 𝑦 .

➢ 𝑡-time-bounded Kolmogorov complexity K𝑡 𝑦 ≔ min 𝑀 ∶ 𝑀 prints 𝑦 in 𝑡 steps .

➢ For 𝑥 ∈ 0,1,∗ 𝑛, K∗, 𝑡 𝑥 ≔ min K𝑡 𝑦 ∶ 𝑦 ∈ 0,1 𝑛 is consistent with 𝑥 .

In terms of Kolmogorov complexity:

Outline

1. History of MCSP

2. MINLT and Learning Programs

3. Proof Techniques

PAC Learning and Occam Learning

➢ The task of learning is parameterized by

• a concept class 𝒞 and

• a hypothesis class ℋ. E.g., 𝒞 = {linear-size circuits}, ℋ = {poly-size circuits}.

➢ Occam learning of 𝒞 by ℋ [Blumer, Ehrenfeucht, Haussler, Warmuth’87]

Given 𝑥1, 𝑐 𝑥1 , … , 𝑥𝑚, 𝑐 𝑥𝑚 as input for some unknown concept 𝑐 ∈ 𝒞,

output a hypothesis ℎ ∈ ℋ such that ℎ 𝑥𝑖 = 𝑐(𝑥𝑖) for every 𝑖.

∈ FNP (an NP search problem)

➢ Occam learning of 𝒞 by ℋ is equivalent to PAC learning of 𝒞 by ℋ
(for a sufficiently large ℋ).
[Blumer, Ehrenfeucht, Haussler, Warmuth’87] [Board & Pitt’92] [Schapire’90]

PAC Learning of 𝒞 by ℋ

PAC learner

An unknown concept 𝑐 ∈ 𝒞

An arbitrary distribution 𝒟

𝑥1, 𝑐 𝑥1 for 𝑥1 ∼ 𝒟

Input

Output

ℎ ∈ ℋ such that Pr
𝑥∼𝒟

𝑐 𝑥 = ℎ 𝑥 ≥ 1 − 𝜖

(with probability 1 − 𝛿)

Example oracle

𝛿, 𝜖 > 0

𝑥𝑚, 𝑐 𝑥𝑚 for 𝑥𝑚 ∼ 𝒟

…

Big Open Problem: Is PAC learning of linear-size circuits

by poly-size circuits as hard as NP?

Is improper

learning

“NP-complete”?

Known Results

PAC learning of 𝑘-term DNFs by 𝑘-term DNFs is NP-hard.

[Pitt & Valiant ‘88]

[Alekhnovich, Braverman, Feldman, Klivans, Pitassi ‘08]

PAC learning of linear-size DNFs by poly-size OR ∘ {halfspaces} is NP-hard.

Open: NP-hardness of linear-size NC1 by poly-size NC1 circuits

➢ In general, as a hypothesis class ℋ becomes larger,

it becomes more difficult to prove NP-hardness.

Ko’s Question: ℋ = {programs}

Ker-I Ko

[Ko’91]

➢ Consider the “largest” hypothesis class

ℋ = {efficient programs}.

Ko’s Question: Can we prove NP-hardness of Occam learning of ℋ by ℋ?

E.g., a circuit can be simulated by a program.

(1950-2018)

More generally, a program can represent a function most succinctly.

(by the fundamental principle of Kolmogorov complexity)

MINLT [Ko’91]
➢ The decision version of Occam learning for efficient programs

𝑥1, 𝑏1 , … , 𝑥𝑚, 𝑏𝑚 ∈ 0,1 𝑛 × {0,1}

Input Output

• A time parameter 1𝑡

• Samples Is there a 𝑡-time program 𝑀 of size 𝑠
such that 𝑀 𝑥𝑖 = 𝑏𝑖 for every 𝑖?

• A size parameter 1𝑠

“The complexity of MINLT appears

very difficult to classify precisely.” [Ko’91]

Theorem [Ko’91]: No relativizing proof for NP-hardness of MINLT exists.

NP-hardness of MINLT

➢ We overcome Ko’s relativization barrier!

Theorem 1 (NP-hardness of the decision version of PAC learning for programs)

It is NP-hard to solve the following promise problem:

Input: a distribution 𝒟, a size parameter 𝑠 ∈ ℕ

Yes: there exists a poly-time program 𝑀 of size 𝑠 such that

Pr
(𝑥,𝑏)∼𝒟

𝑀 𝑥 = 𝑏 = 1

No: for any time-unbounded program 𝑀 of size 𝑠 ⋅ 𝑛1/ log𝑂(1) log 𝑛,

Pr
(𝑥,𝑏)∼𝒟

𝑀 𝑥 = 𝑏 ≤
1

2
+ 2−𝑛0.99

➢ In particular, MINLT is also NP-hard.

NP-hardness of MINLT

➢ We overcome Ko’s relativization barrier!

Theorem 1 (NP-hardness of the decision version of PAC learning for programs)

It is NP-hard to solve the following promise problem:

Input: a distribution 𝒟, a size parameter 𝑠 ∈ ℕ

Yes: there exists a poly-time program 𝑀 of size 𝑠 such that

Pr
(𝑥,𝑏)∼𝒟

𝑀 𝑥 = 𝑏 = 1

No: for any time-unbounded program 𝑀 of size 𝑠 ⋅ 𝑛1/ log𝑂(1) log 𝑛,

Pr
(𝑥,𝑏)∼𝒟

𝑀 𝑥 = 𝑏 ≤
1

2
+ 2−𝑛0.99

➢ In particular, MINLT is also NP-hard.

In fact,

𝑀 computes a

linear function.

If this is improved to 1.01𝑛,

then Heuristica doesn’t exist!

[H. & Nanashima’21]

NP-hardness of MCSP∗

Theorem 2

It is NP-hard to solve the following promise problem:

Input: a partial function 𝑓: 0,1 𝑛 → {0,1,∗}, a size parameter 𝑠 ∈ ℕ

Yes: ∃ a program 𝑀 of size 𝑠 and ∃ an NC1 circuit 𝐶 of size
𝑠

log 𝑠
such that

Pr
𝑥∼𝐷

𝑀 𝑥 = 𝑓(𝑥) = 1 & Pr
𝑥∼𝐷

𝐶 𝑥 = 𝑓(𝑥) = 1

No: ∀ program 𝑀 of size 𝑠 ⋅ 𝑛0.01 and ∀ circuit 𝐶 of size
𝑠

log 𝑠
⋅ 𝑛0.01,

Pr
𝑥∼𝐷

𝑀 𝑥 = 𝑓(𝑥) ≤
1

2
+ 𝑛−0.01 & Pr

𝑥∼𝐷
𝐶 𝑥 = 𝑓(𝑥) ≤

1

2
+ 𝑛0.01

➢ By optimizing the reduction of Theorem 1, we get:

𝐷 ≔ the uniform distribution over 𝑓−1 0,1

NP-hardness of MCSP∗

Theorem 2

It is NP-hard to solve the following promise problem:

Input: a partial function 𝑓: 0,1 𝑛 → {0,1,∗}, a size parameter 𝑠 ∈ ℕ

Yes: ∃ a program 𝑀 of size 𝑠 and ∃ an NC1 circuit 𝐶 of size
𝑠

log 𝑠
such that

Pr
𝑥∼𝐷

𝑀 𝑥 = 𝑓(𝑥) = 1 & Pr
𝑥∼𝐷

𝐶 𝑥 = 𝑓(𝑥) = 1

No: ∀ program 𝑀 of size 𝑠 ⋅ 𝑛0.01 and ∀ circuit 𝐶 of size
𝑠

log 𝑠
⋅ 𝑛0.01,

Pr
𝑥∼𝐷

𝑀 𝑥 = 𝑓(𝑥) ≤
1

2
+ 𝑛−0.01 & Pr

𝑥∼𝐷
𝐶 𝑥 = 𝑓(𝑥) ≤

1

2
+ 𝑛0.01

➢ By optimizing the reduction of Theorem 1, we get:

𝐷 ≔ the uniform distribution over 𝑓−1 0,1

𝑠 = 2Θ 𝑛 .

Exponential

circuit lower

bounds!

Follows from this

program l.b.

Program lower bound ⟹ Circuit lower bound

➢ 𝑓: 0,1 𝑛 → 0,1 , a function

➢ Suppose that there is no program of size 𝑠 that can compute 𝑓.

Claim: There is no circuit of size Ω
𝑠

log 𝑠
that computes 𝑓.

• Assume that there is a circuit 𝐶 of size 𝑠′ that computes 𝑓.

Proof:

• Since 𝐶 can be simulated by a program,

we may construct a program of size 𝑂 𝑠′ log 𝑠′ that computes 𝑓.

• Therefore, 𝑠 ≤ 𝑂(𝑠′ log 𝑠′). ∎

Outline

1. History of MCSP

2. MINLT and Learning Programs

3. Proof Techniques

Proof Techniques

➢ NP-hardness of MINLT

• Secret sharing scheme

➢ NP-hardness of MCSP∗

Both results use Kolmogorov complexity in a fundamental way.

• Use a pseudorandom generator construction

as a one-time encryption scheme.

• PCP theorem (for Sliding Scale Conjecture)

• Nisan-Wigderson pseudorandom generator construction

• Impagliazzo-Wigderson derandomized XOR lemma

• Uhlig’s theorem

• A reduction from Minimum Monotone Satisfying Assignment

Pseudorandomness, PCP theorems, Cryptography.

Minimum Monotone Satisfying
Assignment Problem (MMSA)

• A monotone formula 𝜑 Is there a satisfying
assignment 𝛼 ∈ 0,1 𝑛 for 𝜑
with Hamming weight 𝜃?

Input Output

• A threshold parameter 𝜃 ∈ ℕ

Example: 𝜑 = 𝑥1 ∨ 𝑥2 ∧ (𝑥1 ∨ 𝑥3) 𝛼 = "100" ∈ 0,1 3 satisfies 𝜑

➢ NP-hard to approximate within a factor of 𝑛1/ log𝑂(1) log 𝑛

[Dinur & Safra’04] [Dinur, Harsha & Kindler’15]

Secret Sharing Scheme

➢ Any monotone formula 𝜑 admits a secret sharing scheme.

[Shamir’79, Blakley’79]

• A set 𝑇 ⊆ [𝑛] of parties is authorized if 𝜑 𝜒𝑇 = 1.

• A secret sharing scheme shares a secret 𝑏 ∼ 0,1 among 𝑛 parties so that

[Ito, Saito, and Nishizeki’93] [Benaloh and Leichter’88]

(Correctness) any authorized set of parties can reconstruct 𝑏, but

(Privacy) no unauthorized set has no information about 𝑏.

Secret Sharing Scheme (continued)

Any monotone formula 𝜑 admits a secret sharing scheme.

• A set 𝑇 ⊆ [𝑛] of parties is authorized if 𝜑 𝜒𝑇 = 1.

• A secret sharing scheme shares a secret 𝑏 ∼ 0,1
among 𝑛 parties so that

(Correctness) any authorized set can reconstruct 𝑏, but

(Privacy) no unauthorized set has no information about 𝑏.

Example: 𝜑 = 𝑥1 ∨ 𝑥2 ∧ (𝑥1 ∨ 𝑥3)

∧

∨ ∨

𝑥1 𝑥2 𝑥1 𝑥3

• 3 parties: 𝑥1, 𝑥2, 𝑥3

• A secret 𝑏 ∼ {0,1}𝑏

𝑟1 ∼ {0,1} 𝑟2 ≔ 𝑏 ⊕ 𝑟1

𝑟1 𝑟1 𝑟2 𝑟2

𝑥1
′ 𝑠 share 𝑠1 ≔ (𝑟1, 𝑟2)

𝑥2
′ 𝑠 share 𝑠2 ≔ 𝑟1

𝑥3
′ 𝑠 share 𝑠3 ≔ 𝑟2

• Authorized sets 𝑥1 , 𝑥2, 𝑥3

can reconstruct 𝑏.

• {𝑥2} has no information about 𝑏
(𝑠2 = 𝑟1 is independent of 𝑏).

The reduction from MMSA to MINLT

➢ Let 𝜑 be a (depth-3) monotone formula on 𝑛 variables.

➢ Choose 𝑓1, … , 𝑓𝑛 ∼ 0,1 𝜆
(using the randomness of a randomized reduction).

➢ Define a distribution ℰ = ℰ 𝑓1, . . , 𝑓𝑛 as follows.

• Choose a secret 𝑏 ∼ 0,1 .

• Share 𝑏 among 𝑛 parties.

Let 𝑠1, … , 𝑠𝑛 be the shares given to the 𝑖-th party.

• Define 𝑥 ≔ 𝑧1, 𝐺 𝑓1; 𝑧1 ⊕ 𝑠1, … , 𝑧𝑛, 𝐺 𝑓𝑛; 𝑧𝑛 ⊕ 𝑠𝑛 for 𝑧𝑖 ∼ 0,1 ∗

• Output 𝑥, 𝑏 .

𝐺 𝑓; 𝑧1, … , 𝑧𝑘 ≔ 𝑧1, 𝑓 … 𝑧𝑘 , 𝑓 ∈ 0,1 𝑘, a pseudorandom generator construction

Hide the share 𝑠𝑖 in 𝑥
so that only a program

that knows 𝑓𝑖 can read 𝑠𝑖 .

Completeness of the reduction

➢ Suppose 𝜑 is satisfiable by assignment 𝛼 with Hamming weight ≤ 𝜃.

➢ Consider the following program 𝑀:

• Hard-wired input: 𝑓𝑖 𝑖 ∈ 𝑇 .

➢ Then, the set 𝑇 ≔ 𝑖 𝛼𝑖 = 1 is authorized.

• Input: 𝑥 = 𝑧1, 𝜉1, … , 𝑧𝑛, 𝜉𝑛

• Let 𝑠𝑖 ≔ 𝜉𝑖 ⊕ 𝐺(𝑓𝑖; 𝑧𝑖) for each 𝑖 ∈ 𝑇.

• Reconstruct 𝑏 by using 𝑠𝑖 𝑖 ∈ 𝑇 .

• Output 𝑏 ∈ {0,1}.

➢ The size of 𝑀 is σ𝑖∈𝑇 𝑓𝑖 = 𝑇 ⋅ 𝜆 ≤ 𝜃𝜆 and

Distribution ℰ = ℰ 𝑓1, . . , 𝑓𝑛

• Choose a secret 𝑏 ∼ 0,1 .

• Share 𝑏 among 𝑛 parties.

Let 𝑠1, … , 𝑠𝑛 be the shares given to the 𝑖-th party.

• Define 𝑥 ≔ 𝑧1, 𝐺 𝑓1; 𝑧1 ⊕ 𝑠1, … , 𝑧𝑛, 𝐺 𝑓𝑛; 𝑧𝑛 ⊕ 𝑠𝑛

• Output 𝑥, 𝑏 .

Pr
𝑥,𝑏 ∼ℰ

𝑀 𝑥 = 𝑏 = 1.

Soundness of the reduction (1/3)

If no assignment 𝛼 of weight 2𝜃 can satisfy 𝜑,

then for every program 𝑀 of size 𝜃𝜆,
Claim:

➢ DP𝑘 𝑓; 𝑧 ≔ 𝑧, 𝐺 𝑓; 𝑧 = 𝑧, 𝑧1, 𝑓 … 𝑧𝑘 , 𝑓 is known to be

pseudorandom against any algorithm 𝑀 such that K 𝑓|𝑀 ≫ 𝑘. [H.’20]

DP𝑘: 0,1 𝜆 × 0,1 𝜆 𝑘
→ 0,1 𝜆𝑘+𝑘, a 𝑘-wise direct product generator

If K 𝑓|𝑀 > 𝑘 + 𝑂 log 𝑛 , then

Pr
𝑧

𝑀 𝑧, 𝑮 𝒇; 𝒛 = 1 − Pr
𝑧,

𝑤∼ 0,1 𝑘

𝑀 𝑧, 𝒘 = 1 ≤ 𝑜 1 .

Pr
𝑥,𝑏 ∼ℰ

𝑀 𝑥 = 𝑏 ≤
1

2
+ 𝑜 1 .

Soundness of the reduction (2/3)

➢ Idea: We want to formalize that 𝑀 “knows” 𝑓𝑖 (Is 𝑓𝑖 hard-wired in 𝑀?).

➢ 𝑀 knows 𝑓𝑖 ⟺ K 𝑓𝑖 𝑀 ≪ 𝑓𝑖 = 𝜆.

(Equivalently, the mutual information I 𝑓𝑖: 𝑀 = K 𝑓𝑖 − K 𝑓𝑖 𝑀 is large.)

➢ Let 𝐵 ≔ 𝑖 𝑀 knows 𝑓𝑖 .

𝐵 ≤ 1 + 𝑜 1 ⋅
𝑀

𝜆
and Pr

𝑧
𝑀 DP𝑘(𝑓𝑖; 𝑧) = 1 ≈ Pr

𝑤
𝑀 𝑤 = 1 for every 𝑖 ∉ 𝐵.

If no assignment 𝛼 of weight 2𝜃 can satisfy 𝜑,

then for every program 𝑀 of size 𝜃𝜆,
Claim:

Pr
𝑥,𝑏 ∼ℰ

𝑀 𝑥 = 𝑏 ≤
1

2
+ 𝑜 1 .

➢ 𝐵 ≤ 1.1 ⋅
𝑀

𝜆
≤ 1.1 ⋅ 𝜃 < 2𝜃.

➢ 𝐵 is not authorized, so the secret cannot be reconstructed from 𝑠𝑖 𝑖 ∈ 𝐵 .

Key Lemma: “Algorithmic Information Extraction Lemma”

def

Soundness of the reduction (3/3)

Pr
𝑥,𝑏 ∼ℰ

𝑀 𝑥 = 𝑏 = Pr 𝑀 DP𝑘 𝑓1; 𝑧1 ⊕ 𝑠1, DP𝑘 𝑓2; 𝑧2 ⊕ 𝑠2 = 𝑏

Example: Assume 𝐵 = 2 and 𝑛 = 2.

≈ Pr
𝑤1∼ 0,1 ∗

𝑀 𝑤1 , DP𝑘 𝑓2; 𝑧2 ⊕ 𝑠2 = 𝑏

Because 𝑀 does not know 𝑓1

=
1

2
Because 𝐵 is not authorized.
(𝑠2 does not reveal any information about 𝑏) ∎

𝑀 does not know 𝑓1, but 𝑀 knows 𝑓2.

Extension to MCSP∗

➢ A distribution ℰ defines a partial function 𝑓: 0,1 𝑛 → 0,1,∗ , where

𝑓 𝑥 ≔ ቊ
𝑏, if 𝑥, 𝑏 ∈ supp(ℰ)
∗, otherwise

➢ The reduction to MINLT produces 𝑓: 0,1 𝑛𝑂(1)
→ 0,1,∗ ,

given 𝜑 of size 𝑛.

➢ The Ideas for NP-hardness of MINKT∗, MKTP∗, MCSP∗:

Reduce the input length of 𝑓 to 𝑂 log 𝑛 .

(Then, the truth table of 𝑓: 0,1 𝑂(log 𝑛) → {0,1,∗} is of polynomial length.)

NP-hardness of MINKT∗

➢ We start from a PCP system of [Dinur, Fischer, Kindler, Raz, Safra’11]

(to obtain a large inapproximability factor).

➢ Instead of MMSA, we consider a collection of monotone formulas

𝜑1, … , 𝜑𝑛

over [𝑛] variables, where each 𝜑𝑗 “checks” the consistency of proofs.

➢ The distribution ℰ = ℰ(𝑓1, … , 𝑓𝑛) (that outputs (𝑥, 𝑏)) is defined as follows:

The locality of PCP theorems + Nisan-Wigderson generator

➢ Locality of PCP: Δ ≔ 𝜑𝑗 ≪ log 𝑛 .

• Let 𝑗 ∼ 𝑛 . Share a secret 𝑏 ∼ {0,1} among Δ parties using 𝜑𝑗 .

NW: Nisan-Wigderson generator, Enc: error-correcting code.

• 𝑥 ≔ 𝑗, 𝑧, NW Enc(𝑓1); 𝑧𝑆1
⊕ 𝑠1, … , NW Enc(𝑓Δ); 𝑧𝑆Δ

⊕ 𝑠Δ

NP-hardness of MKTP∗

➢ A program has 𝑓𝑖 𝑖 ∈ 𝑇 as hard-wired input for an authorized set 𝑇.

➢ In order to compute NW Enc(𝑓𝑖); 𝑧𝑆𝑖
from 𝑓𝑖 ,

one needs to read almost all bits of 𝑓𝑖 ∈ 0,1 𝜆.

Impagliazzo-Wigderson’s derandomized hardness amplification theorem

➢ The time complexity is ≫ 𝜆, whereas

MKTP∗ asks sublinear-time-bounded Kolmogorov complexity.

➢ We use the hardness amplification theorem of [Impagliazzo-Wigderson’97],

which provides a locally-encodable list-decodable error-correcting code.

NP-hardness of MCSP∗

➢ We must hard-wire 𝑓𝑖 𝑖 ∈ 𝑇 in a circuit using at most 𝑂
𝜆

log 𝜆
⋅ |𝑇| gates.

Uhlig’s theorem

➢ Observation: Enc(𝑓) is computable by a 𝑓-oracle nonadaptive circuit.

Theorem [Uhlig’74, Uhlig’92]

➢ Moreover, the circuit must be able to compute NW Enc(𝑓𝑖); 𝑧𝑆𝑖
.

For any 𝑓: 0,1 log 𝜆 → 0,1 , the 𝑟-wise direct product

𝑓𝑟 𝑥1, … , 𝑥𝑟 = 𝑓 𝑥1 , … , 𝑓 𝑥𝑟

can be computed by a circuit of size 𝑂
𝜆

log 𝜆
if 𝑟 = 𝜆𝑜(1/ log log 𝜆).

A circuit computing Enc(𝑓)

Enc 𝑓 𝑥

…𝑓 𝑓

Input: 𝑥

Query: 𝑞1 Query: 𝑞𝑟

𝑟-wise direct product of 𝑓

Circuit size: 𝑂
𝜆

log 𝜆

⊕

Open Problems

➢ Can we prove MCSP∗ ≤𝑚
BPP MCSP ?

• A simple idea: Replace 𝑓 𝑥 =∗ with 𝑓 𝑥 ∼ {0,1}.
• This proves NP-hardness of AveMCSP (the average-case version of MCSP).

➢ Can we exclude Heuristica? (P = NP iff NP is easy on average?)

• Requires non-black-box and non-relativizing proof techniques.
[Bogdanov-Trevisan’06], [Impagalizzo’11], [H.-Nanashima’21]

• GapMINKT ∈ P if DistNP ⊆ AvgP [H.’18] non-black-box, relativizing

• NP ≤𝑚
BPP GapMINKT∗ [This Work] black-box, non-relativizing

• We need to simultaneously overcome the two barriers.

• It suffices to prove GapMINKT∗ ≤𝑚
BPP GapMINKT.

