NP-Hardness of
Learning Programs and
Partial MCSP

Shuichi Hirahara
National Institute of Informatics, Japan

@Oxford-Warwick complexity meeting August 25, 2022

Outline

1. History of MCSP
2. MINLT and Learning Programs

3. Proof Techniques

The Cook-Levin Theorem

The Cook-Levin Theorem [Cook 1971, Levin 1973]

SAT i1s NP-complete.

» One of the most fundamental theorems in complexity theory

» Independently proved by Cook (in the Western Bloc) and

by Levin (in Soviet Union) during the cold war.

Y

Stephen Cook Leonid Levin

Some problems
are
NP-complete!

In the early 1970s...

_ Very interesting!
. veymareang

Leonid,

'; 4 But these

PUBLISH IT! AW 4 problems are of
narrow interest.
Andrey Kolmogorov Leonid Levin

For example:

1. Graph isomorphism Unlikely to be
2. Factoring NP-complete.

The results would not be worth publishing
unless more popular problems can be
shown to be NP-complete.

3. The Minimum Circuit Size Problem
(MCSP, named by [Kabanets & Cai'00])

Reference: https://www.cs.bu.edu/fac/Ind/research/hard.htm It is still open to prove NP-completeness!

https://www.cs.bu.edu/fac/lnd/research/hard.htm

Levin's 1973 paper (submitted in 1972)

We consider six problems of these types. The enti-
ties with which they are concerned are encoded in a

natural way by binary words. The particular choice of M M
natural encoding is not significant here, since they all > LeVI n p re S e n te d S IX N P - CO m p | ete p rO b | e m S .
yield comparable code lengths.

Problem 1. A list [generates determines] a finite set
and a covering of that set by 500-element subsets.

Find a subcovering having a prescribed cardinality T Problem 1 . the Set Cover problem

(determine whether such a subcovering exists).

Problem 2. A table generates a partial Boolean func-
tion. Find a disjunctive normal form of prescribed
dimensions realizing that function in [the its] do-

main [ofdefinition] (determine whether such a DNF \ P ro b | em 2. D NF_MCSP *

exists).
Problem 3. Determine whether a given formula of

the [predicate propositional] calculus is deducible (T h e pa rt | a | Va ri a nt Of D N F - M C S P)

or refutable (or, equivalently, whether a given Boolean
formula is equal to a constant).

Problem 4. Two graphs are given. Find a homo-

morphism of one onto the other (determine whether P ro b | e m 3: S AT

such a homomorphism exists).
Problem 5. Two graphs are given. Find an isomorph-

ism of one into the other (onto part thereof).

Problem 6. Consider matrices composed of integers \
from 1 to 100 and a certain stipulation as to which P ro b | e m 5 °
integers can be vertically adjacent and which can be °

horizontally adjacent. When the outermost integers
are given, continue them over the entire matrix, ob-

wesrini the iyon Sl This work: NP-completeness of MCSP*

The Subgraph Isomorphism Problem

The English translation from [Trakhtetenbrot'84]. Has been open over the last 50 years!

MCSP (The Minimum Circuit Size Problem [Kabanets & Cai'00])

Input ~ Output
X1 @ X2
* The truth table of a function " Is there a circuit of size < s I

f:{0,1}" - {0,1}

(encoded as a string of length 2™)

that computes f? N
| AL A

« Asize parameter s € N / AN

L 1

Example truthtable(é®,) = 0110 size(D;) = 3 \x1 xz/

Here, we count the number of vV and A gates.

x1 D x5 (We may consider other measures of “circuit size".)
0O O 0

0 1 1 Fact: MCSP € NP
1 0 1
1 1 0 Open: NP-hardness of MCSP

MCSP* (Partial MCSP)

Input Output

* The truth table of a partial function [s there a circuit of size < s that outputs
f:{0,13" - {0, 1,%}

- -1 9
(f (x) =+ indicates “I don't care”) f(x) oninputx € f77(10,1}):
* A size parameter s € N |

Example truthtable(f) = 0 = 1 * size(f) =0

A circuit C(xq,x,) == x; computes f(xq,x,) on input (0,0) and (1, 0).

0O O 0

Fact: MCSP* € NP

*

Main Theorem 1

MCSP* is NP-hard under
randomized poly-time reductions.

0 1
1T 0 1
1T 1

Minimum DNF Size Problem (DNF-MCSP)

Input Output

* The truth table of a Boolean function

f:10,1}" - {0,1}

(encoded as a string of length 2™)

[s there a DNF formula of
size < s that computes f?

* Asize parameter s € N

Theorem [Masek'79]: DNF-MCSP is NP-complete.
Theorem [H.-Oliveira-Santhanam’18]: (DNF o XOR)-MCSP is NP-complete.

Theorem [llango'20]: AC® formula-MCSP is NP-complete.
MCSP* is hard under Exponential Time Hypothesis.
Theorem [llango’21]: Formula-MCSP is hard under Exponential Time Hypothesis.

MCSP versus MCSP™

[Allender, Hellerstein, McCabe, Pitassi, Saks'08]

NP <m DNF-MCSP* <P DNF-MCSP

[H.-Oliveira-Santhanam’18]

NP <P DNFoXOR-MCSP* <P DNF oXOR-MCSP
[llango'20] [llango'21]

SAT <p’ Formula-MCSP* <, Formula-MCSP
This work

NP <BPP MCSP* MCSP

The Main Theorem

> In fact, initially 1 didn't try to prove NP-hardness of MCSP™.

» Our starting point was NP-hardness of MINLT [Ko'91],
which asks the Kolmogorov complexity of a partial function (succinctly encoded).

Main Theorem

MINLT, MINKT*, MKTP*, MCSP*, NC1-MCSP* are all NP-hard
via a single reduction!

(listed in the order of the difficulty of the proofs)

» Previously, no non-trivial reduction among them was known.
(even NC1-MCSP* <BPP MCSP* was unknown.)

» NP-hardness of MCSP* has nothing to do with Kolmogorov complexity,
but it plays an important role in the proof.

MINKT™ (The partial variant of MINKT [Ko'91])

Input Output
* Anpartial string x € {0,1,%}" [s there a t-time program of
* Asize parameter s € N size s that prints y € {0,1}"
* Atime parameter t € N (in unary) consistent with x?

Example: 0 * 11 * is consistent with 00111

. but not consistent with 10110
In terms of Kolmogorov complexity:

» Kolmogorov complexity K(y) := min { |M| : M prints y }.
> t-time-bounded Kolmogorov complexity Kt(y) := min { [M| : M prints y in ¢ steps }.
> Forx € {0,1,#}", K*t(x) :== min { Kt(y) : y € {0,1}" is consistent with x }.

Informally, MINKT* is the problem of computing K*¢(-).

Outline

1. History of MCSP
2. MINLT and Learning Programs

3. Proof Techniques

PAC Learning and Occam Learning

> The task of learning is parameterized by

* a concept class € and
* a hypothesis class H. E.g., C = {linear-size circuits}, H = {poly-size circuits}.

» Occam learning of C by H [Blumer, Ehrenfeucht, Haussler, Warmuth'87]
€ FNP (an NP search problem)
Given (xq, c(x1)), -, (X, c(x)) as input for some unknown concept ¢ € C,
output a hypothesis h € H such that h(x;) = c(x;) for every i.

» Occam learning of C by H is equivalent to PAC learning of C by H

(for a sufficiently large H).
[Blumer, Ehrenfeucht, Haussler, Warmuth'87] [Board & Pitt'92] [Schapire'90]

PAC Learning of C by H

An unknown concept c € C
An arbitrary distribution D

Input 6,e>0
“ (xl, c(xl)) forx; ~D
<

/]
R < (%m, c(xm)) for x,, ~D ?

Example oracle

PAC learner \ Outout
h € H such thath%[C(x) =h(x)]=1-—c¢ Is improper
(with probability 1 — &) learning
"NP-complete”?

Is PAC learning of linear-size circuits
by poly-size circuits as hard as NP?

Known Results

[Pitt & Valiant '88]
PAC learning of k-term DNFs by k-term DNFs is NP-hard.

[Alekhnovich, Braverman, Feldman, Klivans, Pitassi ‘O8]

PAC learning of linear-size DNFs by poly-size OR o {halfspaces} is NP-hard.

NP-hardness of linear-size NC! by poly-size NC?! circuits

» In general, as a hypothesis class H becomes larger,
it becomes more difficult to prove NP-hardness.

Ko's Question: H = {programs} ﬁ

[Ko'91]

» Consider the “largest” hypothesis class Ker-1 Ko
(1950-2018)

H = {efficient programs}.

E.g., a circult can be simulated by a program.

More generally, a program can represent a function most succinctly.
(by the fundamental principle of Kolmogorov complexity)

Can we prove NP-hardness of Occam learning of H by H?

MINLT [Ko'91]

» The decision version of Occam learning for efficient programs

Input Output

* Samples s there a t-time program M of size s
(%1,b1), ..o, Gty by) €{0,1}" X {0,1} gych that M(x;) = b; for every i?
« Atime parameter 1° ?

* A size parameter 1°

m “The complexity of MINLT appears
very difficult to classify precisely.” [Ko91]

Theorem [Ko'91]: No relativizing proof for NP-hardness of MINLT exists.

NP-hardness of MINLT

» We overcome Ko's relativization barrier!

Theorem 1 (NP-hardness of the decision version of PAC learning for programs)

It is NP-hard to solve the following promise problem:

Input: a distribution D, a size parameter s € N

Yes: there exists a poly-time program M of size s such that

(x,g)I;D[M (x) =b] =1

. . o(1
No: for any time-unbounded program M of size s - nl/108°" logn,

1
o < — —n
P IMG) =b] <5 +2

0.99

» In particular, MINLT is also NP-hard.

NP-hardness of MINLT

» We overcome Ko's relativization barrier!

Theorem 1 (NP-hardness of the decision version of PAC learning for programs)

It is NP-hard to solve the following promise pre In fact,
M computes a

linear function.

Input: a distribution D, a size parameter s € M

Yes: there exists a poly-time program M of size s such that

(x,g)I;D[M (x) =b] =1

0() logn

No: for any time-unbounded program M of size s - n/108

1
— < — —n
P IMG) =b] <5 +2

0.99

If this is improved to 1.01n,
then Heuristica doesn't exist!
[H. & Nanashima'21]

» In particular, MINLT is also NP-hard.

NP-hardness of MCSP*

» By optimizing the reduction of Theorem 1, we get:

Theorem 2

It is NP-hard to solve the following promise problem:

Input: a partial function f:{0,1}" — {0,1,*}, a size parameter s € N
such that

S

Yes: 3 a program M of size s and 3 an NC? circuit C of size on s

PriM@x) =f)]=1 & PriC(x)=f()] =1

S
. n0-01
log s

PrIMG) = F(0] < 541700 & PriC(x) = ()] < 5+ noo"

No: V program M of size s - n®%! and V circuit C of size

D := the uniform distribution over f~1({0,1})

NP-hardness of MCSP*

> By optimizing the reduction of Theorem 1, we get:

Theorem 2

It is NP-hard to solve the following promise problem:

Input: a partial function f- {0,1}" — {0,1,%}, a size parameter sEeN

Yes: , e s and 3 an NC? circuit C of size
Follows from this log -
program l.b. f(x)]=1 & Pr [C(x) =f(x)] =1

No: V program M of size s - n®%! and V circuit C of size

Exponential
circuit lower
bounds!

TlO'Ol,

logs

PrM(x) = f(x)] < +n‘0 & Pric(x) =f()] < ; + n0-01

D := the uniform distribution over f~1({0,1})

Program lower bound = Circuit lower bound

> :{0,1}" — {0,1}, a function

» Suppose that there is no program of size s that can compute f.

S

Claim: There is no circuit of size Q() that computes f.

log s
Proof:
« Assume that there is a circuit C of size s’ that computes f.

* Since C can be simulated by a program,
we may construct a program of size 0(s’logs") that computes f.

* Therefore, s < 0(s'logs’). =

Outline

1. History of MCSP
2. MINLT and Learning Programs

3. Proof Techniques

P o Of TeC h N |q ues Pseudorandomness, PCP theorems, Cryptography.

Both results use Kolmogorov complexity in a fundamental way.

» NP-hardness of MINLT
* A reduction from Minimum Monotone Satisfying Assignment

Secret sharing scheme
Use a pseudorandom generator construction

as a one-time encryption scheme.

» NP-hardness of MCSP*

PCP theorem (for Sliding Scale Conjecture)
Nisan-Wigderson pseudorandom generator construction
Impagliazzo-Wigderson derandomized XOR lemma
Uhlig's theorem

Minimum Monotone Satistying
Assignment Problem (MMSA)

Input Output
* A monotone formula ¢ [s there a satisfying
A threshold parameter 6 € N assignment a € {0,1}" for ¢

with Hamming weight 67

@ = (x1 Vx3) A(x1V x3) a ="100" € {0,1}3 satisfies ¢

» NP-hard to approximate within a factor of nl/10g°" logn

[Dinur & Safra’04] [Dinur, Harsha & Kindler'15]

Secret Sharing Scheme ishamir79, slakiey 79]

» Any monotone formula ¢ admits a secret sharing scheme.
[Ito, Saito, and Nishizeki'93] [Benaloh and Leichter'88]

 AsetT C [n] of parties is authorized if (y;) = 1.

« A secret sharing scheme shares a secret b ~ {0,1} among n parties so that

(Correctness) any authorized set of parties can reconstruct b, but

(Privacy) no unauthorized set has no information about b.

Secret Sharing Scheme (continued)

@ = (x1 Vx3) A(x1V x3)

3 parties: x4, x5, X3

b « Asecretbh ~ {0,1}
* Authorized sets {x,}, {x,, x3}
can reconstruct b.
r, ~ {0,1} rn=b@n . .
* {x,}has no information about b
2
/ (s, = 1y is independent of b).
X1 X2 X1 X3
r &1 2 g Any monotone formula ¢ admits a secret sharing scheme.

, A set T € [n] of parties is authorized if o(xr) = 1.
x1S share s; == (r1,1,)

A secret sharing scheme shares a secret b ~ {0,1}

/ — among n parties so that
X25 Sha re s; 51 (Correctness) any authorized set can reconstruct b, but
XéS sha re 53 =1 (Privacy) no unauthorized set has no information about b.

The reduction from MMSA to MINLT

> Let @ be a (depth-3) monotone formula on n variables.

> Choose fi, ..., f, ~ {0,1}* (using the randomness of a randomized reduction).

» Define a distribution €& = E(f4, .., f,,) as follows. e ~
Hide the share s; in x
* Choose a secret b ~ {0,1}. so that only a program
, that knows f; can read s;.
« Share b among n parties.)
Let s4, ..., 5, be the shares given to the i-th partyy

° Deflne X = (Zl) G(fli Zl) @ S1y 1 Zn) G(fn; Zn) @ STl) for Zi ~ {011}*
e Output (x,b).

G(f;z%,...,z%) = (2%, f) ...(z%, f) € {0,1}*, a pseudorandom generator construction

Completeness of the reduction

» Suppose ¢ is satisfiable by assignment a with Hamming weight < 6.

» Then, the set T := {i|a; = 1} is authorized.

» Consider the following program M:

> The size of M is };c7lf;| = IT| - 1 < 64 and

Hard-wired input: {f;|i € T}.

Input: x = (z4,&4, -, 2, §1)

lets; =& @ G(f;;z;) foreachi €T.
Reconstruct b by using {s;|i € T}.
Output b € {0,1}.

Distribution € = £(f1,.., f,,)

Choose a secret b ~ {0,1}.
Share b among n parties.
Let 54, ..., s, be the shares given to the i-th party.

Define x = (21, G(f1;21) @ S1, s Zn, G (f1; Z0) D Sp)
Output (x, b).

x}l;)rNS[M (x) =b] =1.

Soundness of the reduction (1/3)

Claim: If no assignment a of weight 26 can satisfy ¢,

then for every program M of size 64, (1;)1. g[M(x) =bp] < 1 + 0(1).
x.b)~

» DP.(f; z) = (Z,G(f; Z)) = (z,{z4,) ...{zy, f)) Is known to be
pseudorandom against any algorithm M such that K(f|M) > k. [H.20]

DP,: {0,1}* x ({0,1}’1)’{ — {0,1}4**% 3 k-wise direct product generator

If K(f|IM) > k + O(logn), then

PZr[M(z,G(f; z))=1] - Pr [M(z,w) = 1]| < o(D).
w~{0,1}¥

Soundness of the reduction (2/3)

Claim: If no assignment a of weight 26 can satisfy ¢,
then for every program M of size 64, (l;)r g[M(x) = p] < % +0(1).
» ldea: We want to formalize that M “knows” f; (Is [; har);’-wired in M?).
» M knows f; & K(f;IM) < |fi| = A
(Equivalently, the mutual information I(f;: M) = K(f;) — K(f;|M) is large.)
> Let B := {i|M knows f;}.

Key Lemma: “Algorithmic Information Extraction Lemma”

Bl < (1+0(1) -2 and Pr{M(DP,(f;; 2)) = 1] ~ Pr[M(w) = 1] for every i & B.

> |B|s1.1-%s1.1-e<20.

> B is not authorized, so the secret cannot be reconstructed from {s;|i € B}.

Soundness of the reduction (3/3)

Assume B = {2} and n = 2.
M does not know f;, but M knows f5.

(x’IZ)I'Ng[M(X) = b] = Pr[M(DPk(fl;Zl) D S1, DPk(fZ;ZZ) D 52) = b]

~ Pr [M(Wy , DPc(f2;23) @ s,) = b]
w1~{0,1}

Because M does not know f;

__ Because B is not authorized.
(s, does not reveal any information about b)

(\S)

Extension to MCSP*

> A distribution &€ defines a partial function f:{0,1}" — {0,1,*}, where

b, if (x, b) € supp(€)
f(x) = {*, otherwise

0(1)

» The reduction to MINLT produces f:{0,1}"
given @ of size n.

— {0)1)*})

> The ldeas for NP-hardness of MINKT*, MKTP*, MCSP*;
Reduce the input length of f to O(logn).

(Then, the truth table of f:{0,1}°U0°8™) - (0,1,%} is of polynomial length.)

NP-hardness of MINKT*

+ Nisan-Wigderson generator

» We start from a PCP system of [Dinur, Fischer, Kindler, Raz, Safra’11]
(to obtain a large inapproximability factor).

> Instead of MMSA, we consider a collection of monotone formulas

Q1) s Pn}
over [n] variables, where each ¢; “checks” the consistency of proofs.

A= |<pj| < logn.

» The distribution € = E(fy, ..., f,,) (that outputs (x, b)) is defined as follows:
* Letj ~ [n]. Share a secret b ~ {0,1} among A parties using ¢;.

¢ X = (j, Z, NW(Enc(fl);Zsl) @D sq, ...,NW(Enc(f); Zg) D s)
NW: Nisan-Wigderson generator, Enc: error-correcting code.

NP-hardness of MKTP*

Impagliazzo-Wigderson's derandomized hardness amplification theorem

> A program has {f;|i € T} as hard-wired input for an authorized set T.

> In order to compute NW(Enc(f;); zs,) from f;,
one needs to read almost all bits of f; € {0,1}*.

» The time complexity is > A, whereas
MKTP* asks sublinear-time-bounded Kolmogorov complexity.

» We use the hardness amplification theorem of [Impagliazzo-Wigderson'97],
which provides a locally-encodable list-decodable error-correcting code.

NP‘hard Ness Of MCSP* Uhlig’s theorem

A
log A

- |T|) gates.

» Moreover, the circuit must be able to compute NW(Enc(ﬁ-); zSi).

» We must hard-wire {f;|i € T} in a circuit using at most O (
» Observation: Enc(f) is computable by a f-oracle nonadaptive circuit.

Theorem [Uhlig'74, Uhlig'92]
For any f:{0,1}1°84 - {0,1}, the r-wise direct product
fr(xli ---;xr) = (f(x]_), ---;f(x'r))

A) if r = Ao(l/loglog/l).
log A

can be computed by a circuit of size O (

A circuit computing Enc(f)

Enc(f)y
D

Query: q4 Query: g,

Input: x

Open Problems

> Can we prove MCSP* <BPP M(CSP ?
« Asimple idea: Replace f(x) =+ with f(x) ~ {0,1}.
« This proves NP-hardness of AveMCSP (the average-case version of MCSP).

» Can we exclude Heuristica? (P = NP iff NP is easy on average?)

* Requires non-black-box and non-relativizing proof techniques.
|Bogdanov-Trevisan’06], [Impagalizzo'11], |[H.-Nanashima’'21]

* GapMINKT € P if DistNP € AvgP [H.18] non-black-box, relativizing

« NP <BPP GapMINKT* [This Work] black-box, non-relativizing
* We need to simultaneously overcome the two barriers.

* |t suffices to prove GapMINKT* <BPP GapMINKT.

