The Complexity of Gradient Descent: CLS = PPAD ∩ PLS

ALEXANDROS HOLLENDER

JOINT WORK WITH JOHN FEARNLEY, PAUL GOLDBERG AND RAHUL SAVANI
Some interesting computational problems
Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.
Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number \(n \geq 2 \).
Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORIZING:
Find a prime factor of a number $n \geq 2$.

BROUWER:
Find a fixpoint of a continuous function $f : [0,1]^3 \rightarrow [0,1]^3$.
Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number $n \geq 2$.

BROUWER:
Find a fixpoint of a continuous function $f : [0,1]^3 \to [0,1]^3$.

CONTRACTION:
Find the unique fixpoint of a contraction $f : [0,1]^n \to [0,1]^n$.
Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number $n \geq 2$.

BROUWER:
Find a fixpoint of a continuous function $f : [0,1]^3 \rightarrow [0,1]^3$.

CONTRACTION:
Find the unique fixpoint of a contraction $f : [0,1]^n \rightarrow [0,1]^n$.

PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game.
Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number \(n \geq 2 \).

BROUWER:
Find a fixpoint of a continuous function \(f: [0,1]^3 \rightarrow [0,1]^3 \).

CONTRACTION:
Find the unique fixpoint of a contraction \(f: [0,1]^n \rightarrow [0,1]^n \).

PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game.

What do these problems have in common?
Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number $n \geq 2$.

BROUWER:
Find a fixpoint of a continuous function $f : [0,1]^3 \rightarrow [0,1]^3$.

CONTRACTION:
Find the unique fixpoint of a contraction $f : [0,1]^n \rightarrow [0,1]^n$.

PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game.

What do these problems have in common?
They are NP Total Search (TFNP) problems!
- Total: there is always a solution
- NP: it is easy to verify solutions
Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number \(n \geq 2 \).

BROUWER:
Find a fixpoint of a continuous function \(f: [0,1]^3 \rightarrow [0,1]^3 \).

CONTRACTION:
Find the unique fixpoint of a contraction \(f: [0,1]^n \rightarrow [0,1]^n \).

PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game.

What do these problems have in common?
They are NP Total Search (TFNP) problems!
- Total: there is always a solution
- NP: it is easy to verify solutions

Can a TFNP problem be NP-hard?
Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number \(n \geq 2 \).

BROUWER:
Find a fixpoint of a continuous function \(f: [0,1]^3 \rightarrow [0,1]^3 \).

CONTRACTION:
Find the unique fixpoint of a contraction \(f: [0,1]^n \rightarrow [0,1]^n \).

PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game.

What do these problems have in common?
They are NP Total Search (TFNP) problems!
• Total: there is always a solution
• NP: it is easy to verify solutions

Can a TFNP problem be NP-hard?
Not unless co-NP = NP...
The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

• “search”: looking for a solution, not just YES or NO
• “NP”: any solution can be checked efficiently
• “total”: there always exists at least one solution
The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

- “search”: looking for a solution, not just YES or NO
- “NP”: any solution can be checked efficiently
- “total”: there always exists at least one solution

TFNP lies between P and NP (search versions)
The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:
- “search”: looking for a solution, not just YES or NO
- “NP”: any solution can be checked efficiently
- “total”: there always exists at least one solution

How do we show that a TFNP-problem is hard:
The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:
- “search” : looking for a solution, not just YES or NO
- “NP”: any solution can be checked efficiently
- “total”: there always exists at least one solution

How do we show that a TFNP-problem is hard:
- No TFNP-problem can be NP-hard, unless NP = coNP...
The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

• “search” : looking for a solution, not just YES or NO
• “NP”: any solution can be checked efficiently
• “total”: there always exists at least one solution

How do we show that a TFNP-problem is hard:

▪ No TFNP-problem can be NP-hard, unless NP = coNP...

\[3\text{-SAT} \leq \text{NASH} \implies \text{certificate for unsatisfiable 3-SAT formulas} \]
The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

• “search”: looking for a solution, not just YES or NO
• “NP”: any solution can be checked efficiently
• “total”: there always exists at least one solution

How do we show that a TFNP-problem is hard:

▪ No TFNP-problem can be NP-hard, unless NP = coNP...
The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:
• “search” : looking for a solution, not just YES or NO
• “NP” : any solution can be checked efficiently
• “total” : there always exists at least one solution

How do we show that a TFNP-problem is hard:
- No TFNP-problem can be NP-hard, unless NP = coNP...
- Believed that no TFNP-complete problems exists...
The TFNP landscape
The TFNP landscape

Pigeonhole Principle

TFNP

PPP

P
The TFNP landscape

Pigeonhole Principle

Parity Argument

Borsuk-Ulam

TFNP

PPA

PPP

P
The TFNP landscape

- Pigeonhole Principle
- Parity Argument
- Borsuk-Ulam
- Local Search Argument
- PURE-CONGESTION
- LOCAL-MAX-CUT
The TFNP landscape

- Pigeonhole Principle
- Directed Graph Argument
- NASH BROUWER
- P
- Parity Argument
 - Borsuk-Ulam
- Local Search Argument
 - PURE-CONGESTION
 - LOCAL-MAX-CUT

TFNP

PPA

PPP

PPAD

PLS
The TFNP landscape

- Pigeonhole Principle
- Directed Graph Argument
- NASH
- BROUWER
- Parity Argument
- Borsuk-Ulam
- Local Search Argument
- PURE-CONGESTION
- LOCAL-MAX-CUT

TFNP

PPA

FACTORIZING

PPP

PPAD

PLS

P
TFNP subclasses

What reasons are there to believe that PPAD ≠ P, PLS ≠ P, etc?
TFNP subclasses

What reasons are there to believe that PPAD $\neq P$, PLS $\neq P$, etc?

- many seemingly hard problems lie in PPAD, PLS etc...
What reasons are there to believe that PPAD ≠ P, PLS ≠ P, etc?

- many seemingly hard problems lie in PPAD, PLS etc...
- oracle separations between the classes (in particular PPAD ≠ PLS)
What reasons are there to believe that PPAD ≠ P, PLS ≠ P, etc?

- many seemingly hard problems lie in PPAD, PLS etc...
- oracle separations between the classes (in particular PPAD ≠ PLS)
- hard under cryptographic assumptions
TFNP

PPAD

BROUWER NASH

PPAD \cap PLS

CONTRACTION
MIXED-CONGESTION

PLS

LOCAL-MAX-CUT
PURE-CONGESTION

P
TFNP

PPAD
BROUWER NASH

PPAD \cap PLS
CONTRACTION
MIXED-CONGESTION
P-LCP

PLS
LOCAL-MAX-CUT
PURE-CONGESTION

P
TFNP

\[
\text{PPAD} \cap \text{PLS} \\
\text{BROUWER} \quad \text{NASH} \\
\text{CONTRACTION} \\
\text{MIXED-CONGESTION} \\
\text{P-LCP} \\
\text{TARSKI} \\
\text{P} \\
\text{LOCAL-MAX-CUT} \\
\text{PURE-CONGESTION}
\]
TFNP

PPAD
- Brouwer
- Nash

PPAD \cap PLS
- Contraction
- Mixed-congestion
- P-LCP
- SSGs
- Tarski

P

PLS
- Local-max-cut
- Pure-congestion
PPAD ∩ PLS seems unnatural...
PPAD \cap PLS seems unnatural...

Problem A : PPAD-complete
Problem B : PLS-complete
PPAD ∩ PLS seems unnatural...

Problem A : PPAD-complete
Problem B : PLS-complete

EITHER-SOLUTION(A,B):
Input: instance I_A of A, instance I_B of B
Goal: find a solution of I_A, or a solution of I_B
PPAD \cap PLS seems unnatural...

Problem A : PPAD-complete
Problem B : PLS-complete

\textbf{EITHER-SOLUTION}(A,B):
\textit{Input:} instance I_A of A, instance I_B of B
\textit{Goal:} find a solution of I_A, or a solution of I_B

\implies \textbf{EITHER-SOLUTION}(A,B) is (PPAD \cap PLS)-complete!
PPAD ∩ PLS seems unnatural...

BROUWER:

Input: a continuous function $f: [0,1]^n \rightarrow [0,1]^n$

Goal: find a fixpoint x

\[f(x) = x \]
PPAD \cap PLS seems unnatural...

BROUWER:

Input: a continuous function $f: [0,1]^n \rightarrow [0,1]^n$, precision $\varepsilon > 0$

Goal: find an approximate fixpoint x

\[\| f(x) - x \| \leq \varepsilon \]
PPAD ∩ PLS seems unnatural...

BROUWER:
Input: a continuous function $f: [0,1]^n \to [0,1]^n$, precision $\epsilon > 0$
Goal: find an approximate fixpoint x

$$\|f(x) - x\| \leq \epsilon$$

REAL-LOCAL-OPT:
Input:
- a continuous function $p: [0,1]^n \to [0,1]$
- a (possibly non-continuous) function $g: [0,1]^n \to [0,1]^n$
PPAD ∩ PLS seems unnatural…

BROUWER:
Input: a continuous function $f: [0,1]^n \rightarrow [0,1]^n$, precision $\varepsilon > 0$
Goal: find an approximate fixpoint x
\[\| f(x) - x \| \leq \varepsilon \]

REAL-LOCAL-OPT:
Input:
- a continuous function $p: [0,1]^n \rightarrow [0,1]$
- a (possibly non-continuous) function $g: [0,1]^n \rightarrow [0,1]^n$
Goal: find a local minimum of p with respect to g
\[p(g(x)) \geq p(x) \]
PPAD ∩ PLS seems unnatural...

BROUWER:
Input: a continuous function $f: [0,1]^n \rightarrow [0,1]^n$, precision $\varepsilon > 0$
Goal: find an approximate fixpoint x
\[\| f(x) - x \| \leq \varepsilon \]

REAL-LOCAL-OPT:
Input:
- a continuous function $p : [0,1]^n \rightarrow [0,1]$
- a (possibly non-continuous) function $g : [0,1]^n \rightarrow [0,1]^n$
Goal: find a local minimum of p with respect to g
\[p(g(x)) \geq p(x) - \varepsilon \]
PPAD ∩ PLS seems unnatural...

BROUWER:

Input: a continuous function $f: [0,1]^n \rightarrow [0,1]^n$, precision $\varepsilon > 0$

Goal: find an approximate fixpoint x

$$\|f(x) - x\| \leq \varepsilon$$

REAL-LOCAL-OPT:

Input:
- a continuous function $p: [0,1]^n \rightarrow [0,1]$
- a (possibly non-continuous) function $g: [0,1]^n \rightarrow [0,1]^n$

Goal: find a local minimum of p with respect to g

$$p(g(x)) \geq p(x) - \varepsilon$$

\Rightarrow **EITHER-SOLUTION(BROUWER,LOCAL-OPT) is (PPAD ∩ PLS)-complete.**
Continuous Local Search

But EITHER-SOLUTION(BROUWER, LOCAL-OPT) is not very natural...
Continuous Local Search

But EITHER-SOLUTION(BROUWER,LOCAL-OPT) is not very natural...

CONTINUOUS-LOCAL-OPT:

Input: continuous functions $g: [0,1]^n \rightarrow [0,1]^n$ and $p: [0,1]^n \rightarrow [0,1]$

Goal: find x such that

$$p(g(x)) \geq p(x) - \varepsilon$$
Continuous Local Search

But EITHER-SOLUTION(BROUWER,LOCAL-OPT) is not very natural...

CONTINUOUS-LOCAL-OPT:
Input: continuous functions $g: [0,1]^n \rightarrow [0,1]^n$ and $p: [0,1]^n \rightarrow [0,1]$
Goal: find x such that

$$p(g(x)) \geq p(x) - \epsilon$$

\rightarrow class **Continuous Local Search (CLS)** [Daskalakis-Papadimitriou, 2011]
PPAD ∩ PLS

EITHER-SOLUTION(A, B)
PPAD ∩ PLS

EITHER-SOLUTION(𝐴, 𝑃)

CLS

CONTINUOUS-LOCAL-OPT

CONTRACTION

MIXED-CONGESTION

SSGs

P-LCP

P
PPAD ∩ PLS

EITHER-SOLUTION\((A, B)\)

CLS

CONTINUOUS-LOCAL-OPT
BANACH

CONTRACTION

MIXED-CONGESTION

SSGs P-LCP

[Daskalakis-Tzamos-Zampetakis, 2018]
Motivation behind the classes
Motivation behind the classes

PPAD: “all problems that can be solved by a path-following algorithm”
(Lemke-Howson algorithm for NASH)
Motivation behind the classes

PPAD: “all problems that can be solved by a path-following algorithm” (Lemke-Howson algorithm for NASH)

PLS: “all problems that can be solved by a local search algorithm”
Motivation behind the classes

PPAD: “all problems that can be solved by a path-following algorithm” (Lemke-Howson algorithm for NASH)

PLS: “all problems that can be solved by a local search algorithm”

CLS: “all problems that can be solved by a continuous local search algorithm”
Motivation behind the classes

PPAD: “all problems that can be solved by a path-following algorithm” (Lemke-Howson algorithm for NASH)

PLS: “all problems that can be solved by a local search algorithm”

CLS: “all problems that can be solved by a *continuous* local search algorithm”

GD: “all problems that can be solved by gradient descent”
Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”
Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: C^1-function $f: [0,1]^n \rightarrow [0,1]$, step size $\eta > 0$, precision $\varepsilon > 0$
Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: C^1-function $f: [0,1]^n \rightarrow [0,1]$, step size $\eta > 0$, precision $\varepsilon > 0$

$$x_{k+1} \leftarrow x_k - \eta \nabla f(x_k)$$
Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: C^1-function $f: [0,1]^n \rightarrow [0,1]$, step size $\eta > 0$, precision $\varepsilon > 0$

$$x_{k+1} \leftarrow x_k - \eta \nabla f(x_k)$$

Goal: find a point where gradient descent terminates
Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: C^1-function $f: [0,1]^n \rightarrow [0,1]$, step size $\eta > 0$, precision $\varepsilon > 0$

$$x_{k+1} \leftarrow x_k - \eta \nabla f(x_k)$$

Goal: find a point where gradient descent terminates

$$[x' := x - \eta \nabla f(x)]$$

GD-Local-Search:

Goal: find x such that $f(x') \geq f(x) - \varepsilon$ \hspace{1cm} (the next iterate decreases f by at most ε)
Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: C^1-function $f: [0,1]^n \rightarrow [0,1]$, step size $\eta > 0$, precision $\varepsilon > 0$

$$x_{k+1} \leftarrow x_k - \eta \nabla f(x_k)$$

Goal: find a point where gradient descent terminates

$$[x' := x - \eta \nabla f(x)]$$

GD-Local-Search:

Goal: find x such that $f(x') \geq f(x) - \varepsilon$ \hspace{1cm} (the next iterate decreases f by at most ε)

\Rightarrow in CLS: $p(x) := f(x)$ and $g(x) := x - \eta \nabla f(x)$
Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: C^1-function $f: [0,1]^n \rightarrow [0,1]$, step size $\eta > 0$, precision $\varepsilon > 0$

$$x_{k+1} \leftarrow x_k - \eta \nabla f(x_k)$$

Goal: find a point where gradient descent terminates

$$x' := x - \eta \nabla f(x)$$

GD-Local-Search:

Goal: find x such that $f(x') \geq f(x) - \varepsilon$

(the next iterate decreases f by at most ε)
Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: C^1-function $f : [0,1]^n \rightarrow [0,1]$, step size $\eta > 0$, precision $\varepsilon > 0$

$$x_{k+1} \leftarrow x_k - \eta \nabla f(x_k)$$

Goal: find a point where gradient descent terminates

$$[x' := x - \eta \nabla f(x)]$$

GD-Local-Search:
Goal: find x such that $f(x') \geq f(x) - \varepsilon$ \quad (the next iterate decreases f by at most ε)

GD-Fixed-Point:
Goal: find x such that $\|x' - x\| \leq \varepsilon$ \quad (the next iterate is ε-close)
Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: C^1-function $f: [0,1]^n \rightarrow [0,1]$, step size $\eta > 0$, precision $\varepsilon > 0$

$$x_{k+1} \leftarrow x_k - \eta \nabla f(x_k)$$

Goal: find a point where gradient descent terminates

$$[x' := x - \eta \nabla f(x)]$$

GD-Local-Search:
Goal: find x such that $f(x') \geq f(x) - \varepsilon$ (the next iterate decreases f by at most ε)

GD-Fixed-Point:
Goal: find x such that $\|x' - x\| \leq \varepsilon$ (the next iterate is ε-close)

\rightarrow polynomial-time equivalent!
PPAD \cap PLS

EITHER-SOLUTION(\(A, B\))

CLS

CONTINUOUS-LOCAL-OPT
BANACH

CONTRACTION

MIXED-CONGESTION

SSGs \quad P-LCP

P
PPAD \cap PLS

EITHER-SOLUTION(\(A, B\))

CLS

CONTINUOUS-LOCAL-OPT

BANACH

GD

GD-FIXED-POINT

CONTRACTION

SSGs

P-LCP

MIXED-CONGESTION

P
PPAD ∩ PLS

EITHER-SOLUTION(A, B)

CLS

CONTINUOUS-LOCAL-OPT

BANACH

GD

GD-FIXED-POINT

2D-GD-FIXED-POINT

MIXED-CONGESTION

P

CONTRACTION

SSGs

P-LCP
PPAD \cap PLS

EITHER-SOLUTION(A, B)

CLS

CONTINUOUS-LOCAL-OPT
BANACH

GD

GD-FIXED-POINT

CONTRACTION

SSGs

P-LCP

2D-GD-FIXED-POINT

MIXED-CONGESTION

P
$\text{PPAD} \cap \text{PLS} = \text{CLS} = \text{GD}$

Either-Solution(A, B)
Continuous-Local-Opt
Banach
2D-GD-Fixed-Point

Contraction
SSGs
P-LCP

Mixed-Congestion
Consequences
Consequences

• PPAD ∩ PLS is an interesting class!
Consequences

• PPAD ∩ PLS is an interesting class!

• It captures continuous local search, and even gradient descent
Consequences

• PPAD ∩ PLS is an interesting class!

• It captures continuous local search, and even gradient descent

• CLS and GD are robust with respect to:
 ➢ dimension
 ➢ domain
 ➢ arithmetic circuits
 ➢ ...

Proof Sketch
PPAD

Canonical complete problem: END-OF-LINE
PPAD

Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source
PPAD

Canonical complete problem: **END-OF-LINE**

Input: directed graph of paths and cycles, and a source
PPAD

Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source
PPAD

Canonical complete problem: **END-OF-LINE**

Input: directed graph of paths and cycles, and a source

Goal: find a sink, or another source
PPAD

Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

Goal: find a sink, or another source
PPAD

Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source
Goal: find a sink, or another source

The catch: the graph is given \textit{implicitly}

- Vertex set $\{0,1\}^n$
- Boolean circuits S and P
 - successor circuit S: $\{0,1\}^n \to \{0,1\}^n$
 - predecessor circuit P: $\{0,1\}^n \to \{0,1\}^n$
Reduction: high level
Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT
Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

→ Construct a continuously differentiable function \(f: [0,1]^2 \to \mathbb{R} \) such that any gradient descent fixed point yields a solution to the EITHER-SOLUTION instance
Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

→ Construct a continuously differentiable function $f: [0,1]^2 \rightarrow \mathbb{R}$ such that any gradient descent fixed point yields a solution to the EITHER-SOLUTION instance
Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

→ Construct a continuously differentiable function \(f: [0,1]^2 \rightarrow \mathbb{R} \) such that any gradient descent fixed point yields a solution to the EITHER-SOLUTION instance
Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

→ Construct a continuously differentiable function $f: [0,1]^2 \rightarrow \mathbb{R}$ such that any gradient descent fixed point yields a solution to the EITHER-SOLUTION instance
Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

→ Construct a continuously differentiable function $f: [0,1]^2 \rightarrow \mathbb{R}$ such that any gradient descent fixed point yields a solution to the EITHER-SOLUTION instance
Warm up: Monotone-End-of-Line
Warm up: Monotone-End-of-Line
Warm up: Monotone-End-of-Line

Special case of END-OF-LINE: No backward edges allowed!
Warm up: Monotone-End-of-Line

Special case of END-OF-LINE: No backward edges allowed!
Warm up: Monotone-End-of-Line

Special case of END-OF-LINE: No backward edges allowed!
Locally computable!

[Hubáček-Yoge, 2017] for CLS
Back to standard End-of-Line
Back to standard End-of-Line
Back to standard End-of-Line
green edges: forward
red edges: backwards
Requires solving the PLS instance!
→ to find a gradient descent fixed point, we have to solve the PPAD problem or the PLS problem.
Future Directions

• are there other intersections of classes that are interesting?
Future Directions

• are there other intersections of classes that are interesting?

• candidates for \((\text{PPAD} \cap \text{PLS})\)-completeness:
 - CONTRACTION
 - TARKSI
 - POLYNOMIAL-KKT
 - MIXED-CONGESTION
Future Directions

• are there other intersections of classes that are interesting?

• candidates for \((\text{PPAD} \cap \text{PLS})\)-completeness:
 - CONTRACTION
 - TARSKI
 - POLYNOMIAL-KKT
 - MIXED-CONGESTION

Solved!
Future Directions

• are there other intersections of classes that are interesting?

• candidates for (PPAD ∩ PLS)-completeness:
 ➢ CONTRACTION
 ➢ TARSKI
 ➢ POLYNOMIAL-KKT
 ➢ MIXED-CONGESTION

 \[\text{Solved!} \]

[Babichenko-Rubinstein, 2020]

\[2D-GD-FIXED-POINT \leq \text{MIXED-CONGESTION} \leq \text{POLYNOMIAL-KKT} \]
Thank You!