Learning in Pessiland via Inductive Inference

Shuichi Hirahara NII

Mikito Nanashima TokyoTech

Online Complexity Seminar

Backgrounds

Our Results

Proof Techniques

Conclusion

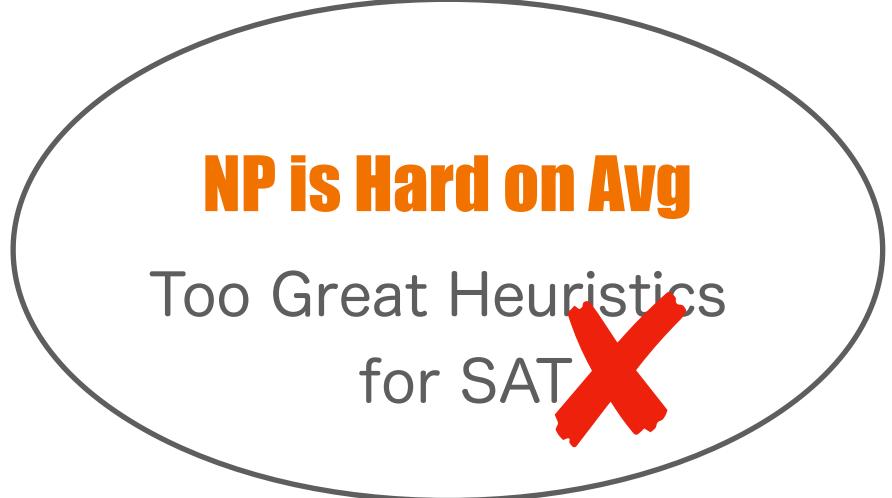
Backgrounds

Our Results

Proof Techniques

Conclusion

Pessiland

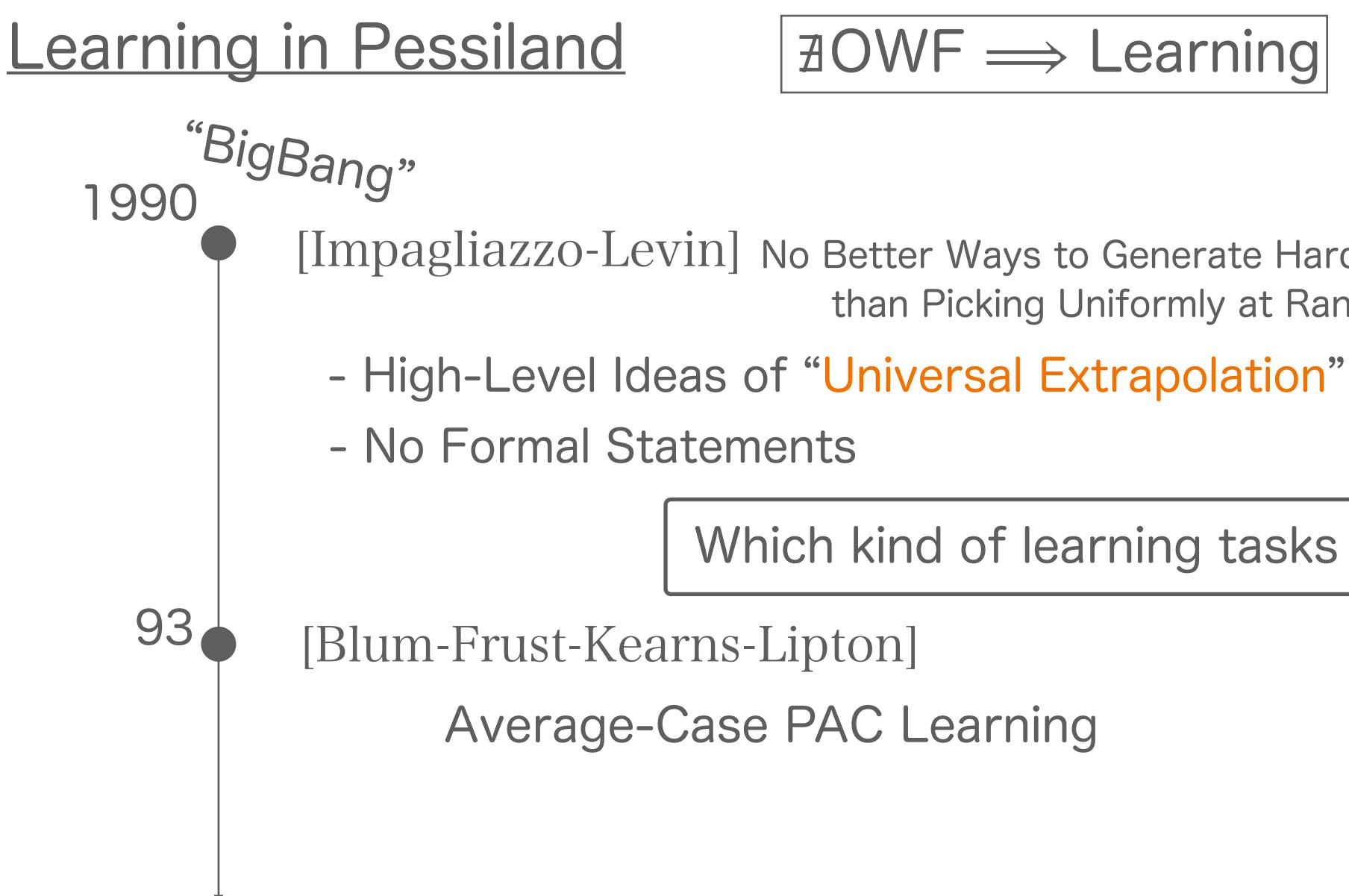


(Classic) Crypto Suppose Our World is Unfortunately Pessiland. What Can We Do?

Average-Case Inverter for Poly-Time Functions **Algorithms in Pessiland**

Hardness

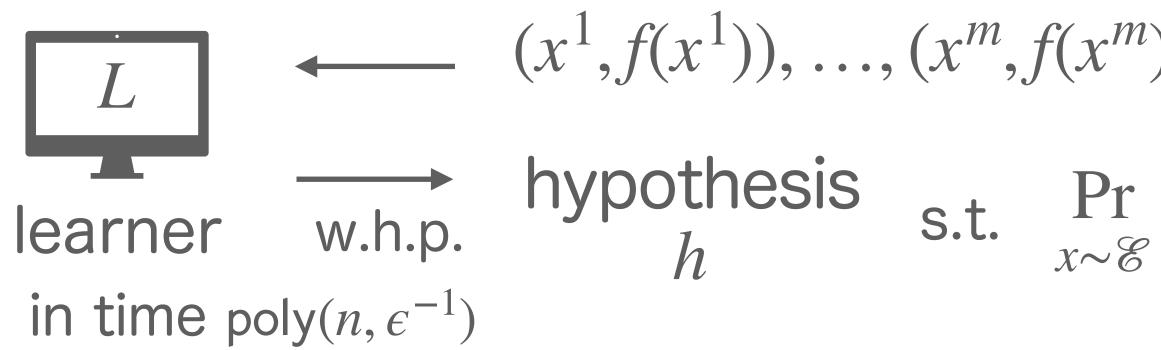
No One-Way Functions



- [Impagliazzo-Levin] No Better Ways to Generate Hard NP Instances than Picking Uniformly at Random

 - Which kind of learning tasks can be done?

a concept class $\mathscr{C} = \{\mathscr{C}_n\}_{n \in \mathbb{N}} \quad \mathscr{C}_n \subseteq \{f: \{0,1\}^n \to \{0,1\}\}$ an example distribution $\mathscr{E} = \{\mathscr{E}_n\}_{n \in \mathbb{N}}$ \mathscr{E}_n is over $\{0,1\}^n$ a distribution over functions $\mathscr{F} = \{\mathscr{F}_n\}_{n \in \mathbb{N}} \ \mathscr{F}_n$ is over \mathscr{C}_n



[BFKL93] &: efficiently evaluatable, &, F: samplable

$$\dots, (x^{m}, f(x^{m})) \qquad \begin{array}{l} f \sim \mathcal{F}_{n} \\ x^{1}, \dots, x^{m} \sim \mathcal{C}_{n} \end{array}$$

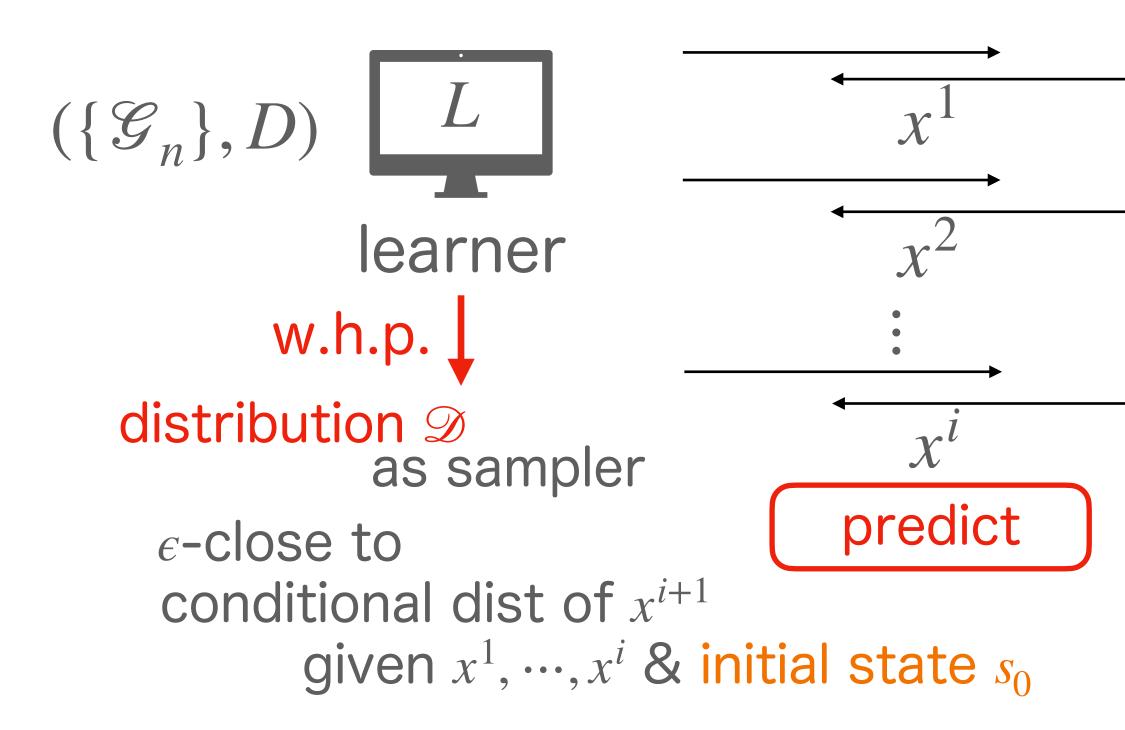
$$S \quad \text{s.t.} \quad \Pr_{x \sim \mathcal{C}} \left[h(x) \neq f(x) \right] \leq \epsilon$$

Learning in Pessiland "BigBang" 1990 - High-Level Ideas of "Universal Extrapolation" - No Formal Statements 93 [Blum-Frust-Kearns-Lipton] Average-Case PAC Learning 2006 [Naor-Rothblum]

- [Impagliazzo-Levin] No Better Ways to Generate Hard NP Instances than Picking Uniformly at Random

Learning Adaptively Changing Distributions (ACDs)

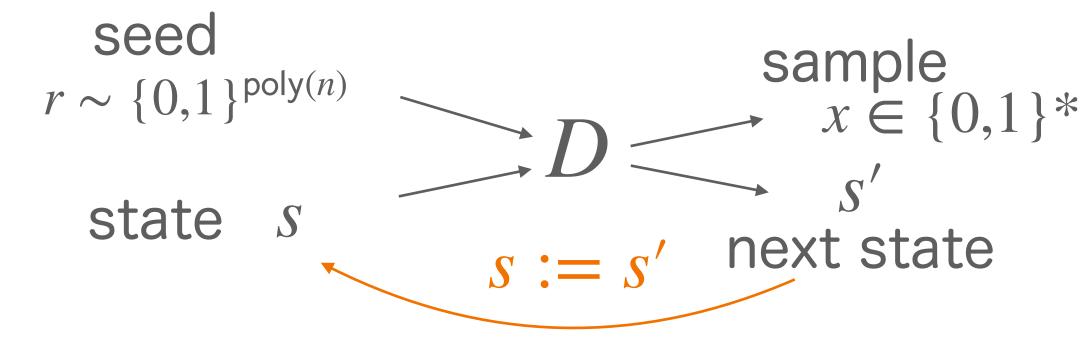
Distributional Learning in Pessiland [NR06] **∄OWF** ⇒ Learning known ACDs



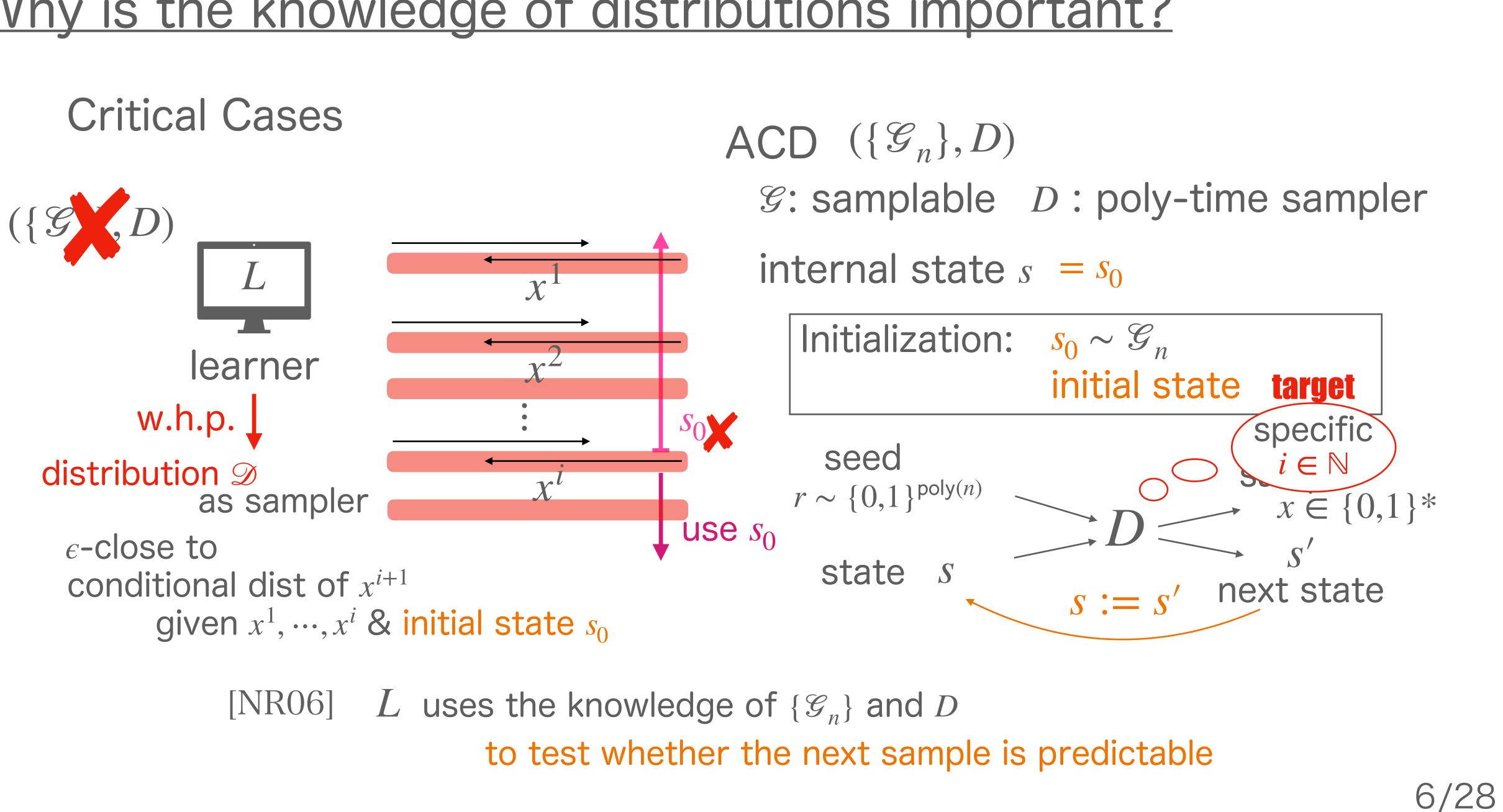
[NR06] *L* uses the knowledge of $\{\mathscr{G}_n\}$ and *D*

ACD $(\{\mathscr{G}_n\}, D)$ \mathcal{G} : samplable D: poly-time sampler internal state $s = s_0$

Initialization: $s_0 \sim \mathcal{G}_n$ initial state target



Why is the knowledge of distributions important?



Improved Learning in Pessiland ?

[BFKL] examples and target function are separately selected

→ Q. Average-Case PAC Learning on Joint Distribution?

 $\mathcal{D} \sim \mathcal{G} \qquad (x,b) \sim \mathcal{D}$ description of joint distribution

Q. Agnostic Learning ? $\Pr_{(x,b)} [h(x) \neq b] \leq \min_{f \in \mathscr{C}} \Pr_{(x,b)} [f(x) \neq b] + \epsilon$

learning known ACDs [NR]

→ Q. Learning unknown ACDs?

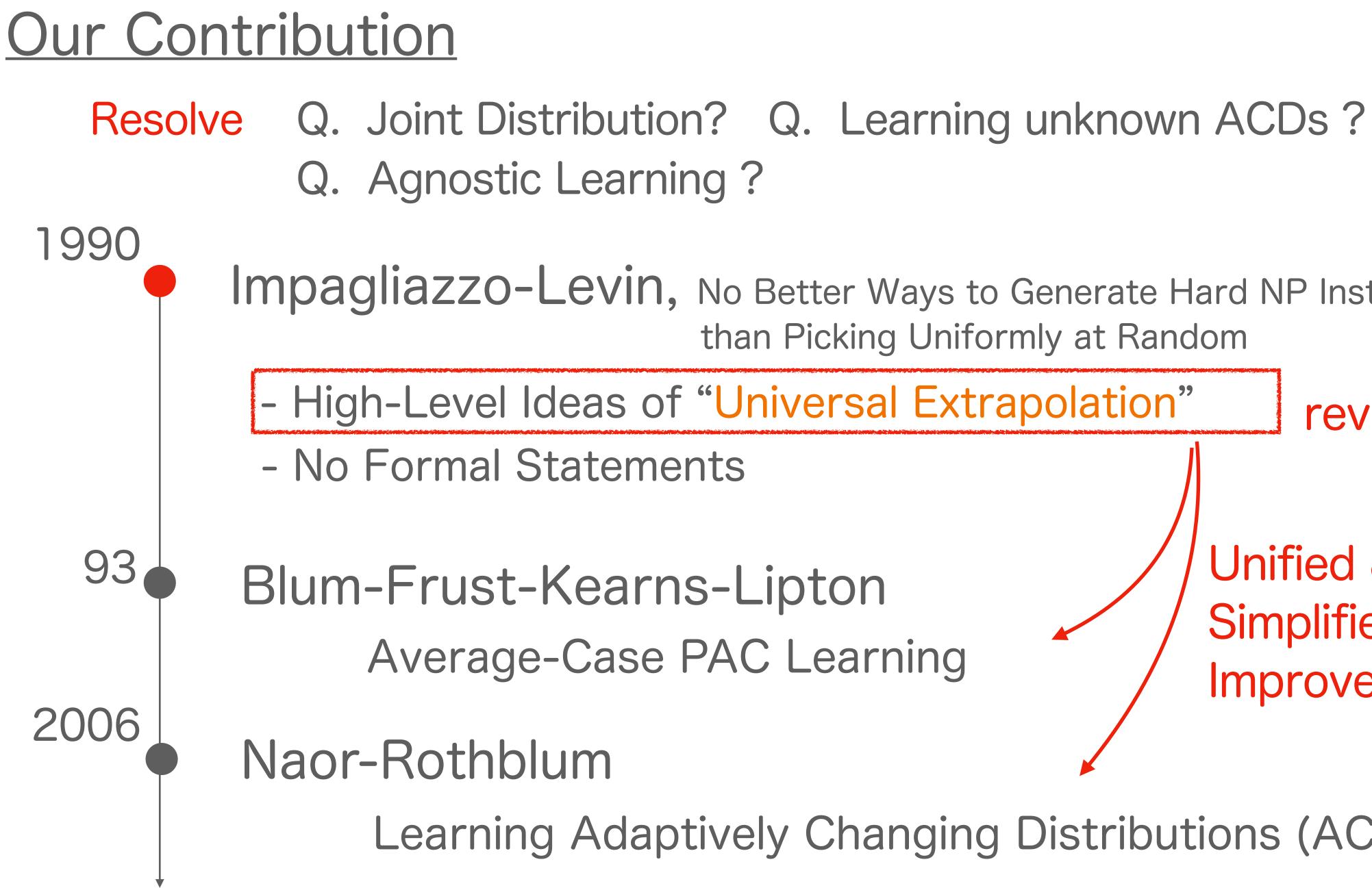
Separated (BFKL) Joint proper learning --- DistNP-hard [Pitt-Valiant]

Backgrounds

Our Results

Proof Techniques

Conclusion



Impagliazzo-Levin, No Better Ways to Generate Hard NP Instances than Picking Uniformly at Random

> revisit Unified & Simplified & Improved

Learning Adaptively Changing Distributions (ACDs)

In this talk...

1. ∄ Infinitely Often OWF

∄ (standard) OWF

2. No details for the choices of parameters

"Adversaries can invert functions for all sufficiently large parameters"

> infinitely many size *n* accuracy, confidence $\leq 1/\text{poly}(n)$ fixed as poly-time functions in *n*

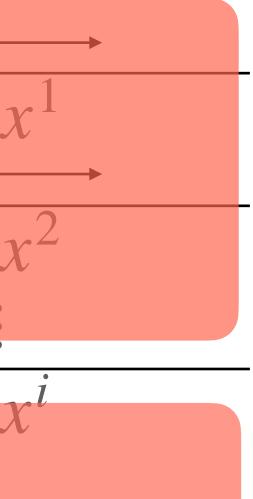
I do not discuss confidence parameters so much

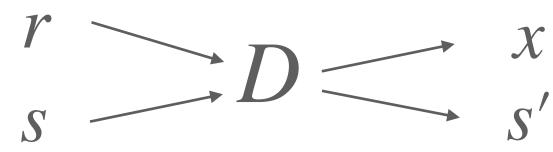
minimize Kyour_time(the paper | this talk)

Learning ACDs in Pessiland Q. Learning unknown ACDs? **Thm**. [•] **ZOWF** iff **J** poly-time learner for all (unknown) ACDs (\mathcal{G}, D) with sample complexity $O(s\epsilon^{-2})$ for s-bit initial states and accuracy ϵ improved from $O(se^{-4})$ [NR06] How can we avoid the critical cases?

learner for unknown (G, D)

> succeeds at almost all steps





choose a prediction stage uniformly at random

Agnostic Learning in Pessiland Q. Joint Distribution? Q. Agnostic Learning? **Thm. 2 ∃**OWF iff ∃ poly-time agnostic learner for $\mathscr{F} = \{f: \{0,1\}^n \rightarrow \{0,1\}^{\mathsf{poly}(n)}\}$ (with 0-1 loss)

[Previous] PAC **Separated Distributions Binary Labels**

(= learning by information theoretically optimal hypothesis) on avg under a joint dist \mathcal{D} on samples, where $\mathcal{D} \sim \mathcal{G}$, \mathcal{G} is samplable with sample complexity $O(s\epsilon^{-2})$ (for $s = |\mathcal{D}|$, accuracy ϵ)

optimal in general

- Ours
- Agnostic
- Joint Distributions
- Multi Labels

Improper learning (General Hypothesis)

Improved Learning in Pessiland

 $\exists OWF \iff Worst-Case Learning$

U: universal TM $\mathbf{K}(x) = \min\{p \in \mathbb{N} : \exists \Pi \in \{0,1\}^p$ Q^t := dist. of U(w) executed $q^{t}(x) := -\log \Pr[x \sim O^{t}]$ $cd^{t}(x) := q^{t}(x) - K(x)$

 $\approx pK^{t'}(x) - pK^{\infty}(x)$

for any samplable distribution \mathcal{D} = $cd^{poly}(x) = O(\log n)$ w.h.p.

exp-time in Computational Depth of Secrets

s.t.
$$U(\Pi) = x$$
}

d in t steps for
$$w \sim \{0,1\}^t$$

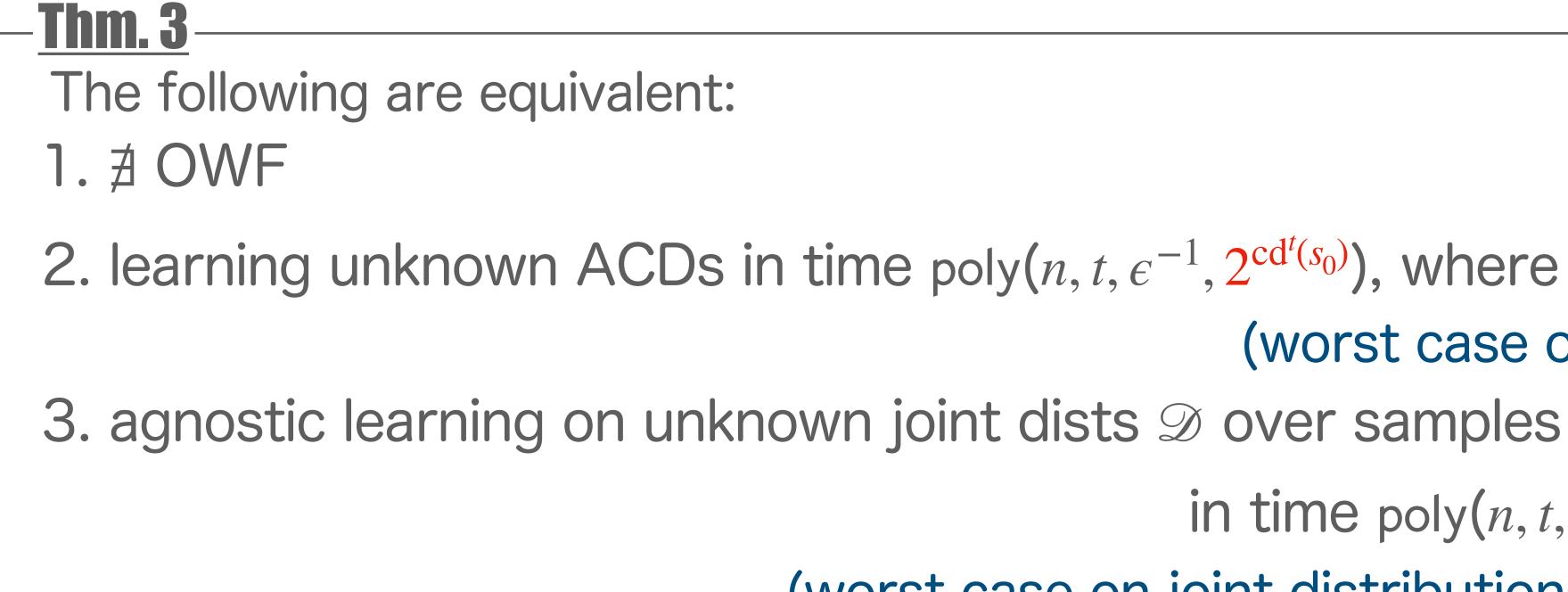
 $q^{t}(x) \approx pK^{t'}(x)$ introduced in [GKLO22]

 $pK^{poly(t)}(x) \leq q^{t}(x)$ Optimal coding [LOZ22] $pK^{t}(x) \gtrsim q^{poly(t)}(x)$ Domination

$$= \{ \mathcal{D}_n \}$$

$$x \sim \mathcal{D}_n$$

Improved Learning in Pessiland $\exists OWF \iff Worst-Case Learning$ exp-time in Computational Depth of Secrets



Note Thm1 & 2 are implied by Thm3

2. learning unknown ACDs in time poly $(n, t, e^{-1}, 2^{cd^{t}(s_{0})})$, where s_{0} is initial state (worst case on initial states) in time poly $(n, t, e^{-1}, 2^{\operatorname{cd}^{\prime}(|\mathcal{D}|)})$ (worst case on joint distributions over samples)

Backgrounds

Our Results

Proof Techniques

Conclusion

Our Approach

Step I

Step II Translate "Universal Extrapolation" into Learning

State "Universal Extrapolation" formally

Our Approach

Stepl State "Universal Extrapolation" formally

Step II Translate "Universal Extrapolation" into Learning

Formulating Universal Extrapolation Our Proposal Universal Extrapolation = Extrapolation under Q^t

Notation

prefix $x \in \{0,1\}^*$ paramaters $k \in \mathbb{N} \ t \in \mathbb{N} \ \epsilon \in (0,1)$

(UE is given 2^{α} (in unary) and works for every x with $cd^{t}(x) < \alpha$)

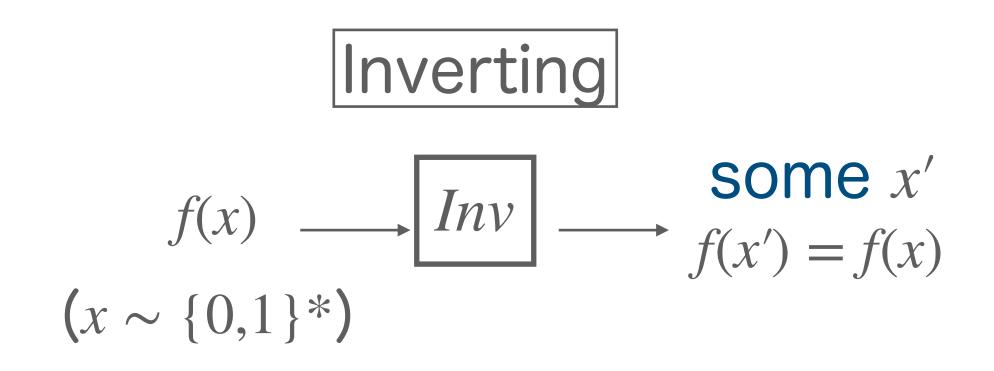
- (Time-Bounded Universal Distribution)
- distribution \mathcal{D} prefix $x \in \{0,1\}^*$ $k \in \mathbb{N}$
 - Next_k($x; \mathcal{D}$) = distribution of k bits following x w.r.t. \mathcal{D}

 $\bigcup \qquad \longrightarrow y \in \{0,1\}^{\leq k} \approx \operatorname{Next}_k(x; Q^t)$ within statistical distance ϵ

Lemma (informal) \nexists (io)OWF \implies 3UE that works in worst case on x in time poly($|x|, k, t, e^{-1}, 2^{\operatorname{cd}^{t}(x)}$)



Distributional Inverting



Thm [IL89] \nexists (io)OWF \implies for every poly-time function $f = \{f_n\}$

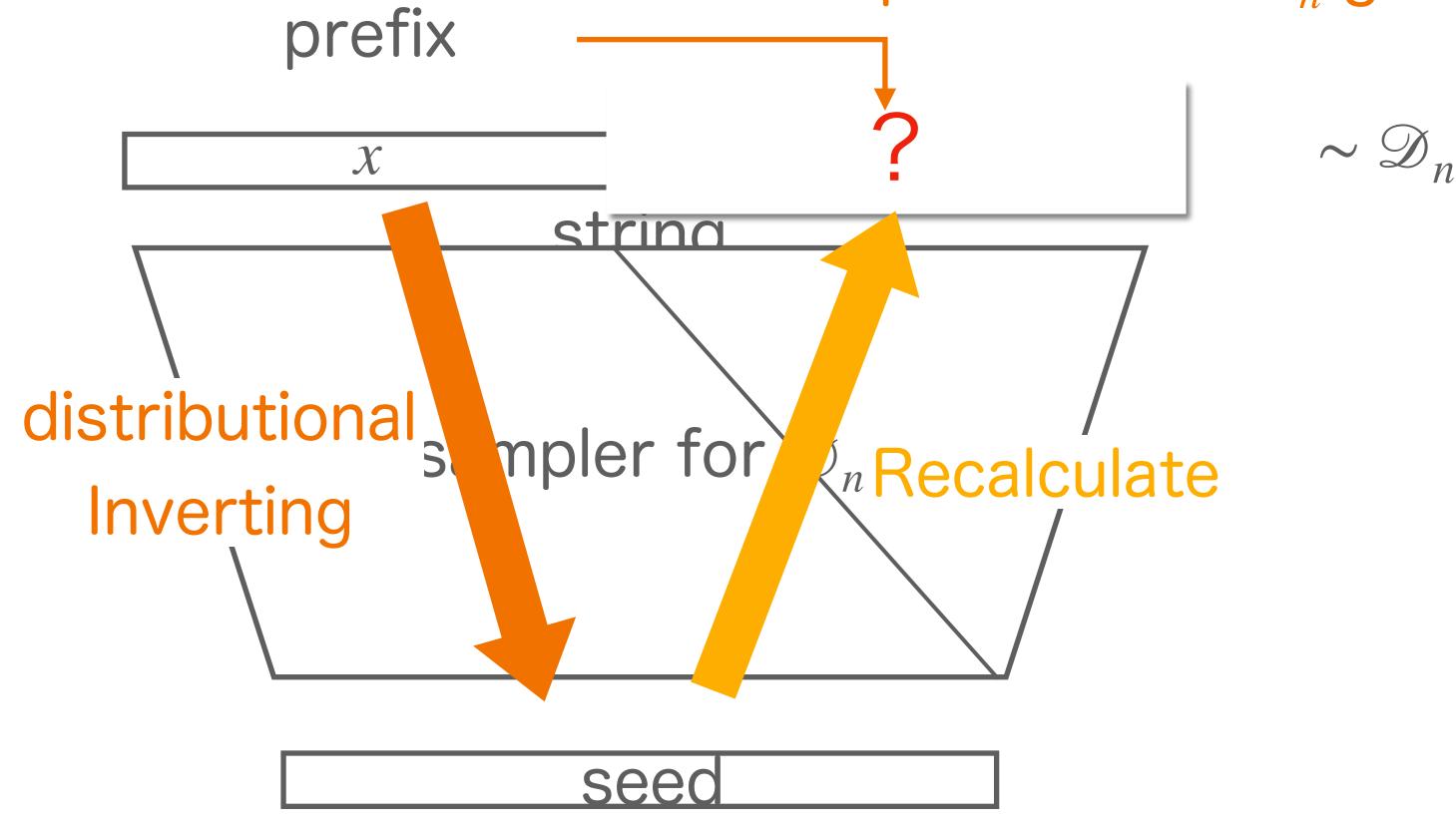
JUE that works in worst case on *x* in time poly($|x|, k, t, e^{-1}, 2^{\operatorname{cd}^{t}(x)}$)

$$\begin{array}{c} \begin{array}{c} \text{Distributional}\\ \text{Inverting} \end{array} \\ f(x) \longrightarrow DInv \longrightarrow & \text{some } x' \\ f(x') = f(x) \end{array} \\ (x \sim \{0,1\}^*) & \text{simulate unif sample}\\ from \{x': f(x') = f(x)\} \end{array}$$

 $\exists DInv : \mathsf{PPT} \text{ s.t. } \forall n, e^{-1}, \delta^{-1} \in \mathbb{N}$ $\Delta_{TV}\left(DInv(f_n(x); 1^n, 1^{\varepsilon^{-1}}, 1^{\delta^{-1}}), \text{Unif over } f_n^{-1}(f_n(x))\right) \le \epsilon$ w.p. $\geq 1 - \delta$ over $x \sim \{0, 1\}^{\text{poly}(n)}$

Distributional Inverting \rightarrow Distribution-Specific Extrapolation

 $\mathcal{D} = \{\mathcal{D}_n\}$ samplable distribution



JUE that works in worst case on *x* in time poly($|x|, k, t, e^{-1}, 2^{\operatorname{cd}^{t}(x)}$)

[Ost91, OW93, NR06, . . .]

extrapolate w.r.t \mathcal{D}_n given x

$$\begin{array}{c} \text{Lemma (informal)} \quad \nexists \text{ (io)OWF} \implies & \exists \text{UE that works in worst case on } x \\ & \text{ in time } \text{poly}(|x|, k, t, e^{-1}, 2^{\text{cd}^{i}(x)}) \end{array}$$

$$\begin{array}{c} \textbf{Distribution-Specific Extrapolation for } \mathbb{Q}^{1} \\ \exists \text{UE}^{'}: \text{PPT s.t. } \forall t, \ell, k, e^{-1}, \delta^{-1} \in \mathbb{N} \\ & \Delta_{TV} \left(\text{UE}^{'}(x), \text{Next}_{k}(x; Q^{t}) \right) \leq \epsilon \\ & \text{W.p. } \geq 1 - \delta \text{ over } x \sim Q_{\leq \ell}^{t} \end{array}$$

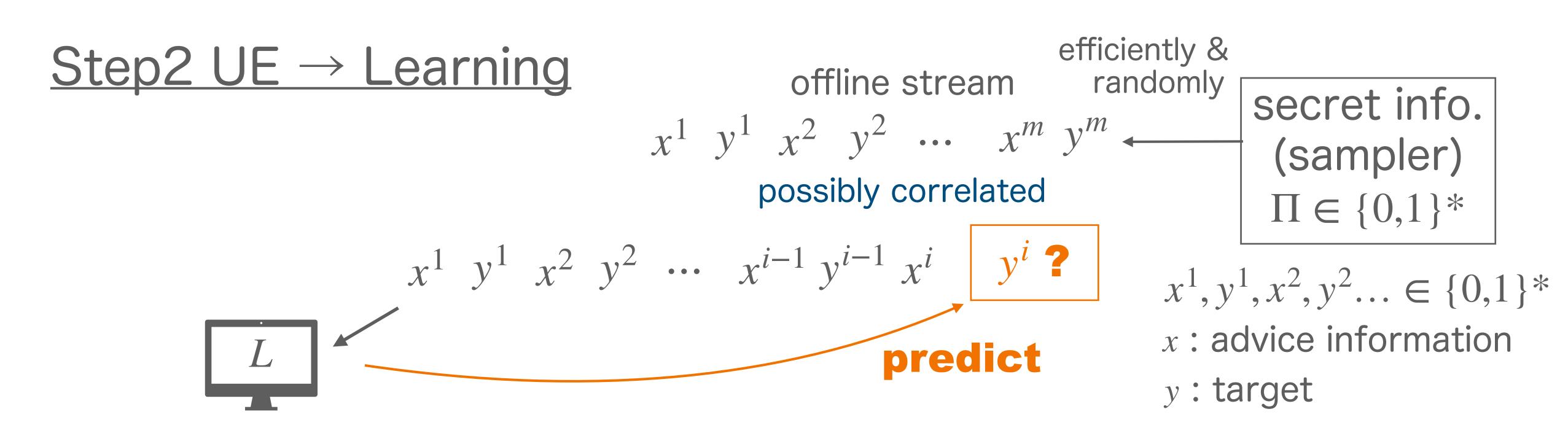
$$\begin{array}{c} \text{the first } \ell \text{ is } \\ & \text{of } Q^{t} \\ \text{Based on [AF09]} \quad E := E_{t,\ell',k,\epsilon,\delta} = \left\{ x : \Delta_{TV} \left(\text{UE}^{'}(x), \text{Next}_{k}(x; Q^{t}) \right) > \epsilon \right\} \\ & \text{error set} \\ & \delta := 2^{-\alpha} \quad \text{Goal: } x \in E \implies \text{cd}^{t}(x) \geq \alpha - O(\log t\ell'ke^{-1}\alpha) \\ & 2^{-\alpha} \geq \sum_{x \in E} \Pr[x \sim Q_{\leq \ell}^{t}] \geq \sum_{x \in E} \Pr[x \sim Q^{t}] \\ & \text{ sinefficiently computable distribution } \left\{ \mathscr{B}_{t,\ell',k,\epsilon,\delta} \right\} \quad \forall x \in E \quad \Pr[x \sim \mathscr{B}] = 2^{\alpha} \Pr[x \sim \\ & \forall x \in E \quad K(x) \leq -\log \Pr[x \sim \mathscr{B}] + O(\log t\ell'ke\alpha) \\ & \text{optimal coding} \\ & = -\alpha + (-\log \Pr[x \sim Q^{t}]) + O(\log t\ell'ke\alpha) \\ & q^{t}(x) \end{array}$$

Step 1: Summary **Our Proposal** prefix $x \in \{0,1\}^*$ UE paramaters $k \in \mathbb{N} \ t \in \mathbb{N} \ \epsilon \in (0,1)$ Use Distributional Inverter for Q^t Proof

Universal Extrapolation = Extrapolation under Q^{t} (Time-Bounded Universal Distribution)

 $\longrightarrow y \in \{0,1\}^k \approx \operatorname{Next}_k(x; \mathbf{Q}^t)$ with statistical distance within ϵ **Lemma** (informal) \nexists (io)OWF \implies \exists UE that works in worst case on x in time poly($|x|, k, t, e^{-1}, 2^{\operatorname{cd}'(x)}$) (UE is given 2^{α} (in unary) and works for every x with $cd^{t}(x) < \alpha$)

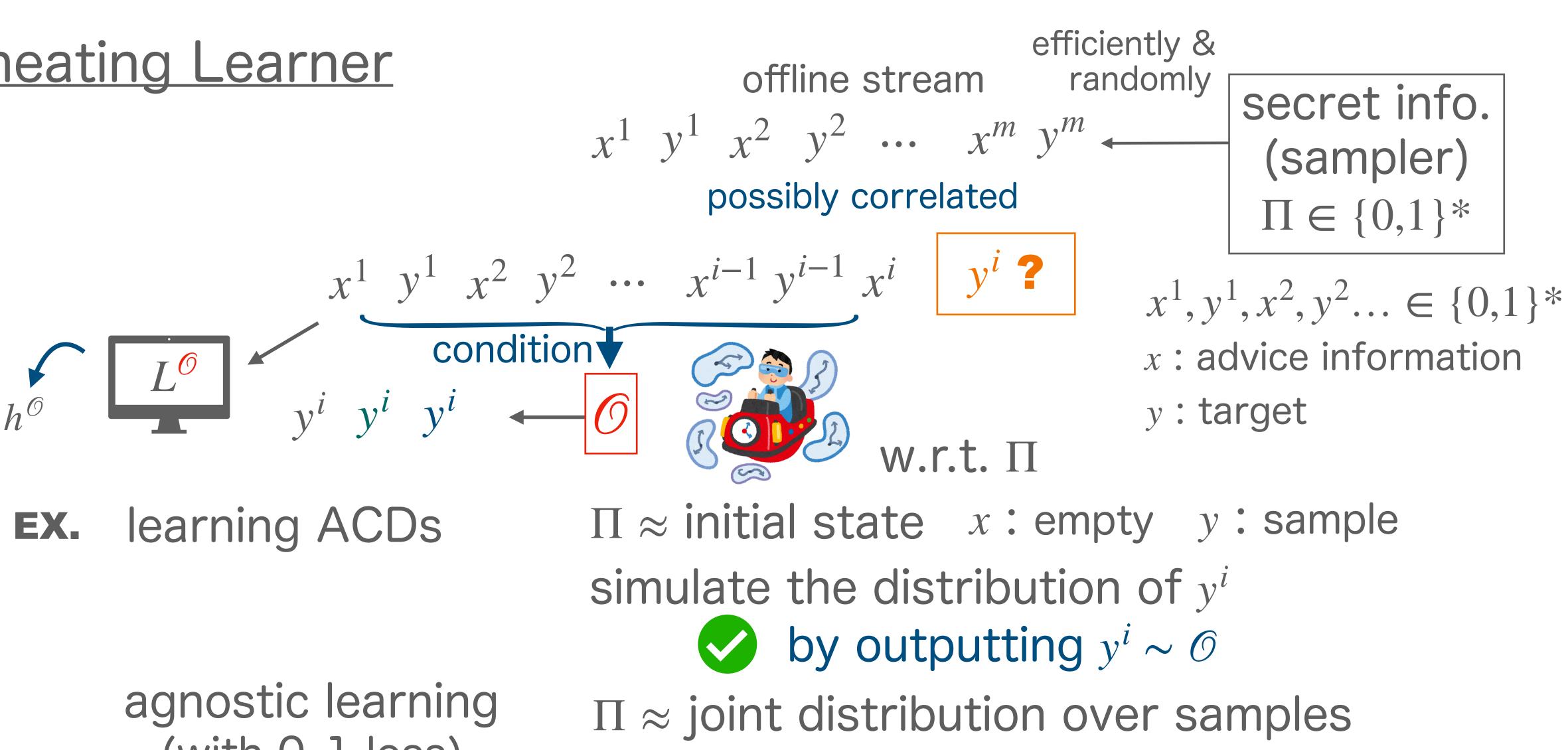
Q. How can we obtain learners (e.g., agnostic learners)?



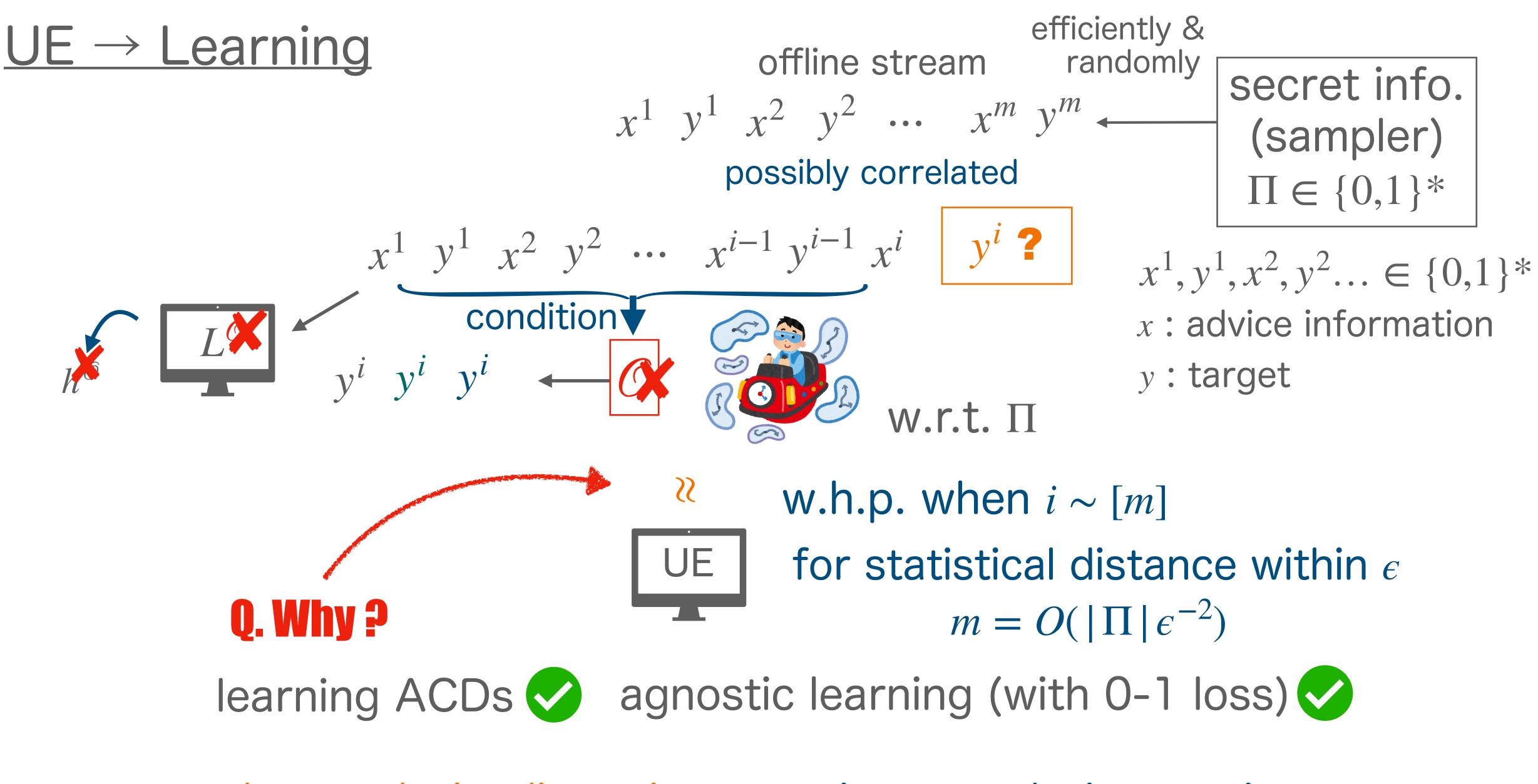
 $\Pi \approx \text{initial state} \quad x : \text{empty} \quad y : \text{sample}$ learning ACDs EX. simulate the distribution of y^i

agnostic learning $\Pi \approx \text{joint distribution over samples}$ (with 0-1 loss) x : example y : label answer the best possible y^i

<u>Cheating Learner</u>



- (with 0-1 loss) x : example y : label
 - answer the best possible y^i by collecting $y^i, y^i, \dots \sim \mathcal{O}$



sample complexity: linear in $|\Pi|$ time complexity: exp in $|\Pi|$

Solomonoff's Inductive Inference [Sol64, LV19]

When extrapolating symbols, attach a higher probability for a more precise hypothesis, particularly, with an exponential rate on the description size

Domination + Chain Rule for KL divergen

 x^1 y^1 x^2 y^2 \cdots x^n When $t \gg \text{time}(\Pi)$ $\Pr\left[x^{1}y^{1}\dots x^{m}y^{m} \sim Q^{t}\right] \geq$ $\log \frac{\Pr \left[x^1 y^1 \right]}{\Pr \left[x^1 y^1 \right]}$

Taking the expectation over $x^1, y^1, ..., x^n$ KL

$$\begin{array}{ccc} q^{\text{poly}}(\cdot \mid \cdot) & \text{Or } pK^{\text{poly}}(\cdot \mid \cdot) \\ (\because 2^{-q^{\text{poly}}} = Q^{\text{poly}}) & \text{by condition} \\ \text{efficiently &} \\ randomly \\ c^m & y^m \longleftarrow & \Pi \in \{0,1\}^* \end{array}$$

$$2^{-O(|\Pi|)} \Pr\left[x^{1}y^{1}...x^{m}y^{m} \sim \Pi\right] \quad \text{(Domination)}$$
$$\frac{...x^{m}y^{m} \sim \Pi}{...x^{m}y^{m} \sim Q^{t}} \leq O(|\Pi|)$$

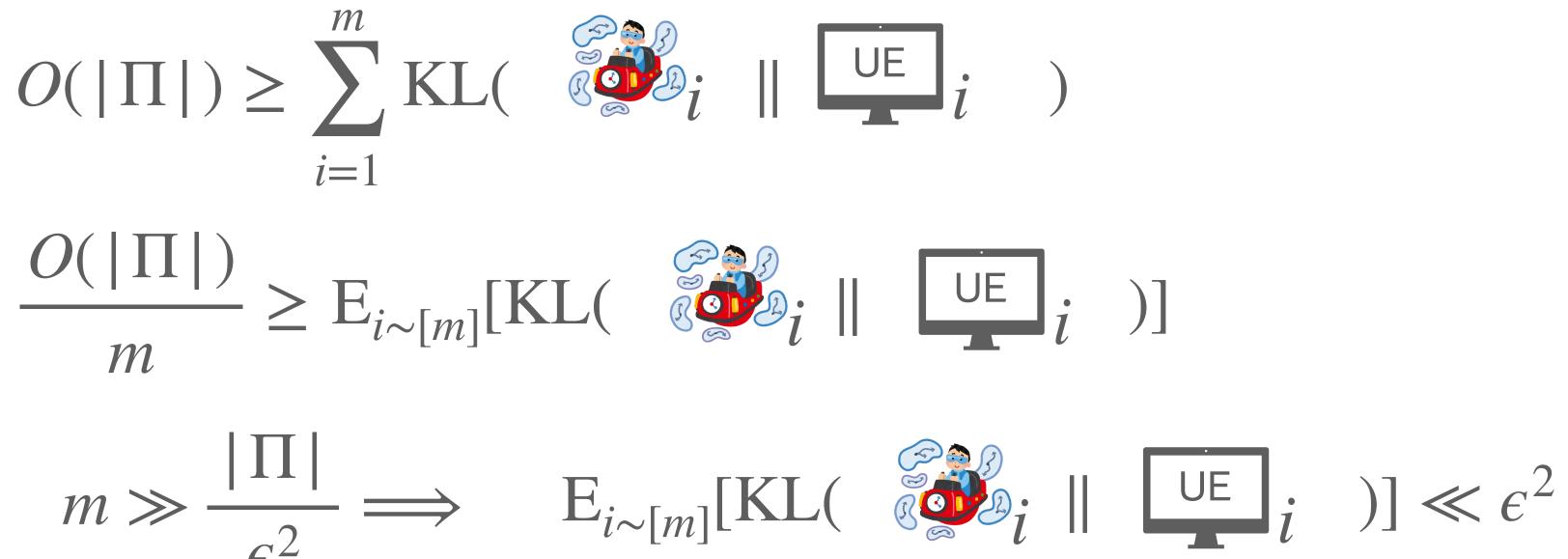
$$^m, y^m \sim \Pi$$

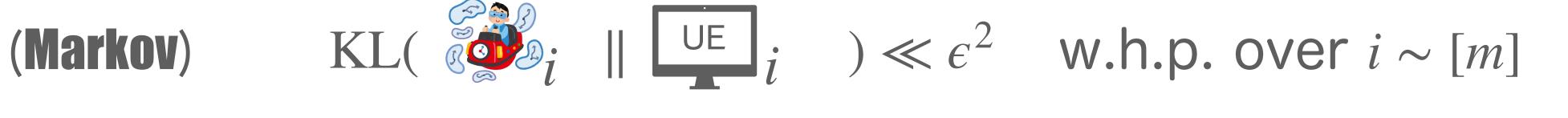
$$\Pi \| \mathbf{Q}^t \right) \leq O(|\Pi|)$$

Solomonoff's Inductive Inference [Sol64, LV19] $\mathrm{KL}\left(\Pi \| \mathbf{Q}^{t}\right) \leq O(|\Pi|)$ $\begin{array}{c|c} L & & & & \tilde{X}^{1} & \tilde{Y}^{1} \\ x^{1} & y^{1} & x^{2} & y^{2} & \cdots & y^{i-1} & x^{i} & y^{i} & \cdots & x^{m} & y^{m} & \longleftarrow & Q^{t} \\ \hline & & & & & & & & & & \\ \end{array}$ ignore the statistical error $O(|\Pi|) \ge \mathrm{KL}\left(X^{1}Y^{1}\cdots X^{m}Y^{m} \, \middle\| \, \tilde{X}^{1}\tilde{Y}^{1}\cdots \tilde{X}^{m}\tilde{Y}^{m} \right)$ $= \sum_{m}^{m} \operatorname{KL}\left((Y^{i} | X^{1}Y^{1} \cdots Y^{i-1}X^{i}) \| (\tilde{Y}^{i} | \tilde{X}^{1}\tilde{Y}^{1} \cdots \tilde{Y}^{i-1}\tilde{X}^{i}) \right)$ i=1 $\geq \sum \operatorname{KL}\left((Y^{i} | X^{1}Y^{1} \cdots Y^{i-1}X^{i}) \| (\tilde{Y}^{i} | \tilde{X}^{1}\tilde{Y}^{1} \cdots \tilde{Y}^{i-1}\tilde{X}^{i}) \right)$ i=1

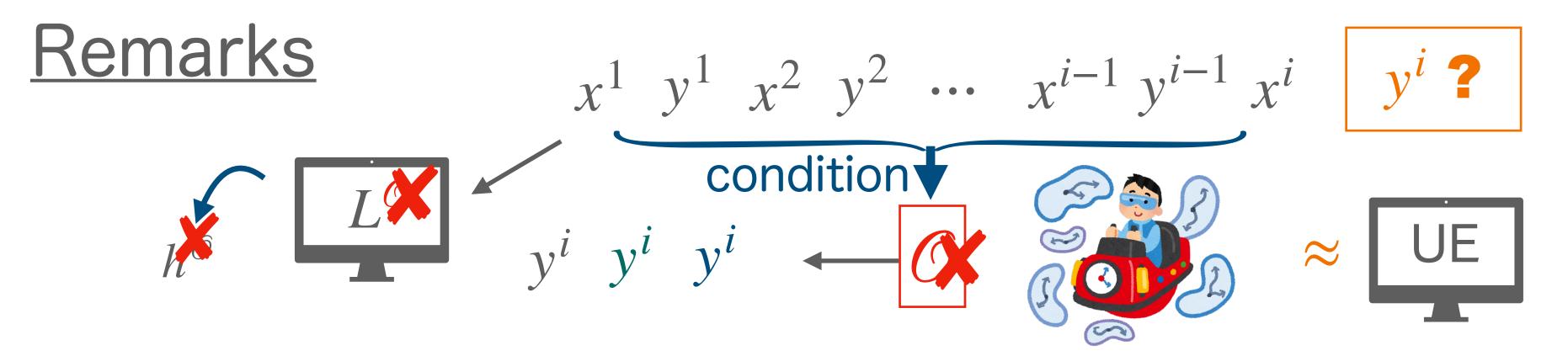
true distribution (Chain Rule) $+\sum_{i=1}^{m} \operatorname{KL}\left((X^{i} | X^{1}Y^{1} \cdots X^{i-1}Y^{i-1}) \left\| (\tilde{X}^{i} | \tilde{X}^{1}\tilde{Y}^{1} \cdots \tilde{X}^{i-1}\tilde{Y}^{i-1})\right)\right.$ UE ;

Solomonoff's Inductive Inference [Sol64, LV19]





(**Pinsker**) $\Delta_{TV}(\bigotimes_{i}^{UE}, \bigcup_{i}^{UE}) \le \epsilon$ w.h.p. over $i \sim [m]$



- Tasks poly-time cheating learners can do
- Not sample optimal in agnostic learning Why? accuracy
- for optimal sample complexity
 - (statistical cases)

when $i \sim [m]$ for stat dist within ϵ $m = O(|\Pi|\epsilon^{-2})$

= Tasks poly-time learners can do with UE

query complexity of cheating learner

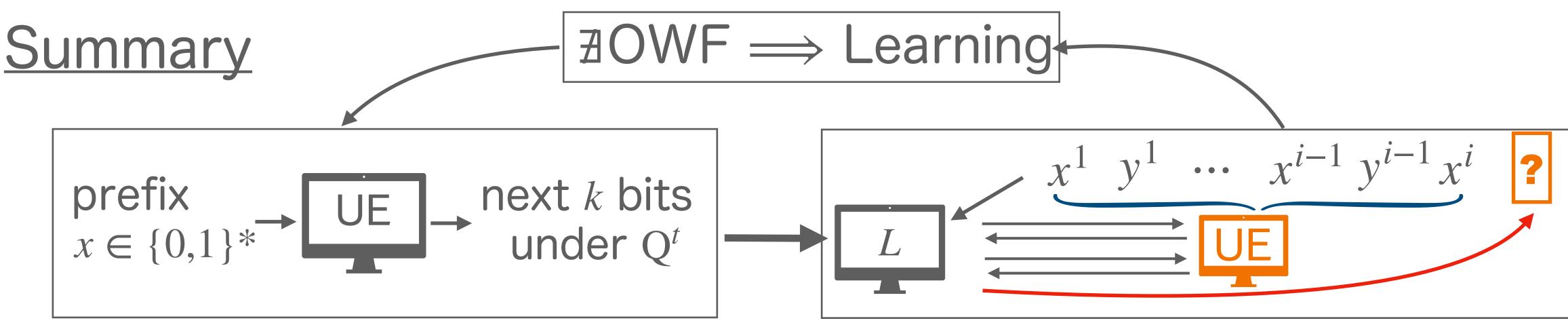
Extend universal prediction [MF98] to computational cases

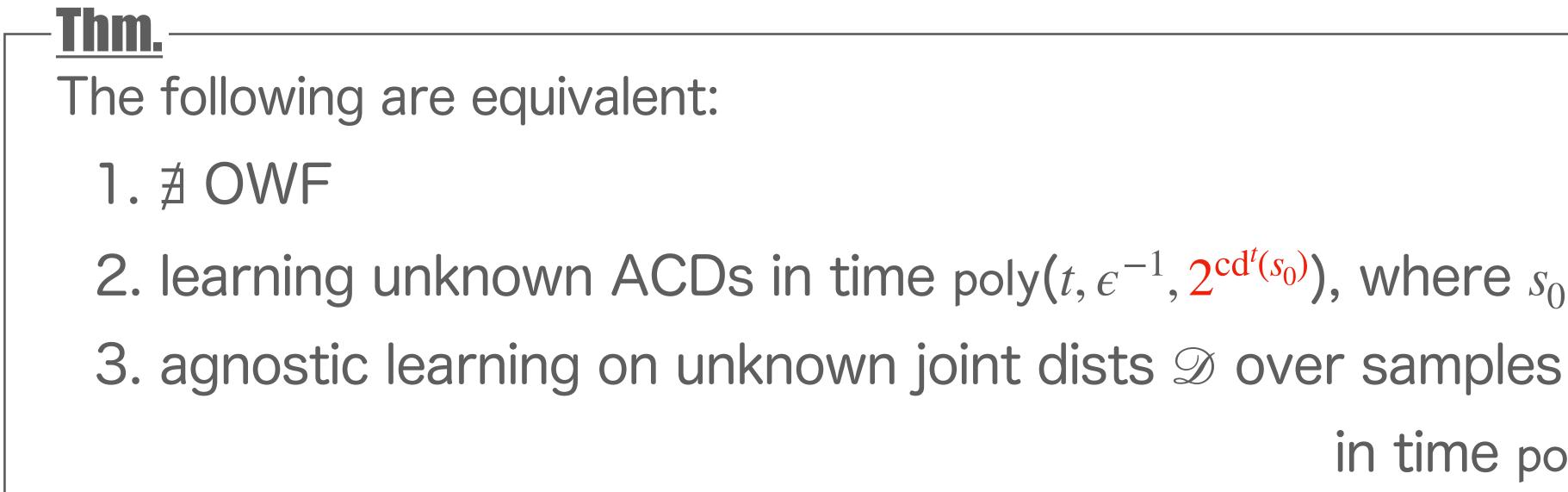
Backgrounds

Our Results

Proof Techniques

Conclusion





Q. weakest assumption for learning in time poly(cd)? AlOWF or HSG or \cdots ?

2. learning unknown ACDs in time poly($t, e^{-1}, 2^{cd'(s_0)}$), where s_0 is initial state in time poly($t, e^{-1}, 2^{\operatorname{cd}^{t}(|\mathcal{D}|)}$)

