On the consistency of circuit lower bounds for nondeterministic time

Moritz Müller

Universität Passau

joint work with Albert Atserias and Sam Buss

On the consistency of circuit lower bounds for nondeterministic time

Moritz Müller

Universität Passau

joint work with Albert Atserias and Sam Buss

Main result NEXP $\not\subseteq$ P/poly is consistent with V₂⁰.

Language PV: < plus symbols for polynomial time functions</p>
Theory ∀PV (DeMillo, Lipton 1979)
universal sentences true in the standard model
Theory PV (Cook 1975) is an axiomatized fragment of ∀PV

Language PV: < plus symbols for polynomial time functions</p>
Theory ∀PV (DeMillo, Lipton 1979)
universal sentences true in the standard model
Theory PV (Cook 1975) is an axiomatized fragment of ∀PV

- PV eliminates sharply bounded quantifiers $\exists y < |t(\bar{x})|, \forall y < |t(\bar{x})|$
- sharply bounded formulas define precisely the sets in P
- Σ_1^b -formulas define precisely the sets in NP i.e. form $\exists y < t \ \psi$ for ψ sharply bounded.
- PV proves induction for quantifier free formulas

 $\varphi(0) \wedge \neg \varphi(x) \rightarrow \exists y (\varphi(y) \wedge \neg \varphi(y+1))$

Language PV: < plus symbols for polynomial time functions</p>
Theory ∀PV (DeMillo, Lipton 1979)
universal sentences true in the standard model
Theory PV (Cook 1975) is an axiomatized fragment of ∀PV

Herbrand

If $\mathsf{PV} \vdash \exists y \ \varphi(y, \bar{x})$ and $\varphi(y, \bar{x})$ is quantifier free,

then $\mathsf{PV} \vdash \varphi(f(\bar{x}), \bar{x})$ for some $f \in \mathsf{PV}$.

```
Language PV: < plus symbols for polynomial time functions
Theory ∀PV (DeMillo, Lipton 1979)
universal sentences true in the standard model
Theory PV (Cook 1975) is an axiomatized fragment of ∀PV
```

Herbrand

If $\mathsf{PV} \vdash \exists y \ \varphi(y, \bar{x})$ and $\varphi(y, \bar{x})$ is quantifier free,

then $\mathsf{PV} \vdash \varphi(f(\bar{x}), \bar{x})$ for some $f \in \mathsf{PV}$.

Intuition PV formalizes polynomial time reasoning.

Cook 1975

if one believes that feasibly constructive arguments can be formalized in PV, then it is worthwhile seeing which parts of mathematics can be so formalized.

Buss' hierarchy

$$\mathsf{PV} \ \subseteq \ \mathsf{S}_2^1 \ \subseteq \ \mathsf{T}_2^1 \ \subseteq \ \mathsf{S}_2^2 \ \subseteq \ \mathsf{T}_2^2 \ \subseteq \ \cdots \mathsf{T}_2$$

PV+ quantifier-free induction P induction PV+ bounded induction PH induction

Buss' hierarchy

$$\mathsf{PV} \subseteq \mathsf{S}_2^1 \subseteq \mathsf{T}_2^1 \subseteq \mathsf{S}_2^2 \subseteq \mathsf{T}_2^2 \subseteq \cdots \mathsf{T}_2$$

 $\begin{aligned} \mathsf{PV} + \Sigma_1^b \text{ length induction} \\ \varphi(0) \land \forall y(\varphi(y) \to \varphi(y{+}1)) \to \varphi(|x|) \\ \mathsf{NP} \text{ induction for small numbers} \\ \Sigma_1^b \text{-definable functions: } \mathsf{P} \end{aligned}$

Buss' Witnessing 1985

If $S_2^1 \vdash \exists y \ \varphi(y, \bar{x})$ and $\varphi(y, \bar{x})$ quantifier free, then $\mathsf{PV} \vdash \varphi(f(\bar{x}), \bar{x})$ for some $f(\bar{x}) \in \mathsf{PV}$.

Buss' hierarchy

$$\mathsf{PV} \subseteq \mathsf{S}_2^1 \subseteq \mathsf{T}_2^1 \subseteq \mathsf{S}_2^2 \subseteq \mathsf{T}_2^2 \subseteq \cdots \mathsf{T}_2$$

 $\begin{aligned} \mathsf{PV} + \Sigma_1^b \text{ induction} \\ \varphi(0) \land \forall y(\varphi(y) \to \varphi(y+1)) \to \varphi(x) \\ \mathsf{NP} \text{ induction for all numbers} \\ \Sigma_1^b \text{-definable functions: PLS} \end{aligned}$

Buss' hierarchy

$$\mathsf{PV} \ \subseteq \ \mathsf{S}_2^1 \ \subseteq \ \mathsf{T}_2^1 \ \subseteq \ \mathsf{S}_2^2 \ \subseteq \ \mathsf{T}_2^2 \ \subseteq \ \cdots \mathsf{T}_2$$

 $\begin{array}{l} \mathsf{PV} + \Sigma_2^b \text{ length induction} \\ \varphi(0) \wedge \forall y(\varphi(y) \rightarrow \varphi(y{+}1)) \rightarrow \varphi(|x|) \\ \mathsf{NP}^{\mathsf{NP}} \text{ induction for small numbers} \\ \Sigma_2^b \text{-definable functions: } \mathsf{P}^{\mathsf{NP}} \end{array}$

Buss' Witnessing 1985

If $S_2^2 \vdash \exists y \ \varphi(y, \bar{x})$ and $\varphi(y, \bar{x}) \in \Pi_1^b$,

then given \bar{x} a suitable y is computable in P^{NP}.

Buss' hierarchy

 $\mathsf{PV} \ \subseteq \ \mathsf{S}_2^1 \ \subseteq \ \mathsf{T}_2^1 \ \subseteq \ \mathsf{S}_2^2 \ \subseteq \ \mathsf{T}_2^2 \ \subseteq \ \cdots \mathsf{T}_2$

 $\begin{array}{l} \mathsf{PV} + \Sigma_2^b \text{ length induction} \\ \varphi(0) \wedge \forall y(\varphi(y) \rightarrow \varphi(y{+}1)) \rightarrow \varphi(|x|) \\ \mathsf{NP}^{\mathsf{NP}} \text{ induction for small numbers} \\ \Sigma_2^b \text{-definable functions: } \mathsf{P}^{\mathsf{NP}} \end{array}$

Buss' Witnessing 1985

If $S_2^2 \vdash \exists y \ \varphi(y, \bar{x})$ and $\varphi(y, \bar{x}) \in \Pi_1^b$,

then given \bar{x} a suitable y is computable in P^{NP} .

Krajíček 1993 For S_2^1 , $O(\log n)$ many witness queries suffice.

Buss' hierarchy

 $\mathsf{PV} \ \subseteq \ \mathsf{S}_2^1 \ \subseteq \ \mathsf{T}_2^1 \ \subseteq \ \mathsf{S}_2^2 \ \subseteq \ \mathsf{T}_2^2 \ \subseteq \cdots \mathsf{T}_2$

Müller, Pich 2020

formalizes many known circuit lower bounds.

Furst-Saxe-Sipser on AC_0 Razborov-Smolensky on $AC_0[p]$ (almost) Razborov on monotone circuits

Krajíček, Oliveira 2017

PV or its mild extensions seem to formalize most of contemporary complexity theory

Formalizations

• Direct formalization for a Σ_1^b -formula $\varphi(x)$: $\exists N \ 1 < n = |N|$

 $\alpha_{\varphi}^{c} := \forall n \in Log_{>1} \exists C < 2^{n^{c}} \forall x < 2^{n} \quad (C(x) = 1 \leftrightarrow \varphi(x))$

Formalizations

• Direct formalization for a Σ_1^b -formula $\varphi(x)$: $\exists N \ 1 < n = |N|$

$$\alpha_{\varphi}^{c} := \forall n \in Log_{>1} \exists C < 2^{n^{c}} \forall x < 2^{n} \quad (C(x) = 1 \leftrightarrow \varphi(x))$$

• Direct formalization for an NP-machine M:

$$\begin{array}{lll} \alpha_M^c & := & \forall n \in Log_{>1} \ \exists C < 2^{n^c} \ \forall x < 2^n \\ & & (C(x) = 1 \leftrightarrow \ \exists y < 2^{n^d} "y \text{ is an accepting computation of } M \text{ on } x") \end{array}$$

Formalizations

• Direct formalization for a Σ_1^b -formula $\varphi(x)$: $\exists N \ 1 < n = |N|$

$$\alpha_{\varphi}^{c} := \forall n \in Log_{>1} \exists C < 2^{n^{c}} \forall x < 2^{n} \quad (C(x) = 1 \leftrightarrow \varphi(x))$$

• Direct formalization for an NP-machine M:

$$\begin{array}{lll} \alpha^c_M & := & \forall n \in Log_{>1} \ \exists C < 2^{n^c} \ \forall x < 2^n \\ & & (C(x) = 1 \leftrightarrow \ \exists y < 2^{n^d} "y \text{ is an accepting computation of } M \text{ on } x") \end{array}$$

• These are $\forall \Sigma_3^b$. Can get a $\forall \Sigma_2^b$ -formula

$$\begin{array}{lll} \pmb{\beta}_M^c & := & \forall n \in Log_{>1} \ \exists C, D < 2^{n^c} \ \forall x < 2^n \ \forall y < 2^{n^d} \\ & (C(x) = 0 \rightarrow \neg ``y \text{ is an accepting computation of } M \text{ on } x'') \land \\ & (C(x) = 1 \rightarrow ``D(x) \text{ is an accepting computation of } M \text{ on } x'') \end{array}$$

"NP $\not\subseteq$ P/poly" := { $\neg \beta_{M_0}^c \mid c \in \mathbb{N}$ } for a universal NP-machine M_0 .

The consistency question

$$\begin{aligned} \alpha_M^c &= \forall n \in Log_{>1} \exists C < 2^{n^c} \forall x < 2^n \\ & (C(x) = 1 \leftrightarrow \exists y < 2^{n^d} "y \text{ is an accepting computation of } M \text{ on } x") \\ \beta_M^c &= \forall n \in Log_{>1} \exists C, D < 2^{n^c} \forall x < 2^n \forall y < 2^{n^d} \\ & (C(x) = 0 \rightarrow \neg "y \text{ is an accepting computation of } M \text{ on } x") \land \\ & (C(x) = 1 \rightarrow "D(x) \text{ is an accepting computation of } M \text{ on } x") \end{aligned}$$

Central question Is "NP $\not\subseteq$ P/poly" consistent with PV?

Krajíček 1995 / 2019

[Such models are] not ridiculously pathological structures, and a part of the difficulty in constructing them stems exactly from the fact that it is hard to distinguish these structures, by the studied properties, from natural numbers

The consistency counts towards the validity of H: it is true in a model of the theory, a structure very close to the standard model from the point of view of complexity theory.

Earlier consistency results

$$\begin{aligned} \alpha_M^c &= \forall n \in Log_{>1} \exists C < 2^{n^c} \forall x < 2^n \\ & (C(x) = 1 \leftrightarrow \exists y < 2^{n^d} "y \text{ is an accepting computation of } M \text{ on } x") \end{aligned}$$

$$\beta_M^c &= \forall n \in Log_{>1} \exists C, D < 2^{n^c} \forall x < 2^n \forall y < 2^{n^d} \\ & (C(x) = 0 \rightarrow \neg "y \text{ is an accepting computation of } M \text{ on } x") \land \\ & (C(x) = 1 \rightarrow "D(x) \text{ is an accepting computation of } M \text{ on } x") \end{aligned}$$

Cook, Krajíček 2007

"`NP $\not\subseteq$ P/poly" is consistent with S¹₂ if PH \neq P^{NP}_{tt}. "NP $\not\subseteq$ P/poly" is consistent with S²₂ if PH \neq P^{NP}.

Earlier consistency results

$$\begin{aligned} \alpha_M^c &= \forall n \in Log_{>1} \exists C < 2^{n^c} \forall x < 2^n \\ & (C(x) = 1 \leftrightarrow \exists y < 2^{n^d} "y \text{ is an accepting computation of } M \text{ on } x") \\ \beta_M^c &= \forall n \in Log_{>1} \exists C, D < 2^{n^c} \forall x < 2^n \forall y < 2^{n^d} \\ & (C(x) = 0 \rightarrow \neg "y \text{ is an accepting computation of } M \text{ on } x") \land \\ & (C(x) = 1 \rightarrow "D(x) \text{ is an accepting computation of } M \text{ on } x") \end{aligned}$$

Cook, Krajíček 2007

"`NP $\not\subseteq$ P/poly" is consistent with S_2^1 if PH \neq P_{tt}^{NP} . "NP $\not\subseteq$ P/poly" is consistent with S_2^2 if PH \neq P^{NP}.

Bydžovský, Krajíček, Oliveira 2020 Let $c \in \mathbb{N}$.

$$\neg \alpha_M^c$$
 is consistent with S_2^1 for some NP-machine M .

 $\neg \alpha_M^c$ is consistent with S_2^2 for some P^{NP}-machine M.

Two sorted theories

Add set sort variables X, Y, \ldots and atoms $x \in X$.

 $\Sigma_0^{1,b}$: bounded number sort quantifiers, no set sort quantifiers. $\Sigma_1^{1,b}$: form $\exists X\psi$ for $\psi \in \Sigma_0^{1,b}$. Define the problems in NEXP.

$$\mathsf{PV} \ \subseteq \ \mathsf{S}_2^1 \ \subseteq \ \mathsf{T}_2^1 \ \subseteq \ \cdots \mathsf{T}_2 \ \subseteq \ \mathsf{V}_2^0 \subseteq \ \mathsf{V}_2^1$$

 $T_2 + \Sigma_0^{1,b}$ comprehension

 $\exists Y \ \forall y \ (y \in Y \leftrightarrow y \leq z \land \varphi(\bar{X}, \bar{x}, y))$ Set boundedness $\exists y \ \forall x \ (x \in X \to x \leq y)$ Extensionality $\forall x(x \in X \leftrightarrow x \in Y) \to X = Y$ Same number sort consequences as T₂

Two sorted theories

Add set sort variables X, Y, \ldots and atoms $x \in X$.

 $\Sigma_0^{1,b}$: bounded number sort quantifiers, no set sort quantifiers. $\Sigma_1^{1,b}$: form $\exists X\psi$ for $\psi \in \Sigma_0^{1,b}$. Define the problems in NEXP.

$$\mathsf{PV} \subseteq \mathsf{S}_2^1 \subseteq \mathsf{T}_2^1 \subseteq \cdots \mathsf{T}_2 \subseteq \mathsf{V}_2^0 \subseteq \mathsf{V}_2^1$$

 $\begin{array}{l} \mathsf{T}_{2}+\boldsymbol{\Sigma}_{1}^{1,b} \text{ comprehension} \\ \exists Y \; \forall y \; (y \in Y \leftrightarrow y \leq z \land \varphi(\bar{X},\bar{x},y)) \\ \text{Set boundedness} \; \; \exists y \; \forall x \; (x \in X \to x \leq y) \\ \text{Extensionality} \; \; \forall x (x \in X \leftrightarrow x \in Y) \to X = Y \\ \boldsymbol{\Sigma}_{1}^{1,b} \text{-definable functions: EXP.} \end{array}$

Direct formalization:

$$\alpha_{\varphi}^{c} := \forall n \in Log_{>1} \exists C < 2^{n^{c}} \forall x < 2^{n} \quad (C(x) = 1 \leftrightarrow \varphi(x)).$$

Proposition

 $\{\neg \alpha_{\varphi}^{c} \mid c \in \mathbb{N}\}$ is consistent with V_{2}^{0} for some $\Sigma_{1}^{1,b}$ -formula $\varphi(x)$.

Direct formalization:

 $\alpha_{\varphi}^{c} := \forall n \in Log_{>1} \exists C < 2^{n^{c}} \forall x < 2^{n} \quad (C(x) = 1 \leftrightarrow \varphi(x)).$

Proposition

 $\{\neg \alpha_{\varphi}^{c} \mid c \in \mathbb{N}\}$ is consistent with V_{2}^{0} for some strict $\Sigma_{1}^{1,b}$ -formula $\varphi(x)$.

Proof sketch Let PHP(x) be

 $\neg \exists X$ "X codes a bijection from x + 1 onto x".

 \square

 V_2^0 proves PHP(*x*) is inductive: PHP(0) ∧ (PHP(*u*) → PHP(*u* + 1)). Assume $V_2^0 \vdash \alpha_{\neg PHP}^c$.

Then PHP(u) is equivalent to C(u) = 0 for some circuit C.

Quantifier free induction gives PHP(x). Contradiction.

Direct formalization:

$$\alpha_{\varphi}^{c} := \forall n \in Log_{>1} \exists C < 2^{n^{c}} \forall x < 2^{n} \quad (C(x) = 1 \leftrightarrow \varphi(x)).$$

Proposition

 $\{\neg \alpha_{\varphi}^{c} \mid c \in \mathbb{N}\}$ is consistent with V_{2}^{0} for some strict $\Sigma_{1}^{1,b}$ -formula $\varphi(x)$.

Faithful?

is there an NEXP-machine not simulated by small circuits in this model?

 $\begin{array}{rcl} \alpha^c_M & := & \forall n \in Log_{>1} \ \exists C < 2^{n^c} \ \forall x < 2^n \\ & (C(x) = 1 \leftrightarrow \ \exists Y "Y \text{ is an accepting computation of } M \text{ on } x") \end{array}$

Direct formalization:

 $\alpha_{\varphi}^{c} := \forall n \in Log_{>1} \exists C < 2^{n^{c}} \forall x < 2^{n} \quad (C(x) = 1 \leftrightarrow \varphi(x)).$

Proposition

 $\{\neg \alpha_{\varphi}^{c} \mid c \in \mathbb{N}\}$ is consistent with V_{2}^{0} for some strict $\Sigma_{1}^{1,b}$ -formula $\varphi(x)$.

Faithful?

is there an NEXP-machine not simulated by small circuits in this model?

$$\begin{array}{lll} \alpha^c_M & := & \forall n \in Log_{>1} \ \exists C < 2^{n^c} \ \forall x < 2^n \\ & (C(x) = 1 \leftrightarrow \ \exists Y "Y \text{ is an accepting computation of } M \text{ on } x") \end{array}$$

Surprising?

 α_{φ}^{c} has existential set quantifiers. Intuitively, V_{2}^{0} only knows trivial sets.

Want

Set-universal formalization for machines.

Easy witness lemma

$$\beta_M^c := \forall n \in Log_{>1} \exists C, D < 2^{n^c} \forall x < 2^n \forall Y$$

$$(C(x) = 0 \rightarrow \neg ``Y \text{ is an accepting computation of } M \text{ on } x'') \land$$

$$(C(x) = 1 \rightarrow `` tt(D_x) \text{ is an accepting computation of } M \text{ on } x'')$$

Easy witness lemma

$$\begin{split} \beta_M^c &:= \forall n \in Log_{>1} \exists C, D < 2^{n^c} \forall x < 2^n \forall Y \\ & (C(x) = 0 \to \neg ``Y \text{ is an accepting computation of } M \text{ on } x'') \land \\ & (C(x) = 1 \to `` \operatorname{tt}(D_x) \text{ is an accepting computation of } M \text{ on } x'') \end{split}$$

Impagliazzo, Kabanets, Wigderson 2002

The following are equivalent

$$\begin{split} \mathsf{NEXP} \not\subseteq \mathsf{P/poly} \\ \{\neg \alpha_{\varphi}^c \mid c \in \mathbb{N}\} \text{ is true for some } \Sigma_1^{1,b}\text{-formula } \varphi(x) \\ \{\neg \alpha_M^c \mid c \in \mathbb{N}\} \text{ is true for some for some NEXP-machine } M \\ \{\neg \alpha_{M_0}^c \mid c \in \mathbb{N}\} \text{ is true} \\ \{\neg \beta_M^c \mid c \in \mathbb{N}\} \text{ is true for some NEXP-machine } M \\ \{\neg \beta_{M_0}^c \mid c \in \mathbb{N}\} \text{ is true} \end{split}$$

Main result

$$\beta_M^c := \forall n \in Log_{>1} \exists C, D < 2^{n^c} \forall x < 2^n \forall Y$$

$$(C(x) = 0 \rightarrow \neg ``Y \text{ is an accepting computation of } M \text{ on } x'') \land$$

$$(C(x) = 1 \rightarrow `` tt(D_x) \text{ is an accepting computation of } M \text{ on } x'')$$

Theorem

 V_2^0 is consistent with

$$\{\neg \alpha_{\varphi}^{c} \mid c \in \mathbb{N}\} \text{ for some } \Sigma_{1}^{1,b}\text{-formula } \varphi(x)$$

$$\{\neg \alpha_{M}^{c} \mid c \in \mathbb{N}\} \text{ for some NEXP-machine } M$$

$$\{\neg \alpha_{M_{0}}^{c} \mid c \in \mathbb{N}\}$$

$$\{\neg \beta_{M}^{c} \mid c \in \mathbb{N}\} \text{ for some NEXP-machine } M$$

$$\{\neg \beta_{M_{0}}^{c} \mid c \in \mathbb{N}\} =: \text{``NEXP } \not\subseteq \text{P/poly''}$$

Proof sketch For all c, φ there are d, e, M such that V_2^0 proves:

$$(\beta_{M_0}^c \to \beta_M^d) \qquad (\beta_M^d \to \alpha_M^d) \qquad (\alpha_M^d \to \alpha_{\varphi}^e) \qquad \dots$$

Slightly superpolynomial time

Theorem

"NTIME $[n^{O(\log \log \log n)}] \not\subseteq P/\operatorname{poly}$ " is consistent with V₂⁰.

Set-universal formalization based on:

Murray, Williams 2018

t(n) increasing, time-constructible, superpolynomial.

If $\mathsf{NTIME}(t(n)^{O(1)}) \subseteq \mathsf{P}/\mathsf{poly}$,

then NTIME($t(n)^{O(1)}$)-machines have poly-size witness circuits.

Almost settles the central question on the consistency of "NP $\not\subseteq$ P/poly".

Lemma Let $(M, \mathcal{X}) \models S_2^1(\alpha) + \beta_{M_0}^c$ for some $c \in \mathbb{N}$.

There is $\mathcal{Y} \subseteq \mathcal{X}$ such that $(M, \mathcal{Y}) \models \mathsf{V}_2^1$.

Lemma Let $(M, \mathcal{X}) \models S_2^1(\alpha) + \beta_{M_0}^c$ for some $c \in \mathbb{N}$.

There is $\mathcal{Y} \subseteq \mathcal{X}$ such that $(M, \mathcal{Y}) \models \mathsf{V}_2^1$.

Proof idea

Consider a weak theory plus $\beta_{M_0}^c$

 $eta^c_{M_0}$ implies that many sets are coded by small circuits

The weak theory can quantify over and reason with these circuits

The weak theory can implicitly reason with many sets

The weak theory can simulate a strong theory

Lemma Let $(M, \mathcal{X}) \models S_2^1(\alpha) + \beta_{M_0}^c$ for some $c \in \mathbb{N}$.

There is $\mathcal{Y} \subseteq \mathcal{X}$ such that $(M, \mathcal{Y}) \models \mathsf{V}_2^1$.

Proof sketch

 $\mathcal{Y} :=$ sets represented by circuits in M

Then $(M, \mathcal{Y}) \models \beta_{M_0}^c$ since $\beta_{M_0}^c$ is set-universal.

And $(M, \mathcal{Y}) \models S_2^1(\alpha)$.

Suffices to show the existence of sets defined by $\exists X \ \psi(x, \bar{y}, X, \bar{Y})$ for $\psi \in \Pi_1^b$ Key: set parameters \bar{Y} from \mathcal{Y} can be replaced by circuits: number sort! Then $\beta_{M_0}^c$ implies the the set is given by a circuit.

Lemma Let $(M, \mathcal{X}) \models S_2^1(\alpha) + \beta_{M_0}^c$ for some $c \in \mathbb{N}$.

There is $\mathcal{Y} \subseteq \mathcal{X}$ such that $(M, \mathcal{Y}) \models \mathsf{V}_2^1$.

Theorem

Let $S_2^1(\alpha) \subseteq T$. Assume T does not prove all number-sort consequences of V_2^1 . Then "NEXP $\not\subseteq$ P/poly" is consistent with T.

Lemma Let $(M, \mathcal{X}) \models S_2^1(\alpha) + \beta_{M_0}^c$ for some $c \in \mathbb{N}$.

There is $\mathcal{Y} \subseteq \mathcal{X}$ such that $(M, \mathcal{Y}) \models \mathsf{V}_2^1$.

Theorem

Let $S_2^1(\alpha) \subseteq T$. Assume T does not prove all number-sort consequences of V_2^1 . Then "NEXP $\not\subseteq$ P/poly" is consistent with T.

Proof

Else $\mathsf{T} \vdash \beta_{M_0}^c$ for some $c \in \mathbb{N}$.

Let $V_2^1 \vdash \psi$ number sort. Let $(M, \mathcal{X}) \models \mathsf{T}$.

To show: $M \models \psi$.

Clear by lemma.

Lemma Let $(M, \mathcal{X}) \models S_2^1(\alpha) + \beta_{M_0}^c$ for some $c \in \mathbb{N}$.

There is $\mathcal{Y} \subseteq \mathcal{X}$ such that $(M, \mathcal{Y}) \models \mathsf{V}_2^1$.

Theorem

Let $S_2^1(\alpha) \subseteq T$. Assume T does not prove all number-sort consequences of V_2^1 . Then "NEXP $\not\subseteq$ P/poly" is consistent with T.

Magnification

If $S_2^1(\alpha) \not\vdash$ "NEXP $\not\subseteq$ P/poly", then $V_2^1 \not\vdash$ "NEXP $\not\subseteq$ P/poly".

Lemma Let $(M, \mathcal{X}) \models S_2^1(\alpha) + \beta_{M_0}^c$ for some $c \in \mathbb{N}$. There is $\mathcal{Y} \subseteq \mathcal{X}$ such that $(M, \mathcal{Y}) \models V_2^1$.

Theorem

Let $S_2^1(\alpha) \subseteq T$. Assume *T* does not prove all number-sort consequences of V_2^1 . Then "NEXP $\not\subseteq$ P/poly" is consistent with T.

 \square

Magnification

If $S_2^1(\alpha) \not\vdash$ "NEXP $\not\subseteq$ P/poly", then $V_2^1 \not\vdash$ "NEXP $\not\subseteq$ P/poly".

Proof

Say $(M, \mathcal{X}) \models S_2^1(\alpha) + \beta_{M_0}^c$

Lemma: $(M, \mathcal{Y}) \models \mathsf{V}_2^1$ for some $\mathcal{Y} \subseteq \mathcal{X}$.

But $(M, \mathcal{Y}) \models \beta_{M_0}^c$ since $\beta_{M_0}^c$ is set-universal.

Lemma Let $(M, \mathcal{X}) \models S_2^1(\alpha) + \beta_{M_0}^c$ for some $c \in \mathbb{N}$.

There is $\mathcal{Y} \subseteq \mathcal{X}$ such that $(M, \mathcal{Y}) \models \mathsf{V}_2^1$.

Theorem

Let $S_2^1(\alpha) \subseteq T$. Assume T does not prove all number-sort consequences of V_2^1 . Then "NEXP $\not\subseteq$ P/poly" is consistent with T.

Magnification

If $S_2^1(\alpha) \not\vdash$ "NEXP $\not\subseteq$ P/poly", then $V_2^1 \not\vdash$ "NEXP $\not\subseteq$ P/poly".

Hope to complete Razborov's program.

Open Is "EXP $\not\subseteq$ P/poly" consistent with V₂⁰ ? **Formalization**

Let M_1 be a suitable EXP-universal machine.

$$\beta_{M_1}^c := \forall n \in Log_{>1} \exists C, D < 2^{n^c} \forall x < 2^n \forall Y$$

$$(C(x) = 0 \rightarrow \neg "Y \text{ is an accepting computation of } M_1 \text{ on } x") \land$$

$$(C(x) = 1 \rightarrow "tt(D_x) \text{ is an accepting computation of } M_1 \text{ on } x")$$

Open Is "EXP $\not\subseteq$ P/poly" consistent with V₂⁰ ? **Formalization**

Let M_1 be a suitable EXP-universal machine.

 $\beta_{M_1}^c := \forall n \in Log_{>1} \exists C, D < 2^{n^c} \forall x < 2^n \forall Y$ $(C(x) = 0 \rightarrow \neg "Y \text{ is an accepting computation of } M_1 \text{ on } x") \land$ $(C(x) = 1 \rightarrow "tt(D_x) \text{ is an accepting computation of } M_1 \text{ on } x")$

$$\gamma_{M_1}^c := \forall n \in Log_{>1} \exists D < 2^{n^c} \forall x < 2^n \qquad \text{number sort} \\ \text{``tt}(D_x) \text{ is a halting computation of } M_1 \text{ on } x'' \qquad \forall \Sigma_2^b$$

Proposition The following are equivalent.

$$\mathsf{EXP}
ot \subseteq \mathsf{P}/\mathsf{poly}$$

 $\left\{
eg eta^c_{M_1} \mid c \in \mathbb{N}
ight\}$ is true $\left\{
eg \gamma^c_{M_1} \mid c \in \mathbb{N}
ight\}$ is true

Open Is "EXP $\not\subseteq$ P/poly" consistent with V₂⁰ ? Formalization

Let M_1 be a suitable EXP-universal machine.

 $\beta_{M_1}^c := \forall n \in Log_{>1} \exists C, D < 2^{n^c} \forall x < 2^n \forall Y$ $(C(x) = 0 \rightarrow \neg "Y \text{ is an accepting computation of } M_1 \text{ on } x") \land$ $(C(x) = 1 \rightarrow "tt(D_x) \text{ is an accepting computation of } M_1 \text{ on } x")$

$$\gamma_{M_1}^c := \forall n \in Log_{>1} \exists D < 2^{n^c} \forall x < 2^n$$
 number sort
 "tt(D_x) is a halting computation of M_1 on x " $\forall \Sigma_2^b$

Theorem The following are equivalent for $T \supseteq T_2^1(\alpha)$:

 $\left\{ \neg \beta_{M_1}^c \mid c \in \mathbb{N} \right\} \text{ is consistent with T} \\ \left\{ \neg \gamma_{M_1}^c \mid c \in \mathbb{N} \right\} \text{ is consistent with T}$

Open Is "EXP $\not\subseteq$ P/poly" consistent with V₂⁰ ? Formalization

Let M_1 be a suitable EXP-universal machine.

 $\beta_{M_1}^c := \forall n \in Log_{>1} \exists C, D < 2^{n^c} \forall x < 2^n \forall Y \\ (C(x) = 0 \rightarrow \neg "Y \text{ is an accepting computation of } M_1 \text{ on } x") \land \\ (C(x) = 1 \rightarrow " \operatorname{tt}(D_x) \text{ is an accepting computation of } M_1 \text{ on } x")$

$$\begin{array}{rcl} \gamma^c_{M_1} & := & \forall n \in Log_{>1} \ \exists D < 2^{n^c} \ \forall x < 2^n & \text{number sort} \\ & ``tt(D_x) \text{ is a halting computation of } M_1 \text{ on } x'' & \forall \boldsymbol{\Sigma}^b_2 \end{array}$$

Witnessing

Proposition "EXP $\not\subseteq$ P/poly" is consistent

with S_2^{17} if EXP $\not\subseteq \Delta_{17}^P$ with S_2^1 if EXP $\not\subseteq P_{tt}^{NP}$

Open Is "EXP $\not\subseteq$ P/poly" consistent with V₂⁰ ? Formalization

Let M_1 be a suitable EXP-universal machine.

 $\beta_{M_1}^c := \forall n \in Log_{>1} \exists C, D < 2^{n^c} \forall x < 2^n \forall Y \\ (C(x) = 0 \rightarrow \neg "Y \text{ is an accepting computation of } M_1 \text{ on } x") \land \\ (C(x) = 1 \rightarrow " \operatorname{tt}(D_x) \text{ is an accepting computation of } M_1 \text{ on } x")$

$$\begin{array}{rcl} \gamma_{M_1}^c & := & \forall n \in Log_{>1} \ \exists D < 2^{n^c} \ \forall x < 2^n & \text{number sort} \\ & \text{``tt}(D_x) \text{ is a halting computation of } M_1 \text{ on } x'' & \forall \Sigma_2^b \end{array}$$

Witnessing

Proposition "EXP $\not\subseteq$ P/poly" is consistent

with S_2^{17} if $EXP \not\subseteq \Delta_{17}^P$ with S_2^1 if $EXP \not\subseteq P_{tt}^{NP}$ if EXP = NEXP