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Circuit depth

Fan-in 2: Every gate has at most 2 incoming wires.



Depth complexity

Let f : {0, 1}n → {0, 1}.
Depth complexity D(f): depth of a shallowest circuit for f .

Major frontier: Explicit f ∈ P with D(f) = ω(log n).

a.k.a. P ̸⊆ NC1.

State of the art: D(f) ≥ (3− o(1)) · log n [H93, T14].
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The KRW conjecture
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D(g)

D(f)

Clearly, D(f ⋄ g) ≤ D(f) + D(g).

KRW conjecture: ∀f, g : D(f ⋄ g) ≈ D(f) + D(g).

Theorem [KRW91]: the conjecture implies that P ̸⊆ NC1.

Special cases: [EIRS91, H93, HW93, GMWW14, DM16, KM18,
dRMNPR20, FMT21].
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The weak KRW conjecture

KRW conjecture: ∀f ∀g : D(f ⋄ g) ≈ D(f) + D(g).

Sufficient for P ̸⊆ NC1 (folklore): ∀f ∃ hard g.

Weak KRW conjecture

For every f and n ∈ N, there exists g : {0, 1}n → {0, 1} s.t.

D(f ⋄ g) ≥ D(f) + ω(log n).

[MS21]: proved such a result for U ⋄ g.
U = the universal relation.
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Karchmer-Wigderson relations

Relate D(f) to complexity of a communication problem KWf .

The KW relation KWf is defined as follows:

Alice gets x ∈ f−1(1).
Bob gets y ∈ f−1(0).
Clearly, x ̸= y, so ∃i s.t. xi ̸= yi.
Want to find such i.

Theorem [KW88]: D(f) = CC(KWf ).

KRW conjecture: CC(KWf⋄g) ≈ CC(KWf ) + CC(KWg)
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The KW relation KWf⋄g

Recall: f ⋄ g maps {0, 1}m×n to {0, 1}.
Goal: Find (i, j) such that Xi,j ̸= Yi,j.

Claim: CC(KWf⋄g) ≤ CC(KWf ) + CC(KWg).
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KRW conjecture: the obvious protocol is essentially optimal.
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Why should the obvious protocol be optimal?
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The players should look for (i, j) in a row where ai ̸= bi.

In other rows, a solution might not even exist.

To do this, they must find a row i such that ai ̸= bi.

To find such a row, they must solve KWf .

To find (i, j) in such a row, they must solve KWg.
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Obstacles

This intuition is very appealing...

but there are two obstacles in
turning it into a proof:

1 We assumed that players find (i, j) s.t. ai ̸= bi.

but we need to prove it...

2 Even if players must solve both KWf and KWg,

still does not imply they communicate CC(KWf ) + CC(KWg)
bits.
This is the direct-sum problem.

In this work, we focus on the direct-sum problem.
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Strong composition

The strong composition KWf ⊛ KWg:

defined like KWf⋄g, but
the solution (i, j) must be in a row where ai ̸= bi.

Challenge (folklore): Prove KRW conjecture for KWf ⊛ KWg.

Necessary for proving original KRW conjecture.

Focus on the direct-sum problem.
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Our result

A “weak KRW” theorem (∀f ∃ hard g) for strong composition.

Theorem (informal)

For every f : {0, 1}m → {0, 1} and every n ∈ N,
there exists g : {0, 1}n → {0, 1} s.t.

CC(KWf ⊛ KWg) > CC(KWf ) + n− 0.96 ·m−O (log(m · n)) .

If proved for KWf⋄g instead of KWf ⊛ KWg:

an explicit function with depth complexity ≥ 3.04 · log n.
First improvement in depth lower bounds since [H93]!

Insufficient for proving P ̸⊆ NC1 due to −0.96 ·m.
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Multiplexor composition

Fix a function f : {0, 1}m → {0, 1} and n ∈ N.
Goal: ∃ g : {0, 1}n → {0, 1} s.t. CC(KWf ⊛ KWg) is large.

Define the composition KWf ⊛MUXn:

g gX

Alice

Y

Bob

a b...
...

f
1

f
0

Suffices [MS21]*: CC(KWf ⊛MUXn) > CC(KWf ) + n− loss.
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Proof strategy [EIRS91]

We wish to show that the following protocol is optimal:

First solve KWf on a and b.
Then solve KWg on Xi and Yi.

Challenge: Cannot solve KWf and KWg together faster than
solving each of them separately.

Intuition: Alice and Bob must finish solving KWf before starting
to solve KWg.

Fix a protocol Π for KWf ⊛MUXn.

Roughly, we prove that:

as long as Π does not finish solving KWf ,
it cannot make progress on KWg.
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Proof strategy [EIRS91]

Structure theorem (informal)

Let π1 be a partial transcript s.t.

π1 is still far from solving KWf , and

π1 reveals little information about the inputs.

Then, after reaching π1, the players must still communicate
≈ n more bits.

It is not hard to show that there exists such π1 of
length CC(KWf )− loss.

By applying the theorem, we get a lower bound of

≈ CC(KWf ) + n− loss.
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Intersecting functions

Fix a partial transcript π1.

Goal: players must communicate ≈ n more bits.

Notation
For every function g : {0, 1}n → {0, 1} denote:

X (g) = {X : the input (g,X) is legal for Alice given π1}
Y(g) = Same for Y and Bob.

Definition
We say that g1, g2 : {0, 1}n → {0, 1} intersect iff

either X (g1) ∩ Y(g2) ̸= ∅ or X (g2) ∩ Y(g1) ̸= ∅.
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Lemma (implicit in [MS21])

If ∃ a set V of functions s.t. ∀ distinct g1, g2 ∈ V intersect, then the
players must send ⪆ log log |V| more bits after reaching π1.

Holds even for standard composition.

To use lemma, need to construct V s.t. |V| ≈ 22
n
.

Difficulty: need that every two functions in V intersect.
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A graph-theoretic perspective

Definition
The characteristic graph Gπ1 satisfies:

The vertices are all functions g : {0, 1}n → {0, 1}.
There is an edge betwen g1 and g2 iff they intersect.

Lemma of [MS21]

The players must send ⪆ log logω(Gπ1) more bits.
(ω(Gπ1) — maximum size of a clique in Gπ1).

Lemma (this work)

The players must send ⪆ log logχ(Gπ1) more bits
(χ(Gπ1) — minimum number of colors required to color Gπ1).
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Back to strong composition

Recall: In strong composition, players have to look for a solution
in rows where ai ̸= bi.

The same results hold, but we need to change the notion of
intersecting functions to focus on rows where ai ̸= bi.

Definition
We say that g1, g2 : {0, 1}n → {0, 1} weakly intersect iff

there exist matrices X ∈ X (g1) and Y ∈ Y(g2) s.t.

Xi = Yi for every i ∈ [m] for which ai ̸= bi
(where a = g1(X) and b = g2(Y )),

or vice versa.
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Proving weak intersection

How can we prove that two functions weakly intersect?

Need to prove: there exist X ∈ X (g1) and Y ∈ Y(g2) that are
equal on the rows where ai ̸= bi.

Due to the assumptions on π1:

The sets X (g1) and Y(g2) are large (density ≥ 2−ε·m)
(since π1 does not reveal much information on the inputs).
It holds that ai ̸= bi for at most α ·m rows
(since π1 is far from solving KWf ).

Warm-up: prove that there exist X ∈ X (g1) and Y ∈ Y(g2)
that are equal on ≥ α ·m rows.
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A simpler combinatorial question

Let Σ be a finite alphabet.

Let X ,Y ⊆ Σm be sets of strings of density ≥ 2−ε·m

(for some ε > 0).

Toy problem
Prove that there exist strings x ∈ X and y ∈ Y that agree on at least
α ·m coordinates (for some α that depends only on ε).

In other words: there exists I ⊆ [m] of size ≥ α ·m s.t.
X|I ∩ Y|I ̸= ∅.
Idea: choose I such that X|I and Y|I are “prefix-thick sets”.
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Prefix-thick sets

Definition
We say that X ⊆ Σm is prefix thick iff for every prefix w of X of
length < m, there exist more than |Σ|

2
symbols σ such that w ◦ σ is a

prefix of X .

Observation
If X and Y are prefix-thick subsets of Σm, then X ∩ Y ≠ ∅.
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Definition
We say that X is prefix thick iff for every prefix w of length < m,
there exist more than |Σ|

2
symbols σ such that w ◦ σ is a prefix.

Lemma (this work)

Let X ⊆ Σm be a set of some density δ. Then, X|I is prefix thick for
at least δ fraction of the sets I ⊆ [m].

Proof: Easy corollary of a result of [ST14] about discrete
dynamical systems.

Can be viewed as a generalization of the Sauer-Shelah lemma to
large alphabets.
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Putting everything together

Using the last lemma, we can find a set I s.t. X (g1)|I
and Y(g2)|I are prefix thick.

Together with additional ideas, we can prove that many pairs of
functions weakly intersect.

In other words, we can prove the existence of many edges in the
characteristic Gπ1 .

This allows us to prove a lower bound on the chromatic number
of Gπ1 ...

and hence get the desired lower bound on communication
complexity.
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