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Fan-in 2: Every gate has at most 2 incoming wires.
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Let f:{0,1}" — {0,1}.
Depth complexity D(f): depth of a shallowest circuit for f.

Major frontier: Explicit f € P with D(f) = w(logn).
aka. P ZNC.
@ State of the art: D(f) > (3 —o0(1)) - logn [H93, T14].
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o [KRWO1]: We need to understand composition.
o Let f:{0,1}"" — {0,1}, g : {0,1}" — {0, 1}.
@ The composition fog: {0, 1} — {0,1} is

n g

(fog)(X)
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The KRW conjecture

D(/) F
Dlg) 4 g
X X,

o Clearly, D(f o g) < D(f) + D(g).
@ KRW conjecture: Vf,g: D(fog)~D(f)+ D(g).
@ Theorem [KRWO1]: the conjecture implies that P ¢ NC".

@ Special cases: [EIRS91, H93, HW93, GMWW14, DM16, KM18,
dRMNPR20, FMT21].
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The weak KRW conjecture

@ KRW conjecture: Vf Vg: D(fog)~D(f)+ D(g).
o Sufficient for P ¢ NC" (folklore): Vf 3 hard g.

Weak KRW conjecture

For every f and n € N, there exists ¢ : {0,1}" — {0,1} s.t.

D(fog) >D(f)+ w(logn).

e [MS21]: proved such a result for U < g.
o U = the universal relation.
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Karchmer-Wigderson relations

@ Relate D(f) to complexity of a communication problem KWV.

@ The KW relation KWy is defined as follows:
Alice gets © € f~1(1).

Bob gets y € f~1(0).

Clearly, z # y, so i s.t. x; # y;.

Want to find such i.

@ Theorem [KW88]: D(f) = CC(KW;).

e KRW conjecture: CC(KWy,,) ~ CC(KW;) + CC(KW,)
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The KW relation KW/,

@ Recall: fogmaps {0,1}""" to {0,1}.
e Goal: Find (i, ) such that X, # Y, ;.
o Claim: CC(KWj.,) < CC(KW;) + CC(KW,).

Alice Bob
g g

@ KRW conjecture: the obvious protocol is essentially optimal.
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Why should the obvious protocol be optimal?

Alice g

@ The players should look for (7, j) in a row where a; # b;.
o In other rows, a solution might not even exist.

@ To do this, they must find a row 7 such that a; # b;.

@ To find such a row, they must solve KWW.

e To find (7, j) in such a row, they must solve K\V,.
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Obstacles

This intuition is very appealing... but there are two obstacles in
turning it into a proof:

© We assumed that players find (7, j) s.t. a; # b;.
e but we need to prove it...

@ Even if players must solve both KW} and KW,

o still does not imply they communicate CC(KW;) + CC(KW,)
bits.
o This is the direct-sum problem.

In this work, we focus on the direct-sum problem.
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o defined like KWysq, but
e the solution (i, 7) must be in a row where a; # b;.

@ Challenge (folklore): Prove KRW conjecture for KW, @ KW,.
o Necessary for proving original KRW conjecture.

e Focus on the direct-sum problem.
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Our result

A “weak KRW" theorem (V[ 3 hard g) for strong composition.

Theorem (informal)

For every f: {0,1}" — {0,1} and every n € N,
there exists ¢ : {0,1}" — {0,1} s.t.

CC(KW; ® KW,) > CC(KW,) +n — 0.96 - m — O (log(m - n)).

If proved for KWy, instead of KW, ® KW,:
@ an explicit function with depth complexity > 3.04 - logn.
@ First improvement in depth lower bounds since [H93]!
e Insufficient for proving P ¢ NC' due to —0.96 - m.
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Multiplexor composition

e Fix a function f:{0,1}" — {0,1} and n € N.
@ Goal: 3 ¢:{0,1}" — {0,1} s.t. CC(KW; ® KW,) is large.
@ Define the composition KW, ® MUX,,:

Alice Bob

o Suffices [MS21]*: CC(KW; ® MUX,,) > CC(KW;) + n — loss.
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Proof strategy [EIRS91]

@ We wish to show that the following protocol is optimal:

o First solve KWWy on a and b.
e Then solve KW, on X; and Y;.

(]

Challenge: Cannot solve KW; and KWV, together faster than
solving each of them separately.

@ Intuition: Alice and Bob must finish solving KW/} before starting
to solve KW,.

Fix a protocol II for KW; @ MUX,.
Roughly, we prove that:

e as long as II does not finish solving KWy,
e it cannot make progress on KW,.
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Proof strategy [EIRS91]

Structure theorem (informal)
Let 7, be a partial transcript s.t.
o m is still far from solving KWW, and
e m reveals little information about the inputs.

Then, after reaching 71, the players must still communicate
/~ n more bits.

@ It is not hard to show that there exists such m; of
length CC(KW;) — loss.

@ By applying the theorem, we get a lower bound of

~ CC(KWy) +n — loss.
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Intersecting functions

@ Goal: players must communicate ~ n more bits.

Definition

We say that g1, 92 : {0,1}" — {0, 1} intersect iff
@ either X(g1) N YV(g2) # 0 or X(g2) N V(g1) # 0.

Lemma (implicit in [MS21])
If 9a set V of functions s.t. V distinct g1, g» € V intersect, then the
players must send £ loglog |V| more bits after reaching ;.

@ Holds even for standard composition.
@ To use lemma, need to construct V s.t. |V| ~ 22",

o Difficulty: need that every two functions in V intersect.
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A graph-theoretic perspective

Definition

The characteristic graph G, satisfies:
@ The vertices are all functions ¢ : {0,1}" — {0, 1}.
@ There is an edge betwen ¢; and g- iff they intersect.

Lemma of [MS21]

The players must send < loglog w (G, ) more bits.
(w(Gr,) — maximum size of a clique in G,,).

Lemma (this work)

The players must send £ log log x(G,,) more bits
(x(Gx,) — minimum number of colors required to color G,,).
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Back to strong composition

@ Recall: In strong composition, players have to look for a solution
in rows where a; # b;.

@ The same results hold, but we need to change the notion of
intersecting functions to focus on rows where a; # b;.

Definition
We say that g1, 92 : {0,1}" — {0, 1} weakly intersect iff
@ there exist matrices X € X(g;) and Y € YV(g) s.t.

o X, =Y, for every i € [m] for which a; # b;
o (where a = ¢g1(X) and b = g2(Y)),

@ or vice versa.
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Proving weak intersection

@ How can we prove that two functions weakly intersect?

@ Need to prove: there exist X € X(g;) and Y € )V(g2) that are
equal on the rows where a; # b;.

@ Due to the assumptions on 7y:
o The sets X'(g1) and )Y(g2) are large (density > 27°7)
(since m does not reveal much information on the inputs).
o It holds that a; # b; for at most « - m rows
(since 7y is far from solving KW).

@ Warm-up: prove that there exist X € X(g;) and Y € V(g2)
that are equal on > « - m rows.
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A simpler combinatorial question
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@ Idea: choose [ such that X'|; and )|, are “prefix-thick sets".



Prefix-thick sets

Definition
We say that X C ¥ is prefix thick iff for every prefix w of A of

length < m, there exist more than %

prefix of X'.

symbols ¢ such that wo o is a




Prefix-thick sets

Definition
We say that X C ¥ is prefix thick iff for every prefix w of A of

length < m, there exist more than %

prefix of X'.

symbols ¢ such that wo o is a

Observation
If X and ) are prefix-thick subsets of X, then X N Y # ().
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Lemma (this work)
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e Proof: Easy corollary of a result of [ST14] about discrete
dynamical systems.

@ Can be viewed as a generalization of the Sauer-Shelah lemma to
large alphabets.
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Putting everything together

@ Using the last lemma, we can find a set [ s.t. X(¢1)|;
and )(g2)|; are prefix thick.

@ Together with additional ideas, we can prove that many pairs of
functions weakly intersect.

@ In other words, we can prove the existence of many edges in the
characteristic G, .

@ This allows us to prove a lower bound on the chromatic number
of G, ...

@ and hence get the desired lower bound on communication
complexity.
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@ The KRW conjecture is a promising approach for
proving P Z NC'.

e Even a weak version suffices (Vf 3 hard g).
@ Strong composition: focus on the direct-sum obstacle.

@ Our result: a version of the weak conjecture for strong
composition.

@ Open problems:

o Get rid of the —0.96 - m loss.
o Lower bound for formula complexity.

Thank you!
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