A KRW-like theorem for Strong Composition

Or Meir

Proof strategy

4 Lower bounds using graph coloring

5 Prefix-thick sets

Outline

1 Background

- 2 Our result
- 3 Proof strategy
- 4 Lower bounds using graph coloring
- 5 Prefix-thick sets

Circuit depth

Fan-in 2: Every gate has at most 2 incoming wires.

- Let $f: \{0,1\}^n \to \{0,1\}$.
- Depth complexity D(f): depth of a shallowest circuit for f.

- Let $f: \{0,1\}^n \to \{0,1\}$.
- Depth complexity D(f): depth of a shallowest circuit for f.
- Major frontier: Explicit $f \in \mathbf{P}$ with $\mathsf{D}(f) = \omega(\log n)$.
- a.k.a. $\mathbf{P} \not\subseteq \mathbf{NC}^1$.

- Let $f: \{0,1\}^n \to \{0,1\}$.
- Depth complexity D(f): depth of a shallowest circuit for f.
- Major frontier: Explicit $f \in \mathbf{P}$ with $\mathsf{D}(f) = \omega(\log n)$.
- a.k.a. $\mathbf{P} \not\subseteq \mathbf{NC}^1$.
- State of the art: $D(f) \ge (3 o(1)) \cdot \log n$ [H93, T14].

• [KRW91]: We need to understand composition.

- [KRW91]: We need to understand composition.
- Let $f: \{0,1\}^m \to \{0,1\}, g: \{0,1\}^n \to \{0,1\}.$

- [KRW91]: We need to understand composition.
- Let $f: \{0,1\}^m \to \{0,1\}, g: \{0,1\}^n \to \{0,1\}.$
- The composition $f \diamond g : \{0,1\}^{m \times n} \to \{0,1\}$ is

- [KRW91]: We need to understand composition.
- Let $f: \{0,1\}^m \to \{0,1\}, g: \{0,1\}^n \to \{0,1\}.$
- The composition $f \diamond g : \{0,1\}^{m \times n} \to \{0,1\}$ is

- [KRW91]: We need to understand composition.
- Let $f: \{0,1\}^m \to \{0,1\}, g: \{0,1\}^n \to \{0,1\}.$
- The composition $f \diamond g : \{0,1\}^{m \times n} \to \{0,1\}$ is

- [KRW91]: We need to understand composition.
- Let $f: \{0,1\}^m \to \{0,1\}, g: \{0,1\}^n \to \{0,1\}.$
- The composition $f \diamond g : \{0,1\}^{m \times n} \to \{0,1\}$ is

• Clearly, $D(f \diamond g) \leq D(f) + D(g)$.

- Clearly, $D(f \diamond g) \leq D(f) + D(g)$.
- KRW conjecture: $\forall f, g$: $D(f \diamond g) \approx D(f) + D(g)$.

- Clearly, $D(f \diamond g) \leq D(f) + D(g)$.
- KRW conjecture: $\forall f, g : D(f \diamond g) \approx D(f) + D(g)$.
- Theorem [KRW91]: the conjecture implies that $\mathbf{P} \not\subseteq \mathbf{NC}^1$.

- Clearly, $D(f \diamond g) \leq D(f) + D(g)$.
- KRW conjecture: $\forall f, g : D(f \diamond g) \approx D(f) + D(g)$.
- Theorem [KRW91]: the conjecture implies that $\mathbf{P} \not\subseteq \mathbf{NC}^1$.
- Special cases: [EIRS91, H93, HW93, GMWW14, DM16, KM18, dRMNPR20, FMT21].

• KRW conjecture: $\forall f \ \forall g : \ \mathsf{D}(f \diamond g) \approx \mathsf{D}(f) + \mathsf{D}(g).$

The weak KRW conjecture

- KRW conjecture: $\forall f \ \forall g : \ \mathsf{D}(f \diamond g) \approx \mathsf{D}(f) + \mathsf{D}(g).$
- Sufficient for $\mathbf{P} \not\subseteq \mathbf{NC}^1$ (folklore): $\forall f \exists$ hard g.

The weak KRW conjecture

- KRW conjecture: $\forall f \ \forall g : \ \mathsf{D}(f \diamond g) \approx \mathsf{D}(f) + \mathsf{D}(g).$
- Sufficient for $\mathbf{P} \not\subseteq \mathbf{NC}^1$ (folklore): $\forall f \exists$ hard g.

Weak KRW conjecture

For every f and $n \in \mathbb{N}$, there exists $g : \{0,1\}^n \to \{0,1\}$ s.t.

 $\mathsf{D}(f\diamond g) \geq \mathsf{D}(f) + \omega(\log n).$

The weak KRW conjecture

- KRW conjecture: $\forall f \ \forall g : \ \mathsf{D}(f \diamond g) \approx \mathsf{D}(f) + \mathsf{D}(g).$
- Sufficient for $\mathbf{P} \not\subseteq \mathbf{NC}^1$ (folklore): $\forall f \exists$ hard g.

Weak KRW conjecture

For every f and $n \in \mathbb{N}$, there exists $g : \{0,1\}^n \to \{0,1\}$ s.t. $\mathsf{D}(f \diamond g) \ge \mathsf{D}(f) + \omega(\log n).$

- [MS21]: proved such a result for $U \diamond g$.
 - U = the universal relation.

• Relate D(f) to complexity of a communication problem KW_f .

- Relate D(f) to complexity of a communication problem KW_f .
- The KW relation KW_f is defined as follows:
 - Alice gets $x \in f^{-1}(1)$.
 - Bob gets $y \in f^{-1}(0)$.
 - Clearly, $x \neq y$, so $\exists i \text{ s.t. } x_i \neq y_i$.
 - Want to find such *i*.

- Relate D(f) to complexity of a communication problem KW_f .
- The KW relation KW_f is defined as follows:
 - Alice gets $x \in f^{-1}(1)$.
 - Bob gets $y \in f^{-1}(0)$.
 - Clearly, $x \neq y$, so $\exists i \text{ s.t. } x_i \neq y_i$.
 - Want to find such *i*.
- Theorem [KW88]: $D(f) = CC(KW_f)$.

- Relate D(f) to complexity of a communication problem KW_f .
- The KW relation KW_f is defined as follows:
 - Alice gets $x \in f^{-1}(1)$.
 - Bob gets $y \in f^{-1}(0)$.
 - Clearly, $x \neq y$, so $\exists i \text{ s.t. } x_i \neq y_i$.
 - Want to find such *i*.
- Theorem [KW88]: $D(f) = CC(KW_f)$.
- KRW conjecture: $CC(KW_{f \diamond g}) \approx CC(KW_f) + CC(KW_g)$

• Recall: $f \diamond g$ maps $\{0, 1\}^{m \times n}$ to $\{0, 1\}$.

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i,j} \neq Y_{i,j}$.

Alice

Bob

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i,j} \neq Y_{i,j}$.

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i,j} \neq Y_{i,j}$.

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i,j} \neq Y_{i,j}$.
- Claim: $CC(KW_{f\diamond g}) \leq CC(KW_f) + CC(KW_g)$.

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i,j} \neq Y_{i,j}$.
- Claim: $CC(KW_{f\diamond g}) \leq CC(KW_f) + CC(KW_g)$.

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i,j} \neq Y_{i,j}$.
- Claim: $CC(KW_{f\diamond g}) \leq CC(KW_f) + CC(KW_g)$.

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i,j} \neq Y_{i,j}$.
- Claim: $CC(KW_{f\diamond g}) \leq CC(KW_f) + CC(KW_g)$.

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i,j} \neq Y_{i,j}$.
- Claim: $CC(KW_{f\diamond g}) \leq CC(KW_f) + CC(KW_g)$.

• KRW conjecture: the obvious protocol is essentially optimal.

Outline

Background

3 Proof strategy

4 Lower bounds using graph coloring

5 Prefix-thick sets

• The players should look for (i, j) in a row where $a_i \neq b_i$.

- The players should look for (i, j) in a row where $a_i \neq b_i$.
 - In other rows, a solution might not even exist.

- The players should look for (i, j) in a row where $a_i \neq b_i$. • In other rows, a solution might not even exist.
- To do this, they must find a row *i* such that $a_i \neq b_i$.

- The players should look for (i, j) in a row where $a_i \neq b_i$. • In other rows, a solution might not even exist.
- To do this, they must find a row *i* such that $a_i \neq b_i$.
- To find such a row, they must solve KW_f .

- The players should look for (i, j) in a row where $a_i \neq b_i$. • In other rows, a solution might not even exist.
- To do this, they must find a row i such that $a_i \neq b_i$.
- To find such a row, they must solve KW_f .
- To find (i, j) in such a row, they must solve KW_g .

This intuition is very appealing...

• We assumed that players find (i, j) s.t. $a_i \neq b_i$.

- We assumed that players find (i, j) s.t. $a_i \neq b_i$.
 - but we need to prove it...

- We assumed that players find (i, j) s.t. $a_i \neq b_i$.
 - but we need to prove it...
- Seven if players must solve both KW_f and KW_g,

- We assumed that players find (i, j) s.t. $a_i \neq b_i$.
 - but we need to prove it...
- Even if players must solve both KW_f and KW_g,
 - still does not imply they communicate $CC(KW_f) + CC(KW_g)$ bits.

- We assumed that players find (i, j) s.t. $a_i \neq b_i$.
 - but we need to prove it...
- Even if players must solve both KW_f and KW_g,
 - still does not imply they communicate $CC(KW_f) + CC(KW_g)$ bits.
 - This is the direct-sum problem.

- We assumed that players find (i, j) s.t. $a_i \neq b_i$.
 - but we need to prove it...
- Even if players must solve both KW_f and KW_g,
 - still does not imply they communicate $CC(KW_f) + CC(KW_g)$ bits.
 - This is the direct-sum problem.

In this work, we focus on the direct-sum problem.

• The strong composition $KW_f \otimes KW_g$:

• The strong composition $KW_f \circledast KW_g$:

• defined like $KW_{f\diamond g}$, but

- The strong composition $KW_f \circledast KW_g$:
 - defined like $KW_{f\diamond g}$, but
 - the solution (i, j) must be in a row where $a_i \neq b_i$.

- The strong composition $KW_f \otimes KW_g$:
 - defined like $KW_{f\diamond g}$, but
 - the solution (i, j) must be in a row where $a_i \neq b_i$.
- Challenge (folklore): Prove KRW conjecture for $KW_f \otimes KW_g$.

- The strong composition $KW_f \otimes KW_g$:
 - defined like $KW_{f\diamond g}$, but
 - the solution (i, j) must be in a row where $a_i \neq b_i$.
- Challenge (folklore): Prove KRW conjecture for $KW_f \otimes KW_g$.
 - Necessary for proving original KRW conjecture.

- The strong composition $KW_f \circledast KW_g$:
 - defined like $KW_{f\diamond g}$, but
 - the solution (i, j) must be in a row where $a_i \neq b_i$.
- Challenge (folklore): Prove KRW conjecture for $KW_f \otimes KW_g$.
 - Necessary for proving original KRW conjecture.
 - Focus on the direct-sum problem.

A "weak KRW" theorem ($\forall f \exists hard g$) for strong composition.

A "weak KRW" theorem ($\forall f \exists hard g$) for strong composition.

Theorem (informal)

For every $f : \{0,1\}^m \to \{0,1\}$ and every $n \in \mathbb{N}$, there exists $g : \{0,1\}^n \to \{0,1\}$ s.t.

 $\mathsf{CC}(\mathit{KW}_{f} \circledast \mathit{KW}_{g}) > \mathsf{CC}(\mathit{KW}_{f}) + n - 0.96 \cdot m - O\left(\log(m \cdot n)\right).$

A "weak KRW" theorem ($\forall f \exists$ hard g) for strong composition.

Theorem (informal)

For every $f : \{0,1\}^m \to \{0,1\}$ and every $n \in \mathbb{N}$, there exists $g : \{0,1\}^n \to \{0,1\}$ s.t.

 $\mathsf{CC}(\mathit{KW}_{f} \circledast \mathit{KW}_{g}) > \mathsf{CC}(\mathit{KW}_{f}) + n - 0.96 \cdot m - O\left(\log(m \cdot n)\right).$

If proved for $KW_{f\diamond g}$ instead of $KW_f \circledast KW_g$:

• an explicit function with depth complexity $\geq 3.04 \cdot \log n$.

A "weak KRW" theorem ($\forall f \exists$ hard g) for strong composition.

Theorem (informal)

For every $f : \{0,1\}^m \to \{0,1\}$ and every $n \in \mathbb{N}$, there exists $g : \{0,1\}^n \to \{0,1\}$ s.t.

 $\mathsf{CC}(\mathit{KW}_{f} \circledast \mathit{KW}_{g}) > \mathsf{CC}(\mathit{KW}_{f}) + n - 0.96 \cdot m - O\left(\log(m \cdot n)\right).$

If proved for $KW_{f \diamond g}$ instead of $KW_f \circledast KW_g$:

- an explicit function with depth complexity $\geq 3.04 \cdot \log n$.
- First improvement in depth lower bounds since [H93]!

A "weak KRW" theorem ($\forall f \exists$ hard g) for strong composition.

Theorem (informal)

For every $f : \{0,1\}^m \to \{0,1\}$ and every $n \in \mathbb{N}$, there exists $g : \{0,1\}^n \to \{0,1\}$ s.t.

 $\mathsf{CC}(\mathit{KW}_{f} \circledast \mathit{KW}_{g}) > \mathsf{CC}(\mathit{KW}_{f}) + n - 0.96 \cdot m - O\left(\log(m \cdot n)\right).$

If proved for $KW_{f \diamond g}$ instead of $KW_f \circledast KW_g$:

- an explicit function with depth complexity $\geq 3.04 \cdot \log n$.
- First improvement in depth lower bounds since [H93]!
- Insufficient for proving $\mathbf{P} \not\subseteq \mathbf{NC}^1$ due to $-0.96 \cdot m$.

Outline

Background

2 Our result

Proof strategy

Lower bounds using graph coloring

5 Prefix-thick sets

Multiplexor composition

- Fix a function $f: \{0,1\}^m \to \{0,1\}$ and $n \in \mathbb{N}$.
- Goal: $\exists g : \{0,1\}^n \to \{0,1\}$ s.t. $\mathsf{CC}(\mathsf{KW}_f \circledast \mathsf{KW}_g)$ is large.

Multiplexor composition

- Fix a function $f: \{0,1\}^m \to \{0,1\}$ and $n \in \mathbb{N}$.
- Goal: $\exists g : \{0,1\}^n \to \{0,1\}$ s.t. $\mathsf{CC}(\mathsf{KW}_f \circledast \mathsf{KW}_g)$ is large.
- Define the composition $KW_f \otimes MUX_n$:

Multiplexor composition

- Fix a function $f: \{0,1\}^m \to \{0,1\}$ and $n \in \mathbb{N}$.
- Goal: $\exists g : \{0,1\}^n \to \{0,1\}$ s.t. $\mathsf{CC}(\mathsf{KW}_f \circledast \mathsf{KW}_g)$ is large.
- Define the composition $KW_f \otimes MUX_n$:

• Suffices $[MS21]^*$: $CC(KW_f \otimes MUX_n) > CC(KW_f) + n - loss.$

• We wish to show that the following protocol is optimal:

• First solve KW_f on a and b.

- First solve KW_f on a and b.
- Then solve KW_g on X_i and Y_i .

- First solve KW_f on a and b.
- Then solve KW_g on X_i and Y_i .
- Challenge: Cannot solve KW_f and KW_g together faster than solving each of them separately.

- First solve KW_f on a and b.
- Then solve KW_g on X_i and Y_i .
- Challenge: Cannot solve KW_f and KW_g together faster than solving each of them separately.
- Intuition: Alice and Bob must finish solving KW_f before starting to solve KW_g .

- First solve KW_f on a and b.
- Then solve KW_g on X_i and Y_i .
- Challenge: Cannot solve KW_f and KW_g together faster than solving each of them separately.
- Intuition: Alice and Bob must finish solving *KW_f* before starting to solve *KW_g*.
- Fix a protocol Π for $KW_f \circledast MUX_n$.

- First solve KW_f on a and b.
- Then solve KW_g on X_i and Y_i .
- Challenge: Cannot solve KW_f and KW_g together faster than solving each of them separately.
- Intuition: Alice and Bob must finish solving KW_f before starting to solve KW_g .
- Fix a protocol Π for $KW_f \circledast MUX_n$.
- Roughly, we prove that:
 - as long as Π does not finish solving KW_f ,
 - it cannot make progress on KW_g .

Proof strategy [EIRS91]

Structure theorem (informal)

Let π_1 be a partial transcript s.t.

- π_1 is still far from solving KW_f , and
- π_1 reveals little information about the inputs.

Then, after reaching π_1 , the players must still communicate $\approx n$ more bits.

Proof strategy [EIRS91]

Structure theorem (informal)

Let π_1 be a partial transcript s.t.

- π_1 is still far from solving KW_f , and
- π_1 reveals little information about the inputs.

Then, after reaching π_1 , the players must still communicate $\approx n$ more bits.

• It is not hard to show that there exists such π_1 of length $CC(KW_f) - loss$.

Proof strategy [EIRS91]

Structure theorem (informal)

Let π_1 be a partial transcript s.t.

- π_1 is still far from solving KW_f , and
- π_1 reveals little information about the inputs.

Then, after reaching π_1 , the players must still communicate $\approx n$ more bits.

- It is not hard to show that there exists such π_1 of length $CC(KW_f) loss$.
- By applying the theorem, we get a lower bound of

 $\approx \mathsf{CC}(\mathsf{KW}_f) + n - \mathsf{loss}.$

Outline

Background

2 Our result

3 Proof strategy

4 Lower bounds using graph coloring

5 Prefix-thick sets

Intersecting functions

- Fix a partial transcript π_1 .
- Goal: players must communicate $\approx n$ more bits.

Intersecting functions

- Fix a partial transcript π_1 .
- Goal: players must communicate $\approx n$ more bits.

Notation

For every function $g: \{0,1\}^n \to \{0,1\}$ denote:

 $\mathcal{X}(g) = \{X : \text{the input } (g, X) \text{ is legal for Alice given } \pi_1\}$ $\mathcal{Y}(g) = \text{Same for } Y \text{ and Bob.}$

Intersecting functions

- Fix a partial transcript π_1 .
- Goal: players must communicate $\approx n$ more bits.

Notation

For every function $g: \{0,1\}^n \to \{0,1\}$ denote:

 $\mathcal{X}(g) = \{X : \text{the input } (g, X) \text{ is legal for Alice given } \pi_1\}$ $\mathcal{Y}(g) = \text{Same for } Y \text{ and Bob.}$

Definition

We say that $g_1, g_2 : \{0, 1\}^n \to \{0, 1\}$ intersect iff

• either $\mathcal{X}(g_1) \cap \mathcal{Y}(g_2) \neq \emptyset$ or $\mathcal{X}(g_2) \cap \mathcal{Y}(g_1) \neq \emptyset$.

Definition

We say that $g_1, g_2 : \{0, 1\}^n \to \{0, 1\}$ intersect iff

• either $\mathcal{X}(g_1) \cap \mathcal{Y}(g_2) \neq \emptyset$ or $\mathcal{X}(g_2) \cap \mathcal{Y}(g_1) \neq \emptyset$.

Definition

We say that $g_1, g_2 : \{0, 1\}^n \to \{0, 1\}$ intersect iff

• either $\mathcal{X}(g_1) \cap \mathcal{Y}(g_2) \neq \emptyset$ or $\mathcal{X}(g_2) \cap \mathcal{Y}(g_1) \neq \emptyset$.

Lemma (implicit in [MS21])

If \exists a set \mathcal{V} of functions s.t. \forall distinct $g_1, g_2 \in \mathcal{V}$ intersect, then the players must send $\geq \log \log |\mathcal{V}|$ more bits after reaching π_1 .

Definition

We say that $g_1, g_2 : \{0, 1\}^n \to \{0, 1\}$ intersect iff

• either $\mathcal{X}(g_1) \cap \mathcal{Y}(g_2) \neq \emptyset$ or $\mathcal{X}(g_2) \cap \mathcal{Y}(g_1) \neq \emptyset$.

Lemma (implicit in [MS21])

If \exists a set \mathcal{V} of functions s.t. \forall distinct $g_1, g_2 \in \mathcal{V}$ intersect, then the players must send $\geq \log \log |\mathcal{V}|$ more bits after reaching π_1 .

• Holds even for standard composition.

Definition

- We say that $g_1, g_2 : \{0, 1\}^n \to \{0, 1\}$ intersect iff
 - either $\mathcal{X}(g_1) \cap \mathcal{Y}(g_2) \neq \emptyset$ or $\mathcal{X}(g_2) \cap \mathcal{Y}(g_1) \neq \emptyset$.

Lemma (implicit in [MS21])

If \exists a set \mathcal{V} of functions s.t. \forall distinct $g_1, g_2 \in \mathcal{V}$ intersect, then the players must send $\geq \log \log |\mathcal{V}|$ more bits after reaching π_1 .

- Holds even for standard composition.
- To use lemma, need to construct \mathcal{V} s.t. $|\mathcal{V}| \approx 2^{2^n}$.

Definition

- We say that $g_1, g_2 : \{0, 1\}^n \to \{0, 1\}$ intersect iff
 - either $\mathcal{X}(g_1) \cap \mathcal{Y}(g_2) \neq \emptyset$ or $\mathcal{X}(g_2) \cap \mathcal{Y}(g_1) \neq \emptyset$.

Lemma (implicit in [MS21])

If \exists a set \mathcal{V} of functions s.t. \forall distinct $g_1, g_2 \in \mathcal{V}$ intersect, then the players must send $\geq \log \log |\mathcal{V}|$ more bits after reaching π_1 .

- Holds even for standard composition.
- To use lemma, need to construct \mathcal{V} s.t. $|\mathcal{V}| \approx 2^{2^n}$.
- Difficulty: need that every two functions in $\ensuremath{\mathcal{V}}$ intersect.

A graph-theoretic perspective

Definition

The characteristic graph \mathcal{G}_{π_1} satisfies:

- The vertices are all functions $g: \{0,1\}^n \to \{0,1\}$.
- There is an edge betwen g_1 and g_2 iff they intersect.

A graph-theoretic perspective

Definition

The characteristic graph \mathcal{G}_{π_1} satisfies:

- The vertices are all functions $g: \{0,1\}^n \to \{0,1\}$.
- There is an edge betwen g_1 and g_2 iff they intersect.

Lemma of [MS21]

The players must send $\gtrsim \log \log \omega(\mathcal{G}_{\pi_1})$ more bits. ($\omega(\mathcal{G}_{\pi_1})$ — maximum size of a clique in \mathcal{G}_{π_1}).

A graph-theoretic perspective

Definition

The characteristic graph \mathcal{G}_{π_1} satisfies:

- The vertices are all functions $g: \{0,1\}^n \to \{0,1\}$.
- There is an edge betwen g_1 and g_2 iff they intersect.

Lemma of [MS21]

The players must send $\gtrsim \log \log \omega(\mathcal{G}_{\pi_1})$ more bits. ($\omega(\mathcal{G}_{\pi_1})$ — maximum size of a clique in \mathcal{G}_{π_1}).

Lemma (this work)

The players must send $\gtrsim \log \log \chi(\mathcal{G}_{\pi_1})$ more bits $(\chi(\mathcal{G}_{\pi_1}) - \text{minimum number of colors required to color } \mathcal{G}_{\pi_1}).$

 Recall: In strong composition, players have to look for a solution in rows where a_i ≠ b_i.

- Recall: In strong composition, players have to look for a solution in rows where a_i ≠ b_i.
- The same results hold, but we need to change the notion of intersecting functions to focus on rows where $a_i \neq b_i$.

- Recall: In strong composition, players have to look for a solution in rows where a_i ≠ b_i.
- The same results hold, but we need to change the notion of intersecting functions to focus on rows where a_i ≠ b_i.

Definition

We say that $g_1, g_2 : \{0, 1\}^n \to \{0, 1\}$ weakly intersect iff

- Recall: In strong composition, players have to look for a solution in rows where a_i ≠ b_i.
- The same results hold, but we need to change the notion of intersecting functions to focus on rows where a_i ≠ b_i.

Definition

We say that $g_1, g_2 : \{0, 1\}^n \to \{0, 1\}$ weakly intersect iff

- there exist matrices $X \in \mathcal{X}(g_1)$ and $Y \in \mathcal{Y}(g_2)$ s.t.
 - $X_i = Y_i$ for every $i \in [m]$ for which $a_i \neq b_i$
 - (where $a = g_1(X)$ and $b = g_2(Y)$),

- Recall: In strong composition, players have to look for a solution in rows where a_i ≠ b_i.
- The same results hold, but we need to change the notion of intersecting functions to focus on rows where a_i ≠ b_i.

Definition

- We say that $g_1, g_2 : \{0, 1\}^n \to \{0, 1\}$ weakly intersect iff
 - there exist matrices $X \in \mathcal{X}(g_1)$ and $Y \in \mathcal{Y}(g_2)$ s.t.
 - $X_i = Y_i$ for every $i \in [m]$ for which $a_i \neq b_i$
 - (where $a = g_1(X)$ and $b = g_2(Y)$),

or vice versa.

Outline

Background

- 2 Our result
- Proof strategy
- 4 Lower bounds using graph coloring
- 5 Prefix-thick sets

• How can we prove that two functions weakly intersect?

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}(g_1)$ and $Y \in \mathcal{Y}(g_2)$ that are equal on the rows where $a_i \neq b_i$.

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}(g_1)$ and $Y \in \mathcal{Y}(g_2)$ that are equal on the rows where $a_i \neq b_i$.
- Due to the assumptions on π_1 :

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}(g_1)$ and $Y \in \mathcal{Y}(g_2)$ that are equal on the rows where $a_i \neq b_i$.
- Due to the assumptions on π_1 :
 - The sets $\mathcal{X}(g_1)$ and $\mathcal{Y}(g_2)$ are large (density $\geq 2^{-\varepsilon \cdot m}$)

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}(g_1)$ and $Y \in \mathcal{Y}(g_2)$ that are equal on the rows where $a_i \neq b_i$.
- Due to the assumptions on π_1 :
 - The sets X(g₁) and Y(g₂) are large (density ≥ 2^{-ε⋅m}) (since π₁ does not reveal much information on the inputs).

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}(g_1)$ and $Y \in \mathcal{Y}(g_2)$ that are equal on the rows where $a_i \neq b_i$.
- Due to the assumptions on π_1 :
 - The sets X(g₁) and Y(g₂) are large (density ≥ 2^{-ε⋅m}) (since π₁ does not reveal much information on the inputs).
 - It holds that $a_i \neq b_i$ for at most $\alpha \cdot m$ rows

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}(g_1)$ and $Y \in \mathcal{Y}(g_2)$ that are equal on the rows where $a_i \neq b_i$.
- Due to the assumptions on π_1 :
 - The sets X(g₁) and Y(g₂) are large (density ≥ 2^{-ε⋅m}) (since π₁ does not reveal much information on the inputs).
 - It holds that a_i ≠ b_i for at most α · m rows (since π₁ is far from solving KW_f).

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}(g_1)$ and $Y \in \mathcal{Y}(g_2)$ that are equal on the rows where $a_i \neq b_i$.
- Due to the assumptions on π_1 :
 - The sets X(g₁) and Y(g₂) are large (density ≥ 2^{-ε⋅m}) (since π₁ does not reveal much information on the inputs).
 - It holds that a_i ≠ b_i for at most α · m rows (since π₁ is far from solving KW_f).
- Warm-up: prove that there exist $X \in \mathcal{X}(g_1)$ and $Y \in \mathcal{Y}(g_2)$ that are equal on $\geq \alpha \cdot m$ rows.

A simpler combinatorial question

- Let Σ be a finite alphabet.
- Let X, Y ⊆ Σ^m be sets of strings of density ≥ 2^{-ε·m} (for some ε > 0).

- Let Σ be a finite alphabet.
- Let X, Y ⊆ Σ^m be sets of strings of density ≥ 2^{-ε⋅m} (for some ε > 0).

Toy problem

Prove that there exist strings $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ that agree on at least $\alpha \cdot m$ coordinates (for some α that depends only on ε).

- Let Σ be a finite alphabet.
- Let X, Y ⊆ Σ^m be sets of strings of density ≥ 2^{-ε·m} (for some ε > 0).

Toy problem

Prove that there exist strings $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ that agree on at least $\alpha \cdot m$ coordinates (for some α that depends only on ε).

• In other words: there exists $I \subseteq [m]$ of size $\geq \alpha \cdot m$ s.t. $\mathcal{X}|_I \cap \mathcal{Y}|_I \neq \emptyset$.

- Let Σ be a finite alphabet.
- Let X, Y ⊆ Σ^m be sets of strings of density ≥ 2^{-ε⋅m} (for some ε > 0).

Toy problem

Prove that there exist strings $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ that agree on at least $\alpha \cdot m$ coordinates (for some α that depends only on ε).

- In other words: there exists $I \subseteq [m]$ of size $\geq \alpha \cdot m$ s.t. $\mathcal{X}|_I \cap \mathcal{Y}|_I \neq \emptyset$.
- Idea: choose I such that $\mathcal{X}|_I$ and $\mathcal{Y}|_I$ are "prefix-thick sets".

Definition

We say that $\mathcal{X} \subseteq \Sigma^m$ is prefix thick iff for every prefix w of \mathcal{X} of length < m, there exist more than $\frac{|\Sigma|}{2}$ symbols σ such that $w \circ \sigma$ is a prefix of \mathcal{X} .

Definition

We say that $\mathcal{X} \subseteq \Sigma^m$ is prefix thick iff for every prefix w of \mathcal{X} of length < m, there exist more than $\frac{|\Sigma|}{2}$ symbols σ such that $w \circ \sigma$ is a prefix of \mathcal{X} .

Observation

If \mathcal{X} and \mathcal{Y} are prefix-thick subsets of Σ^m , then $\mathcal{X} \cap \mathcal{Y} \neq \emptyset$.

We say that \mathcal{X} is prefix thick iff for every prefix w of length < m, there exist more than $\frac{|\Sigma|}{2}$ symbols σ such that $w \circ \sigma$ is a prefix.

We say that \mathcal{X} is prefix thick iff for every prefix w of length < m, there exist more than $\frac{|\Sigma|}{2}$ symbols σ such that $w \circ \sigma$ is a prefix.

Lemma (this work)

Let $\mathcal{X} \subseteq \Sigma^m$ be a set of some density δ . Then, $\mathcal{X}|_I$ is prefix thick for at least δ fraction of the sets $I \subseteq [m]$.

We say that \mathcal{X} is prefix thick iff for every prefix w of length < m, there exist more than $\frac{|\Sigma|}{2}$ symbols σ such that $w \circ \sigma$ is a prefix.

Lemma (this work)

Let $\mathcal{X} \subseteq \Sigma^m$ be a set of some density δ . Then, $\mathcal{X}|_I$ is prefix thick for at least δ fraction of the sets $I \subseteq [m]$.

• Proof: Easy corollary of a result of [ST14] about discrete dynamical systems.

We say that \mathcal{X} is prefix thick iff for every prefix w of length < m, there exist more than $\frac{|\Sigma|}{2}$ symbols σ such that $w \circ \sigma$ is a prefix.

Lemma (this work)

Let $\mathcal{X} \subseteq \Sigma^m$ be a set of some density δ . Then, $\mathcal{X}|_I$ is prefix thick for at least δ fraction of the sets $I \subseteq [m]$.

- Proof: Easy corollary of a result of [ST14] about discrete dynamical systems.
- Can be viewed as a generalization of the Sauer-Shelah lemma to large alphabets.

• Using the last lemma, we can find a set I s.t. $\mathcal{X}(g_1)|_I$ and $\mathcal{Y}(g_2)|_I$ are prefix thick.

- Using the last lemma, we can find a set I s.t. $\mathcal{X}(g_1)|_I$ and $\mathcal{Y}(g_2)|_I$ are prefix thick.
- Together with additional ideas, we can prove that many pairs of functions weakly intersect.

- Using the last lemma, we can find a set I s.t. $\mathcal{X}(g_1)|_I$ and $\mathcal{Y}(g_2)|_I$ are prefix thick.
- Together with additional ideas, we can prove that many pairs of functions weakly intersect.
- In other words, we can prove the existence of many edges in the characteristic \mathcal{G}_{π_1} .

- Using the last lemma, we can find a set I s.t. $\mathcal{X}(g_1)|_I$ and $\mathcal{Y}(g_2)|_I$ are prefix thick.
- Together with additional ideas, we can prove that many pairs of functions weakly intersect.
- In other words, we can prove the existence of many edges in the characteristic \mathcal{G}_{π_1} .
- This allows us to prove a lower bound on the chromatic number of G_{π1}...

- Using the last lemma, we can find a set I s.t. $\mathcal{X}(g_1)|_I$ and $\mathcal{Y}(g_2)|_I$ are prefix thick.
- Together with additional ideas, we can prove that many pairs of functions weakly intersect.
- In other words, we can prove the existence of many edges in the characteristic \mathcal{G}_{π_1} .
- This allows us to prove a lower bound on the chromatic number of G_{π1}...
- and hence get the desired lower bound on communication complexity.

 The KRW conjecture is a promising approach for proving P ⊈ NC¹.

- The KRW conjecture is a promising approach for proving P ∉ NC¹.
- Even a weak version suffices ($\forall f \exists hard g$).

- The KRW conjecture is a promising approach for proving P ⊈ NC¹.
- Even a weak version suffices ($\forall f \exists hard g$).
- Strong composition: focus on the direct-sum obstacle.

- The KRW conjecture is a promising approach for proving P ∉ NC¹.
- Even a weak version suffices ($\forall f \exists hard g$).
- Strong composition: focus on the direct-sum obstacle.
- Our result: a version of the weak conjecture for strong composition.

- The KRW conjecture is a promising approach for proving P ⊈ NC¹.
- Even a weak version suffices ($\forall f \exists hard g$).
- Strong composition: focus on the direct-sum obstacle.
- Our result: a version of the weak conjecture for strong composition.
- Open problems:

- The KRW conjecture is a promising approach for proving P ⊈ NC¹.
- Even a weak version suffices ($\forall f \exists hard g$).
- Strong composition: focus on the direct-sum obstacle.
- Our result: a version of the weak conjecture for strong composition.
- Open problems:
 - Get rid of the $-0.96 \cdot m$ loss.

- The KRW conjecture is a promising approach for proving P ⊈ NC¹.
- Even a weak version suffices ($\forall f \exists$ hard g).
- Strong composition: focus on the direct-sum obstacle.
- Our result: a version of the weak conjecture for strong composition.
- Open problems:
 - Get rid of the $-0.96 \cdot m$ loss.
 - Lower bound for formula complexity.

- The KRW conjecture is a promising approach for proving P ⊈ NC¹.
- Even a weak version suffices ($\forall f \exists hard g$).
- Strong composition: focus on the direct-sum obstacle.
- Our result: a version of the weak conjecture for strong composition.
- Open problems:
 - Get rid of the $-0.96 \cdot m$ loss.
 - Lower bound for formula complexity.

Thank you!