A KRW-like theorem for Strong Composition

Or Meir

Outline

(1) Background

(2) Our result
(3) Proof strategy
(4) Lower bounds using graph coloring
(5) Prefix-thick sets

Outline

(1) Background
(2) Our result
(3) Proof strategy

4 Lower bounds using graph coloring
(5) Prefix-thick sets

Circuit depth

Fan-in 2: Every gate has at most 2 incoming wires.

Depth complexity

- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Depth complexity $\mathrm{D}(f)$: depth of a shallowest circuit for f.

Depth complexity

- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Depth complexity $\mathrm{D}(f)$: depth of a shallowest circuit for f.
- Major frontier: Explicit $f \in \mathbf{P}$ with $\mathrm{D}(f)=\omega(\log n)$.
- a.k.a. $\mathbf{P} \nsubseteq \mathrm{NC}^{1}$.

Depth complexity

- Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Depth complexity $\mathrm{D}(f)$: depth of a shallowest circuit for f.
- Major frontier: Explicit $f \in \mathbf{P}$ with $\mathbf{D}(f)=\omega(\log n)$.
- a.k.a. $\mathbf{P} \nsubseteq \mathrm{NC}^{1}$.
- State of the art: $D(f) \geq(3-o(1)) \cdot \log n[H 93$, T14].

Composition

- [KRW91]: We need to understand composition.

Composition

- [KRW91]: We need to understand composition.
- Let $f:\{0,1\}^{m} \rightarrow\{0,1\}, g:\{0,1\}^{n} \rightarrow\{0,1\}$.

Composition

- [KRW91]: We need to understand composition.
- Let $f:\{0,1\}^{m} \rightarrow\{0,1\}, g:\{0,1\}^{n} \rightarrow\{0,1\}$.
- The composition $f \diamond g:\{0,1\}^{m \times n} \rightarrow\{0,1\}$ is

Composition

- [KRW91]: We need to understand composition.
- Let $f:\{0,1\}^{m} \rightarrow\{0,1\}, g:\{0,1\}^{n} \rightarrow\{0,1\}$.
- The composition $f \diamond g:\{0,1\}^{m \times n} \rightarrow\{0,1\}$ is

Composition

- [KRW91]: We need to understand composition.
- Let $f:\{0,1\}^{m} \rightarrow\{0,1\}, g:\{0,1\}^{n} \rightarrow\{0,1\}$.
- The composition $f \diamond g:\{0,1\}^{m \times n} \rightarrow\{0,1\}$ is

Composition

- [KRW91]: We need to understand composition.
- Let $f:\{0,1\}^{m} \rightarrow\{0,1\}, g:\{0,1\}^{n} \rightarrow\{0,1\}$.
- The composition $f \diamond g:\{0,1\}^{m \times n} \rightarrow\{0,1\}$ is

The KRW conjecture

- Clearly, $\mathrm{D}(f \diamond g) \leq \mathrm{D}(f)+\mathrm{D}(g)$.

The KRW conjecture

- Clearly, $\mathrm{D}(f \diamond g) \leq \mathrm{D}(f)+\mathrm{D}(g)$.
- KRW conjecture: $\forall f, g: \mathrm{D}(f \diamond g) \approx \mathrm{D}(f)+\mathrm{D}(g)$.

The KRW conjecture

- Clearly, $\mathrm{D}(f \diamond g) \leq \mathrm{D}(f)+\mathrm{D}(g)$.
- KRW conjecture: $\forall f, g: \mathrm{D}(f \diamond g) \approx \mathrm{D}(f)+\mathrm{D}(g)$.
- Theorem [KRW91]: the conjecture implies that $\mathbf{P} \nsubseteq \mathrm{NC}^{1}$.

The KRW conjecture

- Clearly, $\mathrm{D}(f \diamond g) \leq \mathrm{D}(f)+\mathrm{D}(g)$.
- KRW conjecture: $\forall f, g: \mathrm{D}(f \diamond g) \approx \mathrm{D}(f)+\mathrm{D}(g)$.
- Theorem [KRW91]: the conjecture implies that $\mathbf{P} \nsubseteq \mathrm{NC}^{1}$.
- Special cases: [EIRS91, H93, HW93, GMWW14, DM16, KM18, dRMNPR20, FMT21].

The weak KRW conjecture

- KRW conjecture: $\forall f \forall g: \mathrm{D}(f \diamond g) \approx \mathrm{D}(f)+\mathrm{D}(g)$.

The weak KRW conjecture

- KRW conjecture: $\forall f \forall g: \mathrm{D}(f \diamond g) \approx \mathrm{D}(f)+\mathrm{D}(g)$.
- Sufficient for $\mathbf{P} \nsubseteq \mathbf{N C}^{1}$ (folklore): $\forall f \exists$ hard g.

The weak KRW conjecture

- KRW conjecture: $\forall f \forall g: \mathrm{D}(f \diamond g) \approx \mathrm{D}(f)+\mathrm{D}(g)$.
- Sufficient for $\mathbf{P} \nsubseteq \mathbf{N C}^{1}$ (folklore): $\forall f \exists$ hard g.

Weak KRW conjecture

For every f and $n \in \mathbb{N}$, there exists $g:\{0,1\}^{n} \rightarrow\{0,1\}$ s.t.

$$
\mathrm{D}(f \diamond g) \geq \mathrm{D}(f)+\omega(\log n)
$$

The weak KRW conjecture

- KRW conjecture: $\forall f \forall g: \mathrm{D}(f \diamond g) \approx \mathrm{D}(f)+\mathrm{D}(g)$.
- Sufficient for $\mathbf{P} \nsubseteq \mathbf{N C}^{1}$ (folklore): $\forall f \exists$ hard g.

Weak KRW conjecture

For every f and $n \in \mathbb{N}$, there exists $g:\{0,1\}^{n} \rightarrow\{0,1\}$ s.t.

$$
\mathrm{D}(f \diamond g) \geq \mathrm{D}(f)+\omega(\log n)
$$

- [MS21]: proved such a result for $U \diamond g$.
- $U=$ the universal relation.

Karchmer-Wigderson relations

- Relate $\mathrm{D}(f)$ to complexity of a communication problem $K W_{f}$.

Karchmer-Wigderson relations

- Relate $\mathrm{D}(f)$ to complexity of a communication problem $K W_{f}$.
- The KW relation $K W_{f}$ is defined as follows:
- Alice gets $x \in f^{-1}(1)$.
- Bob gets $y \in f^{-1}(0)$.
- Clearly, $x \neq y$, so $\exists i$ s.t. $x_{i} \neq y_{i}$.
- Want to find such i.

Karchmer-Wigderson relations

- Relate $\mathbf{D}(f)$ to complexity of a communication problem $K W_{f}$.
- The KW relation $K W_{f}$ is defined as follows:
- Alice gets $x \in f^{-1}(1)$.
- Bob gets $y \in f^{-1}(0)$.
- Clearly, $x \neq y$, so $\exists i$ s.t. $x_{i} \neq y_{i}$.
- Want to find such i.
- Theorem [KW88]: $\mathrm{D}(f)=\mathrm{CC}\left(K W_{f}\right)$.

Karchmer-Wigderson relations

- Relate $\mathbf{D}(f)$ to complexity of a communication problem $K W_{f}$.
- The KW relation $K W_{f}$ is defined as follows:
- Alice gets $x \in f^{-1}(1)$.
- Bob gets $y \in f^{-1}(0)$.
- Clearly, $x \neq y$, so $\exists i$ s.t. $x_{i} \neq y_{i}$.
- Want to find such i.
- Theorem [KW88]: $\mathrm{D}(f)=\mathrm{CC}\left(K W_{f}\right)$.
- KRW conjecture: $\mathrm{CC}\left(K W_{f \diamond g}\right) \approx \mathrm{CC}\left(K W_{f}\right)+\mathrm{CC}\left(K W_{g}\right)$

The $K W$ relation $K W_{f \circ g}$

The KW relation $K W_{f \diamond g}$

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.

The KW relation $K W_{f \circ g}$

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i, j} \neq Y_{i, j}$.

Alice

The KW relation $K W_{f \triangleright g}$

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i, j} \neq Y_{i, j}$.

Alice

The KW relation $K W_{f \triangleright g}$

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i, j} \neq Y_{i, j}$.

Alice

Bob

The KW relation $K W_{f \triangleright g}$

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i, j} \neq Y_{i, j}$.
- Claim: $\mathrm{CC}\left(K W_{f \circ g}\right) \leq \mathrm{CC}\left(K W_{f}\right)+\mathrm{CC}\left(K W_{g}\right)$.

The KW relation $K W_{f \triangleright g}$

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i, j} \neq Y_{i, j}$.
- Claim: $\mathrm{CC}\left(K W_{f \circ g}\right) \leq \mathrm{CC}\left(K W_{f}\right)+\mathrm{CC}\left(K W_{g}\right)$.

The KW relation $K W_{f \triangleright g}$

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i, j} \neq Y_{i, j}$.
- Claim: $\mathrm{CC}\left(K W_{f \circ g}\right) \leq \mathrm{CC}\left(K W_{f}\right)+\mathrm{CC}\left(K W_{g}\right)$.

The KW relation $K W_{f \triangleright g}$

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i, j} \neq Y_{i, j}$.
- Claim: $\mathrm{CC}\left(K W_{f \circ g}\right) \leq \mathrm{CC}\left(K W_{f}\right)+\mathrm{CC}\left(K W_{g}\right)$.

The KW relation $K W_{f \diamond g}$

- Recall: $f \diamond g$ maps $\{0,1\}^{m \times n}$ to $\{0,1\}$.
- Goal: Find (i, j) such that $X_{i, j} \neq Y_{i, j}$.
- Claim: $\mathrm{CC}\left(K W_{f \circ g}\right) \leq \mathrm{CC}\left(K W_{f}\right)+\mathrm{CC}\left(K W_{g}\right)$.

- KRW conjecture: the obvious protocol is essentially optimal.

Outline

(1) Background

(2) Our result
(3) Proof strategy
(4) Lower bounds using graph coloring
(5) Prefix-thick sets

Why should the obvious protocol be optimal?

Why should the obvious protocol be optimal?

- The players should look for (i, j) in a row where $a_{i} \neq b_{i}$.

Why should the obvious protocol be optimal?

- The players should look for (i, j) in a row where $a_{i} \neq b_{i}$.
- In other rows, a solution might not even exist.

Why should the obvious protocol be optimal?

- The players should look for (i, j) in a row where $a_{i} \neq b_{i}$.
- In other rows, a solution might not even exist.
- To do this, they must find a row i such that $a_{i} \neq b_{i}$.

Why should the obvious protocol be optimal?

- The players should look for (i, j) in a row where $a_{i} \neq b_{i}$.
- In other rows, a solution might not even exist.
- To do this, they must find a row i such that $a_{i} \neq b_{i}$.
- To find such a row, they must solve $K W_{f}$.

Why should the obvious protocol be optimal?

- The players should look for (i, j) in a row where $a_{i} \neq b_{i}$.
- In other rows, a solution might not even exist.
- To do this, they must find a row i such that $a_{i} \neq b_{i}$.
- To find such a row, they must solve $K W_{f}$.
- To find (i, j) in such a row, they must solve $K W_{g}$.

Obstacles

This intuition is very appealing...

Obstacles

This intuition is very appealing... but there are two obstacles in turning it into a proof:

Obstacles

This intuition is very appealing... but there are two obstacles in turning it into a proof:
(1) We assumed that players find (i, j) s.t. $a_{i} \neq b_{i}$.

Obstacles

This intuition is very appealing... but there are two obstacles in turning it into a proof:
(1) We assumed that players find (i, j) s.t. $a_{i} \neq b_{i}$.

- but we need to prove it...

Obstacles

This intuition is very appealing... but there are two obstacles in turning it into a proof:
(1) We assumed that players find (i, j) s.t. $a_{i} \neq b_{i}$.

- but we need to prove it...
(2) Even if players must solve both $K W_{f}$ and $K W_{g}$,

Obstacles

This intuition is very appealing... but there are two obstacles in turning it into a proof:
(1) We assumed that players find (i, j) s.t. $a_{i} \neq b_{i}$.

- but we need to prove it...
(2) Even if players must solve both $K W_{f}$ and $K W_{g}$,
- still does not imply they communicate $\mathrm{CC}\left(K W_{f}\right)+\mathrm{CC}\left(K W_{g}\right)$ bits.

Obstacles

This intuition is very appealing... but there are two obstacles in turning it into a proof:
(1) We assumed that players find (i, j) s.t. $a_{i} \neq b_{i}$.

- but we need to prove it...
(2) Even if players must solve both $K W_{f}$ and $K W_{g}$,
- still does not imply they communicate $\mathrm{CC}\left(K W_{f}\right)+\mathrm{CC}\left(K W_{g}\right)$ bits.
- This is the direct-sum problem.

Obstacles

This intuition is very appealing... but there are two obstacles in turning it into a proof:
(1) We assumed that players find (i, j) s.t. $a_{i} \neq b_{i}$.

- but we need to prove it...
(2) Even if players must solve both $K W_{f}$ and $K W_{g}$,
- still does not imply they communicate $\mathrm{CC}\left(K W_{f}\right)+\mathrm{CC}\left(K W_{g}\right)$ bits.
- This is the direct-sum problem.

In this work, we focus on the direct-sum problem.

Strong composition

- The strong composition $K W_{f} \circledast K W_{g}$:

Strong composition

- The strong composition $K W_{f} \circledast K W_{g}$:
- defined like $K W_{f \diamond g}$, but

Strong composition

- The strong composition $K W_{f} \circledast K W_{g}$:
- defined like $K W_{f \diamond g}$, but
- the solution (i, j) must be in a row where $a_{i} \neq b_{i}$.

Strong composition

- The strong composition $K W_{f} \circledast K W_{g}$:
- defined like $K W_{f \diamond g}$, but
- the solution (i, j) must be in a row where $a_{i} \neq b_{i}$.
- Challenge (folklore): Prove KRW conjecture for $K W_{f} \circledast K W_{g}$.

Strong composition

- The strong composition $K W_{f} \circledast K W_{g}$:
- defined like $K W_{f \diamond g}$, but
- the solution (i, j) must be in a row where $a_{i} \neq b_{i}$.
- Challenge (folklore): Prove KRW conjecture for $K W_{f} \circledast K W_{g}$.
- Necessary for proving original KRW conjecture.

Strong composition

- The strong composition $K W_{f} \circledast K W_{g}$:
- defined like $K W_{f \diamond g}$, but
- the solution (i, j) must be in a row where $a_{i} \neq b_{i}$.
- Challenge (folklore): Prove KRW conjecture for $K W_{f} \circledast K W_{g}$.
- Necessary for proving original KRW conjecture.
- Focus on the direct-sum problem.

Our result

A "weak KRW" theorem ($\forall f \exists$ hard g) for strong composition.

Our result

A "weak KRW" theorem ($\forall f \exists$ hard g) for strong composition.

Theorem (informal)

For every $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and every $n \in \mathbb{N}$, there exists $g:\{0,1\}^{n} \rightarrow\{0,1\}$ s.t.

$$
\mathrm{CC}\left(K W_{f} \circledast K W_{g}\right)>\mathrm{CC}\left(K W_{f}\right)+n-0.96 \cdot m-O(\log (m \cdot n)) .
$$

Our result

A "weak KRW" theorem ($\forall f \exists$ hard g) for strong composition.

Theorem (informal)

For every $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and every $n \in \mathbb{N}$, there exists $g:\{0,1\}^{n} \rightarrow\{0,1\}$ s.t.

$$
\mathrm{CC}\left(K W_{f} \circledast K W_{g}\right)>\mathrm{CC}\left(K W_{f}\right)+n-0.96 \cdot m-O(\log (m \cdot n)) .
$$

If proved for $K W_{f \circ g}$ instead of $K W_{f} \circledast K W_{g}$:

- an explicit function with depth complexity $\geq 3.04 \cdot \log n$.

Our result

A "weak KRW" theorem ($\forall f \exists$ hard g) for strong composition.

Theorem (informal)

For every $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and every $n \in \mathbb{N}$, there exists $g:\{0,1\}^{n} \rightarrow\{0,1\}$ s.t.

$$
\mathrm{CC}\left(K W_{f} \circledast K W_{g}\right)>\mathrm{CC}\left(K W_{f}\right)+n-0.96 \cdot m-O(\log (m \cdot n)) .
$$

If proved for $K W_{f \circ g}$ instead of $K W_{f} \circledast K W_{g}$:

- an explicit function with depth complexity $\geq 3.04 \cdot \log n$.
- First improvement in depth lower bounds since [H93]!

Our result

A "weak KRW" theorem ($\forall f \exists$ hard g) for strong composition.

Theorem (informal)

For every $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and every $n \in \mathbb{N}$, there exists $g:\{0,1\}^{n} \rightarrow\{0,1\}$ s.t.

$$
\mathrm{CC}\left(K W_{f} \circledast K W_{g}\right)>\mathrm{CC}\left(K W_{f}\right)+n-0.96 \cdot m-O(\log (m \cdot n)) .
$$

If proved for $K W_{f \circ g}$ instead of $K W_{f} \circledast K W_{g}$:

- an explicit function with depth complexity $\geq 3.04 \cdot \log n$.
- First improvement in depth lower bounds since [H93]!
- Insufficient for proving $\mathbf{P} \nsubseteq \mathrm{NC}^{1}$ due to $-0.96 \cdot m$.

Outline

(1) Background

(2) Our result
(3) Proof strategy

4 Lower bounds using graph coloring
(5) Prefix-thick sets

Multiplexor composition

- Fix a function $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and $n \in \mathbb{N}$.
- Goal: $\exists g:\{0,1\}^{n} \rightarrow\{0,1\}$ s.t. $\mathrm{CC}\left(K W_{f} \circledast K W_{g}\right)$ is large.

Multiplexor composition

- Fix a function $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and $n \in \mathbb{N}$.
- Goal: $\exists g:\{0,1\}^{n} \rightarrow\{0,1\}$ s.t. $\mathrm{CC}\left(K W_{f} \circledast K W_{g}\right)$ is large.
- Define the composition $K W_{f} \circledast M U X_{n}$:

Alice

Bob

Multiplexor composition

- Fix a function $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and $n \in \mathbb{N}$.
- Goal: $\exists g:\{0,1\}^{n} \rightarrow\{0,1\}$ s.t. $\mathrm{CC}\left(K W_{f} \circledast K W_{g}\right)$ is large.
- Define the composition $K W_{f} \circledast M U X_{n}$:

Alice

Bob

- Suffices $[\mathrm{MS} 21]^{*}: \mathrm{CC}\left(K W_{f} \circledast M U X_{n}\right)>\mathrm{CC}\left(K W_{f}\right)+n-$ loss.

Proof strategy [EIRS91]

- We wish to show that the following protocol is optimal:

Proof strategy [EIRS91]

- We wish to show that the following protocol is optimal:
- First solve $K W_{f}$ on a and b.

Proof strategy [EIRS91]

- We wish to show that the following protocol is optimal:
- First solve $K W_{f}$ on a and b.
- Then solve $K W_{g}$ on X_{i} and Y_{i}.

Proof strategy [EIRS91]

- We wish to show that the following protocol is optimal:
- First solve $K W_{f}$ on a and b.
- Then solve $K W_{g}$ on X_{i} and Y_{i}.
- Challenge: Cannot solve $K W_{f}$ and $K W_{g}$ together faster than solving each of them separately.

Proof strategy [EIRS91]

- We wish to show that the following protocol is optimal:
- First solve $K W_{f}$ on a and b.
- Then solve $K W_{g}$ on X_{i} and Y_{i}.
- Challenge: Cannot solve $K W_{f}$ and $K W_{g}$ together faster than solving each of them separately.
- Intuition: Alice and Bob must finish solving $K W_{f}$ before starting to solve $K W_{g}$.

Proof strategy [EIRS91]

- We wish to show that the following protocol is optimal:
- First solve $K W_{f}$ on a and b.
- Then solve $K W_{g}$ on X_{i} and Y_{i}.
- Challenge: Cannot solve $K W_{f}$ and $K W_{g}$ together faster than solving each of them separately.
- Intuition: Alice and Bob must finish solving $K W_{f}$ before starting to solve $K W_{g}$.
- Fix a protocol Π for $K W_{f} \circledast M U X_{n}$.

Proof strategy [EIRS91]

- We wish to show that the following protocol is optimal:
- First solve $K W_{f}$ on a and b.
- Then solve $K W_{g}$ on X_{i} and Y_{i}.
- Challenge: Cannot solve $K W_{f}$ and $K W_{g}$ together faster than solving each of them separately.
- Intuition: Alice and Bob must finish solving $K W_{f}$ before starting to solve $K W_{g}$.
- Fix a protocol Π for $K W_{f} \circledast M U X_{n}$.
- Roughly, we prove that:
- as long as Π does not finish solving $K W_{f}$,
- it cannot make progress on $K W_{g}$.

Proof strategy [EIRS91]

Structure theorem (informal)

Let π_{1} be a partial transcript s.t.

- π_{1} is still far from solving $K W_{f}$, and
- π_{1} reveals little information about the inputs.

Then, after reaching π_{1}, the players must still communicate $\approx n$ more bits.

Proof strategy [EIRS91]

Structure theorem (informal)

Let π_{1} be a partial transcript s.t.

- π_{1} is still far from solving $K W_{f}$, and
- π_{1} reveals little information about the inputs.

Then, after reaching π_{1}, the players must still communicate $\approx n$ more bits.

- It is not hard to show that there exists such π_{1} of length $\mathrm{CC}\left(K W_{f}\right)$ - loss.

Proof strategy [EIRS91]

Structure theorem (informal)

Let π_{1} be a partial transcript s.t.

- π_{1} is still far from solving $K W_{f}$, and
- π_{1} reveals little information about the inputs.

Then, after reaching π_{1}, the players must still communicate $\approx n$ more bits.

- It is not hard to show that there exists such π_{1} of length $\mathrm{CC}\left(K W_{f}\right)$ - loss.
- By applying the theorem, we get a lower bound of

$$
\approx \mathrm{CC}\left(K W_{f}\right)+n-\text { loss. }
$$

Outline

(1) Background

(2) Our result
(3) Proof strategy
(4) Lower bounds using graph coloring
(5) Prefix-thick sets

Intersecting functions

- Fix a partial transcript π_{1}.
- Goal: players must communicate $\approx n$ more bits.

Intersecting functions

- Fix a partial transcript π_{1}.
- Goal: players must communicate $\approx n$ more bits.

Notation

For every function $g:\{0,1\}^{n} \rightarrow\{0,1\}$ denote:

$$
\begin{aligned}
& \mathcal{X}(g)=\left\{X: \text { the input }(g, X) \text { is legal for Alice given } \pi_{1}\right\} \\
& \mathcal{Y}(g)=\text { Same for } Y \text { and Bob. }
\end{aligned}
$$

Intersecting functions

- Fix a partial transcript π_{1}.
- Goal: players must communicate $\approx n$ more bits.

Notation

For every function $g:\{0,1\}^{n} \rightarrow\{0,1\}$ denote:

$$
\begin{aligned}
& \mathcal{X}(g)=\left\{X: \text { the input }(g, X) \text { is legal for Alice given } \pi_{1}\right\} \\
& \mathcal{Y}(g)=\text { Same for } Y \text { and Bob. }
\end{aligned}
$$

Definition

We say that $g_{1}, g_{2}:\{0,1\}^{n} \rightarrow\{0,1\}$ intersect iff

- either $\mathcal{X}\left(g_{1}\right) \cap \mathcal{Y}\left(g_{2}\right) \neq \emptyset$ or $\mathcal{X}\left(g_{2}\right) \cap \mathcal{Y}\left(g_{1}\right) \neq \emptyset$.

Intersecting functions

- Goal: players must communicate $\approx n$ more bits.

Definition

We say that $g_{1}, g_{2}:\{0,1\}^{n} \rightarrow\{0,1\}$ intersect iff

- either $\mathcal{X}\left(g_{1}\right) \cap \mathcal{Y}\left(g_{2}\right) \neq \emptyset$ or $\mathcal{X}\left(g_{2}\right) \cap \mathcal{Y}\left(g_{1}\right) \neq \emptyset$.

Intersecting functions

- Goal: players must communicate $\approx n$ more bits.

Definition

We say that $g_{1}, g_{2}:\{0,1\}^{n} \rightarrow\{0,1\}$ intersect iff

- either $\mathcal{X}\left(g_{1}\right) \cap \mathcal{Y}\left(g_{2}\right) \neq \emptyset$ or $\mathcal{X}\left(g_{2}\right) \cap \mathcal{Y}\left(g_{1}\right) \neq \emptyset$.

Lemma (implicit in [MS21])

If \exists a set \mathcal{V} of functions s.t. \forall distinct $g_{1}, g_{2} \in \mathcal{V}$ intersect, then the players must send $\gtrsim \log \log |\mathcal{V}|$ more bits after reaching π_{1}.

Intersecting functions

- Goal: players must communicate $\approx n$ more bits.

Definition

We say that $g_{1}, g_{2}:\{0,1\}^{n} \rightarrow\{0,1\}$ intersect iff

- either $\mathcal{X}\left(g_{1}\right) \cap \mathcal{Y}\left(g_{2}\right) \neq \emptyset$ or $\mathcal{X}\left(g_{2}\right) \cap \mathcal{Y}\left(g_{1}\right) \neq \emptyset$.

Lemma (implicit in [MS21])

If \exists a set \mathcal{V} of functions s.t. \forall distinct $g_{1}, g_{2} \in \mathcal{V}$ intersect, then the players must send $\gtrsim \log \log |\mathcal{V}|$ more bits after reaching π_{1}.

- Holds even for standard composition.

Intersecting functions

- Goal: players must communicate $\approx n$ more bits.

Definition

We say that $g_{1}, g_{2}:\{0,1\}^{n} \rightarrow\{0,1\}$ intersect iff

- either $\mathcal{X}\left(g_{1}\right) \cap \mathcal{Y}\left(g_{2}\right) \neq \emptyset$ or $\mathcal{X}\left(g_{2}\right) \cap \mathcal{Y}\left(g_{1}\right) \neq \emptyset$.

Lemma (implicit in [MS21])

If \exists a set \mathcal{V} of functions s.t. \forall distinct $g_{1}, g_{2} \in \mathcal{V}$ intersect, then the players must send $\gtrsim \log \log |\mathcal{V}|$ more bits after reaching π_{1}.

- Holds even for standard composition.
- To use lemma, need to construct \mathcal{V} s.t. $|\mathcal{V}| \approx 2^{2^{n}}$.

Intersecting functions

- Goal: players must communicate $\approx n$ more bits.

Definition

We say that $g_{1}, g_{2}:\{0,1\}^{n} \rightarrow\{0,1\}$ intersect iff

- either $\mathcal{X}\left(g_{1}\right) \cap \mathcal{Y}\left(g_{2}\right) \neq \emptyset$ or $\mathcal{X}\left(g_{2}\right) \cap \mathcal{Y}\left(g_{1}\right) \neq \emptyset$.

Lemma (implicit in [MS21])

If \exists a set \mathcal{V} of functions s.t. \forall distinct $g_{1}, g_{2} \in \mathcal{V}$ intersect, then the players must send $\gtrsim \log \log |\mathcal{V}|$ more bits after reaching π_{1}.

- Holds even for standard composition.
- To use lemma, need to construct \mathcal{V} s.t. $|\mathcal{V}| \approx 2^{2^{n}}$.
- Difficulty: need that every two functions in \mathcal{V} intersect.

A graph-theoretic perspective

Definition

The characteristic graph $\mathcal{G}_{\pi_{1}}$ satisfies:

- The vertices are all functions $g:\{0,1\}^{n} \rightarrow\{0,1\}$.
- There is an edge betwen g_{1} and g_{2} iff they intersect.

A graph-theoretic perspective

Definition

The characteristic graph $\mathcal{G}_{\pi_{1}}$ satisfies:

- The vertices are all functions $g:\{0,1\}^{n} \rightarrow\{0,1\}$.
- There is an edge betwen g_{1} and g_{2} iff they intersect.

Lemma of [MS21]

The players must send $\gtrsim \log \log \omega\left(\mathcal{G}_{\pi_{1}}\right)$ more bits. $\left(\omega\left(\mathcal{G}_{\pi_{1}}\right)\right.$ - maximum size of a clique in $\left.\mathcal{G}_{\pi_{1}}\right)$.

A graph-theoretic perspective

Definition

The characteristic graph $\mathcal{G}_{\pi_{1}}$ satisfies:

- The vertices are all functions $g:\{0,1\}^{n} \rightarrow\{0,1\}$.
- There is an edge betwen g_{1} and g_{2} iff they intersect.

Lemma of [MS21]

The players must send $\gtrsim \log \log \omega\left(\mathcal{G}_{\pi_{1}}\right)$ more bits. $\left(\omega\left(\mathcal{G}_{\pi_{1}}\right)\right.$ - maximum size of a clique in $\left.\mathcal{G}_{\pi_{1}}\right)$.

Lemma (this work)

The players must send $\gtrsim \log \log \chi\left(\mathcal{G}_{\pi_{1}}\right)$ more bits $\left(\chi\left(\mathcal{G}_{\pi_{1}}\right)\right.$ - minimum number of colors required to color $\left.\mathcal{G}_{\pi_{1}}\right)$.

Back to strong composition

Back to strong composition

- Recall: In strong composition, players have to look for a solution in rows where $a_{i} \neq b_{i}$.

Back to strong composition

- Recall: In strong composition, players have to look for a solution in rows where $a_{i} \neq b_{i}$.
- The same results hold, but we need to change the notion of intersecting functions to focus on rows where $a_{i} \neq b_{i}$.

Back to strong composition

- Recall: In strong composition, players have to look for a solution in rows where $a_{i} \neq b_{i}$.
- The same results hold, but we need to change the notion of intersecting functions to focus on rows where $a_{i} \neq b_{i}$.

Definition

We say that $g_{1}, g_{2}:\{0,1\}^{n} \rightarrow\{0,1\}$ weakly intersect iff

Back to strong composition

- Recall: In strong composition, players have to look for a solution in rows where $a_{i} \neq b_{i}$.
- The same results hold, but we need to change the notion of intersecting functions to focus on rows where $a_{i} \neq b_{i}$.

Definition

We say that $g_{1}, g_{2}:\{0,1\}^{n} \rightarrow\{0,1\}$ weakly intersect iff

- there exist matrices $X \in \mathcal{X}\left(g_{1}\right)$ and $Y \in \mathcal{Y}\left(g_{2}\right)$ s.t.
- $X_{i}=Y_{i}$ for every $i \in[m]$ for which $a_{i} \neq b_{i}$
- (where $a=g_{1}(X)$ and $b=g_{2}(Y)$),

Back to strong composition

- Recall: In strong composition, players have to look for a solution in rows where $a_{i} \neq b_{i}$.
- The same results hold, but we need to change the notion of intersecting functions to focus on rows where $a_{i} \neq b_{i}$.

Definition

We say that $g_{1}, g_{2}:\{0,1\}^{n} \rightarrow\{0,1\}$ weakly intersect iff

- there exist matrices $X \in \mathcal{X}\left(g_{1}\right)$ and $Y \in \mathcal{Y}\left(g_{2}\right)$ s.t.
- $X_{i}=Y_{i}$ for every $i \in[m]$ for which $a_{i} \neq b_{i}$
- (where $a=g_{1}(X)$ and $b=g_{2}(Y)$),
- or vice versa.

Outline

(1) Background

(2) Our result
(3) Proof strategy

4 Lower bounds using graph coloring
(5) Prefix-thick sets

Proving weak intersection

- How can we prove that two functions weakly intersect?

Proving weak intersection

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}\left(g_{1}\right)$ and $Y \in \mathcal{Y}\left(g_{2}\right)$ that are equal on the rows where $a_{i} \neq b_{i}$.

Proving weak intersection

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}\left(g_{1}\right)$ and $Y \in \mathcal{Y}\left(g_{2}\right)$ that are equal on the rows where $a_{i} \neq b_{i}$.
- Due to the assumptions on π_{1} :

Proving weak intersection

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}\left(g_{1}\right)$ and $Y \in \mathcal{Y}\left(g_{2}\right)$ that are equal on the rows where $a_{i} \neq b_{i}$.
- Due to the assumptions on π_{1} :
- The sets $\mathcal{X}\left(g_{1}\right)$ and $\mathcal{Y}\left(g_{2}\right)$ are large (density $\left.\geq 2^{-\varepsilon \cdot m}\right)$

Proving weak intersection

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}\left(g_{1}\right)$ and $Y \in \mathcal{Y}\left(g_{2}\right)$ that are equal on the rows where $a_{i} \neq b_{i}$.
- Due to the assumptions on π_{1} :
- The sets $\mathcal{X}\left(g_{1}\right)$ and $\mathcal{Y}\left(g_{2}\right)$ are large (density $\geq 2^{-\varepsilon \cdot m}$) (since π_{1} does not reveal much information on the inputs).

Proving weak intersection

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}\left(g_{1}\right)$ and $Y \in \mathcal{Y}\left(g_{2}\right)$ that are equal on the rows where $a_{i} \neq b_{i}$.
- Due to the assumptions on π_{1} :
- The sets $\mathcal{X}\left(g_{1}\right)$ and $\mathcal{Y}\left(g_{2}\right)$ are large (density $\geq 2^{-\varepsilon \cdot m}$) (since π_{1} does not reveal much information on the inputs).
- It holds that $a_{i} \neq b_{i}$ for at most $\alpha \cdot m$ rows

Proving weak intersection

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}\left(g_{1}\right)$ and $Y \in \mathcal{Y}\left(g_{2}\right)$ that are equal on the rows where $a_{i} \neq b_{i}$.
- Due to the assumptions on π_{1} :
- The sets $\mathcal{X}\left(g_{1}\right)$ and $\mathcal{Y}\left(g_{2}\right)$ are large (density $\geq 2^{-\varepsilon \cdot m}$) (since π_{1} does not reveal much information on the inputs).
- It holds that $a_{i} \neq b_{i}$ for at most $\alpha \cdot m$ rows (since π_{1} is far from solving $K W_{f}$).

Proving weak intersection

- How can we prove that two functions weakly intersect?
- Need to prove: there exist $X \in \mathcal{X}\left(g_{1}\right)$ and $Y \in \mathcal{Y}\left(g_{2}\right)$ that are equal on the rows where $a_{i} \neq b_{i}$.
- Due to the assumptions on π_{1} :
- The sets $\mathcal{X}\left(g_{1}\right)$ and $\mathcal{Y}\left(g_{2}\right)$ are large (density $\geq 2^{-\varepsilon \cdot m}$) (since π_{1} does not reveal much information on the inputs).
- It holds that $a_{i} \neq b_{i}$ for at most $\alpha \cdot m$ rows (since π_{1} is far from solving $K W_{f}$).
- Warm-up: prove that there exist $X \in \mathcal{X}\left(g_{1}\right)$ and $Y \in \mathcal{Y}\left(g_{2}\right)$ that are equal on $\geq \alpha \cdot m$ rows.

A simpler combinatorial question

- Let Σ be a finite alphabet.
- Let $\mathcal{X}, \mathcal{Y} \subseteq \Sigma^{m}$ be sets of strings of density $\geq 2^{-\varepsilon \cdot m}$ (for some $\varepsilon>0$).

A simpler combinatorial question

- Let Σ be a finite alphabet.
- Let $\mathcal{X}, \mathcal{Y} \subseteq \Sigma^{m}$ be sets of strings of density $\geq 2^{-\varepsilon \cdot m}$ (for some $\varepsilon>0$).

Toy problem

Prove that there exist strings $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ that agree on at least $\alpha \cdot m$ coordinates (for some α that depends only on ε).

A simpler combinatorial question

- Let Σ be a finite alphabet.
- Let $\mathcal{X}, \mathcal{Y} \subseteq \Sigma^{m}$ be sets of strings of density $\geq 2^{-\varepsilon \cdot m}$ (for some $\varepsilon>0$).

Toy problem

Prove that there exist strings $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ that agree on at least $\alpha \cdot m$ coordinates (for some α that depends only on ε).

- In other words: there exists $I \subseteq[m]$ of size $\geq \alpha \cdot m$ s.t. $\left.\left.\mathcal{X}\right|_{I} \cap \mathcal{Y}\right|_{I} \neq \emptyset$.

A simpler combinatorial question

- Let Σ be a finite alphabet.
- Let $\mathcal{X}, \mathcal{Y} \subseteq \Sigma^{m}$ be sets of strings of density $\geq 2^{-\varepsilon \cdot m}$ (for some $\varepsilon>0$).

Toy problem

Prove that there exist strings $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ that agree on at least $\alpha \cdot m$ coordinates (for some α that depends only on ε).

- In other words: there exists $I \subseteq[m]$ of size $\geq \alpha \cdot m$ s.t. $\left.\left.\mathcal{X}\right|_{I} \cap \mathcal{Y}\right|_{I} \neq \emptyset$.
- Idea: choose I such that $\left.\mathcal{X}\right|_{I}$ and $\left.\mathcal{Y}\right|_{I}$ are "prefix-thick sets".

Prefix-thick sets

Definition

We say that $\mathcal{X} \subseteq \Sigma^{m}$ is prefix thick iff for every prefix w of \mathcal{X} of length $<m$, there exist more than $\frac{|\Sigma|}{2}$ symbols σ such that $w \circ \sigma$ is a prefix of \mathcal{X}.

Prefix-thick sets

Definition

We say that $\mathcal{X} \subseteq \Sigma^{m}$ is prefix thick iff for every prefix w of \mathcal{X} of length $<m$, there exist more than $\frac{|\Sigma|}{2}$ symbols σ such that $w \circ \sigma$ is a prefix of \mathcal{X}.

Observation

If \mathcal{X} and \mathcal{Y} are prefix-thick subsets of Σ^{m}, then $\mathcal{X} \cap \mathcal{Y} \neq \emptyset$.

Prefix-thick sets

Definition

We say that \mathcal{X} is prefix thick iff for every prefix w of length $<m$, there exist more than $\frac{|\Sigma|}{2}$ symbols σ such that $w \circ \sigma$ is a prefix.

Prefix-thick sets

Definition

We say that \mathcal{X} is prefix thick iff for every prefix w of length $<m$, there exist more than $\frac{|\Sigma|}{2}$ symbols σ such that $w \circ \sigma$ is a prefix.

Lemma (this work)

Let $\mathcal{X} \subseteq \Sigma^{m}$ be a set of some density δ. Then, $\left.\mathcal{X}\right|_{I}$ is prefix thick for at least δ fraction of the sets $I \subseteq[m]$.

Prefix-thick sets

Definition

We say that \mathcal{X} is prefix thick iff for every prefix w of length $<m$, there exist more than $\frac{|\Sigma|}{2}$ symbols σ such that $w \circ \sigma$ is a prefix.

Lemma (this work)

Let $\mathcal{X} \subseteq \Sigma^{m}$ be a set of some density δ. Then, $\left.\mathcal{X}\right|_{I}$ is prefix thick for at least δ fraction of the sets $I \subseteq[m]$.

- Proof: Easy corollary of a result of [ST14] about discrete dynamical systems.

Prefix-thick sets

Definition

We say that \mathcal{X} is prefix thick iff for every prefix w of length $<m$, there exist more than $\frac{|\Sigma|}{2}$ symbols σ such that $w \circ \sigma$ is a prefix.

Lemma (this work)

Let $\mathcal{X} \subseteq \Sigma^{m}$ be a set of some density δ. Then, $\left.\mathcal{X}\right|_{I}$ is prefix thick for at least δ fraction of the sets $I \subseteq[m]$.

- Proof: Easy corollary of a result of [ST14] about discrete dynamical systems.
- Can be viewed as a generalization of the Sauer-Shelah lemma to large alphabets.

Putting everything together

- Using the last lemma, we can find a set I s.t. $\left.\mathcal{X}\left(g_{1}\right)\right|_{I}$ and $\left.\mathcal{Y}\left(g_{2}\right)\right|_{I}$ are prefix thick.

Putting everything together

- Using the last lemma, we can find a set I s.t. $\left.\mathcal{X}\left(g_{1}\right)\right|_{I}$ and $\left.\mathcal{Y}\left(g_{2}\right)\right|_{I}$ are prefix thick.
- Together with additional ideas, we can prove that many pairs of functions weakly intersect.

Putting everything together

- Using the last lemma, we can find a set I s.t. $\left.\mathcal{X}\left(g_{1}\right)\right|_{I}$ and $\left.\mathcal{Y}\left(g_{2}\right)\right|_{I}$ are prefix thick.
- Together with additional ideas, we can prove that many pairs of functions weakly intersect.
- In other words, we can prove the existence of many edges in the characteristic $\mathcal{G}_{\pi_{1}}$.

Putting everything together

- Using the last lemma, we can find a set I s.t. $\left.\mathcal{X}\left(g_{1}\right)\right|_{I}$ and $\left.\mathcal{Y}\left(g_{2}\right)\right|_{I}$ are prefix thick.
- Together with additional ideas, we can prove that many pairs of functions weakly intersect.
- In other words, we can prove the existence of many edges in the characteristic $\mathcal{G}_{\pi_{1}}$.
- This allows us to prove a lower bound on the chromatic number of $\mathcal{G}_{\pi_{1}} \ldots$

Putting everything together

- Using the last lemma, we can find a set I s.t. $\left.\mathcal{X}\left(g_{1}\right)\right|_{I}$ and $\left.\mathcal{Y}\left(g_{2}\right)\right|_{I}$ are prefix thick.
- Together with additional ideas, we can prove that many pairs of functions weakly intersect.
- In other words, we can prove the existence of many edges in the characteristic $\mathcal{G}_{\pi_{1}}$.
- This allows us to prove a lower bound on the chromatic number of $\mathcal{G}_{\pi_{1} \ldots}$
- and hence get the desired lower bound on communication complexity.

Summary

- The KRW conjecture is a promising approach for proving $\mathbf{P} \nsubseteq \mathbf{N C}^{1}$.

Summary

- The KRW conjecture is a promising approach for proving $\mathbf{P} \nsubseteq \mathrm{NC}^{1}$.
- Even a weak version suffices $(\forall f \exists$ hard $g)$.

Summary

- The KRW conjecture is a promising approach for proving $\mathbf{P} \nsubseteq \mathrm{NC}^{1}$.
- Even a weak version suffices $(\forall f \exists$ hard g).
- Strong composition: focus on the direct-sum obstacle.

Summary

- The KRW conjecture is a promising approach for proving $\mathbf{P} \nsubseteq \mathrm{NC}^{1}$.
- Even a weak version suffices $(\forall f \exists$ hard g).
- Strong composition: focus on the direct-sum obstacle.
- Our result: a version of the weak conjecture for strong composition.

Summary

- The KRW conjecture is a promising approach for proving $\mathbf{P} \nsubseteq \mathrm{NC}^{1}$.
- Even a weak version suffices $(\forall f \exists$ hard g).
- Strong composition: focus on the direct-sum obstacle.
- Our result: a version of the weak conjecture for strong composition.
- Open problems:

Summary

- The KRW conjecture is a promising approach for proving $\mathbf{P} \nsubseteq \mathrm{NC}^{1}$.
- Even a weak version suffices $(\forall f \exists$ hard g).
- Strong composition: focus on the direct-sum obstacle.
- Our result: a version of the weak conjecture for strong composition.
- Open problems:
- Get rid of the $-0.96 \cdot m$ loss.

Summary

- The KRW conjecture is a promising approach for proving $\mathbf{P} \nsubseteq \mathrm{NC}^{1}$.
- Even a weak version suffices $(\forall f \exists$ hard g).
- Strong composition: focus on the direct-sum obstacle.
- Our result: a version of the weak conjecture for strong composition.
- Open problems:
- Get rid of the $-0.96 \cdot m$ loss.
- Lower bound for formula complexity.

Summary

- The KRW conjecture is a promising approach for proving $\mathbf{P} \nsubseteq \mathbf{N C}^{1}$.
- Even a weak version suffices $(\forall f \exists$ hard g).
- Strong composition: focus on the direct-sum obstacle.
- Our result: a version of the weak conjecture for strong composition.
- Open problems:
- Get rid of the $-0.96 \cdot m$ loss.
- Lower bound for formula complexity.

Thank you!

