Almost-Everywhere Circuit Lower Bounds from Circuit-Analysis Algorithms

Ryan Williams
MIT

But all “heavy-lifting” done by: Xin Lyu (Tsinghua) and Lijie Chen (MIT)
Outline

• Prior Work and a “Subtle” Issue
• What We Do
• A Little About How We Do It
• Conclusion
Algorithmic Approach to Lower Bounds: Interesting circuit-analysis algorithms tell us about the *limitations* of circuits in modeling algorithms.

∃ ∀ "Non-Trivial" Circuit Analysis Algorithm (beating brute force)

SAT? YES/NO

Inherently non-relativizing approach

∃ "interesting" f

Circuit Lower Bounds

Circuits are not “black-boxes” to algs!
Circuit-Analysis Problem #1: Generalized Circuit Satisfiability

Let \mathcal{C} be a class of Boolean circuits

$$\mathcal{C} = \{\text{formulas}\}, \quad \mathcal{C} = \{\text{arbitrary circuits}\}, \quad \mathcal{C} = \{3\text{CNFs}\}$$

The \mathcal{C}-SAT Problem:

Given a circuit $K(x_1, \ldots, x_n)$ from \mathcal{C}, is there an assignment $(a_1, \ldots, a_n) \in \{0,1\}^n$ such that $K(a_1, \ldots, a_n) = 1$?

A very “simple” circuit analysis problem

[CL’70s] \mathcal{C}-SAT is NP-complete for practically all interesting \mathcal{C}

\mathcal{C}-SAT is solvable in $O(2^n |K|)$ time by brute force
Circuit-Analysis Problem #2: Gap Circuit Satisfiability

Let \mathcal{C} be a class of Boolean circuits

$\mathcal{C} = \{\text{formulas}\}, \mathcal{C} = \{\text{arbitrary circuits}\}, \mathcal{C} = \{3\text{CNFs}\}$

Gap-C-SAT:

Given $K(x_1, ..., x_n)$ from \mathcal{C}, and the promise that either

(a) $K \equiv 0$, or (b) $Pr_x[K(x) = 1] \geq 1/2$,

decide which is true.

Even simpler! In randomized polynomial time

[Folklore?] Gap-Circuit-SAT $\in \text{P} \Rightarrow \text{P} = \text{RP}$

[Hirsch, Trevisan, ...] Gap-kSAT $\in \text{P}$ for all k
Nontrivially Faster \mathcal{C}-SAT \implies Circuit Lower Bounds for \mathcal{C}

<table>
<thead>
<tr>
<th>Slightly Faster Circuit-SAT [R.W. ’10,’11]</th>
<th>No “Circuits for NEXP”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic algorithms for:</td>
<td>Would imply:</td>
</tr>
<tr>
<td>• Circuit SAT in $O(2^n/n^{10})$ time</td>
<td>• NEXP $\not\subset$ P/poly</td>
</tr>
<tr>
<td>with n inputs and n^k gates, for all k</td>
<td>• NEXP $\not\subset$ Poly-size formulas</td>
</tr>
<tr>
<td>• Formula SAT in $O(2^n/n^{10})$ time</td>
<td>• NEXP $\not\subset$ poly-size \mathcal{C}</td>
</tr>
<tr>
<td>• \mathcal{C}-SAT in $O(2^n/n^{10})$ time</td>
<td></td>
</tr>
<tr>
<td>• Gap-\mathcal{C}-SAT in $O(2^n/n^{10})$ time</td>
<td>NEXP $\not\subset$ poly-size \mathcal{C}</td>
</tr>
<tr>
<td>on n^k size, for all k</td>
<td></td>
</tr>
<tr>
<td>(Easily solved w/ randomness!)</td>
<td></td>
</tr>
</tbody>
</table>

Concrete LBs:
- $\mathcal{C} = ACC$
- $\mathcal{C} = ACC$ of THR
 [W’11]
- $\mathcal{C} = ACC$ of THR
 [W’14]
Even Faster SAT \implies Stronger Lower Bounds

Somewhat Faster Circuit SAT

- **Murray-W. ’18**
- Det. algorithm *for some* $\epsilon > 0$:
 - Circuit SAT in $O(2^{n-n^\epsilon})$ time with n inputs and 2^{n^ϵ} gates
 - Formula SAT in $O(2^{n-n^\epsilon})$ time
 - C-SAT in $O(2^{n-n^\epsilon})$ time
 - Gap-C-SAT in $O(2^{n-n^\epsilon})$ time on 2^{n^ϵ} gates

No “Circuits for Quasi-NP”

Would imply:
- $\text{NTIME}[n^{\text{polylog} n}] \not\subset \text{P/poly}$
- $\text{NTIME}[n^{\text{polylog} n}] \not\subset \text{NC1}$
- $\text{NTIME}[n^{\text{polylog} n}] \not\subset C$

$C = ACC$ of THR

[MW’18]
“Fine-Grained” SAT Algorithms [Murray-W. ’18]

Det. algorithm for some $\epsilon > 0$:

- Circuit SAT in $O(2^{(1-\epsilon)n})$ time on n inputs and $2^{\epsilon n}$ gates
- FormSAT in $O(2^{(1-\epsilon)n})$ time
- C-SAT in $O(2^{(1-\epsilon)n})$ time
- Gap-C-SAT is in $O(2^{(1-\epsilon)n})$ time on $2^{\epsilon n}$ gates

(Implied by PromiseRP in P)

Note: Would refute Strong ETH!

Strongly believed to be true...

No “Circuits for NP”

Would imply:

- NP $\not\subset$ SIZE(n^k) for all k
- NP $\not\subset$ Formulas of size n^k
- NP $\not\subset$ C-SIZE(n^k) for all k

NP $\not\subset C$-SIZE(n^k) for all k

C = SUM of THR
C = SUM of ReLU
C = SUM of low-degree polys

(W’18)
Faster \#SAT and CAPP \implies \text{Average-Case Lower Bounds}

\begin{itemize}
\item [\text{Det. algorithm for some } \epsilon > 0:]
 \begin{itemize}
 \item \#\text{Circuit SAT} in \(O(2^n - n^\epsilon)\) time with \(n\) inputs and \(2^n\epsilon\) gates
 \item \#\text{Formula SAT} in \(O(2^n - n^\epsilon)\) time
 \item \#\text{C-SAT} in \(O(2^n - n^\epsilon)\) time
 \item \text{C-CAPP} in \(O(2^n - n^\epsilon)\) time
 \end{itemize}
\end{itemize}

\begin{itemize}
\item \text{No Circuits for Computing Quasi-NP on Average}
\item Would imply:
 \begin{itemize}
 \item NTIME\([n^{\text{polylog}}]\) can’t be \((1/2 + 1/\text{poly})\)-approximated in P/poly
 \item Inapproximability in NC1
 \item Inapproximability in \(C/\text{poly}\)
 \end{itemize}
\end{itemize}

\text{Given a circuit of size } s, \text{ approximate its fraction of SAT assignments to within } \pm 1/s
Faster #SAT and CAPP \implies Average-Case Lower Bounds

Det. algorithm for some $\epsilon > 0$:
- #Circuit SAT in $O(2^{n-n^\epsilon})$ time with n inputs and 2^{n^ϵ} gates
- #Formula SAT in $O(2^{n-n^\epsilon})$ time
- #C-SAT in $O(2^{n-n^\epsilon})$ time
- C-CAPP in $O(2^{n-n^\epsilon})$ time

No Circuits for Computing Quasi-NP on Average

Would imply:
- NTIME[$n^{\text{polylog } n}$] can’t be $\frac{1}{2} + \frac{1}{\text{poly}}$-approximated in P/poly
- Inapproximability in NC1
- Inapproximability in C/poly

There is an $f \in \text{NTIME}[n^{\text{polylog } n}]$ such that, for infinitely many n, every poly(n)-size circuit C fails to compute f_n on more than $\left(\frac{1}{2} + \frac{1}{\text{poly}(n)}\right)2^n$ inputs.

Given a circuit of size s, approximate its fraction of SAT assignments to within $\pm \frac{1}{s}$
A Subtle (But Important) Issue!

When we prove statements like $\text{NEXP} \not\subset \text{ACC}^0$ via circuit-analysis algorithms, we end up showing that, for NEXP-complete problems such as Succinct3SAT, there are infinitely many input lengths n such that Succinct3SAT fails to have the desired ACC circuits on length-n inputs.

Let $f: \{0, 1\}^* \to \{0, 1\}$ and let $f_n: \{0, 1\}^n \to \{0, 1\}$ be the restriction of f.

An infinitely-often circuit lower bound only says “f_n doesn’t have small circuits” for infinitely many n:

\[
f_1, f_2, f_3, f_4, \ldots, \text{\ding{55}}, \ldots, \text{\ding{55}}, f_{100}, \ldots, \text{\ding{55}}, f_{1000}, \ldots, \text{\ding{55}}, f_{10000}, \ldots, \text{\ding{55}}
\]

We would greatly prefer an “almost-everywhere” circuit lower bound, which holds for all but finitely many inputs!

\[
f_1, f_2, f_3, f_4, \ldots, f_{100}, \ldots, f_{1000}, \ldots, f_{10000}, \ldots
\]

All of the classical circuit lower bounds from the 1980s (PARITY $\not\in \text{AC0}$, MAJORITY $\not\in \text{AC0}[2]$, etc.) yield almost-everywhere lower bounds.
A Subtle (But Important) Issue!

Why does the algorithmic approach only get infinitely-often lower bounds?

Prior work relies on other lower bounds such as the *nondeterministic time hierarchy theorem* or *MA/1 circuit lower bounds*, and neither results are known to hold almost-everywhere.

If we knew (for example)

\[\text{NTIME}[2^n] \text{ is not } \text{infinitely often in NTIME}[2^n/poly(n)], \]

then we could conclude some kind of almost-everywhere lower bound.

But there are oracles relative to which \(\text{NEXP} \) is *infinitely often* in \(\text{NP} \)!

[Buhrman-Fortnow-Santhanam ’09]
A Subtle (But Important) Issue!

Why does the algorithmic approach only get infinitely-often lower bounds?

Prior work relies on other lower bounds such as the *nondeterministic time hierarchy theorem* or MA/1 circuit lower bounds, and neither results are known to hold almost everywhere.

If we knew (for example) $\text{NTIME}[2^n]$ is not infinitely often in $\text{NTIME}[2^n / \text{poly}(n)]$, then we could conclude some kind of almost-everywhere lower bound.

But there are oracles relative to which NEXP is *infinitely often* in NP! [Buhrman-Fortnow-Santhanam ’09]
Outline

• Prior Work and a “Subtle” Issue
• What We Do
• A Little About How We Do It
• Conclusion
This Work:
Faster SAT ⇒ Almost-Everywhere Lower Bounds

Det. algorithm for some $\epsilon > 0$:
- **C-SAT** (or **Gap-C-SAT**) with n inputs and $s(n)^{O(1)}$ gates in $2^n/n^{\omega(1)}$ time
- **#C-SAT** (or **C-CAPP**) in $O(2^{n-n^\epsilon})$ time on 2^n gates\n
A.E. Circuit Lower Bounds for E^{NP} on Average

There is an $f \in \text{TIME}[2^{O(n)}]^{SAT}$ such that, for all but finitely many n, every $s(n)$-size circuit C fails to compute f_n on more than

$\left(\frac{1}{2} + \frac{1}{s(n)}\right)2^n$ inputs.

- E^{NP} can't be $1/2 + 1/2^{n^{o(1)}}$-approximated with $2^{n^{o(1)}}$ size C-circuits, for a.e. n

Almost-everywhere average-case lower bounds for ACC of THR!
This Work:
Faster SAT \implies \text{Almost- Everywhere Lower Bounds}

\begin{itemize}
 \item [R.Chen-Oliveira-Santhanam’18, Chen-W’19, Chen’19, Chen-Ren ’20]
 \item \textbf{Det. algorithm for some } \epsilon > 0:\n \begin{itemize}
 \item \textbf{C-SAT} (or \textbf{Gap-C-SAT}) with \(n\) inputs and \(s(n)^{O(1)}\) gates in \(2^n/n^{\omega(1)}\) time
 \item \textbf{#C-SAT} (or \textbf{C-CAPP}) in \(O(2^{n-n^\epsilon})\) time on \(2^n\) gates
 \end{itemize}
 \item \textbf{A.E. Circuit Lower Bounds for } \(E^{NP}\) on Average
 \begin{itemize}
 \item Would imply:
 \begin{itemize}
 \item \(E^{NP}\) does not have \(s(n/2)\) size \(\text{C-circuits, for almost every } n\)
 \item \(E^{NP}\) can’t be \(1/2 + 1/2^{n^{o(1)}}\)-approximated with \(2^{n^{o(1)}}\) size \(\text{C-circuits, for a.e. } n\)
 \end{itemize}
 \end{itemize}
\end{itemize}

\textbf{Given a circuit of size } s, \textbf{approximate its } fraction \textbf{ of SAT assignments to within } +1/s
More Almost-Everywhere Goodness

In fact, we can extend all previous “E^{NP} lower bounds” proved via the algorithmic method to the *almost-everywhere* setting.

Strong average-case ACC^0 lower bounds:
Extends [Chen-W’19], [Chen-Ren’20] with better inapproximability parameters

Correlation bounds: For all $\epsilon > 0$, and for all but finitely many n, L_n cannot be $\frac{1}{2} + \frac{1}{2^{n\Omega(1)}}$ approximated by $n^{1-\epsilon}$-degree F_2-polynomials.
Extends [Viola’20]

Probabilistic degree lower bounds:
There is an E^{NP} language L such that, for all but finitely many n, L_n does not have $o(n/\log^2 n)$-degree probabilistic F_2-polynomials. Extends [Viola’20]

Rigid matrices in P^{NP}: There is a P^{NP} algorithm \mathcal{A} such that, for all but finitely many n, \mathcal{A} on input 1^n outputs an $n \times n$ matrix M_n satisfying $\mathcal{R}_{2^{\log^{1-\epsilon} n}}(M_n) = \Omega(n^2)$.
Extends [Alman-C’19], [Bhangale-Harsha-Paradise-Tal’20]
Theorem: There is an E^{NP} function f, such that for all sufficiently large n, f_n cannot be approximated by $2^{n^{o(1)}}$-size ACC^0 circuits.

"New" XOR Lemma: Suppose there is no $poly(s)$-size linear combination L of C-circuits for f such that $E_x[|L(x) - f(x)|] < 1/10$. Then $f \oplus k$ cannot be approximated by size-s C-circuits.
Outline

• Prior Work and a “Subtle” Issue
• What We Do
• A Little About How We Do It
• Conclusion
A Little About How We Do It

• How \(\text{NEXP} \not\subset \text{ACC}^0 \) Was Proved
• Another View of the Proof
• Extending to Almost-Everywhere
How $\text{NEXP} \not\subset \text{ACC}^0$ Was Proved

Let \mathbb{C} be a “typical” circuit class (like ACC^0)

Thm A [W’11] (algorithm design \rightarrow lower bounds)

If for all k, $\text{Gap-}\mathbb{C}\text{-SAT}$ on n^k-size is in $O(2^n/n^k)$ time, then NEXP does not have poly-size \mathbb{C}-circuits.

Thm B [W’11] (algorithm)

$\exists \varepsilon$, $\text{#ACC}^0\text{-SAT}$ on 2^n^ε size is in $O(2^{n-n^\varepsilon})$ time.

(Used a well-known representation of ACC^0 from 1990, that people long suspected should imply lower bounds)

Note that Theorem B gives a stronger algorithm than necessary in the hypothesis of Theorem A.

(This is the starting point of [Murray-W’18] which proves Quasi-NP lower bounds, and other subsequent work)
Idea of Theorem A

Let \mathbb{C} be some circuit class (like ACC^0)

Thm A [W’11] (algorithm design \Rightarrow lower bounds)

If for all k, Gap \mathbb{C}-SAT on n^k-size is in $O(2^n/n^k)$ time, then NEXP does not have poly-size \mathbb{C}-circuits.

Idea. Show that if we assume both:

1. NEXP has poly-size \mathbb{C}-circuits,
 AND
2. a faster Gap \mathbb{C}-SAT algorithm

Then we can show $\text{NTIME}[2^n] \subset \text{NTIME}[o(2^n)]$.

This contradicts the nondeterministic time hierarchy: there’s an L_{hard} in $\text{NTIME}[2^n] \setminus \text{NTIME}[o(2^n)]$.
Proof Ideas in Theorem A

Idea. Assume

(1) NEXP has poly-size \mathbb{C}-circuits, AND
(2) there’s a faster Gap \mathbb{C}-SAT algorithm

Show that $\text{NTIME}[2^n] \subseteq \text{NTIME}[o(2^n)]$ (contradiction)

Take any problem L in nondeterministic 2^n time
Given an input x, we decide L on x by:

1. Guessing a witness y of $O(2^n)$ length.
2. Checking y is a witness for x in $O(2^n)$ time.

Want to “speed-up” both parts 1 and 2, using the above assumptions
Proof Ideas in Theorem A

Idea. Assume

1. NEXP has poly-size \(\mathbb{C} \)-circuits, AND
2. there’s a faster Gap \(\mathbb{C} \)-SAT algorithm

Show that \(\text{NTIME}[2^n] \subseteq \text{NTIME}[o(2^n)] \)

Take any problem \(L \) in **nondeterministic** \(2^n \) time

Given an input \(x \), we decide \(L \) on \(x \) in a FASTER way:

1. **Use (1) to guess a witness \(y \) of \(o(2^n) \) length**
 (Easy Witness Lemma [IKW02]:
 if NEXP is in P/poly, then \(L \) has “small witnesses”)

2. **Use (2) to check \(y \) is a witness for \(x \) in \(o(2^n) \) time**

Technical: Use a highly-structured PCPs for NEXP
 [W’10, BV’14] to reduce the check to Gap \(\mathbb{C} \)-SAT
Extend to Almost-Everywhere?

Idea. Assume

1. NEXP has poly-size \mathbb{C}-circuits, AND
2. there’s a faster Gap \mathbb{C}-SAT algorithm

Show that $\text{NTIME}[2^n] \subseteq \text{NTIME}[o(2^n)]$?

Take any problem L in nondeterministic 2^n time

Given an input x, we decide L on x in a FASTER way:

1. Use (1) to guess a witness y of $o(2^n)$ length
 (Infinitely-Often Easy Witness Lemma [???]:
 if NEXP is in io-P/poly, then L has “small witnesses” ?)

2. Use (2) to check y is a witness for x in $o(2^n)$ time
 Technical: Use a highly-structured PCPs for NEXP
 [W’10, BV’14] to reduce the check to Gap \mathbb{C}-SAT

Even if we could prove $\text{NTIME}[2^n] \not\subseteq \text{io-NTIME}[o(2^n)]$,
We still don’t know how to complete step 1!

NT$[2^n] \not\subseteq \text{io-NT}[o(2^n)]$ and $\text{EXP}^\text{NP} \subseteq \text{io-}\mathbb{C}$
would imply our desired easy witnesses. We could infer a contradiction!

But such an NTIME hierarchy looks very hard to prove... what to do??
A Little About How We Do It

• How $\text{NEXP} \not\subseteq \text{ACC}^0$ Was Proved

• Another View of the Proof

• Extending to Almost-Everywhere
Another View of the Proof

NTIME hierarchy \(\Rightarrow\) There is a function \(f^\text{hard} \in \text{NTIME}[2^n] \setminus \text{NTIME}[2^n/n]\)

Consider a “canonical” algorithm for \(f^\text{hard}^\):

\(\mathcal{A}^\text{hard}(x):\)
1. Guess a witness \(y\) of \(O(2^n)\) length.
2. Check \(y\) is a witness for \(x\) in \(O(2^n)\) time.

Consider an algorithm that tries to “cheat” in the computation of \(f^\text{hard}\), by **only** verifying witnesses that are “compressible” by small \(\text{ACC}_0\) circuits.

\(\mathcal{A}^\text{cheat}(x):\)
1. Guess a \(2^{n^{o(1)}}\)-size \(\text{ACC}_0\) circuit \(C: \{0,1\}^n \rightarrow \{0,1\}\).
2. Check the **truth-table** of \(C\) is a witness for \(x\), in \(2^n/n^{o(1)}\) time.

NTIME hierarchy \(\Rightarrow\) \(\mathcal{A}^\text{cheat}\) fails to compute \(f^\text{hard}\) on infinitely many inputs

\(\Rightarrow\) There are infinitely many \(x\) such that \(\mathcal{A}^\text{cheat}(x) = 0\) and \(\mathcal{A}^\text{hard}(x) = 1\)

For each such \(x\), every valid witness for \(\mathcal{A}^\text{hard}(x)\) is a hard function: it **cannot** be computed by **small** \(\text{ACC}_0\) circuits!
Another View of the Proof

There are infinitely many x such that $A^{\text{cheat}}(x) = 0$ and $A^{\text{hard}}(x) = 1$

For each such x, every valid witness for $A^{\text{hard}}(x)$ is a hard function: it cannot be computed by small ACC^0 circuits!

Can use this to construct an E^{NP}/n algorithm with no small ACC^0 circuits:

Input: an n-bit index $i \in \{0, 1\}^n$.

Advice: an n-bit string x_n such that $A^{\text{cheat}}(x_n) = 0, A^{\text{hard}}(x_n) = 1$.

Output: Repeatedly call an NP oracle to find the lexicographically first witness y such that $A^{\text{hard}}(x_n) = 1$, and output the i-th bit of y.

Finally, we can “remove” the advice by just considering an E^{NP} algorithm that takes (i, x) as input. This will also have no small ACC^0 circuits.

What was gained by this perspective??? (We already had NEXP not in ACC^0)

Vague Idea: Can we use another hierarchy? Can we “construct” these bad x_n?
A Little About How We Do It

• How \(\text{NEXP} \not\subset \text{ACC}^0 \) Was Proved
• Another View of the Proof
• Extending to Almost-Everywhere
Extending to Almost-Everywhere

Recall: It is open if there is an \(f \in \text{NTIME}[2^n] \setminus \text{io-NTIME}[o(2^n)] \)

Idea: Start from a restricted almost-everywhere NTIME hierarchy

\(\text{NTIMEGUESS}[T(n), g(n)]: \) languages that can be decided by nondeterministic algorithms running in \(O(T(n)) \) time and guessing at most \(g(n) \) bits of witness.

Theorem [Fortnow-Santhanam 2016]

\[\text{NTIME}[T(n)] \not\subset \text{io-NTIMEGUESS}[o(T(n)), o(n)] \]

For time-constructible \(T(n) \), there’s a function decidable in \(O(T(n)) \) nondeterministic time that cannot be decided, even infinitely often, by any \(o(T(n)) \)-time algorithm using \(o(n) \) bits of guessing.
There is a function \(f^{\text{hard}} \in \text{NTIME}[n^k] \setminus \text{io-NTIMEGUESS}[o(n^k), o(n)] \).

Consider a “canonical” algorithm for \(f^{\text{hard}} \):

\[\mathcal{A}^{\text{hard}}(x): \]
1. Guess a witness \(y \) of \(O(n^k) \) length.
2. Check \(y \) is a witness for \(x \) in \(O(n^k) \) time.

As before, we consider an algorithm that tries to “cheat” to compute \(f^{\text{hard}} \)...

Let \(m = k \log(n) \).

\[\mathcal{A}^{\text{cheat}}(x): \]
1. Guess a \(2^{m^{o(1)}} \)-size ACC\(^0\) circuit \(C: \{0,1\}^m \rightarrow \{0,1\} \).
2. Check the truth-table of \(C \) is a witness for \(x \), in \(o(2^m) \) time.

[FS’16] \Rightarrow \text{for a.e. } n, \mathcal{A}^{\text{cheat}} \text{ fails to compute } f^{\text{hard}} \text{ on some input of length } n

\Rightarrow \text{For a.e. } n, \text{ there’s an } x \in \{0,1\}^n \text{ such that } \mathcal{A}^{\text{cheat}}(x) = 0 \text{ and } \mathcal{A}^{\text{hard}}(x) = 1

For each such \(x \), every valid witness for \(\mathcal{A}^{\text{hard}}(x) \) is a hard function: it cannot be computed by small ACC\(^0\) circuits!
Does it Just Work??

For a.e. \(n \), there’s an \(x \in \{0, 1\}^n \) such that \(\mathcal{A}^{\text{cheat}}(x) = 0 \) and \(\mathcal{A}^{\text{hard}}(x) = 1 \)

For each such \(x \), every valid witness for \(\mathcal{A}^{\text{hard}}(x) \) is a hard function: it cannot be computed by small \(\text{ACC}^0 \) circuits!

What happens when we try the same \(E^{NP} \) algorithm again?

Input: an \(m \)-bit index \(i \in \{0, 1\}^m \), recall \(m = k \log(n) \)

Advice: an \(n \)-bit string \(x_n \) such that \(\mathcal{A}^{\text{cheat}}(x_n) = 0 \) and \(\mathcal{A}^{\text{hard}}(x_n) = 1 \)

Output: Repeatedly call an \(\text{NP} \) oracle to find the lexicographically first witness \(y \) such that \(\mathcal{A}^{\text{hard}}(x_n) = 1 \), and output the \(i \)-th bit of \(y \).

Now the advice is insanely long! We can’t just remove it, as before! (And of course there’s a function in \(E^{NP}/2^{n/k} \) without small \(\text{ACC} \) circuits...)

But now, the construction of such inputs \(x_n \) becomes an important problem!

If we could construct these “bad” \(x_n \) in \(E^{NP} \) (given input \(1^m \)) we’d be done!
Rough Idea: Using a variation on the proof of this time hierarchy, R does a “binary search” with its NP oracle, making $O(n)$ calls with queries of length about $O(T(n))$, to find a bad input x_n.

Theorem: [Fortnow-Santhanam 2016]
There’s an $f^{\text{hard}} \in \text{NTIME}[T(n)] \setminus \text{io-NTIMEGUESS}[o(T(n)), o(n)]$

Theorem: There is a $\text{DTIME}[n T(n)]^{\text{NP}}$ algorithm R (a refuter) such that for every $\text{NTIMEGUESS}[o(T(n)), o(n)]$ algorithm \mathcal{A}, $R(1^n, \mathcal{A})$ outputs an n-bit x_n such that $f^{\text{hard}}(x_n) \neq \mathcal{A}(x_n)$, for every sufficiently large n.

Rough Idea: Using a variation on the proof of this time hierarchy, R does a “binary search” with its NP oracle, making $O(n)$ calls with queries of length about $O(T(n))$, to find a bad input x_n.
For a.e. n, there’s an $x \in \{0, 1\}^n$ such that $A^{\text{cheat}}(x) = 0$ and $A^{\text{hard}}(x) = 1$

For each such x, every valid witness for $A^{\text{hard}}(x)$ is a hard function: it cannot be computed by small ACC^0 circuits!

The E^{NP} algorithm computing an almost-everywhere hard function:

Input: m-bit index $i \in \{0, 1\}^m$, recall $m = k \log(n)$

Algorithm: Set $n \approx 2^{m/k}$ and run refuter $R(1^n, A^{\text{cheat}})$ in E^{NP}, obtaining (for all but finitely many n) an n-bit string x_n such that $A^{\text{cheat}}(x_n) \neq A^{\text{hard}}(x_n)$. Repeatedly call an NP oracle to find the lexicographically first witness y such that $A^{\text{hard}}(x_n) = 1$, and output the i-th bit of y.

Conclusion: $E^{\text{NP}} \not\subseteq \text{io-ACC}^0$
Conclusion

We have managed to prove several almost-everywhere lower bounds for functions in E^{NP}, even for the average case.

What about NEXP? Or Quasi-NP? Or NP?

Can we prove $\text{NEXP} \not\subseteq \text{io-ACC}^0$?

What other lower bounds can be made a.e.?

(e.g. $\Sigma_2P \not\subseteq \text{SIZE}(n^k)$)

Thanks for watching!