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• How many hard instances? 

‣ complexity of random instance 

• Motivation: pessimism of worst-case complexity, derandomization, crypto

Average-Case Complexity

3

Reductions in worst-case hardness: 

     may have “structure” due to the gadget construction. 
 → hardness of “structural” instances
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Reductions in worst-case hardness: 

     may have “structure” due to the gadget construction. 
 → hardness of “structural” instances

Hardness of unstructured instances?



• Algo  computes  with success probability  if  

‣  is chosen from some distribution (over inputs of fixed size) 

•   is worst-case hard  efficient algo , ,  

•  is strongly-hard  efficient algo has success prob

A f γ Pr
x

[A(x) = f(x)] ≥ γ

x

f def⟺ ∀ A ∃x A(x) ≠ f(x)

f def⟺ ∀ ≤ 0.01

Average-Case Complexity
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trivial

possible for some problems!
Permanent 
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Discrete logarithm (folklore) 
etc…

strong random self-reduction

[Cai, Pavan, Sivakumar, 1999]
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What problems admit strong RSR?



•  is weakly-hard  efficient algo has success probf def⟺ ∀ ≤ 0.99

Hardness Self-Amplification

13

 is strongly-hardf  is weakly-hardf  is worst-case hardf
weak RSRhardness self-amplification

our topic



• Our Paper: hardness self-amplification for popular problems 

‣ matrix multiplication (MM) 

‣ online matrix-vector problem (OMv) 

‣ triangle counting (TC) 

‣ planted clique (PC) 

• Corollary 

‣ new strong RSR for MM, OMv, TC 

‣ search-to-decision reduction of PC 

‣ improves and simplifies previous RSR for those problems

Our Results

14



• Our Paper: hardness self-amplification for popular problems 

‣ matrix multiplication (MM) 

‣ online matrix-vector problem (OMv) 

‣ triangle counting (TC) 

‣ planted clique (PC) 

• Our Ingredient 

‣ A framework of hardness amplification using expanders (samplers) 

‣ The same framework was previously used to obtain Direct Product Theorem

Our Results

15

[Impagliazzo, Jaiswal, Kabanets, Wigderson (2010)]



Matrix Multiplication



• Task: Multiply given  (finite field ) 

• Input distribution: Uniform

A, B ∈ (n×n (

Matrix Multiplication (MM)

18

If we can solve MM with success prob  in time , 
then we can solve MM in time  for any input. 

0.99 T(n)
O(T(n))

Theorem (Blum, Luby, Rubinfeld, 1993)

worst-case hardness
weak RSR

weak hardness



Matrix Multiplication (MM)

19

If we can solve MM with success prob  in time , 
then we can solve MM in time  for any input. 

ϵ T(n)
2O(log5(1/ϵ)) ⋅ T(n)

Theorem (Asadi, Golovnev, Gur, Shinkar, 2022)

• strong RSR ! 

• Tool: Additive Combinatorics (quasi-polynomial Bogolyubov-Ruzsa lemma)

strong hardness weak hardness worst-case hardness
[BLR93]

[AGGS22]



Matrix Multiplication (MM)

20

If we can solve MM with success prob  in time ,  

then we can solve MM in time  for any input. 

ϵ T(n)
polylog(1/ϵ)

ϵ
⋅ T(n)

Theorem (this work)

• Proof: Hardness self-amplification + BLR93 

• Matrices can be over finite ring 

• Improved overhead ( )2O(log5(1/ϵ)) → Õ(1/ϵ)

strong hardness weak hardness worst-case hardness
[BLR93]this work



Proof Sketch
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Assumption:  algo  that solves MM with success prob  

Goal: compute  for any 

∃ ℳ ϵ

AB A, B ∈ (n×n



Proof Sketch
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A B

Given  (worst-case instance)A, B ∈ (n×n



Proof Sketch
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A B

Divide  into  submatrices 
 and 

A, B k
Ai ∈ ( (n/k)×n Bj ∈ (n×(n/k)

A1

A2

Ak

B1 B2 Bk



Proof Sketch
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A B

Product  has  blocksAB k × k

A1

A2

Ak

B1 B2 Bk =

AB

AiBj



Proof Sketch
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A B

We focus on MM for   
(downward self-reduction)

AiBj

Ai
=

AB

AiBj

Bj



Proof Sketch
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A B

By [BLR93],  can be random matrices 
(random self-reduction)

Ai, Bj

Ai
=

AB

AiBj

Bj



Proof Sketch

27

R
S

Input: random matrices  
Goal: compute  (with success prob 0.99)

R, S
RS



Hardness Amplification
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If we can solve MM with success prob  in time , 
then we can compute  with success prob  for some . 

ϵ T(n)
RS 0.99 k = O(log(1/ϵ))

Lemma.

• Hardness (Self-) Amplification for MM 

• idea: “upward-reduction” 

• Essentially same as the proof  of Direct Product Theorem

ϵ 0.99



Proof Sketch
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R S

Sample  random matrices n × n R, S



Proof Sketch
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R S

Divide  into  submatrices :  ,  ( )R, S k Ri Sj i, j ∈ [k]

R1

R2

Rk

S1 S2 Sk



Proof Sketch
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Choose random  
 and 

i ∼ [k]
Ri ← R Si ← S

R Si

iR S



Proof Sketch
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R S

Let  be the algorithm 
that outputs 

ℛℳ(R, S)
ℳ(R, S)

R S

T = ℳ(R, S)



Proof Sketch
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Output  if   
We can verify in time 

Ti,i RS = Ti,i
O(n2)

Ti,i

R S

R S

T



Proof Sketch

34Our algo: Run  until we find ℛℳ(R, S) RS

R

S



Proof Sketch
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For 0.99-fraction of , # of iteration is at most  if  (R, S) O(1/ϵ) k ≥ 100 log(1/ϵ)
Lemma

• Proof 

‣ Expansion property (sampler) of query graph



Query Graph
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 = set of all of inputs X (R, S)

(R, S)

X Y



Query Graph
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 = set of all pairs  of  matricesY (A, B) n × n

(A, B)
(R, S)

X Y



Query Graph
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Edge weight = Pr[  produces query ]ℛ(R, S) (A, B)

R
S A B

(A, B)
(R, S)



Query Graph

39Query = random neighbor of (R, S)

R
S R S

(R, S)



Query Graph
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The query graph  has an expansion property if  (X, Y, E) k ≥ 100 log(1/ϵ)
Lemma (informal)



Sampler
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x

≥ (1 − c)ϵ W
-fraction(1 − δ)

Definition
 is -sampler for density  if, for any  of , 

, 

 where neighbors of . 

Q = (X, Y, E) (δ, c) ϵ W ⊆ Y |W | ≥ ϵ |Y |

Pr
x∼X [ |Γ(x) ∩ W |

|Γ(x) |
≥ (1 − c)ϵ] ≥ 1 − δ

Γ(x) = { x}



Query Graph
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W = {y ∈ Y : ℳ(y) succeeds}

W



Query Graph
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W

 has density  inside W ϵ Y



Query Graph
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For of , 
-fraction of neighbors are in 

99 % (R, S)
ϵ/2 W

(R, S)

W
ϵ/2

99%



Query Graph
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If we sample  random neighbors, 
one of them is in 

O(1/ϵ)
W

(R, S)

W
ϵ/2

99%



Query Graph
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The query graph  of MM is a -sampler for density  if  (X, Y, E) (δ, c) ϵ

k ≥ 8
c2δ

log ( 2
cϵ ) .

Lemma

• In MM, we set  and  

‣  suffices

δ = 0.99 c = 1/2
k = O(log(1/ϵ))



• downward self-reduction

Proof Summary

51

• random self-reduction

A B
Ai

Bj

R
S

Ai

Bj

• upward self-reduction

R S

R S
R

S



Triangle Counting



• weak RSR 

• strong RSR: open

• Task: How many triangles (3-cycles) in a given graph? 

• Input:  (for  const)Gn,p p

Triangle Counting (TC)

53

If we can solve TC with success prob  in time , 
then we can solve TC in time  for any input. 

1 − 1/polylog(n) T(n)
T(n) ⋅ polylog(n)

Theorem (Boix-Adserà, Brennan, Bresler, 2019)

weak hardness worst-case hardness



Triangle Counting (TC)

54

-time error-less algo for TC with success prob , 

then  -time nonuniform randomized algo that solves TC for any input.

∃T(n) ϵ

∃ T(n)polylog(n)
ϵ

Theorem (this work)

• error-less algo: output   

‣ never output a wrong value 

• nonuniform algo: receives advice string  as additional input 

‣  depends on input size  & random seed 

• Proof: Hardness self-amplification + BBB19

∈ {answer, ⊥ }

α

α n



• Counting (over ) 

‣ k-clique 

‣ general 

‣ low-error regime 

• Counting Mod 2 

‣ k-clique (low-error regime) 

‣ triangle (nonuniform, strong RSR)

Gn,p

Related Work

55

[Boix-Adserà, Brennan, Bresler, 2019]

[Boix-Adserà, Brennan, Bresler, 2019], [Goldreich, 2020]

[Dalirrooyfard, Lincoln, Williams, 2020]

[Hirahara, S, 2022]

We simplified & improved this reduction



• downward self-reduction 

‣  vertices →  verticesn n/k

Proof Summary

57

• random self-reduction

• upward self-reduction 

•  vertices →  vertices 

• we use errorless + nonuniformity

n/k n

[Boix-Adserà, Brennan, Bresler, 2019]



Upward Reduction
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We have an algo  that solves TC with success prob  over  

Goal: solve TC with success prob  over 

ℳ ϵ Gn,p

1 − 1/polylog(n) Gn/k,p



Upward Reduction

59

Input: G ∼ Gn/k,p

G



Upward Reduction
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generate  graphs k G1, …, Gk ∼ Gn/k,p

G1

G2

⋮

Gk



Upward Reduction
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Select i ∼ [k]

G1

G2

⋮

Gk



Upward Reduction
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Gi ← G

G1

G2

⋮

Gk

G



Upward Reduction
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G1

G2

⋮

Gk

G

Add random edges between two groups 
(with prob )p



Upward Reduction
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G1

G2

⋮

Gk

G

Let  be the resulting graph 
(  since )

G
G ∼ Gn,p G ∼ Gn/k,p



Upward Reduction
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G1

G2

⋮

Gk

G

Run .ℳ(G)



Upward Reduction
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G2

• How to obtain ? 

‣ In reduction, we have  if  succeeds 

‣ this counts unnecessary triangles

#Triangle(G)
#Triangle(G) ℳ



Upward Reduction
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G2

• How to obtain ? 

‣ In reduction, we have  if  succeeds 

‣ this counts unnecessary triangles 

• Two types of edges 

‣ type 1: edges inside  

‣ type 2: others

#Triangle(G)
#Triangle(G) ℳ

G



Upward Reduction
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• How to obtain ? 

‣ In reduction, we have  if  succeeds 

‣ this counts unnecessary triangles 

• Two types of edges 

‣ type 1: edges inside  

‣ type 2: others 

• Three types of triangles 

‣   

‣   

‣  

#Triangle(G)
#Triangle(G) ℳ

G

G2



Upward Reduction

70

• How to obtain ? 

‣ In reduction, we have  if  succeeds 

‣ this counts unnecessary triangles 

• Two types of edges 

‣ type 1: edges inside  

‣ type 2: others 

• Three types of triangles 

‣ type1 + type1 + type1 (we want to count) 

‣   

‣  

#Triangle(G)
#Triangle(G) ℳ

G

G2



Upward Reduction
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• How to obtain ? 

‣ In reduction, we have  if  succeeds 

‣ this counts unnecessary triangles 

• Two types of edges 

‣ type 1: edges inside  

‣ type 2: others 

• Three types of triangles 

‣ type1 + type1 + type1 

‣ type1 + type2 + type2 (unnecessary) 

‣  

#Triangle(G)
#Triangle(G) ℳ

G

G2



Upward Reduction

72

• How to obtain ? 

‣ In reduction, we have  if  succeeds 

‣ this counts unnecessary triangles 

• Two types of edges 
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‣ type 2: others 
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‣ type1 + type1 + type1 
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Upward Reduction
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• How to obtain ? 

‣ In reduction, we have  if  succeeds 

‣ this counts unnecessary triangles 

• Two types of edges 

‣ type 1: edges inside  

‣ type 2: others 

• Three types of triangles 

‣ type1 + type1 + type1 

‣ type1 + type2 + type2 

‣ type2 + type2 + type2 (unnecessary)

#Triangle(G)
#Triangle(G) ℳ

G

G2

all edges independent of input 
we can give  of such triangle as advice!#



Upward Reduction
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• How to obtain ? 

‣ In reduction, we have  if  succeeds 

‣ this counts unnecessary triangles 

• Two types of edges 

‣ type 1: edges inside  

‣ type 2: others 

• Three types of triangles 

‣ type1 + type1 + type1 

‣ type1 + type2 + type2 

‣ type2 + type2 + type2 (unnecessary) 

#Triangle(G)
#Triangle(G) ℳ

G

G2
For each pink edge , 
we can give  of green -paths of length two 
as advice

uv
# uv



Upward Reduction
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• How to obtain ? 

‣ In reduction, we have  if  succeeds 

‣ this counts unnecessary triangles 

• Two types of edges 

‣ type 1: edges inside  

‣ type 2: others 

• Three types of triangles 

‣ type1 + type1 + type1 

‣ type1 + type2 + type2 

‣ type2 + type2 + type2 (unnecessary) 

#Triangle(G)
#Triangle(G) ℳ

G

G2

We can count in time  
using nonuniform advice!

O(n2)



Upward Reduction
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G2

• How to obtain ? 

‣ In reduction, we have  if  succeeds 

‣ this counts unnecessary triangles

#Triangle(G)
#Triangle(G) ℳ

We can compute  in nonuniform time  given . 

Advice :  bits (# of green 2-paths)

#Triangle(G) O(n2) #Triangle(G)

O(n2 log n)

Lemma (informal)



Upward Self-Reduction

77

• upward self-reduction 

•  vertices →  vertices 

• we use errorless + nonuniformity

n/k n

Query graph is a sampler.
Lemma

• We can boost the success prob of  by repetition.ℳ



• downward self-reduction 

‣  vertices →  verticesn n/k

Proof Summary

78

• random self-reduction

• upward self-reduction 

•  vertices →  vertices 

• we use errorless + nonuniformity

n/k n

[Boix-Adserà, Brennan, Bresler, 2019]



Planted Clique



Random Graph with Planted Clique 

80

• Input: random -clique +  (Erdős–Rényi graph) 

‣ Sample  

‣ Randomly choose a set  of  vertices 

‣ Make  a -clique by adding edges 

‣ let  be the resulting graph 

• Maximum clique of   

‣ We assume  

‣ Then,  is the unique -clique (whp)

k Gn,1/2

Gn,1/2

C ⊆ V k

C k

Gn,1/2,k

Gn,1/2 ≈ 2 log2 n

k ≫ log n

C k

many -cliquesO(log n)

unique -cliquek



Search Planted Clique
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Input :  
Output : any -clique (not necessarily be the planted one)

Gn,1/2,k
k

Def (Search Planted Clique Problem)

• If ,  poly-time algo with success prob  

‣ the larger , the easier it it is to solve 

• open problem: poly-time algo for  

k = Ω( n) ∃ 1 − 2−n0.1

k

log n ≪ k ≪ n

[Jerrum, 92][Kučera, 95]

[Alon, Krivelevich, Sudakov, 98]
[Dekel, Gurel-Gurevich, Peres, 2014]



Decision Planted Clique
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Input :   (with prob 1/2) or  (with prob 1/2) 
Output : “Yes” if the input contains a -clique. “No” otherwise.

Gn,1/2,k Gn,1/2
k

Def (Decision Planted Clique Problem)

•  has advantage  if  

‣ Random guess:  

‣ Goal:  

• Algo for Search Planted Clique  Algo for Decision Planted Clique 

• Does converse hold?

: γ Pr
G

[:(G) is correct] ≥ 1 + γ
2

γ = 0
γ ≈ 1

⇒



Previous Work
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Theorem (Alon, Andoni, Kaufman, Matulef, Rubinfeld, Xie, 2007).

If we can decide  or  with advantage , 

then, we can find a -clique in  with success prob .

Gn,1/2,k Gn,1/2 1 − 1/n2

k Gn,1/2,k 1 − 1/n

• for low-error regime " 

‣ reduction has  queries + union boundn

vs



Our Result
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Theorem.
If we can decide  or   with advantage , 
then, we can find a -clique in  with success prob , 
where .

GN,1/2,k GN,1/2 ϵ(N) ≥ N−1/2+c

k Gn,1/2,k 1 − 1/n
N = nO(1/c)

vs

• high-error regime! 

• Blow-up in instance size "



Proof Outline
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decision algo with adv ϵ

decision algo with adv 1 − 1/n2

search algo with success prob 1 − 1/n

vs

vs

hardness amplification 
polynomial blow-up in n

Search-to-Decision by 
[Alon, Andoni, Kaufman, Matulef, Rubinfeld, Xie, 07]



Our Reduction
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• For simplicity we focus on Search Planted Clique 

•  : algo with success prob  

•  : input (chosen from )

: ϵ

G Gn,1/2,k

G

?



Our Reduction
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• For , randomly embed  into . Let  be the resulting graph. 

‣ Let  be the randomized reduction that outputs  

• Repeat  until  outputs a -clique in  

•  contains a unique -clique since 

N = poly(n) G GN,1/2 G

ℛ:(G) :(G)

ℛ:(G) :(G) k G

G k k ≫ log N

G

? ?

G



Analysis
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Def (Query Graph)

X Y

P(G, H)
G

H

The query graph is the edge-weighted bipartite graph  defined by 

set of all -vertex graph having a -clique 

 set of all -vertex graph having a -clique 

 produces query 

Q = (X, Y, P)
X = n k

Y = N k

P(G, H) = Pr[ℛ:(G) H]



Analysis
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Def (Query Graph)

The query graph is the edge-weighted bipartite graph  defined by 

set of all -vertex graph having a -clique 

 set of all -vertex graph having a -clique 

 produces query 

Q = (X, Y, P)
X = n k

Y = N k

P(G, H) = Pr[ℛ:(G) H]

X Y

G

G

 is a random neighbor of G G



Analysis
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Def (Query Graph)

The query graph is the edge-weighted bipartite graph  defined by 

set of all -vertex graph having a -clique 

 set of all -vertex graph having a -clique 

 produces query 

Q = (X, Y, P)
X = n k

Y = N k

P(G, H) = Pr[ℛ:(G) H]

Lemma

The query graph  is a -sampler for density  if Q (δ, c) ϵ N ≥ n
c2δϵ



Sampler and Expander
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• Let  be   

‣ upward random walk 

• Let  be  

‣  = downward random walk

P = [0,1]X×Y P(x, y) = 1
|N(x) |

P(x, ⋅ ) =

P† ∈ [0,1]Y×X P†(y, x) = 1
|N(y) |

P†(y, ⋅ )

If  is small, then  is a samplerλ2(PP†) Q

Lemma (informal)

x P

yP†



Up-Down Walk
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P

P†

To bound , we need rapid mixing 
of RW according to 

λ2(PP†)
PP†



Up-Down Walk
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P

P†

This can be done by coupling technique  
of Markov chain



Why  ?ϵ(N) ≫ N−1/2
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Theorem.
If we can decide  or   with advantage , 
then, we can find a -clique in  with success prob , 
where .

GN,1/2,k GN,1/2 ϵ(N) ≥ N−1/2+c

k Gn,1/2,k 1 − 1/n
N = nO(1/c)

• Blow-up in instance size 

‣ For MM and TC, we used downward self-reduction to preserve instance size. 

• For decision PC problem, we need a -sampler for density  

‣ Query graph is sampler if  

• Here,  and thus,  if 

(δ, ϵ/2) 1/2 + ϵ

N ≥ Θ ( n
δϵ2 )

ϵ = ϵ(N) ϵ2 ≥ n/N = N−1+c N = nc



Why  ?ϵ(N) ≫ N−1/2
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Theorem.
If we can decide  or   with advantage , 
then, we can find a -clique in  with success prob , 
where .

GN,1/2,k GN,1/2 ϵ(N) ≥ N−1/2+c

k Gn,1/2,k 1 − 1/n
N = nO(1/c)

• Blow-up in instance size 

‣ For MM and TC, we used downward self-reduction to preserve instance size. 

• For decision PC problem, we need a -sampler for density  

‣ Query graph is sampler if  

• Here,  and thus,  if 

(δ, ϵ/2) 1/2 + ϵ

N ≥ Θ ( n
δϵ2 )

ϵ = ϵ(N) ϵ2 ≥ n/N = N−1+c N = nc

Open Question.
Can we improve the dependency of  on ? 

(in particular, we are interested in )

N 1/ϵ

log(1/ϵ)



• query graph is sampler  hardness amplification 

- Matrix Multiplication 

- Online Matrix-Vector Multiplication 

- Triangle Counting 

- Planted Clique 

• Reduction: Downward/Upward/Random Self-Reduction + Sampler 

• Further Application: other “planted” problems (e.g., planted k-SUM) 

• Open: 

‣ Improve the blow-up of  

‣ Uniform reduction for triangle 

‣ General subgraph counting

⇒

N = poly(n)

Conclusion

98


