# Hardness Self-Amplification: Simplified, Optimized, and Unified 

Nobutaka Shimizu Tokyo Institute of Technology

joint work with Shuichi Hirahara

## Average-Case Complexity

- How many hard instances?
- complexity of random instance
- Motivation: pessimism of worst-case complexity, derandomization, crypto

Reductions in worst-case hardness:

$\triangle$ may have "structure" due to the gadget construction. $\rightarrow$ hardness of "structural" instances

## Average-Case Complexity

- How many hard instances?
- complexity of random instance
- Motivation: pessimism of worst-case complexity, derandomization, crypto


## Hardness of unstructured instances?


$\triangle$ may have "structure" due to the gadget construction. $\rightarrow$ hardness of "structural" instances

## Average-Case Complexity

- Algo $A$ computes $f$ with success probability $\gamma$ if $\operatorname{Pr}[A(x)=f(x)] \geq \gamma$
$x$
- $x$ is chosen from some distribution (over inputs of fixed size)
- $f$ is worst-case hard $\stackrel{\text { def }}{\Longleftrightarrow} \forall$ efficient algo $A, \exists x, A(x) \neq f(x)$
- $f$ is strongly-hard $\stackrel{\text { def }}{\Longleftrightarrow} \forall$ efficient algo has success prob $\leq 0.01$



## Average-Case Complexity

- Algo $A$ computes $f$ with success probability $\gamma$ if $\operatorname{Pr}[A(x)=f(x)] \geq \gamma$
$x$



## Average-Case Complexity

- Algo $A$ computes $f$ with success probability $\gamma$ if $\operatorname{Pr}[A(x)=f(x)] \geq \gamma$
$x$



## Hardness Self-Amplification

- $f$ is weakly-hard $\stackrel{\text { def }}{\Longleftrightarrow} \forall$ efficient algo has success prob $\leq 0.99$



## Our Results

- Our Paper: hardness self-amplification for popular problems
- matrix multiplication (MM)
- online matrix-vector problem (OMv)
- triangle counting (TC)
- planted clique (PC)
- Corollary
- new strong RSR for MM, OMv, TC
- search-to-decision reduction of PC
- improves and simplifies previous RSR for those problems


## Our Results

- Our Paper: hardness self-amplification for popular problems
- matrix multiplication (MM)
- online matrix-vector problem (OMv)
- triangle counting (TC)
- planted clique (PC)
- Our Ingredient
- A framework of hardness amplification using expanders (samplers)
- The same framework was previously used to obtain Direct Product Theorem
[Impagliazzo, Jaiswal, Kabanets, Wigderson (2010)]

Matrix Multiplication

## Matrix Multiplication (MM)

- Task: Multiply given $A, B \in \mathbb{F}^{n \times n}$ (finite field $\mathbb{F}$ )
- Input distribution: Uniform


## Theorem (Blum, Luby, Rubinfeld, 1993)

If we can solve MM with success prob 0.99 in time $T(n)$, then we can solve MM in time $O(T(n))$ for any input.


## Matrix Multiplication (MM)

## Theorem (Asadi, Golovnev, Gur, Shinkar, 2022)

If we can solve MM with success prob $\epsilon$ in time $T(n)$, then we can solve MM in time $2^{O\left(\log ^{5}(1 / \epsilon)\right)} \cdot T(n)$ for any input.

- strong RSR :)
- Tool: Additive Combinatorics (quasi-polynomial Bogolyubov-Ruzsa lemma)



## Matrix Multiplication (MM)

## Theorem (this work)

If we can solve MM with success prob $\epsilon$ in time $T(n)$,
then we can solve MM in time $\frac{\text { polylog(1/ } \epsilon)}{\epsilon} \cdot T(n)$ for any input.

- Proof: Hardness self-amplification + BLR93
- Matrices can be over finite ring
- Improved overhead $\left(2^{O\left(\log ^{5}(1 / \epsilon)\right)} \rightarrow \tilde{O}(1 / \epsilon)\right)$

| strong hardness | weak hardness | worst-case hardness |
| :---: | :---: | :---: |

## Proof Sketch

Assumption: $\exists$ algo $\mathscr{M}$ that solves MM with success prob $\epsilon$

Goal: compute $A B$ for any $A, B \in \mathbb{F}^{n \times n}$

## Proof Sketch

## A



B

Given $A, B \in \mathbb{F}^{n \times n}$ (worst-case instance)

## Proof Sketch



## Divide $A, B$ into $k$ submatrices

$A_{i} \in \mathbb{F}^{(n / k) \times n}$ and $B_{j} \in \mathbb{F}^{n \times(n / k)}$

## Proof Sketch



## Product $A B$ has $k \times k$ blocks

## Proof Sketch



We focus on MM for $A_{i} B_{j}$
(downward self-reduction)

## Proof Sketch



By [BLR93], $A_{i}, B_{j}$ can be random matrices (random self-reduction)

## Proof Sketch



Input: random matrices $R, S$
Goal: compute $R S$ (with success prob 0.99)

## Hardness Amplification

## Lemma.

If we can solve MM with success prob $\epsilon$ in time $T(n)$, then we can compute $R S$ with success prob 0.99 for some $k=O(\log (1 / \epsilon))$.

- Hardness (Self-) Amplification for MM
- idea: "upward-reduction"
- Essentially same as the proof of Direct Product Theorem


## Proof Sketch

$\bar{R}$


Sample $n \times n$ random matrices $\bar{R}, \bar{S}$

## Proof Sketch


$\bar{s}$


Divide $R, S$ into $k$ submatrices : $R_{i}, S_{j}(i, j \in[k])$

## Proof Sketch



Choose random $i \sim[k]$ $R_{i} \leftarrow R$ and $S_{i} \leftarrow S$

## Proof Sketch



Let $\mathscr{R}^{M}(R, S)$ be the algorithm that outputs $\mathscr{M}(\bar{R}, \bar{S})$

## Proof Sketch



Output $T_{i, i}$ if $R S=T_{i, i}$
We can verify in time $O\left(n^{2}\right)$

## Proof Sketch



Our algo: Run $\mathscr{R}^{M}(R, S)$ until we find $R S$

## Proof Sketch

## Lemma

For 0.99-fraction of $(R, S)$, \# of iteration is at most $O(1 / \epsilon)$ if $k \geq 100 \log (1 / \epsilon)$

- Proof
- Expansion property (sampler) of query graph


## Query Graph



$$
X=\text { set of all of inputs }(R, S)
$$

## Query Graph


$Y=$ set of all pairs $(A, B)$ of $n \times n$ matrices

## Query Graph



Edge weight $=\operatorname{Pr}[\mathscr{R}(R, S)$ produces query $(A, B)]$

## Query Graph



Query = random neighbor of $(R, S)$

## Query Graph

## Lemma (informal)

The query graph $(X, Y, E)$ has an expansion property if $k \geq 100 \log (1 / \epsilon)$


## Sampler

## Definition

$Q=(X, Y, E)$ is ( $\delta, c$ )-sampler for density $\epsilon$ if, for any $W \subseteq Y$ of $|W| \geq \epsilon|Y|$,

$$
\operatorname{Pr}_{x \sim X}\left[\frac{|\Gamma(x) \cap W|}{|\Gamma(x)|} \geq(1-c) \epsilon\right] \geq 1-\delta
$$

where $\Gamma(x)=\{$ neighbors of $x\}$.


## Query Graph



## Query Graph


$W$ has density $\epsilon$ inside $Y$

## Query Graph



For $99 \%$ of $(R, S)$,
$\epsilon / 2$-fraction of neighbors are in $W$

## Query Graph



If we sample $O(1 / \epsilon)$ random neighbors, one of them is in $W$

## Query Graph

## Lemma

The query graph $(X, Y, E)$ of MM is a $(\delta, c)$-sampler for density $\epsilon$ if

$$
k \geq \frac{8}{c^{2} \delta} \log \left(\frac{2}{c \epsilon}\right)
$$

- In MM, we set $\delta=0.99$ and $c=1 / 2$
- $k=O(\log (1 / \epsilon))$ suffices


## Proof Summary



Triangle Counting

## Triangle Counting (TC)

- Task: How many triangles (3-cycles) in a given graph?
- Input: $G_{n, p}$ (for $p$ const)


## Theorem (Boix-Adserà, Brennan, Bresler, 2019)

If we can solve TC with success prob $1-1 / \operatorname{poly} \log (n)$ in time $T(n)$, then we can solve TC in time $T(n) \cdot \operatorname{polylog}(n)$ for any input.

- weak RSR
- strong RSR: open


## Triangle Counting (TC)

## Theorem (this work)

$\exists T(n)$-time error-less algo for TC with success prob $\epsilon$,
then $\exists \frac{T(n) \operatorname{polylog}(n)}{\epsilon}$-time nonuniform randomized algo that solves TC for any input.

- error-less algo: output $\in\{$ answer, $\perp\}$
- never output a wrong value
- nonuniform algo: receives advice string $\alpha$ as additional input
- $\alpha$ depends on input size $n \&$ random seed
- Proof: Hardness self-amplification + BBB19


## Related Work

- Counting (over $G_{n, p}$ )
- k-clique [Boix-Adserà, Brennan, Bresler, 2019]
- general [Dalirrooyfard, Lincoln, Williams, 2020]
- low-error regime
- Counting Mod 2
- k-clique (low-error regime) [Boix-Adserà, Brennan, Bresler, 2019], [Goldreich, 2020]
- triangle (nonuniform, strong RSR) [Hirahara, S, 2022]

> We simplified \& improved this reduction

## Proof Summary

- downward self-reduction
- $n$ vertices $\rightarrow n / k$ vertices

- random self-reduction
[Boix-Adserà, Brennan, Bresler, 2019]

- upward self-reduction
- $n / k$ vertices $\rightarrow n$ vertices
- we use errorless + nonuniformity


## Upward Reduction

We have an algo $\mathscr{M}$ that solves TC with success prob $\epsilon$ over $G_{n, p}$
Goal: solve TC with success prob $1-1 / \operatorname{poly} \log (n)$ over $G_{n / k, p}$

## Upward Reduction



Input: $G \sim G_{n / k, p}$

## Upward Reduction


generate $k$ graphs $G_{1}, \ldots, G_{k} \sim G_{n / k, p}$

## Upward Reduction



Select $i \sim[k]$

## Upward Reduction



$$
G_{i} \leftarrow G
$$

## Upward Reduction



Add random edges between two groups
(with prob $p$ )

## Upward Reduction



Let $\bar{G}$ be the resulting graph $\left(\bar{G} \sim G_{n, p}\right.$ since $\left.G \sim G_{n / k, p}\right)$

## Upward Reduction



Run $\mathscr{M}(\bar{G})$.

## Upward Reduction

- How to obtain \#Triangle $(G)$ ?
- In reduction, we have \#Triangle $(\bar{G})$ if $\mathscr{M}$ succeeds
- this counts unnecessary triangles



## Upward Reduction

- How to obtain \#Triangle $(G)$ ?
- In reduction, we have \#Triangle $(\bar{G})$ if $\mathscr{M}$ succeeds
- this counts unnecessary triangles
- Two types of edges
- type 1 : edges inside $G$
- type 2: others



## Upward Reduction

- How to obtain \#Triangle $(G)$ ?
- In reduction, we have \#Triangle $(\bar{G})$ if $\mathscr{M}$ succeeds
- this counts unnecessary triangles
- Two types of edges
- type 1: edges inside $G$
- type 2: others
- Three types of triangles



## Upward Reduction

- How to obtain \#Triangle $(G)$ ?
- In reduction, we have \#Triangle $(\bar{G})$ if $\mathscr{M}$ succeeds
- this counts unnecessary triangles
- Two types of edges
- type 1: edges inside $G$
- type 2: others
- Three types of triangles
- type1 + type1 + type1 (we want to count)



## Upward Reduction

- How to obtain \#Triangle $(G)$ ?
- In reduction, we have \#Triangle $(\bar{G})$ if $\mathscr{M}$ succeeds
- this counts unnecessary triangles
- Two types of edges
- type 1: edges inside $G$
- type 2: others
- Three types of triangles
- type1 + type1 + type1

- type1 + type2 + type2 (unnecessary)
- 


## Upward Reduction

- How to obtain \#Triangle $(G)$ ?
- In reduction, we have \#Triangle $(\bar{G})$ if $\mathscr{M}$ succeeds
- this counts unnecessary triangles
- Two types of edges
- type 1: edges inside $G$
- type 2: others
- Three types of triangles
- type1 + type1 + type1

- type1 + type2 + type2
- type2 + type2 + type2 (unnecessary)


## Upward Reduction

- How to obtain \#Triangle $(G)$ ?
- In reduction, we have \#Triangle $(\bar{G})$ if $\mathscr{M}$ succeeds
- this counts unnecessary triangles
- Two types of edges
- type 1: edges inside $G$
- type 2: others
- Three types of triangles
- type1 + type1 + type1
- type1 + type2 + type2



## Upward Reduction

- How to obtain \#Triangle $(G)$ ?
- In reduction, we have \#Triangle $(\bar{G})$ if $\mathscr{M}$ succeeds
- this counts unnecessary triangles
- Two types of edges
- type 1: edges inside $G$
- type 2: others
- Three types of triangles
- type1 + type1 + type1
- type1 + type2 + type2
- type2 + type2 + type2 (unnecessary)


## Upward Reduction

- How to obtain \#Triangle $(G)$ ?
- In reduction, we have \#Triangle $(\bar{G})$ if $\mathscr{M}$ succeeds
- this counts unnecessary triangles
- Two types of edges
- type 1: edges inside $G$
- type 2: others
- Three types of triangles
- type1 + type1 + type1
- type1 + type2 + type2
- type2 + type2 + type2 (unnecessary)


## Upward Reduction

- How to obtain \#Triangle $(G)$ ?
- In reduction, we have \#Triangle $(\bar{G})$ if $\mathscr{M}$ succeeds
- this counts unnecessary triangles



## Lemma (informal)

We can compute \#Triangle $(G)$ in nonuniform time $O\left(n^{2}\right)$ given \#Triangle $(\bar{G})$.
Advice: $O\left(n^{2} \log n\right)$ bits (\# of green 2-paths)

## Upward Self-Reduction

- upward self-reduction
- $n / k$ vertices $\rightarrow n$ vertices
- we use errorless + nonuniformity


## Lemma

Query graph is a sampler.

- We can boost the success prob of $\mathscr{M}$ by repetition.


## Proof Summary

- downward self-reduction
- $n$ vertices $\rightarrow n / k$ vertices
- random self-reduction
- upward self-reduction
- $n / k$ vertices $\rightarrow n$ vertices
- we use errorless + nonuniformity

[Boix-Adserà, Brennan, Bresler, 2019]



## Planted Clique

## Random Graph with Planted Clique

- Input: random $k$-clique $+G_{n, 1 / 2}$ (Erdős-Rényi graph)
- Sample $G_{n, 1 / 2}$
- Randomly choose a set $C \subseteq V$ of $k$ vertices
- Make $C$ a $k$-clique by adding edges
- let $G_{n, 1 / 2, k}$ be the resulting graph
- Maximum clique of $G_{n, 1 / 2} \approx 2 \log _{2} n$
- We assume $k \gg \log n$
- Then, $C$ is the unique $k$-clique (whp)



## Search Planted Clique

## Def (Search Planted Clique Problem) [Jerrum, 92][Kučera, 95]

Input: $G_{n, 1 / 2, k}$
Output : any $k$-clique (not necessarily be the planted one)

- If $k=\Omega(\sqrt{n}), \exists$ poly-time algo with success prob $1-2^{-n^{0.1}}$
- the larger $k$, the easier it it is to solve
- open problem: poly-time algo for $\log n \ll k \ll \sqrt{n}$
[Alon, Krivelevich, Sudakov, 98]
[Dekel, Gurel-Gurevich, Peres, 2014]


## Decision Planted Clique

## Def (Decision Planted Clique Problem)

Input: $G_{n, 1 / 2, k}$ (with prob 1/2) or $G_{n, 1 / 2}$ (with prob 1/2)
Output : "Yes" if the input contains a $k$-clique. "No" otherwise.

- $\mathscr{A}$ has advantage $\gamma$ if $\operatorname{Pr}_{G}[\mathscr{A}(G)$ is correct $] \geq \frac{1+\gamma}{2}$
- Random guess: $\gamma=0$
- Goal: $\gamma \approx 1$
- Algo for Search Planted Clique $\Rightarrow$ Algo for Decision Planted Clique
- Does converse hold?


## Previous Work

## Theorem (Alon, Andoni, Kaufman, Matulef, Rubinfeld, Xie, 2007).

If we can decide $G_{n, 1 / 2, k}$ or $G_{n, 1 / 2}$ with advantage $1-1 / n^{2}$, then, we can find a $k$-clique in $G_{n, 1 / 2, k}$ with success prob $1-1 / n$.


- for low-error regime
- reduction has $n$ queries + union bound


## Our Result

## Theorem.

If we can decide $G_{N, 1 / 2, k}$ or $G_{N, 1 / 2}$ with advantage $\epsilon(N) \geq N^{-1 / 2+c}$, then, we can find a $k$-clique in $G_{n, 1 / 2, k}$ with success prob $1-1 / n$, where $N=n^{O(1 / c)}$.


- Blow-up in instance size ${ }^{-2}$


## Proof Outline


hardness amplification

polynomial blow-up in $n$
decision algo with adv $1-1 / n^{2}$

Search-to-Decision by

[Alon, Andoni, Kaufman, Matulef, Rubinfeld, Xie, 07]
search algo with success prob $1-1 / n$


## Our Reduction

- For simplicity we focus on Search Planted Clique
- $\mathscr{A}$ : algo with success prob $\epsilon$
- $G$ : input (chosen from $G_{n, 1 / 2, k}$ )


G

## Our Reduction

- For $N=\operatorname{poly}(n)$, randomly embed $G$ into $G_{N, 1 / 2}$. Let $\bar{G}$ be the resulting graph.
- Let $\mathscr{R}^{\mathscr{l}}(G)$ be the randomized reduction that outputs $\mathscr{A}(\bar{G})$
- Repeat $\mathscr{R}^{\mathscr{A}}(G)$ until $\mathscr{A}(\bar{G})$ outputs a $k$-clique in $G$
- $\bar{G}$ contains a unique $k$-clique since $k \gg \log N$



## Analysis

## Def (Query Graph)

The query graph is the edge-weighted bipartite graph $Q=(X, Y, P)$ defined by

$$
X=\text { set of all } n \text {-vertex graph having a } k \text {-clique }
$$

$Y=$ set of all $N$-vertex graph having a $k$-clique
$P(G, H)=\operatorname{Pr}\left[\mathscr{R}^{\mathscr{A}}(G)\right.$ produces query $\left.H\right]$


## Analysis

## Def (Query Graph)

The query graph is the edge-weighted bipartite graph $Q=(X, Y, P)$ defined by

$$
X=\text { set of all } n \text {-vertex graph having a } k \text {-clique }
$$

$Y=$ set of all $N$-vertex graph having a $k$-clique
$P(G, H)=\operatorname{Pr}\left[\mathscr{R}^{\mathscr{A}}(G)\right.$ produces query $\left.H\right]$


## Analysis

## Def (Query Graph)

The query graph is the edge-weighted bipartite graph $Q=(X, Y, P)$ defined by

$$
X=\text { set of all } n \text {-vertex graph having a } k \text {-clique }
$$

$Y=$ set of all $N$-vertex graph having a $k$-clique
$P(G, H)=\operatorname{Pr}\left[\mathscr{R}^{\mathscr{A}}(G)\right.$ produces query $\left.H\right]$

## Lemma

The query graph $Q$ is a $(\delta, c)$-sampler for density $\epsilon$ if $N \geq \frac{n}{c^{2} \delta \epsilon}$

## Sampler and Expander

- Let $P=[0,1]^{X \times Y}$ be $P(x, y)=\frac{1}{|N(x)|}$
- $P(x, \cdot)=$ upward random walk
- Let $P^{\dagger} \in[0,1]^{Y \times X}$ be $P^{\dagger}(y, x)=\frac{1}{|N(y)|}$
- $P^{\dagger}(y, \cdot)=$ downward random walk



## Lemma (informal)

If $\lambda_{2}\left(P P^{\dagger}\right)$ is small, then $Q$ is a sampler

## Up-Down Walk



To bound $\lambda_{2}\left(P P^{\dagger}\right)$, we need rapid mixing of RW according to $P P^{\dagger}$

## Up-Down Walk



This can be done by coupling technique of Markov chain

Why $\epsilon(N) \gg N^{-1 / 2} ?$

## Theorem.

If we can decide $G_{N, 1 / 2, k}$ or $G_{N, 1 / 2}$ with advantage $\epsilon(N) \geq N^{-1 / 2+c}$, then, we can find a $k$-clique in $G_{n, 1 / 2, k}$ with success prob $1-1 / n$, where $N=n^{O(1 / c)}$.

- Blow-up in instance size
- For MM and TC, we used downward self-reduction to preserve instance size.
- For decision PC problem, we need a ( $\delta, \epsilon / 2$ )-sampler for density $1 / 2+\epsilon$
- Query graph is sampler if $N \geq \Theta\left(\frac{n}{\delta \epsilon^{2}}\right)$
- Here, $\epsilon=\epsilon(N)$ and thus, $\epsilon^{2} \geq n / N=N^{-1+c}$ if $N=n^{c}$


## Why $\epsilon(N) \gg N^{-1 / 2} ?$

## Theorem.

If we can decide $G_{N, 1 / 2, k}$ or $G_{N, 1 / 2}$ with advantage $\epsilon(N) \geq N^{-1 / 2+c}$, then, we can find a $k$-clique in $G_{n, 1 / 2, k}$ with success prob $1-1 / n$, where $N=n^{O(1 / c)}$.

- Blow-up in instance size
- For MM and TC, we used downward self-reduction to preserve instance size.
- For decision PC problem, we need a ( $\delta, \epsilon / 2$ )-sampler for density $1 / 2+\epsilon$


## Open Question.

Can we improve the dependency of $N$ on $1 / \epsilon$ ?
(in particular, we are interested in $\log (1 / \epsilon)$ )

## Conclusion

- query graph is sampler $\Rightarrow$ hardness amplification
- Matrix Multiplication
- Online Matrix-Vector Multiplication
- Triangle Counting
- Planted Clique
- Reduction: Downward/Upward/Random Self-Reduction + Sampler
- Further Application: other "planted" problems (e.g., planted k-SUM)
- Open:
- Improve the blow-up of $N=\operatorname{poly}(n)$
- Uniform reduction for triangle
- General subgraph counting

