
Hardness Self-Amplification:
Simplified, Optimized, and Unified

Nobutaka Shimizu Tokyo Institute of Technology

joint work with Shuichi Hirahara

• How many hard instances?

‣ complexity of random instance

• Motivation: pessimism of worst-case complexity, derandomization, crypto

Average-Case Complexity

3

Reductions in worst-case hardness:

 may have “structure” due to the gadget construction.
 → hardness of “structural” instances

• How many hard instances?

‣ complexity of random instance

• Motivation: pessimism of worst-case complexity, derandomization, crypto

Average-Case Complexity

4

Reductions in worst-case hardness:

 may have “structure” due to the gadget construction.
 → hardness of “structural” instances

Hardness of unstructured instances?

• Algo computes with success probability if

‣ is chosen from some distribution (over inputs of fixed size)

• is worst-case hard efficient algo , ,

• is strongly-hard efficient algo has success prob

A f γ Pr
x

[A(x) = f(x)] ≥ γ

x

f def⟺ ∀ A ∃x A(x) ≠ f(x)

f def⟺ ∀ ≤ 0.01

Average-Case Complexity

9

 is strongly-hardf is worst-case hardf
trivial

strong random self-reduction

• Algo computes with success probability if

‣ is chosen from some distribution (over inputs of fixed size)

• is worst-case hard efficient algo , ,

• is strongly-hard efficient algo has success prob

A f γ Pr
x

[A(x) = f(x)] ≥ γ

x

f def⟺ ∀ A ∃x A(x) ≠ f(x)

f def⟺ ∀ ≤ 0.01

Average-Case Complexity

10

 is strongly-hardf is worst-case hardf
trivial

possible for some problems!
Permanent
Matrix multiplication
Discrete logarithm (folklore)
etc…

strong random self-reduction

[Cai, Pavan, Sivakumar, 1999]
[Asadi, Golovnev, Gur, Shinkar, 2022]

• Algo computes with success probability if

‣ is chosen from some distribution (over inputs of fixed size)

• is worst-case hard efficient algo , ,

• is strongly-hard efficient algo has success prob

A f γ Pr
x

[A(x) = f(x)] ≥ γ

x

f def⟺ ∀ A ∃x A(x) ≠ f(x)

f def⟺ ∀ ≤ 0.01

Average-Case Complexity

11

 is strongly-hardf is worst-case hardf
trivial

possible for some problems!
Permanent
Matrix multiplication
Discrete logarithm (folklore)
etc…

strong random self-reduction

[Cai, Pavan, Sivakumar, 1999]
[Asadi, Golovnev, Gur, Shinkar, 2022]

What problems admit strong RSR?

• is weakly-hard efficient algo has success probf def⟺ ∀ ≤ 0.99

Hardness Self-Amplification

13

 is strongly-hardf is weakly-hardf is worst-case hardf
weak RSRhardness self-amplification

our topic

• Our Paper: hardness self-amplification for popular problems

‣ matrix multiplication (MM)

‣ online matrix-vector problem (OMv)

‣ triangle counting (TC)

‣ planted clique (PC)

• Corollary

‣ new strong RSR for MM, OMv, TC

‣ search-to-decision reduction of PC

‣ improves and simplifies previous RSR for those problems

Our Results

14

• Our Paper: hardness self-amplification for popular problems

‣ matrix multiplication (MM)

‣ online matrix-vector problem (OMv)

‣ triangle counting (TC)

‣ planted clique (PC)

• Our Ingredient

‣ A framework of hardness amplification using expanders (samplers)

‣ The same framework was previously used to obtain Direct Product Theorem

Our Results

15

[Impagliazzo, Jaiswal, Kabanets, Wigderson (2010)]

Matrix Multiplication

• Task: Multiply given (finite field)

• Input distribution: Uniform

A, B ∈ (n×n (

Matrix Multiplication (MM)

18

If we can solve MM with success prob in time ,
then we can solve MM in time for any input.

0.99 T(n)
O(T(n))

Theorem (Blum, Luby, Rubinfeld, 1993)

worst-case hardness
weak RSR

weak hardness

Matrix Multiplication (MM)

19

If we can solve MM with success prob in time ,
then we can solve MM in time for any input.

ϵ T(n)
2O(log5(1/ϵ)) ⋅ T(n)

Theorem (Asadi, Golovnev, Gur, Shinkar, 2022)

• strong RSR !

• Tool: Additive Combinatorics (quasi-polynomial Bogolyubov-Ruzsa lemma)

strong hardness weak hardness worst-case hardness
[BLR93]

[AGGS22]

Matrix Multiplication (MM)

20

If we can solve MM with success prob in time ,

then we can solve MM in time for any input.

ϵ T(n)
polylog(1/ϵ)

ϵ
⋅ T(n)

Theorem (this work)

• Proof: Hardness self-amplification + BLR93

• Matrices can be over finite ring

• Improved overhead ()2O(log5(1/ϵ)) → Õ(1/ϵ)

strong hardness weak hardness worst-case hardness
[BLR93]this work

Proof Sketch

21

Assumption: algo that solves MM with success prob

Goal: compute for any

∃ ℳ ϵ

AB A, B ∈ (n×n

Proof Sketch

22

A B

Given (worst-case instance)A, B ∈ (n×n

Proof Sketch

23

A B

Divide into submatrices
 and

A, B k
Ai ∈ ((n/k)×n Bj ∈ (n×(n/k)

A1

A2

Ak

B1 B2 Bk

Proof Sketch

24

A B

Product has blocksAB k × k

A1

A2

Ak

B1 B2 Bk =

AB

AiBj

Proof Sketch

25

A B

We focus on MM for
(downward self-reduction)

AiBj

Ai
=

AB

AiBj

Bj

Proof Sketch

26

A B

By [BLR93], can be random matrices
(random self-reduction)

Ai, Bj

Ai
=

AB

AiBj

Bj

Proof Sketch

27

R
S

Input: random matrices
Goal: compute (with success prob 0.99)

R, S
RS

Hardness Amplification

28

If we can solve MM with success prob in time ,
then we can compute with success prob for some .

ϵ T(n)
RS 0.99 k = O(log(1/ϵ))

Lemma.

• Hardness (Self-) Amplification for MM

• idea: “upward-reduction”

• Essentially same as the proof of Direct Product Theorem

ϵ 0.99

Proof Sketch

29

R S

Sample random matrices n × n R, S

Proof Sketch

30

R S

Divide into submatrices : , ()R, S k Ri Sj i, j ∈ [k]

R1

R2

Rk

S1 S2 Sk

Proof Sketch

31

Choose random
 and

i ∼ [k]
Ri ← R Si ← S

R Si

iR S

Proof Sketch

32

R S

Let be the algorithm
that outputs

ℛℳ(R, S)
ℳ(R, S)

R S

T = ℳ(R, S)

Proof Sketch

33

Output if
We can verify in time

Ti,i RS = Ti,i
O(n2)

Ti,i

R S

R S

T

Proof Sketch

34Our algo: Run until we find ℛℳ(R, S) RS

R

S

Proof Sketch

35

For 0.99-fraction of , # of iteration is at most if (R, S) O(1/ϵ) k ≥ 100 log(1/ϵ)
Lemma

• Proof

‣ Expansion property (sampler) of query graph

Query Graph

36
 = set of all of inputs X (R, S)

(R, S)

X Y

Query Graph

37
 = set of all pairs of matricesY (A, B) n × n

(A, B)
(R, S)

X Y

Query Graph

38
Edge weight = Pr[produces query]ℛ(R, S) (A, B)

R
S A B

(A, B)
(R, S)

Query Graph

39Query = random neighbor of (R, S)

R
S R S

(R, S)

Query Graph

40

The query graph has an expansion property if (X, Y, E) k ≥ 100 log(1/ϵ)
Lemma (informal)

Sampler

45

x

≥ (1 − c)ϵ W
-fraction(1 − δ)

Definition
 is -sampler for density if, for any of ,

,

 where neighbors of .

Q = (X, Y, E) (δ, c) ϵ W ⊆ Y |W | ≥ ϵ |Y |

Pr
x∼X [|Γ(x) ∩ W |

|Γ(x) |
≥ (1 − c)ϵ] ≥ 1 − δ

Γ(x) = { x}

Query Graph

46
W = {y ∈ Y : ℳ(y) succeeds}

W

Query Graph

47

W

 has density inside W ϵ Y

Query Graph

48

For of ,
-fraction of neighbors are in

99 % (R, S)
ϵ/2 W

(R, S)

W
ϵ/2

99%

Query Graph

49

If we sample random neighbors,
one of them is in

O(1/ϵ)
W

(R, S)

W
ϵ/2

99%

Query Graph

50

The query graph of MM is a -sampler for density if (X, Y, E) (δ, c) ϵ

k ≥ 8
c2δ

log (2
cϵ) .

Lemma

• In MM, we set and

‣ suffices

δ = 0.99 c = 1/2
k = O(log(1/ϵ))

• downward self-reduction

Proof Summary

51

• random self-reduction

A B
Ai

Bj

R
S

Ai

Bj

• upward self-reduction

R S

R S
R

S

Triangle Counting

• weak RSR

• strong RSR: open

• Task: How many triangles (3-cycles) in a given graph?

• Input: (for const)Gn,p p

Triangle Counting (TC)

53

If we can solve TC with success prob in time ,
then we can solve TC in time for any input.

1 − 1/polylog(n) T(n)
T(n) ⋅ polylog(n)

Theorem (Boix-Adserà, Brennan, Bresler, 2019)

weak hardness worst-case hardness

Triangle Counting (TC)

54

-time error-less algo for TC with success prob ,

then -time nonuniform randomized algo that solves TC for any input.

∃T(n) ϵ

∃ T(n)polylog(n)
ϵ

Theorem (this work)

• error-less algo: output

‣ never output a wrong value

• nonuniform algo: receives advice string as additional input

‣ depends on input size & random seed

• Proof: Hardness self-amplification + BBB19

∈ {answer, ⊥ }

α

α n

• Counting (over)

‣ k-clique

‣ general

‣ low-error regime

• Counting Mod 2

‣ k-clique (low-error regime)

‣ triangle (nonuniform, strong RSR)

Gn,p

Related Work

55

[Boix-Adserà, Brennan, Bresler, 2019]

[Boix-Adserà, Brennan, Bresler, 2019], [Goldreich, 2020]

[Dalirrooyfard, Lincoln, Williams, 2020]

[Hirahara, S, 2022]

We simplified & improved this reduction

• downward self-reduction

‣ vertices → verticesn n/k

Proof Summary

57

• random self-reduction

• upward self-reduction

• vertices → vertices

• we use errorless + nonuniformity

n/k n

[Boix-Adserà, Brennan, Bresler, 2019]

Upward Reduction

58

We have an algo that solves TC with success prob over

Goal: solve TC with success prob over

ℳ ϵ Gn,p

1 − 1/polylog(n) Gn/k,p

Upward Reduction

59

Input: G ∼ Gn/k,p

G

Upward Reduction

60

generate graphs k G1, …, Gk ∼ Gn/k,p

G1

G2

⋮

Gk

Upward Reduction

61

Select i ∼ [k]

G1

G2

⋮

Gk

Upward Reduction

62

Gi ← G

G1

G2

⋮

Gk

G

Upward Reduction

63

G1

G2

⋮

Gk

G

Add random edges between two groups
(with prob)p

Upward Reduction

64

G1

G2

⋮

Gk

G

Let be the resulting graph
(since)

G
G ∼ Gn,p G ∼ Gn/k,p

Upward Reduction

65

G1

G2

⋮

Gk

G

Run .ℳ(G)

Upward Reduction

66

G2

• How to obtain ?

‣ In reduction, we have if succeeds

‣ this counts unnecessary triangles

#Triangle(G)
#Triangle(G) ℳ

Upward Reduction

67

G2

• How to obtain ?

‣ In reduction, we have if succeeds

‣ this counts unnecessary triangles

• Two types of edges

‣ type 1: edges inside

‣ type 2: others

#Triangle(G)
#Triangle(G) ℳ

G

Upward Reduction

69

• How to obtain ?

‣ In reduction, we have if succeeds

‣ this counts unnecessary triangles

• Two types of edges

‣ type 1: edges inside

‣ type 2: others

• Three types of triangles

‣

‣

‣

#Triangle(G)
#Triangle(G) ℳ

G

G2

Upward Reduction

70

• How to obtain ?

‣ In reduction, we have if succeeds

‣ this counts unnecessary triangles

• Two types of edges

‣ type 1: edges inside

‣ type 2: others

• Three types of triangles

‣ type1 + type1 + type1 (we want to count)

‣

‣

#Triangle(G)
#Triangle(G) ℳ

G

G2

Upward Reduction

71

• How to obtain ?

‣ In reduction, we have if succeeds

‣ this counts unnecessary triangles

• Two types of edges

‣ type 1: edges inside

‣ type 2: others

• Three types of triangles

‣ type1 + type1 + type1

‣ type1 + type2 + type2 (unnecessary)

‣

#Triangle(G)
#Triangle(G) ℳ

G

G2

Upward Reduction

72

• How to obtain ?

‣ In reduction, we have if succeeds

‣ this counts unnecessary triangles

• Two types of edges

‣ type 1: edges inside

‣ type 2: others

• Three types of triangles

‣ type1 + type1 + type1

‣ type1 + type2 + type2

‣ type2 + type2 + type2 (unnecessary)

#Triangle(G)
#Triangle(G) ℳ

G

G2

Upward Reduction

73

• How to obtain ?

‣ In reduction, we have if succeeds

‣ this counts unnecessary triangles

• Two types of edges

‣ type 1: edges inside

‣ type 2: others

• Three types of triangles

‣ type1 + type1 + type1

‣ type1 + type2 + type2

‣ type2 + type2 + type2 (unnecessary)

#Triangle(G)
#Triangle(G) ℳ

G

G2

all edges independent of input
we can give of such triangle as advice!#

Upward Reduction

74

• How to obtain ?

‣ In reduction, we have if succeeds

‣ this counts unnecessary triangles

• Two types of edges

‣ type 1: edges inside

‣ type 2: others

• Three types of triangles

‣ type1 + type1 + type1

‣ type1 + type2 + type2

‣ type2 + type2 + type2 (unnecessary)

#Triangle(G)
#Triangle(G) ℳ

G

G2
For each pink edge ,
we can give of green -paths of length two
as advice

uv
uv

Upward Reduction

75

• How to obtain ?

‣ In reduction, we have if succeeds

‣ this counts unnecessary triangles

• Two types of edges

‣ type 1: edges inside

‣ type 2: others

• Three types of triangles

‣ type1 + type1 + type1

‣ type1 + type2 + type2

‣ type2 + type2 + type2 (unnecessary)

#Triangle(G)
#Triangle(G) ℳ

G

G2

We can count in time
using nonuniform advice!

O(n2)

Upward Reduction

76

G2

• How to obtain ?

‣ In reduction, we have if succeeds

‣ this counts unnecessary triangles

#Triangle(G)
#Triangle(G) ℳ

We can compute in nonuniform time given .

Advice : bits (# of green 2-paths)

#Triangle(G) O(n2) #Triangle(G)

O(n2 log n)

Lemma (informal)

Upward Self-Reduction

77

• upward self-reduction

• vertices → vertices

• we use errorless + nonuniformity

n/k n

Query graph is a sampler.
Lemma

• We can boost the success prob of by repetition.ℳ

• downward self-reduction

‣ vertices → verticesn n/k

Proof Summary

78

• random self-reduction

• upward self-reduction

• vertices → vertices

• we use errorless + nonuniformity

n/k n

[Boix-Adserà, Brennan, Bresler, 2019]

Planted Clique

Random Graph with Planted Clique

80

• Input: random -clique + (Erdős–Rényi graph)

‣ Sample

‣ Randomly choose a set of vertices

‣ Make a -clique by adding edges

‣ let be the resulting graph

• Maximum clique of

‣ We assume

‣ Then, is the unique -clique (whp)

k Gn,1/2

Gn,1/2

C ⊆ V k

C k

Gn,1/2,k

Gn,1/2 ≈ 2 log2 n

k ≫ log n

C k

many -cliquesO(log n)

unique -cliquek

Search Planted Clique

81

Input :
Output : any -clique (not necessarily be the planted one)

Gn,1/2,k
k

Def (Search Planted Clique Problem)

• If , poly-time algo with success prob

‣ the larger , the easier it it is to solve

• open problem: poly-time algo for

k = Ω(n) ∃ 1 − 2−n0.1

k

log n ≪ k ≪ n

[Jerrum, 92][Kučera, 95]

[Alon, Krivelevich, Sudakov, 98]
[Dekel, Gurel-Gurevich, Peres, 2014]

Decision Planted Clique

82

Input : (with prob 1/2) or (with prob 1/2)
Output : “Yes” if the input contains a -clique. “No” otherwise.

Gn,1/2,k Gn,1/2
k

Def (Decision Planted Clique Problem)

• has advantage if

‣ Random guess:

‣ Goal:

• Algo for Search Planted Clique Algo for Decision Planted Clique

• Does converse hold?

: γ Pr
G

[:(G) is correct] ≥ 1 + γ
2

γ = 0
γ ≈ 1

⇒

Previous Work

84

Theorem (Alon, Andoni, Kaufman, Matulef, Rubinfeld, Xie, 2007).

If we can decide or with advantage ,

then, we can find a -clique in with success prob .

Gn,1/2,k Gn,1/2 1 − 1/n2

k Gn,1/2,k 1 − 1/n

• for low-error regime "

‣ reduction has queries + union boundn

vs

Our Result

85

Theorem.
If we can decide or with advantage ,
then, we can find a -clique in with success prob ,
where .

GN,1/2,k GN,1/2 ϵ(N) ≥ N−1/2+c

k Gn,1/2,k 1 − 1/n
N = nO(1/c)

vs

• high-error regime!

• Blow-up in instance size "

Proof Outline

86

decision algo with adv ϵ

decision algo with adv 1 − 1/n2

search algo with success prob 1 − 1/n

vs

vs

hardness amplification
polynomial blow-up in n

Search-to-Decision by
[Alon, Andoni, Kaufman, Matulef, Rubinfeld, Xie, 07]

Our Reduction

88

• For simplicity we focus on Search Planted Clique

• : algo with success prob

• : input (chosen from)

: ϵ

G Gn,1/2,k

G

?

Our Reduction

89

• For , randomly embed into . Let be the resulting graph.

‣ Let be the randomized reduction that outputs

• Repeat until outputs a -clique in

• contains a unique -clique since

N = poly(n) G GN,1/2 G

ℛ:(G) :(G)

ℛ:(G) :(G) k G

G k k ≫ log N

G

? ?

G

Analysis

90

Def (Query Graph)

X Y

P(G, H)
G

H

The query graph is the edge-weighted bipartite graph defined by

set of all -vertex graph having a -clique

 set of all -vertex graph having a -clique

 produces query

Q = (X, Y, P)
X = n k

Y = N k

P(G, H) = Pr[ℛ:(G) H]

Analysis

91

Def (Query Graph)

The query graph is the edge-weighted bipartite graph defined by

set of all -vertex graph having a -clique

 set of all -vertex graph having a -clique

 produces query

Q = (X, Y, P)
X = n k

Y = N k

P(G, H) = Pr[ℛ:(G) H]

X Y

G

G

 is a random neighbor of G G

Analysis

92

Def (Query Graph)

The query graph is the edge-weighted bipartite graph defined by

set of all -vertex graph having a -clique

 set of all -vertex graph having a -clique

 produces query

Q = (X, Y, P)
X = n k

Y = N k

P(G, H) = Pr[ℛ:(G) H]

Lemma

The query graph is a -sampler for density if Q (δ, c) ϵ N ≥ n
c2δϵ

Sampler and Expander

93

• Let be

‣ upward random walk

• Let be

‣ = downward random walk

P = [0,1]X×Y P(x, y) = 1
|N(x) |

P(x, ⋅) =

P† ∈ [0,1]Y×X P†(y, x) = 1
|N(y) |

P†(y, ⋅)

If is small, then is a samplerλ2(PP†) Q

Lemma (informal)

x P

yP†

Up-Down Walk

94

P

P†

To bound , we need rapid mixing
of RW according to

λ2(PP†)
PP†

Up-Down Walk

95

P

P†

This can be done by coupling technique
of Markov chain

Why ?ϵ(N) ≫ N−1/2

96

Theorem.
If we can decide or with advantage ,
then, we can find a -clique in with success prob ,
where .

GN,1/2,k GN,1/2 ϵ(N) ≥ N−1/2+c

k Gn,1/2,k 1 − 1/n
N = nO(1/c)

• Blow-up in instance size

‣ For MM and TC, we used downward self-reduction to preserve instance size.

• For decision PC problem, we need a -sampler for density

‣ Query graph is sampler if

• Here, and thus, if

(δ, ϵ/2) 1/2 + ϵ

N ≥ Θ (n
δϵ2)

ϵ = ϵ(N) ϵ2 ≥ n/N = N−1+c N = nc

Why ?ϵ(N) ≫ N−1/2

97

Theorem.
If we can decide or with advantage ,
then, we can find a -clique in with success prob ,
where .

GN,1/2,k GN,1/2 ϵ(N) ≥ N−1/2+c

k Gn,1/2,k 1 − 1/n
N = nO(1/c)

• Blow-up in instance size

‣ For MM and TC, we used downward self-reduction to preserve instance size.

• For decision PC problem, we need a -sampler for density

‣ Query graph is sampler if

• Here, and thus, if

(δ, ϵ/2) 1/2 + ϵ

N ≥ Θ (n
δϵ2)

ϵ = ϵ(N) ϵ2 ≥ n/N = N−1+c N = nc

Open Question.
Can we improve the dependency of on ?

(in particular, we are interested in)

N 1/ϵ

log(1/ϵ)

• query graph is sampler hardness amplification

- Matrix Multiplication

- Online Matrix-Vector Multiplication

- Triangle Counting

- Planted Clique

• Reduction: Downward/Upward/Random Self-Reduction + Sampler

• Further Application: other “planted” problems (e.g., planted k-SUM)

• Open:

‣ Improve the blow-up of

‣ Uniform reduction for triangle

‣ General subgraph counting

⇒

N = poly(n)

Conclusion

98

