Hardness Self-Amplification:
Simplified, Optimized, and Unified

Nobutaka Shimizu Tokyo Institute of Technology

joint work with Shuichi Hirahara

Average-Case Complexity

® How many hard instances?

» complexity of random instance

® Motivation: pessimism of worst-case complexity, derandomization, crypto

Reductions in worst-case hardness:

@ — A

A may have “structure” due to the gadget construction.
— hardness of “structural” instances

Average-Case Complexity

® How many hard instances?

» complexity of random instance

® Motivation: pessimism of worst-case complexity, derandomization, crypto

A

Hardness of unstructured instances?

@ — A

A may have “structure” due to the gadget construction.
— hardness of “structural” instances

Average-Case Complexity

e Algo A computes f with success probability y if Pr[A(x) = f(x)] > y

» xis chosen from some distribution (over inputs of fixed size)

def

® fis worst-case hard < Vefficient algo A, dx, A(x) # f(x)

def
® fis strongly-hard < Vefficient algo has success prob < 0.01

fis strongly-hard

trivial

<

strong random self-reduction

fis worst-case hard

Average-Case Complexity

e Algo A computes f with success probability y if Pr[A(x) = f(x)] > y

» xis chosen frof
® fis worst-case h:

® /is strongly-hard

fis strongly-hard

possible for some problems!

Permanent [Cai, Pavan, Sivakumar, 1999]

Matrix multiplication [Asadi, Golovnev, Gur, Shinkar, 2022]

Discrete logarithm (folklore)

etc...
\/
Y

<

strong random self-reduction

fis worst-case hard

10

Average-Case Complexity

e Algo A computes f with success probability y if Pr[A(x) = f(x)] > y

» X is chosen frof

possible for some problems!

® fis worst-case hg Permanent [Cai, Pavan, Sivakumar, 1999]

Matrix multiplication [Asadi, Golovnev, Gur, Shinkar, 2022]

What problems admit strong RSR?

fis strongly-hard

<

t\ /aI
Yy

strong random self-reduction

fis worst-case hard

11

Hardness Self-Amplification

def
® fis weakly-hard < Vefficient algo has success prob < (0.99

our topic

fis strongly-hard |«

fis weakly-hard

hardness self-amplification

fis worst-case hard

13

Our Results

® Our Paper: hardness self-amplification for popular problems
> matrix multiplication (MM)
> online matrix-vector problem (OMv)
> triangle counting (TC)

> planted clique (PC)

® Corollary
> new strong RSR for MM, OMy, TC

» search-to-decision reduction of PC

> improves and simplifies previous RSR for those problems

14

Our Results

® Our Paper: hardness self-amplification for popular problems
> matrix multiplication (MM)
> online matrix-vector problem (OMv)
> triangle counting (TC)

> planted clique (PC)

® Our Ingredient
> A framework of hardness amplification using expanders (samplers)

> The same framework was previously used to obtain Direct Product Theorem

[Impagliazzo, Jaiswal, Kabanets, Wigderson (2010)]

15

Matrix Multiplication

Matrix Multiplication (MM)

® Task: Multiply given A, B € """ (finite field [)

® Input distribution: Uniform

Theorem (Blum, Luby, Rubinfeld, 1993)

If we can solve MM with success prob 0.99 in time T(n),

then we can solve MM in time O(T(n)) for any input.

weak hardness |«

weak RSR

worst-case hardness

18

Matrix Multiplication (MM)

If we can solve MM with success prob € in time T(n),

Theorem (Asadi, Golovnev, Gur, Shinkar, 2022

then we can solve MM in time 20002 (/) . T'(n) for any input.

® strong RSR ©

® Tool: Additive Combinatorics (quasi-polynomial Bogolyubov-Ruzsa lemma)

strong hardnessk weak hardness |«

[BLRO3]
-------------------- worst-case hardness

_—

[AGGS22]

19

Matrix Multiplication (MM)

Theorem (this work)

If we can solve MM with success prob € in time T(n),

then we can solve MM in time

polylog(1/¢)

- T(n) for any input.
€

® Proof: Hardness self-amplification + BLR93

® Matrices can be over finite ring

® Improved overhead (20002°0%€) 5 H(1/¢))

strong hardness

this work

<

weak hardness k------oeeiiioi

worst-case hardness

20

Proof Sketch

Assumption: d algo .Z that solves MM with success prob €

Goal: compute AB for any A, B € F*"

21

Proof Sketch
A B

Given A, B € " (worst-case instance)

22

Proof Sketch

Divide A, B into kK submatrices
A. € ”:(n/k)Xn and Bj = [I:nx(n/k)
l

23

Proof Sketch
B

Product AB has k X k blocks

24

Proof Sketch
A B

AB

——

A.B

We focus on MM for Al-Bj
(downward self-reduction)

25

Proof Sketch
A B AB

A.B

——

By [BLR93], A, Bj can be random matrices
(random self-reduction)

26

Proof Sketch
S

R

Input: random matrices R, S
Goal: compute RS (with success prob 0.99)

27

Hardness Amplification

Lemma.

If we can solve MM with success prob € in time T(n),

then we can compute RS with success prob 0.99 for some k = O(log(1/¢)).

€ 0.99

® Hardness (Self-) Amplification for MM
® idea: "upward-reduction”

® Essentially same as the proof of Direct Product Theorem

28

Proof Sketch

Sample n X n random matrices R, S

29

Proof Sketch

Divide R, S into k submatrices : R, , S] (i,] € [k])

30

Proof Sketch

R S

—

Choose random i ~ [k]
R, <~ Rand §; « §

31

R

e

Proof Sketch
S I'= MR, S)

et %R, S) be the algorithm

that outputs (R, S)

32

Proof Sketch

R

e

Output T;; if RS = Tj;
We can verify in time O(n?)

33

Proof Sketch

Our algo: Run Z#(R, S) until we find RS

I

—Iﬁ

I

34

Proof Sketch

Lemma

For 0.99-fraction of (R, S), # of iteration is at most O(1/¢) it k > 100 log(1/¢€)

® Proof

> Expansion property (sampler) of query graph

35

Query Graph

X Y

~

.

~

_

X = set of all of inputs (R, S)

36

Query Graph

Y

~

.

(A, B)

~

_

Y = set of all pairs (A, B) of n X n matrices

37

SQuery Graph

r j r (A, B) w
(R, .S>/ - —"
_ W,
_ _J

Edge weight = Pr[£(R, S) produces query (A, B)]

38

SQuery Graph

-9
—-'
o
-
—-'
o
-
e
- i
'--
-
-
- —-.
-
-
-
-
-
-
-
R S -
s -
1-
=
-
o
-
o
-
.‘_;'
.......................
....................
................
N
-~ -
-
.-
-
-
-
-
™ -
moe
coa
cow
con
...'

Query = random neighbor of (R, S)

39

Query Graph

Lemma (informal

The query graph (X, Y, E) has an expansion property if k > 1001og(1/¢)

-)

- B
./— _/—0
_ _J

40

Sampler

Definition
0O=XY,E)is (0, c)-sampler for density ¢ if, forany WC Yof |W| > €|Y],
I')ynw
OO WE S el s 14
wx | [T

where I'(x) = {neighbors of x}.

(1 — 6)-fraction k
> (1 —c)e
_ _J
_J

45

Query Graph

~

J

_

~

J

W={yeY: M) succeeds}

46

Query Graph

-

_

J

.

~

J

W has density € inside Y

47

Query Graph

—
: (R, S)%% —

| %\/2&%
_ W, - y

For 99 % of (R,),

¢/2-fraction of neighbors are in W

48

Query Graph

If we sample O(1/¢) random neighbors,

—
: (R, S)%% —

| %\/2&%
_ W, - y

one of themisin W

49

Query Graph

Lemma

The query graph (X, Y, E) of MM is a (0, ¢)-sampler for density € if

k > 81 2
—log [— |.
2 5 ce

®In MM, wesetd =0.99andc=1/2
» k= 0O(og(1/¢)) suffices

50

Proof Summary

A B

® downward self-reduction

® random self-reduction

® upward self-reduction

B
Ai
L]
S
R
L]
R S
B

51

Triangle Counting

Triangle Counting (TC)

® Task: How many triangles (3-cycles) in a given graph?

® Input: Gn,p (for p const)

Theorem (Boix-Adsera, Brennan, Bresler, 2019)

If we can solve TC with success prob 1 — 1/polylog(n) in time T(n),
then we can solve TC in time T(n) - polylog(n) for any input.

® weak RSR

® strong RSR: open

weak hardness

worst-case hardness

53

Triangle Counting (TC)

Theorem (this work)

17(n)-time error-less algo for TC with success prob €,

. T(n)polylog(n)
€

then

time nonuniform randomized algo that solves TC for any input.

® error-less algo: output € {answer, L }

> never output a wrong value

® nonuniform algo: receives advice string a as additional input

» a depends on input size n & random seed

® Proof: Hardness self-amplification + BBB19

54

Related Work

® Counting (over G,)
> k-dique [Boix-Adsera, Brennan, Bresler, 2019]

> genera| [Dalirrooyfard, Lincoln, Williams, 2020]

> low-error regime

® Counting Mod 2

> k-clique (low-error regime) [Boix-Adsera, Brennan, Bresler, 2019], [Goldreich, 2020]

> triangle (nonuniform, strong RSR) [Hirahara, S, 2022]

We simplified & improved this reduction

55

Proof Summary

® downward self-reduction

» nvertices = n/k vertices

® random self-reduction
[Boix-Adsera, Brennan, Bresler, 2019]

(0 upward self-reduction

® n/k vertices = n vertices

® we use errorless + nonuniformity

_

Upward Reduction

We have an algo ./ that solves TC with success prob € over G, ,

Goal: solve TC with success prob 1 — 1/polylog(n) over Gn,k’p

58

Upward Reduction

Input: G ~ G, ,

59

Upward Reduction

generate k graphs Gy, ..., G, ~ G,

60

Upward Reduction

Select i ~ [k]

61

Upward Reduction

62

Upward Reduction

Add random edges between two groups
(with prob p)

63

Upward Reduction

Let G be the resulting graph
(G ~ G, ,since G~ G,y)

64

Upward Reduction

Run 4 (G).

65

Upward Reduction

® How to obtain #Triangle(G)?

> In reduction, we have #Triangle(G) if # succeeds

> this counts unnecessary triangles

66

Upward Reduction

® How to obtain #Triangle(G)?

> In reduction, we have #Triangle(G) if # succeeds
> this counts unnecessary triangles

® Two types of edges
» type 1: edgesinside G

> type 2: others

67/

Upward Reduction

® How to obtain #Triangle(G)?

> In reduction, we have #Triangle(G) if # succeeds
> this counts unnecessary triangles
® Two types of edges
» type 1: edgesinside G
> type 2: others
® Three types of triangles

>
>

>

69

Upward Reduction

® How to obtain #Triangle(G)?

> In reduction, we have #Triangle(G) if # succeeds
> this counts unnecessary triangles
® Two types of edges
» type 1: edgesinside G
> type 2: others
® Three types of triangles

> typel +typel + typel (we want to count)

>

>

70

Upward Reduction

® How to obtain #Triangle(G)?

> In reduction, we have #Triangle(G) if # succeeds
> this counts unnecessary triangles
® Two types of edges
» type 1: edgesinside G
> type 2: others
® Three types of triangles
> typel + typel + typel
> typel + type2 + type2 (unnecessary)

>

71

Upward Reduction

® How to obtain #Triangle(G)?

> In reduction, we have #Triangle(G) if # succeeds
> this counts unnecessary triangles
® Two types of edges
» type 1: edgesinside G
> type 2: others
® Three types of triangles
> typel + typel + typel
> typel + type2 + type?2
> type2 + type2 + type2 (unnecessary)

72

Upward Reduction

® How to obtain #Triangle(G)?

> this counts unnecessary triangles

» |In reduction, we have #Triangle((_;) if M succeeds g

® Two types of edges 7\

» type 1: edgesinside G

> type 2: others all edges independent of input
® Three types of triangles we can give # of such triangle as advice!

> typel + typel + typel
> typel + type2 + type?2

> type2 + type2 + type2 (unnecessary)

73

® How to obtain #Triangle(G)?

> In reduction, we have #Triangle(G) if # succeeds

Upward Reduction
> this counts unnecessary triangles

_
FWNEINE
® Two types of edges For each pink edge uv,

we can give # of green uv-paths of length two
as advice

» type 1: edgesinside G

> type 2: others
® Three types of triangles

> typel + typel + typel
> typel + type2 + type?2
> type2 + type2 + type2 (unnecessary)

Upward Reduction

® How to obtain #Triangle(G)?

> this counts unnecessary triangles

> In reduction, we have #Triangle(G) if # succeeds =

® Two types of edges

» type 1: edgesinside G

> type 2: others We can count in time O(n?)

® Three types of triangles using nonuniform advice!

> typel + typel + typel
> typel + type2 + type?2

> type2 + type2 + type2 (unnecessary)

75

Upward Reduction

® How to obtain #Triangle(G)?

> In reduction, we have #Triangle(G) if # succeeds

> this counts unnecessary triangles

Lemma (informal

We can compute #Triangle(G) in nonuniform time O(n?) given #Triangle(G).

Advice : O(n*log n) bits (# of green 2-paths)

Upward Self-Reduction

(0 upward self-reduction

® we use errorless + nonuniformity

Lemma

Query graph is a sampler.

® We can boost the success prob of ./ by repetition.

77

Proof Summary

® downward self-reduction

» nvertices = n/k vertices

® random self-reduction
[Boix-Adsera, Brennan, Bresler, 2019]

® upward self-reduction

® n/k vertices = n vertices

® we use errorless + nonuniformity

— I

Planted Clique

Random Graph with Planted Clique

® Input: random k-clique + G, |, (Erd6s-Rényi graph)
> Sample G, 1
» Randomly choose a set C C V of k vertices
» Make C a k-clique by adding edges

> let G, 1, be the resulting graph

many O(log n)-cliques
® Maximum Clique of Gn 1/2 ~ 2 10g2n

» We assume k > logn unique k-clique

> Then, Cis the unique k-clique (whp)

80

Search Planted Clique

Def (Search Planted Clique Problem) [errum, 92][Kucera, 95]

Input . Gn,l/z,k
Output : any k-clique (not necessarily be the planted one)

olIfk = Q(\/Z), 1 poly-time algo with success prob 1 — -

» the larger k, the easier it it is to solve

[Alon, Krivelevich, Sudakov, 98]
® open problem: poly-time algo forlogn <« k <« \/; [Dekel, Gurel-Gurevich, Peres, 2014]

81

Decision Planted Clique

Def (Decision Planted Clique Problem)

124 (with prob 1/2) or G, | (with prob 1/2)
Output : “Yes” if the input contains a k-clique. “No"” otherwise.

Input: G

n

1+
e </ has advantage y if Pr[</(G) is correct] > 2 y
G

» Random guess: y =0
» Goal:yx 1
® Algo for Search Planted Clique = Algo for Decision Planted Clique

® Does converse hold?

82

Previous Work

Theorem (Alon, Andoni, Kaufman, Matulef, Rubinfeld, Xie, 2007).

If we can decide G, |, , or G, |, with advantage 1 — 1/n?,

then, we can find a k-clique in G, |, , with success prob 1 — 1/n.

- —-0R

® for low-error regime &

» reduction has n queries + union bound

34

Our Result

Theorem.
If we can decide G, , or Gy, with advantage ¢(N) > N2+,
then, we can find a k-clique in G, |, ;, with success prob 1 — 1/n,

where N = n0/0),

® high-error regime!

® Blow-up in instance size & 85

Proof Outline

decision algo with adv €

hardness amplification
polynomial blow-up in n

decision algo with adv 1 — 1/n?

Search-to-Decision by

r

VS

.

[Alon, Andoni, Kaufman, Matulef, Rubinfeld, Xie, 07]

search algo with success prob 1 — 1/n <

Our Reduction

® For simplicity we focus on Search Planted Clique
® ¢/ : algo with success prob ¢

® G : input (chosen from G, |, ;)

38

Our Reduction

® For N = poly(n), randomly embed G into Gy ,),. Let G be the resulting graph.
» Let Z7(G) be the randomized reduction that outputs (G)

® Repeat #9(G) until Z/(G) outputs a k-clique in G

® G contains a unique k-clique since k > log N

M

389

Analysis

Def (Query Graph)

The query graph is the edge-weighted bipartite graph Q0 = (X, Y, P) defined by
X = set of all n-vertex graph having a k-clique
Y = set of all N-vertex graph having a k-clique
P(G,H) = Pt[#“(G) produces query H]

90

Analysis

Def (Query Graph)

The query graph is the edge-weighted bipartite graph Q0 = (X, Y, P) defined by
X = set of all n-vertex graph having a k-clique
Y = set of all N-vertex graph having a k-clique
P(G,H) = Pt[#“(G) produces query H]

<l G is a random neighbor of G

91

Analysis

Def (Query Graph)

The query graph is the edge-weighted bipartite graph Q0 = (X, Y, P) defined by
X = set of all n-vertex graph having a k-clique
Y = set of all N-vertex graph having a k-clique
P(G,H) = Pt[#“(G) produces query H]

Lemma

The query graph Q is a (0, c)-sampler for density ¢ if N > 2
c*0€

92

Sampler and Expander

o Let P = [0,11"*' be P(x,y) =

[NX) |

» P(x, -) = upward random walk

Let PT € [0,117* be PT(y,x) =
¢ |IN(y)|

> PT(y, -) = downward random walk

Lemma (informal

If /12(PPT) is small, then Q is a sampler

93

Up-Down Walk

4 N, B B
o«_/% >
_ Y, L y

To bound /IZ(PPT), we need rapid mixing

of RW according to PP’

94

Up-Down Walk

4 N, B B
o«_/% >
_ Y, L y

This can be done by coupling technique
of Markov chain

Why e(N) > N~ 122

Theorem.

If we can decide G), ; or Gy ;,, with advantage e(NV) > N~'**,

then, we can find a k-clique in G, |, ;, with success prob 1 — 1/n,

where N = n0/0),

® Blow-up in instance size

> For MM and TC, we used downward self-reduction to preserve instance size.

® For decision PC problem, we need a (9, ¢/2)-sampler for density 1/2 + ¢

n
, Query graph is samplerif N >0 | —
Se?

® Here, ¢ = ¢(N) and thus, €2 > n/N = N~*¢if N = n¢

96

Why e¢(N) > N~ 122

Theorem.

If we can decide G, ;, ; or Gy, with advantage ¢(N) > N~12te)

then, we can find a k-clique in G, |, ;, with success prob 1 — 1/n,

where N = n0/0),

® Blow-up in instance size

> For MM and TC, we used downward self-reduction to preserve instance size.

® For decision PC problem, we need a (9, ¢/2)-sampler for density 1/2 + ¢

97

Conclusion

® query graph is sampler = hardness amplification

Matrix Multiplication

Online Matrix-Vector Multiplication

Triangle Counting

Planted Clique
® Reduction: Downward/Upward/Random Self-Reduction + Sampler
® Further Application: other “planted” problems (e.g., planted k-SUM)
® Open:

> Improve the blow-up of N = poly(n)

> Uniform reduction for triangle

» General subgraph counting

98

