# Hardness Self-Amplification: Simplified, Optimized, and Unified

Nobutaka Shimizu Tokyo Institute of Technology

joint work with Shuichi Hirahara

#### • How many hard instances?

complexity of random instance





### • How many hard instances?

complexity of random instance

• Motivation: pessimism of worst-case complexity, derandomization, crypto



▲ may have "structure" due to the gadget construction.
→ hardness of "structural" instances

• Algo A computes f with success probability  $\gamma$  if  $\Pr_x[A(x) = f(x)] \ge \gamma$ 

- x is chosen from some distribution (over inputs of fixed size)
- *f* is worst-case hard  $\stackrel{\text{def}}{\longleftrightarrow} \forall \text{efficient algo } A, \exists x, A(x) \neq f(x)$
- f is strongly-hard  $\stackrel{\text{def}}{\iff} \forall$  efficient algo has success prob  $\leq 0.01$



## • Algo A computes f with success probability $\gamma$ if $\Pr[A(x) = f(x)] \ge \gamma$



• Algo A computes f with success probability  $\gamma$  if  $\Pr[A(x) = f(x)] \ge \gamma$ 



# **Hardness Self-Amplification**

• f is weakly-hard  $\stackrel{\text{def}}{\iff} \forall$  efficient algo has success prob  $\leq 0.99$ 



# **Our Results**

### • Our Paper: hardness self-amplification for popular problems

- matrix multiplication (MM)
- online matrix-vector problem (OMv)
- triangle counting (TC)
- planted clique (PC)

## Corollary

- new strong RSR for MM, OMv, TC
- search-to-decision reduction of PC
- improves and simplifies previous RSR for those problems

# **Our Results**

### • Our Paper: hardness self-amplification for popular problems

- matrix multiplication (MM)
- online matrix-vector problem (OMv)
- triangle counting (TC)
- planted clique (PC)

## • Our Ingredient

- A framework of hardness amplification using **expanders (samplers)**
- The same framework was previously used to obtain Direct Product Theorem

[Impagliazzo, Jaiswal, Kabanets, Wigderson (2010)]

# **Matrix Multiplication**

# Matrix Multiplication (MM)

- Task: Multiply given  $A, B \in \mathbb{F}^{n \times n}$  (finite field  $\mathbb{F}$ )
- Input distribution: Uniform

## Theorem (Blum, Luby, Rubinfeld, 1993)

If we can solve MM with success prob 0.99 in time T(n), then we can solve MM in time O(T(n)) for any input.



# Matrix Multiplication (MM)

## Theorem (Asadi, Golovnev, Gur, Shinkar, 2022)

If we can solve MM with success prob  $\epsilon$  in time T(n), then we can solve MM in time  $2^{O(\log^5(1/\epsilon))} \cdot T(n)$  for any input.

- strong RSR 😄
- Tool: Additive Combinatorics (quasi-polynomial Bogolyubov-Ruzsa lemma)



# Matrix Multiplication (MM)

## Theorem (this work)

If we can solve MM with success prob  $\epsilon$  in time T(n), then we can solve MM in time  $\frac{\text{polylog}(1/\epsilon)}{\epsilon} \cdot T(n)$  for any input.

- Proof: Hardness self-amplification + BLR93
- Matrices can be over finite **ring**

• Improved overhead 
$$(2^{O(\log^5(1/\epsilon))} \rightarrow \tilde{O}(1/\epsilon))$$



**Assumption**:  $\exists$  algo  $\mathcal{M}$  that solves MM with success prob  $\epsilon$ 

**Goal**: compute *AB* for any  $A, B \in \mathbb{F}^{n \times n}$ 

## Given $A, B \in \mathbb{F}^{n \times n}$ (worst-case instance)



Divide A, B into k submatrices  $A_i \in \mathbb{F}^{(n/k) \times n}$  and  $B_j \in \mathbb{F}^{n \times (n/k)}$ 



## Product AB has $k \times k$ blocks



## We focus on MM for $A_iB_j$ (downward self-reduction)



By [BLR93],  $A_i$ ,  $B_j$  can be random matrices (random self-reduction)



## **Input**: random matrices *R*, *S* **Goal**: compute *RS* (with success prob 0.99)

# **Hardness Amplification**

### Lemma.

If we can solve MM with success prob  $\epsilon$  in time T(n),

then we can compute *RS* with success prob 0.99 for some  $k = O(\log(1/\epsilon))$ .

- Hardness (Self-) Amplification for MM
- idea: "**up**ward-reduction"
- Essentially same as the proof of Direct Product Theorem





## Sample $n \times n$ random matrices $\overline{R}, \overline{S}$



Divide R, S into k submatrices :  $R_i$  ,  $S_j$   $(i, j \in [k])$ 



Choose random  $i \sim [k]$  $R_i \leftarrow R$  and  $S_i \leftarrow S$ 



Let  $\mathscr{R}^{\mathscr{M}}(R,S)$  be the algorithm that outputs  $\mathscr{M}(\overline{R},\overline{S})$ 



Output  $T_{i,i}$  if  $RS = T_{i,i}$ We can verify in time  $O(n^2)$ 



### **Lemma**

For 0.99-fraction of (R, S), # of iteration is at most  $O(1/\epsilon)$  if  $k \ge 100 \log(1/\epsilon)$ 

## • Proof

Expansion property (sampler) of query graph



## X = set of all of inputs (R, S)



 $Y = \text{set of all pairs } (A, B) \text{ of } n \times n \text{ matrices}$ 



Edge weight =  $\Pr[\mathscr{R}(R, S) \text{ produces query } (A, B)]$ 



Query = random neighbor of (R, S)

# **Query Graph**

## Lemma (informal)

The query graph (*X*, *Y*, *E*) has an **expansion** property if  $k \ge 100 \log(1/\epsilon)$ 



# Sampler

## **Definition**

Q = (X, Y, E) is  $(\delta, c)$ -sampler for density  $\epsilon$  if, for any  $W \subseteq Y$  of  $|W| \ge \epsilon |Y|$ ,

$$\Pr_{x \sim X} \left[ \frac{|\Gamma(x) \cap W|}{|\Gamma(x)|} \ge (1-c)\epsilon \right] \ge 1-\delta$$

where  $\Gamma(x) = \{ \text{neighbors of } x \}.$ 



# **Query Graph**



 $W = \{ y \in Y \colon \mathscr{M}(y) \text{ succeeds} \}$ 

# **Query Graph**



W has density  $\epsilon$  inside Y
### **Query Graph**



For 99 % of (R, S),  $\epsilon/2$ -fraction of neighbors are in W

### **Query Graph**



If we sample  $O(1/\epsilon)$  random neighbors, one of them is in W

### **Query Graph**

#### **Lemma**

The query graph (X, Y, E) of MM is a  $(\delta, c)$ -sampler for density  $\epsilon$  if  $k \ge \frac{8}{c^2 \delta} \log\left(\frac{2}{c\epsilon}\right).$ 

- In MM, we set  $\delta = 0.99$  and c = 1/2
  - $k = O(\log(1/\epsilon))$  suffices

### **Proof Summary**



51

# **Triangle Counting**

### **Triangle Counting (TC)**

- Task: How many triangles (3-cycles) in a given graph?
- Input:  $G_{n,p}$  (for p const)

#### Theorem (Boix-Adserà, Brennan, Bresler, 2019)

If we can solve TC with success prob 1 - 1/polylog(n) in time T(n), then we can solve TC in time  $T(n) \cdot \text{polylog}(n)$  for any input.

• weak RSR

• strong RSR: **open** 

weak hardness - worst-case hardness

### **Triangle Counting (TC)**

#### Theorem (this work)

 $\exists T(n)$ -time **error-less** algo for TC with success prob  $\epsilon$ ,

then  $\exists \frac{T(n)\text{polylog}(n)}{\epsilon}$ -time **nonuniform** randomized algo that solves TC for any input.

- error-less algo: output  $\in \{answer, \bot\}$ 
  - never output a wrong value
- nonuniform algo: receives advice string  $\alpha$  as additional input
  - α depends on input size n & random seed
- Proof: Hardness self-amplification + BBB19

### **Related Work**

#### • Counting (over $G_{n,p}$ )

- k-clique [Boix-Adserà, Brennan, Bresler, 2019]
- general [Dalirrooyfard, Lincoln, Williams, 2020]
- Iow-error regime

#### Counting Mod 2

- k-clique (low-error regime) [Boix-Adserà, Brennan, Bresler, 2019], [Goldreich, 2020]
- triangle (nonuniform, strong RSR) [Hirahara, S, 2022]

We simplified & improved this reduction

### **Proof Summary**

# • downward self-reduction • *n* vertices $\rightarrow n/k$ vertices

#### • random self-reduction

[Boix-Adserà, Brennan, Bresler, 2019]





We have an algo  $\mathcal{M}$  that solves TC with success prob  $\epsilon$  over  $G_{n,p}$ 

**Goal**: solve TC with success prob 1 - 1/polylog(n) over  $G_{n/k,p}$ 



Input:  $G \sim G_{n/k,p}$ 



generate k graphs  $G_1, ..., G_k \sim G_{n/k,p}$ 

60



Select  $i \sim [k]$ 



 $G_i \leftarrow G$ 

62



Add random edges between two groups (with prob *p*)



Let  $\overline{G}$  be the resulting graph ( $\overline{G} \sim G_{n,p}$  since  $G \sim G_{n/k,p}$ )





- How to obtain #Triangle(G)?
  - In reduction, we have  $\#\text{Triangle}(\overline{G})$  if  $\mathcal{M}$  succeeds
  - this counts unnecessary triangles



#### • How to obtain #Triangle(G)?

- In reduction, we have  $\#\text{Triangle}(\overline{G})$  if  $\mathcal{M}$  succeeds
- this counts unnecessary triangles
- Two types of edges
  - type 1: edges inside G
  - ► type 2: others



#### • How to obtain #Triangle(G)?

- In reduction, we have  $\#\text{Triangle}(\overline{G})$  if  $\mathcal{M}$  succeeds
- this counts unnecessary triangles
- Two types of edges
  - ► type 1: edges inside *G*
  - type 2: others

#### • Three types of triangles

- •



#### • How to obtain #Triangle(G)?

- In reduction, we have  $\#\text{Triangle}(\overline{G})$  if  $\mathcal{M}$  succeeds
- this counts unnecessary triangles
- Two types of edges
  - type 1: edges inside G
  - type 2: others

#### • Three types of triangles

type1 + type1 + type1 (we want to count)



70

#### • How to obtain #Triangle(G)?

- In reduction, we have  $\#\text{Triangle}(\overline{G})$  if  $\mathcal{M}$  succeeds
- this counts unnecessary triangles
- Two types of edges
  - type 1: edges inside G
  - type 2: others

#### • Three types of triangles

- type1 + type1 + type1
- type1 + type2 + type2 (unnecessary)



#### • How to obtain #Triangle(G)?

- In reduction, we have  $\#Triangle(\overline{G})$  if  $\mathcal{M}$  succeeds
- this counts unnecessary triangles
- Two types of edges
  - type 1: edges inside G
  - type 2: others

#### • Three types of triangles

- type1 + type1 + type1
- type1 + type2 + type2
- type2 + type2 + type2 (unnecessary)



#### • How to obtain #Triangle(G)?

- In reduction, we have  $\#\text{Triangle}(\overline{G})$  if  $\mathcal{M}$  succeeds
- this counts unnecessary triangles
- Two types of edges
  - type 1: edges inside G
  - type 2: others
- Three types of triangles
  - type1 + type1 + type1
  - type1 + type2 + type2
  - type2 + type2 + type2 (unnecessary)

all edges independent of input we can give # of such triangle as **advice!** 



#### • How to obtain #Triangle(G)?

- In reduction, we have  $\#\text{Triangle}(\overline{G})$  if  $\mathcal{M}$  succeeds
- this counts unnecessary triangles
- Two types of edges
  - type 1: edges inside G
  - type 2: others

#### • Three types of triangles

- type1 + type1 + type1
- type1 + type2 + type2
- type2 + type2 + type2 (unnecessary)

For each pink edge *uv*, we can give # of green *uv*-paths of length two as **advice** 

#### • How to obtain #Triangle(G)?

- In reduction, we have  $\#Triangle(\overline{G})$  if  $\mathcal{M}$  succeeds
- this counts unnecessary triangles
- Two types of edges
  - type 1: edges inside G
  - type 2: others

#### • Three types of triangles

- type1 + type1 + type1
- type1 + type2 + type2
- type2 + type2 + type2 (unnecessary)

We can count in time  $O(n^2)$  using nonuniform advice!



#### • How to obtain #Triangle(G)?

- In reduction, we have  $\#\text{Triangle}(\overline{G})$  if  $\mathcal{M}$  succeeds
- this counts unnecessary triangles



#### Lemma (informal)

We can compute #Triangle(G) in nonuniform time  $O(n^2)$  given  $\#\text{Triangle}(\overline{G})$ .

Advice :  $O(n^2 \log n)$  bits (# of green 2-paths)

### **Upward Self-Reduction**



#### Lemma

Query graph is a sampler.

 $\bullet$  We can boost the success prob of  ${\mathscr M}$  by repetition.

### **Proof Summary**

#### • downward self-reduction

• *n* vertices  $\rightarrow n/k$  vertices

#### random self-reduction

[Boix-Adserà, Brennan, Bresler, 2019]



#### • upward self-reduction

- n/k vertices  $\rightarrow n$  vertices
- we use errorless + nonuniformity



## **Planted Clique**

### **Random Graph with Planted Clique**

#### • Input: random k-clique + $G_{n,1/2}$ (Erdős-Rényi graph)

- Sample  $G_{n,1/2}$
- Randomly choose a set  $C \subseteq V$  of k vertices
- Make C a k-clique by adding edges
- let  $G_{n,1/2,k}$  be the resulting graph
- Maximum clique of  $G_{n,1/2} \approx 2 \log_2 n$ 
  - We assume  $k \gg \log n$
  - Then, C is the unique k-clique (whp)



### **Search Planted Clique**

**Def (Search Planted Clique Problem)** [Jerrum, 92][Kučera, 95]

**Input :**  $G_{n,1/2,k}$ **Output : any** *k*-clique (not necessarily be the planted one)

- If  $k = \Omega(\sqrt{n})$ ,  $\exists$  poly-time algo with success prob  $1 2^{-n^{0.1}}$ 
  - the larger k, the easier it it is to solve
- open problem: poly-time algo for  $\log n \ll k \ll \sqrt{n}$

[Alon, Krivelevich, Sudakov, 98] [Dekel, Gurel-Gurevich, Peres, 2014]

### **Decision Planted Clique**

#### **Def (Decision Planted Clique Problem)**

**Input :**  $G_{n,1/2,k}$  (with prob 1/2) or  $G_{n,1/2}$  (with prob 1/2) **Output : "Yes" if the input contains a** *k*-clique. "No" otherwise.

- $\mathscr{A}$  has advantage  $\gamma$  if  $\Pr[\mathscr{A}(G) \text{ is correct}] \geq \frac{1+\gamma}{2}$ 
  - Random guess:  $\gamma = 0$
  - Goal:  $\gamma \approx 1$
- Algo for Search Planted Clique ⇒ Algo for Decision Planted Clique
- Does converse hold?

### **Previous Work**

Theorem (Alon, Andoni, Kaufman, Matulef, Rubinfeld, Xie, 2007).

If we can decide  $G_{n,1/2,k}$  or  $G_{n,1/2}$  with advantage  $1 - 1/n^2$ ,

then, we can find a k-clique in  $G_{n,1/2,k}$  with success prob 1 - 1/n.



#### for low-error regime

reduction has n queries + union bound

### **Our Result**

#### Theorem.

If we can decide  $G_{N,1/2,k}$  or  $G_{N,1/2}$  with advantage  $\epsilon(N) \ge N^{-1/2+c}$ , then, we can find a k-clique in  $G_{n,1/2,k}$  with success prob 1 - 1/n, where  $N = n^{O(1/c)}$ .



Blow-up in instance size


### **Our Reduction**

- For simplicity we focus on **Search** Planted Clique
- $\mathscr{A}$  : algo with success prob  $\epsilon$
- G : input (chosen from  $G_{n,1/2,k}$ )



# **Our Reduction**

- For N = poly(n), randomly embed G into  $G_{N,1/2}$ . Let  $\overline{G}$  be the resulting graph.
  - Let  $\mathscr{R}^{\mathscr{A}}(G)$  be the randomized reduction that outputs  $\mathscr{A}(\overline{G})$
- $\bullet$  Repeat  $\mathscr{R}^{\mathscr{A}}(G)$  until  $\mathscr{A}(\overline{G})$  outputs a k-clique in G
- $\overline{G}$  contains a unique *k*-clique since  $k \gg \log N$





# Analysis

#### **Def (Query Graph)**

The query graph is the edge-weighted bipartite graph Q = (X, Y, P) defined by

X =set of all *n*-vertex graph having a *k*-clique

Y = set of all *N*-vertex graph having a *k*-clique

 $P(G,H) = \Pr[\mathscr{R}^{\mathscr{A}}(G) \text{ produces query } H]$ 



# Analysis

#### **Def (Query Graph)**

The query graph is the edge-weighted bipartite graph Q = (X, Y, P) defined by

X =set of all *n*-vertex graph having a *k*-clique

Y = set of all *N*-vertex graph having a *k*-clique

 $P(G,H) = \Pr[\mathscr{R}^{\mathscr{A}}(G) \text{ produces query } H]$ 



# Analysis

#### **Def (Query Graph)**

The query graph is the edge-weighted bipartite graph Q = (X, Y, P) defined by

X =set of all *n*-vertex graph having a *k*-clique

Y = set of all *N*-vertex graph having a *k*-clique

 $P(G,H) = \Pr[\mathscr{R}^{\mathscr{A}}(G) \text{ produces query } H]$ 

#### <u>Lemma</u>

The query graph Q is a  $(\delta, c)$ -sampler for density  $\epsilon$  if  $N \ge \frac{n}{c^2 \delta \epsilon}$ 

# **Sampler and Expander**

- Let  $P = [0,1]^{X \times Y}$  be  $P(x, y) = \frac{1}{|N(x)|}$ 
  - $P(x, \cdot) =$  upward random walk
- Let  $P^{\dagger} \in [0,1]^{Y \times X}$  be  $P^{\dagger}(y,x) = \frac{1}{|N(y)|}$ 
  - $P^{\dagger}(y, \cdot) = \text{downward random walk}$



#### Lemma (informal)

If  $\lambda_2(PP^{\dagger})$  is small, then Q is a sampler

### **Up-Down Walk**



To bound  $\lambda_2(PP^{\dagger})$ , we need **rapid mixing** of RW according to  $PP^{\dagger}$ 

### **Up-Down Walk**



# This can be done by **coupling technique** of Markov chain

Why 
$$\epsilon(N) \gg N^{-1/2}$$
 ?

#### Theorem.

If we can decide  $G_{N,1/2,k}$  or  $G_{N,1/2}$  with advantage  $\epsilon(N) \ge N^{-1/2+c}$ , then, we can find a k-clique in  $G_{n,1/2,k}$  with success prob 1 - 1/n, where  $N = n^{O(1/c)}$ .

#### Blow-up in instance size

- For MM and TC, we used downward self-reduction to preserve instance size.
- For decision PC problem, we need a  $(\delta, \epsilon/2)$ -sampler for density  $1/2 + \epsilon$ 
  - Query graph is sampler if  $N \ge \Theta\left(\frac{n}{\delta\epsilon^2}\right)$
- Here,  $\epsilon = \epsilon(N)$  and thus,  $\epsilon^2 \ge n/N = N^{-1+c}$  if  $N = n^c$

Why 
$$\epsilon(N) \gg N^{-1/2}$$
 ?

#### Theorem.

If we can decide  $G_{N,1/2,k}$  or  $G_{N,1/2}$  with advantage  $\epsilon(N) \ge N^{-1/2+c}$ , then, we can find a k-clique in  $G_{n,1/2,k}$  with success prob 1 - 1/n, where  $N = n^{O(1/c)}$ .

#### Blow-up in instance size

For MM and TC, we used downward self-reduction to preserve instance size.

#### • For decision PC problem, we need a $(\delta, \epsilon/2)$ -sampler for density $1/2 + \epsilon$

**Open Question.** Can we improve the dependency of N on  $1/\epsilon$ ?

(in particular, we are interested in  $log(1/\epsilon)$ )

# Conclusion

- query graph is sampler  $\Rightarrow$  hardness amplification
  - Matrix Multiplication
  - Online Matrix-Vector Multiplication
  - Triangle Counting
  - Planted Clique
- **Reduction**: Downward/Upward/Random Self-Reduction + Sampler
- Further Application: other "planted" problems (e.g., planted k-SUM)
- Open:
  - Improve the blow-up of N = poly(n)
  - Uniform reduction for triangle
  - General subgraph counting