Automating Tree-Like Resolution in Time $n^{o(\log n)}$ Is ETH-Hard

Susanna F. de Rezende

Institute of Mathematics of the Czech Academy of Sciences

February 2021
Resolution proof system
Resolution proof system

Given **UNSAT** CNF formula F:

$$(\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z)$$
Resolution proof system

Given **UNSAT** CNF formula F:

$$(\overline{y} \lor z) \land (\overline{x} \lor z) \land (x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z)$$

clauses/axioms
Resolution proof system

Given \textbf{UNSAT} CNF formula F: $$(\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (x \lor \overline{y}) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z)$$

Resolution rule: $$\frac{C \lor x}{C \lor D} \frac{D \lor \overline{x}}{C \lor D}$$

Refutation: Derivation of empty clause \bot
Resolution proof system

Given UNSAT CNF formula F: $(\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z)$

Resolution rule: $\frac{C \lor x \quad D \lor \overline{x}}{C \lor D}$

Refutation: Derivation of empty clause \bot
Resolution proof system

Given **UNSAT** CNF formula F:

\[(\overline{y} \vee \overline{z}) \land (\overline{x} \vee \overline{z}) \land (x \vee y) \land (x \vee \overline{y} \vee z) \land (\overline{x} \vee z)\]

Resolution rule: \[
\frac{C \lor x}{C \lor D}
\]

Refutation: Derivation of empty clause \bot
Resolution proof system

Given UNSAT CNF formula F: $(\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z)$

Resolution rule: \[
\frac{C \lor x \quad D \lor \overline{x}}{C \lor D}
\]

Refutation: Derivation of empty clause \bot
Resolution proof system

Given UNSAT CNF formula F: $(\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z)$

Resolution rule: $\frac{C \lor x \ D \lor \overline{x}}{C \lor D}$

Refutation: Derivation of empty clause \bot
Resolution proof system

Given **UNSAT** CNF formula F:

$$(\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z)$$

Resolution rule:

$$\frac{C \lor x \quad D \lor \overline{x}}{C \lor D}$$

Refutation: Derivation of empty clause \bot

Size: # clauses in proof (10 in example)

Width: max # literals/clauses in proof
Resolution proof system

Given **UNSAT** CNF formula F:

$$(\overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{z}) \land (x \lor y) \land (x \lor \overline{y} \lor z) \land (\overline{x} \lor z)$$

Resolution rule: \[
\frac{C \lor x}{C \lor D} \quad \frac{D \lor \overline{x}}{C \lor D}
\]

Refutation: Derivation of empty clause \perp

Size: $\#$ clauses in proof (10 in example)

Width: $\max \ # \ literals/\text{clauses \ in \ proof}$

Automating Tree-Like Resolution in Time $n^{o(\log n)}$ Is ETH-Hard
Automatability [BPR’97]

How hard is it to find proofs/refutations?
Automatability [BPR’97]
How hard is it to find proofs/refutations?

Suppose unsat CNF F has poly-size refutations. Can you find one in poly-time?
Automatability [BPR’97]

How hard is it to find proofs/refutations?

Suppose unsat CNF F has poly-size refutations. Can you find one in poly-time?

Proof system \mathcal{P} is automatable in time $f(n)$ if \exists algorithm \mathcal{A} that given unsat CNF F outputs \mathcal{P}-refutation of F in time $f(n)$.
Automatability [BPR’97]
How hard is it to find proofs/refutations?

Suppose unsat CNF F has poly-size refutations. Can you find one in poly-time?

Proof system \mathcal{P} is automatable in time $f(n)$ if \exists algorithm A that given unsat CNF F outputs \mathcal{P}-refutation of F in time $f(n)$

size of smallest \mathcal{P}-refutation of F plus the size of F
Atserias–Müller ‘19

If resolution is automatable:

1. in time \(\text{poly}(n) \) then \(\text{NP} \subseteq \text{P} \)
2. in time \(\text{quasipoly}(n) \) then \(\text{NP} \subseteq \text{QP} \)
3. in time \(\text{subexp}(n) \) then \(\text{NP} \subseteq \text{SUBEXP} \)
If resolution is automatable:

1. in time $\text{poly}(n)$ then $\text{NP} \subseteq \text{P}$
2. in time $\text{quasipoly}(n)$ then $\text{NP} \subseteq \text{QP}$
3. in time $\text{subexp}(n)$ then $\text{NP} \subseteq \text{SUBEXP}$

Generalizations

1. Cutting planes [GKMP’20]
2. $\text{Res}(k)$ [Gar’20]
3. Algebraic proof systems (NS, PC, SA) [dRGNPRS’21]
Tree-like resolution is automatable in time $n^{O(\log n)}$ \cite{BP96}
Tree-like resolution is automatable in time $s^{O(\log n)} \notin \# \text{ variables}$ [BP’96] size of smallest refutation
Tree-like resolution is automatable in time $O(\log n)$ \cite{BP96}.

Given UNSAT CNF formula F
Tree-like resolution is automatable in time $s^{O(\log n)}$ \([BP’96]\)

Given **UNSAT** CNF formula F

Suppose s is known
Tree-like resolution is automatable in time $s^{O(\log n)}$ \cite{BP'96}.

Given \textbf{UNSAT} CNF formula F.

Suppose s is known.

\[\exists x \text{ s.t. } R^*(F|_{x=0}) \leq s/2 \text{ or } R^*(F|_{x=1}) \leq s/2 \]

\[x = b \quad x = 1 - b \]
Tree-like resolution is automatable in time $s^{O\left(\log n\right)}$ [BP’96]

Given \text{UNSAT} CNF formula F

Suppose s is known

$\exists x \text{ s.t. } R^*(F|_{x=0}) \leq s/2 \text{ or } R^*(F|_{x=1}) \leq s/2$

$T(n, s) = 2n \cdot T(n-1, s/2) + T(n-1, s) + O(1)$

$T(n, s) = s^{O\left(\log n\right)}$
Tree-like resolution is automatable in time $n^{O(\log n)}$ [BP’96]
Tree-like resolution is automatable in time $n^{O(\log n)}$ [BP’96]

If tree-like resolution is automatable:

1. in time $\text{poly}(n)$ then $W[P] = \text{FPT}$ [AR’01]
Tree-like resolution is automatable in time $n^{O(\log n)}$ [BP’96]

If tree-like resolution is automatable:

1. in time $\text{poly}(n)$ then $W[P] = \text{FPT}$ [AR’01]

2. in time $n^{O(\log^{1/7-\epsilon} 1 \log n)}$ then ETH is false [MPW’19]
Tree-like resolution is automatable in time $n^{O(\log n)}$ [BP’96]

If tree-like resolution is automatable:

1. in time $\text{poly}(n)$ then $W[P] = \text{FPT}$ [AR’01]
2. in time $n^{O(\log^{1/7-\epsilon} \log n)}$ then ETH is false [MPW’19]

Theorem 1

If tree-like resolution is automatable:

1. in time $n^{o(\log n)}$ then ETH is false
Tree-like resolution is automatable in time $n^{O(\log n)}$ [BP’96]

If tree-like resolution is automatable:

1. in time $\text{poly}(n)$ then $\text{W}[P] = \text{FPT}$ [AR’01]

2. in time $n^{O(\log^{1/7-\epsilon} \log n)}$ then ETH is false [MPW’19]

Theorem 1

If tree-like resolution is automatable:

1. in time $n^{O(\log n)}$ then ETH is false

2. in time $n^{O(\log^{1-\epsilon} n)}$ then $\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\epsilon/2})})$
Tree-like resolution is automatable in time $n^{O(\log n)}$ [BP’96]

If tree-like resolution is automatable:

1. in time $\text{poly}(n)$ then $W[P] = \text{FPT}$ [AR’01]

2. in time $n^{O(\log^{1/7-\varepsilon} \log n)}$ then ETH is false [MPW’19]

Theorem 1

If tree-like resolution is automatable:

1. in time $n^{o(\log n)}$ then ETH is false

2. in time $n^{O(\log^{1-\varepsilon} n)}$ then $\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\varepsilon/2})})$

3. in time $\text{poly}(n)$ then $W[P] = \text{FPT}$
Theorem 1

If tree-like resolution is automatable:

1. in time $n^{o(\log n)}$ then ETH is false
2. in time $n^{O(\log^{1-\epsilon} n)}$ then $\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\epsilon/2})})$
3. in time $\text{poly}(n)$ then $\text{W}[P] = \text{FPT}$
Theorem 1

If tree-like resolution is automatable:

1. in time $n^{o(\log n)}$ then ETH is false
2. in time $n^{O(\log^{1-\epsilon} n)}$ then $\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\epsilon/2})})$
3. in time $\text{poly}(n)$ then $\text{W}[P] = \text{FPT}$

Main Theorem

\exists algorithm that given n-variate F outputs $A(F)$ in time $2^{O(\sqrt{n})}$ s.t.

1. F is SAT $\Rightarrow R^*(A(F')) \leq 2^{O(\sqrt{n})}$
2. F is UNSAT $\Rightarrow R^*(A(F)) \geq 2^{\Omega(n)}$
If tree-like resolution is automatable:

1. in time \(n^{O(\log n)} \) then ETH is false
2. in time \(n^{O(\log^{1-\epsilon} n)} \) then \(\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\epsilon/2})}) \)

\(\exists \) algorithm that given \(n \)-variate \(F \) outputs \(A(F) \) in time \(2^{O(\sqrt{n})} \) s.t.

1. \(F \) is SAT \(\Rightarrow R^*(A(F)) \leq 2^{O(\sqrt{n})} \)
2. \(F \) is UNSAT \(\Rightarrow R^*(A(F)) \geq 2^{\Omega(n)} \)
If tree-like resolution is automatable:

1. in time \(n^{O(\log n)} \) then ETH is false
2. in time \(n^{O(\log^{1-\epsilon} n)} \) then \(\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\epsilon/2})}) \)

\(\exists \) algorithm that given \(n \)-variate \(F \) outputs \(\mathcal{A}(F) \) in time \(2^{O(\sqrt{n})} \) s.t.

1. \(F \) is SAT \(\Rightarrow R^*(\mathcal{A}(F)) \leq 2^{O(\sqrt{n})} \)
2. \(F \) is UNSAT \(\Rightarrow R^*(\mathcal{A}(F)) \geq 2^{\Omega(n)} \)

Proof. Suppose \(\mathcal{A} \) automatates tree-like Res in time \(f(N) = N^{O(\log N)} \)
If tree-like resolution is automatable:
1. in time $n^{O(\log n)}$ then ETH is false
2. in time $n^{O(\log^{1-\epsilon} n)}$ then $\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\epsilon/2})})$

∃ algorithm that given n-variate F outputs $\mathcal{A}(F)$ in time $2^{O(\sqrt{n})}$ s.t.
1. F is SAT ⇒ $R^*(\mathcal{A}(F)) \leq 2^{O(\sqrt{n})}$
2. F is UNSAT ⇒ $R^*(\mathcal{A}(F)) \geq 2^{\Omega(n)}$

Proof. Suppose \mathcal{A} automataxes tree-like Res in time $f(N) = N^{O(\log N)}$

size of smallest refutation of F plus the size of F
If tree-like resolution is automatable:

1. in time $n^{o(\log n)}$ then ETH is false
2. in time $n^{O(\log^{1-\epsilon} n)}$ then $\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\epsilon/2})})$

\exists \text{ algorithm that given } n\text{-variate } F \text{ outputs } A(F) \text{ in time } 2^{O(\sqrt{n})} \text{ s.t.}

1. F is SAT $\Rightarrow R^*(A(F)) \leq 2^{O(\sqrt{n})}$
2. F is UNSAT $\Rightarrow R^*(A(F)) \geq 2^{\Omega(n)}$

Proof. Suppose A automataates tree-like Res in time $f(N) = N^{o(\log N)}$

Want to decide if 3-CNF F is SAT or UNSAT
If tree-like resolution is automatable:

1. in time $n^{o(\log n)}$ then ETH is false
2. in time $n^{O(\log^{1-\epsilon} n)}$ then $\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\epsilon/2})})$

 Exists algorithm that given n-variate F outputs $\mathcal{A}(F)$ in time $2^{O(\sqrt{n})}$ s.t.

1. F is SAT $\implies R^*(\mathcal{A}(F)) \leq 2^{O(\sqrt{n})}$
2. F is UNSAT $\implies R^*(\mathcal{A}(F)) \geq 2^{\Omega(n)}$

Proof. Suppose \mathcal{A} automatates tree-like Res in time $f(N) = N^{o(\log N)}$

Want to decide if 3-CNF F is SAT or UNSAT

$\mathcal{A}(F) : \# \text{ var } 2^{O(\sqrt{n})}$
If tree-like resolution is automatable:
1. in time $n^{o(\log n)}$ then ETH is false
2. in time $n^{O(\log^{1-\epsilon} n)}$ then $\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\epsilon/2})})$

\exists algorithm that given n-variate F outputs $\mathcal{A}(F)$ in time $2^{O(\sqrt{n})}$ s.t.
1. F is SAT $\Rightarrow R^*(\mathcal{A}(F)) \leq 2^{O(\sqrt{n})}$
2. F is UNSAT $\Rightarrow R^*(\mathcal{A}(F)) \geq 2^{\Omega(n)}$

Proof. Suppose \mathcal{A} automatates tree-like Res in time $f(N) = N^{o(\log N)}$

Want to decide if 3-CNF F is SAT or UN SAT

$\mathcal{A}(F)$: $\#$ var $2^{O(\sqrt{n})}$

and if F is SAT $N = 2^{O(\sqrt{n})}$
If tree-like resolution is automatable:
1. in time $n^{O(\log n)}$ then ETH is false
2. in time $n^{O(\log^{1-\epsilon} n)}$ then $\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\epsilon/2})})$

∃ algorithm that given n-variate F outputs $A(F)$ in time $2^{O(\sqrt{n})}$ s.t.
1. F is SAT $\Rightarrow R^*(A(F)) \leq 2^{O(\sqrt{n})}$
2. F is UNSAT $\Rightarrow R^*(A(F)) \geq 2^{\Omega(n)}$

Proof. Suppose A automatates tree-like Res in time $f(N) = N^{O(\log N)}$

Want to decide if 3-CNF F is SAT or UNSAT

$A(F)$: # var $2^{O(\sqrt{n})}$
and if F is SAT $N = 2^{O(\sqrt{n})}$

Run A on $A(F)$ for $f(2^{O(\sqrt{n})}) = 2^{o(n)}$ steps

obs. $o(\log N) = o(\sqrt{n})$
If tree-like resolution is automatable:

1. in time $n^{O(\log n)}$ then ETH is false
2. in time $n^{O(\log^{1-\epsilon} n)}$ then $\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\epsilon/2})})$

∃ algorithm that given n-variate F outputs $\mathcal{A}(F)$ in time $2^{O(\sqrt{n})}$ s.t.

1. F is SAT $\Rightarrow R^*(\mathcal{A}(F)) \leq 2^{O(\sqrt{n})}$
2. F is UNSAT $\Rightarrow R^*(\mathcal{A}(F)) \geq 2^{\Omega(n)}$

Proof. Suppose \mathbb{A} automates tree-like Res in time $f(N) = N^{O(\log N)}$

Want to decide if 3-CNF F is SAT or UNSAT

$\mathcal{A}(F)$: $\# \text{ var } 2^{O(\sqrt{n})}$ and if F is SAT $N = 2^{O(\sqrt{n})}$

Run \mathbb{A} on $\mathcal{A}(F)$ for $f(2^{O(\sqrt{n})}) = 2^{o(n)}$ steps

\mathbb{A} returns refutation $\Leftrightarrow F$ is SAT
Atserias-Müller

Automating Resolution is NP-Hard – Simplified [dRGNPRS’21]
exists algorithm that given \(n \)-variate \(F \) outputs \(\mathcal{A}(F) \) in time \(n^{O(1)} \) s.t.

1. \(F \) is SAT \(\Rightarrow R(\mathcal{A}(F)) \leq n^{O(1)} \)
2. \(F \) is UNSAT \(\Rightarrow R(\mathcal{A}(F)) \geq 2^{\Omega(n)} \)
Atserias-Müller ’19

∃ algorithm that given \(n \)-variate \(F \) outputs \(\mathcal{A}(F) \) in time \(n^{O(1)} \) s.t.

1. \(F \) is SAT \(\Rightarrow R(\mathcal{A}(F)) \leq n^{O(1)} \)
2. \(F \) is UNSAT \(\Rightarrow R(\mathcal{A}(F)) \geq 2^{\Omega(n)} \)

Main Theorem (tree-like resolution)

∃ algorithm that given \(n \)-variate \(F \) outputs \(\mathcal{A}(F) \) in time \(2^{O(\sqrt{n})} \) s.t.

1. \(F \) is SAT \(\Rightarrow R^*(\mathcal{A}(F)) \leq 2^{O(\sqrt{n})} \)
2. \(F \) is UNSAT \(\Rightarrow R^*(\mathcal{A}(F)) \geq 2^{\Omega(n)} \)
Atserias–Müller ’19

∃ algorithm that given \(n \)-variate \(F \) outputs \(\mathcal{A}(F) \) in time \(n^{O(1)} \) s.t.

1. \(F \) is SAT \(\Rightarrow R(\mathcal{A}(F)) \leq n^{O(1)} \)
2. \(F \) is UNSAT \(\Rightarrow R(\mathcal{A}(F)) \geq 2^{\Omega(n)} \)

Main Theorem (tree-like resolution)

∃ algorithm that given \(n \)-variate \(F \) outputs \(\mathcal{A}(F) \) in time \(2^{O(\sqrt{n})} \) s.t.

1. \(F \) is SAT \(\Rightarrow R^*(\mathcal{A}(F)) \leq 2^{O(\sqrt{n})} \)
2. \(F \) is UNSAT \(\Rightarrow R^*(\mathcal{A}(F)) \geq 2^{\Omega(n)} \)
“Universal refutation” (complete Binary tree)
“Universal refutation” (complete Binary tree)
Ref(F)

Enodes “F has short resolution refutation”

n

$s = n^{O(1)}$

F: m
Ref(F)

Encodes "F has short resolution refutation"

n

$s = n^{O(1)}$

F:

structured
Ref(F)

Variables for each block B:

\[\text{Encodes "} F \text{ has short resolution refutation"} \]

\[s = n^{O(1)} \]

\[m \]

\[n \]
\textbf{Ref}(F)

Variables for each block B:

- \textbf{2n} variables (1 per literal): indicates clause

Encodes \textit{“F has short resolution refutation”}

$s = n^{O(1)}$

m

Susanna F. de Rezende

Automating Tree-Like Resolution in Time $n^{o(\log n)}$ Is ETH-Hard
$\text{Ref}(F)$

Variables for each block B:
- $2n$ variables (1 per literal): indicates clause
- $2(\log s)$ variables: 2 pointers to children “derived from B_i and B_j”

Encodes “F has short resolution refutation”
Ref(F)

Variables for each block B:

- $2n$ variables (1 per literal): indicates clause
- $2(\log s)$ variables: 2 pointers to children “derived from B_i and B_j”

Encodes “F has short resolution refutation”
Ref(F)

Variables for each block B:

- $2n$ variables (1 per literal): indicates clause
- $2(\log s)$ variables: 2 pointers to children “derived from B_i and B_j”
- $\log m$ variables: axiom-index $j \in [m]$

Encodes “F has short resolution refutation”
$\text{Ref}(F)$

Variables for each block B:
- $2n$ variables (1 per literal): indicates clause
- $2(\log s)$ variables: 2 pointers to children “derived from B_i and B_j”
- $\log m$ variables: axiom-index $j \in [m]$

$O(n^2s)$ variables

Encodes “F has short resolution refutation”

n

$s = n^{O(1)}$

$F:$

$s = n^{O(1)}$

n

m
Ref(F)

Variables for each block B:

- $2n$ variables (1 per literal): indicates clause
- $2(\log s)$ variables: 2 pointers to children “derived from B_i and B_j”
- $\log m$ variables: axiom-index $j \in [m]$

$O(n^2 s)$ variables

Axioms of $\text{Ref}(F)$:

- Root: \bot clause
- Derived: valid resolution step
- Axiom: weakening of axiom
Ref(F)

Variables for each block B:

- **$2n$** variables (1 per literal): indicates clause
- **$2(\log s)$** variables: 2 pointers to children “derived from B_i and B_j”
- **$\log m$** variables: axiom-index $j \in [m]$

$O(n^2s)$ variables

Axioms of Ref(F):

- **Root**: \bot clause
- **Derived**: valid resolution step
- **Axiom**: weakening of axiom

Encodes “F has short resolution refutation”

$s = n^{O(1)}$

F: m
Ref(F)

Variables for each block B:
- $2n$ variables (1 per literal): indicates clause
- $2(\log s)$ variables: 2 pointers to children “derived from B_i and B_j”
- $\log m$ variables: axiom-index $j \in [m]$

$O(n^2s)$ variables

Axioms of Ref(F):
- Root: \bot clause
- Derived: valid resolution step
- Axiom: weakening of axiom

Encodes “F has short resolution refutation”

F: \bot

$s = n^{O(1)}$

n

m
Ref(\(F\))

Variables for each block \(B\):

- \(2n\) variables (1 per literal): indicates clause
- \(2(\log s)\) variables: 2 pointers to children “derived from \(B_i\) and \(B_j\)”
- \(\log m\) variables: axiom-index \(j \in [m]\)

\(O(n^2s)\) variables

Axioms of Ref(\(F\)):

- **Root**: \(\bot\) clause
- **Derived**: valid resolution step
- **Axiom**: weakening of axiom

\(\text{poly}(n)\) clauses of width \(O(\log s)\)

\(s = n^{O(1)}\)

\(F:\)

\(m\)

Encodes “\(F\) has short resolution refutation”
(1) F is $\text{SAT} \Rightarrow \text{Ref}(F)$ has size-$n^{O(1)}$ resolution refutation

Read-once branching program for $\text{Ref}(F)$
(1) F is SAT \Rightarrow Ref(F) has size-$n^{O(1)}$ resolution refutation

Read-once branching program for Ref(F)

x^* satisfying assignment for F

$$s = n^{O(1)}$$

F:

$$\text{Susanna F. de Rezende}$$

Automating Tree-Like Resolution in Time $n^{o(\log n)}$ Is ETH-Hard
(1) F is $\textbf{SAT} \Rightarrow \text{Ref}(F)$ has size-$n^{O(1)}$ resolution refutation

Read-once branching program for $\text{Ref}(F)$

x^* satisfying assignment for F

invariant: x^* falsifies clause in current block B
(1) F is $\text{SAT} \implies \text{Ref}(F)$ has size-$n^{O(1)}$ resolution refutation

Read-once branching program for $\text{Ref}(F)$

x^* satisfying assignment for F

invariant: x^* falsifies clause in current block B

Start at root and keep invariant

until detect non-valid derivation step or

until reach leaf (cannot be weakening of axiom)
\begin{enumerate}
\item F is $\text{SAT} \Rightarrow \text{Ref}(F)$ has size-$n^{O(1)}$ resolution refutation
\end{enumerate}

Read-once branching program for $\text{Ref}(F)$

- x^* satisfying assignment for F

 invariant: x^* falsifies clause in current block B

Start at root and keep invariant until detect non-valid derivation step or until reach leaf (cannot be weakening of axiom)

refutation size: $\approx (\#\text{blocks})^2 = n^{O(1)}$
(2) F is UNSAT \Rightarrow Ref(F) requires size $2^\Omega(n)$ resolution refutation
(2) F is UNSAT $\Rightarrow \text{Ref}(F)$ requires size $2^{\Omega(n)}$ resolution refutation

- $w(\text{Ref}(F) \vdash \bot) \geq \tilde{\Omega}(w(\text{PHP}_{s}^{2s} \vdash \bot)/n)$

[drgnprs’21]
(2) F is UNSAT $\Rightarrow \text{Ref}(F)$ requires size $2^\Omega(n)$ resolution refutation

- $w(\text{Ref}(F) \vdash \bot) \geq \tilde{\Omega}(w(\text{PHP}_s^{2s} \vdash \bot)/n) \geq \tilde{\Omega}(s/n)$

 [dRGNPRS’21]
(2) F is **UNSAT** \Rightarrow Ref(F) requires size $2^{\Omega(n)}$ resolution refutation

- $w(\text{Ref}(F) \vdash \bot) \geq \tilde{\Omega}(w(\text{PHP}_s^{2s} \vdash \bot)/n) \geq \tilde{\Omega}(s/n)$

 [dRGNPRS'21]

- [BW'01] size of resolution refutation of $\varphi \geq \exp \left(\Omega \left(\frac{w(\varphi \vdash \bot) - w(\varphi)^2}{\#\text{var}} \right) \right)$
(2) F is **UNSAT** $\Rightarrow \text{Ref}(F)$ requires size $2^{\Omega(n)}$ resolution refutation

- $w(\text{Ref}(F) \vdash \perp) \geq \tilde{\Omega}(w(\text{PHP}_s^{2s} \vdash \perp)/n) \geq \tilde{\Omega}(s/n)$

 [dRGNPRS’21]

- [BW’01] size of resolution refutation of $\varphi \geq \exp \left(\Omega \left(\frac{w(\varphi \vdash \perp) - w(\varphi)}{\#\text{var}} \right) \right)$

- Recall: $\text{Ref}(F)$ has $O(n^2 s)$ variables and width $O(\log s)$
(2) F is **UNSAT** $\Rightarrow \text{Ref}(F)$ requires size $2^{\Omega(n)}$ resolution refutation

- $w(\text{Ref}(F) \vdash \bot) \geq \tilde{\Omega}(w(\text{PHP}^{2s}_s \vdash \bot)/n) \geq \tilde{\Omega}(s/n)$
 [dRGNPRS’21]
- [BW’01] size of resolution refutation of $\varphi \geq \exp \left(\Omega \left(\frac{(w(\varphi \vdash \bot) - w(\varphi))^2}{\#\text{var}} \right) \right)$
- Recall: $\text{Ref}(F)$ has $O(n^2 s)$ variables and width $O(\log s)$

$\text{Ref}(F')$ requires size $\exp \left(\tilde{\Omega} \left(\frac{(s/n)^2}{n^2 s} \right) \right) \geq \exp \left(\tilde{\Omega} \left(\frac{s}{n^4} \right) \right)$
(2) F is UNSAT \Rightarrow Ref(F) requires size $2^{\Omega(n)}$ resolution refutation

- $w(\text{Ref}(F) \vdash \bot) \geq \tilde{\Omega}(w(\text{PHP}_s^{2s} \vdash \bot)/n) \geq \tilde{\Omega}(s/n)$
 \[\text{[dRGNPRS'21]}\]

- $[\text{BW'01}]$ size of resolution refutation of $\varphi \geq \exp \left(\Omega \left(\frac{(w(\varphi \vdash \bot) - w(\varphi))^2}{\#\text{var}} \right) \right)$

- Recall: Ref(F) has $O(n^2 s)$ variables and width $O(\log s)$

 Ref(F) requires size $\exp \left(\tilde{\Omega} \left(\frac{(s/n)^2}{n^2 s} \right) \right) \geq \exp \left(\tilde{\Omega} \left(\frac{s}{n^4} \right) \right)$

 choose $s \geq n^5$
(2) \(F \) is **UNSAT** \(\Rightarrow \) \(\text{Ref}(F) \) requires size \(2^{\Omega(n)} \) resolution refutation

- \(w(\text{Ref}(F) \vdash \bot) \geq \tilde{\Omega}(w(\text{PHP}^{2s}_s \vdash \bot)/n) \geq \tilde{\Omega}(s/n) \)

 [dRGNPRS’21]

- \([\text{BW}’01]\) size of resolution refutation of \(\varphi \) \(\geq \exp \left(\Omega \left(\frac{(w(\varphi \vdash \bot) - w(\varphi))^2}{\#\text{var}} \right) \right) \)

- Recall: \(\text{Ref}(F) \) has \(O(n^2s) \) variables and width \(O(\log s) \)

\[\text{Ref}(F) \text{ requires size } \exp \left(\tilde{\Omega} \left(\frac{(s/n)^2}{n^2s} \right) \right) \geq \exp \left(\tilde{\Omega} \left(\frac{s}{n^4} \right) \right) \]

OBS. this same lower bound proof works for PC, SA:

- degree lower bound for \(\text{PHP}^{2s}_s \)
- similar size-degree relation

\[\text{choose } s \geq n^5 \]
\(\text{PHP}^{2s}_s \leq \tilde{O}(n) \text{ Ref}(F) \)
\[
\text{PHP}^2_s \leq \tilde{\mathcal{O}}(n) \quad \text{Ref}(F)
\]
\[\text{PHP}_s^{2s} \leq \tilde{O}(n) \text{ Ref}(F) \]

Diagram showing a tree-like structure with nodes and edges illustrating the relationship between the PHP and Ref complexity class, bounded by \(\tilde{O}(n) \).
Tree-Like Resolution
(1) F is SAT \Rightarrow Ref(F) has size-$n^{O(1)}$ resolution refutation

Read-once branching program for Ref(F)

size: poly(n)
(1) F is $\text{SAT} \Rightarrow \text{Ref}(F)$ has size-$n^{O(1)}$ resolution refutation

Read-once branching program for $\text{Ref}(F)$

size: $\text{poly}(n)$

Decision tree for $\text{Ref}(F)$
(1) F is **SAT** \Rightarrow **Ref**(F) has size-$n^{O(1)}$ resolution refutation

Read-once branching program for **Ref**(F)

size: $\text{poly}(n)$

Decision tree for **Ref**(F)

size $\approx \# \text{ root-to-leaf paths} \approx s^n$
(1) F is SAT \Rightarrow Ref(F) has size-$n^{O(1)}$ resolution refutation

Read-once branching program for Ref(F)

size: poly(n)

Decision tree for Ref(F)

size \approx # root-to-leaf paths $\approx s^n$

(don’t expect upper bound to hold: would imply $NP \subseteq QP$)
“Universal refutation” (complete Binary tree: depth n)

F: $x_1 \bar{x}_2 x_4$
“Universal refutation” (complete tree: depth $h \ll n$)
"Universal refutation" (complete tree: depth $h \ll n$)

Automating Tree-Like Resolution in Time $n^{o(\log n)}$ is ETH-Hard
“Universal refutation” (complete tree: depth $h \ll n$)

\[
\frac{2^n}{h}
\]

\[
x_1x_2 \quad x_1\bar{x}_2 \quad \bar{x}_1x_2 \quad \bar{x}_1\bar{x}_2
\]

For optimal parameters: $h = \sqrt{n}$
ShallowRef\((F)\)

Variables for each block \(B\):
- \(2n\) variables (1 per literal): indicates clause
- \(2(\log s)\) variables: 2 pointers to children
 "derived from \(B_i\) and \(B_j\)"
- \(\log m\) variables: axiom-index \(j \in [m]\)

\(O(n^2s)\) variables

Axioms:
- Root: \(\perp\) clause
- Derived: valid resolution step
- Axiom: weakening of axiom

clauses of width \(O(\log s)\)

\(F:\)
ShallowRef\((F) \)

Variables for each block \(B \):
- 2\(n \) variables (1 per literal): indicates clause
- 2(\(\log s \)) variables: 2 pointers to children “derived from \(B_i \) and \(B_j \)”
- \(\log m \) variables: axiom-index \(j \in [m] \)

\(O(n^2s) \) variables

Axioms:
- Root: \(\bot \) clause
- Derived: valid resolution step
- Axiom: weakening of axiom clauses of width \(O(\log s) \)

\(\sqrt{n} \)

\(F: \)
ShallowRef(\(F\))

Variables for each block \(B\):

- 2\(n\) variables (1 per literal): indicates clause
- \(O(2\sqrt{n})\) variables: \(2\sqrt{n}\) pointers to children “derived from all children”
- \(\log m\) variables: axiom-index \(j \in [m]\)

Axioms:

- Root: \(\bot\) clause
- Derived: valid resolution step
- Axiom: weakening of axiom

clauses of width \(O(\log s)\)
ShallowRef\((F)\)

Variables for each block \(B\):

- \(2n\) variables (1 per literal): indicates clause
- \(O(2\sqrt{n})\) variables: \(2\sqrt{n}\) pointers to children “derived from all children”
- \(\log m\) variables: axiom-index \(j \in [m]\)

\[2^{O(\sqrt{n})}\] variables

OBS. Bounded degree expander between layers (requires \(2^{\Omega(\sqrt{n})}\) blocks/layer)

- Root: \(\bot\) clause
- Derived: valid resolution step
- Axiom: weakening of axiom

clauses of width \(O(\log s)\)
(1) \(F \) is \(\text{SAT} \) \(\Rightarrow \) \(\text{ShallowRef}(F) \) has size-\(2^O(\sqrt{n}) \) tree-like resolution refutation

Decision tree for \(\text{ShallowRef}(F) \)
(1) F is \textbf{SAT} \Rightarrow ShallowRef(F) has size-$2^{O(\sqrt{n})}$ tree-like resolution refutation

Decision tree for \textbf{ShallowRef(F)}

- x^* satisfying assignment for F
- invariant: x^* falsifies clause in block B

Start at root and keep invariant
until detect non-valid derivation step or
until reach leaf (cannot be weakening of axiom)
\(F \) is \(\text{SAT} \Rightarrow \text{ShallowRef}(F) \) has size-\(2^{O(\sqrt{n})} \) tree-like resolution refutation

Decision tree for \(\text{ShallowRef}(F) \)

- \(x^* \) satisfying assignment for \(F \)
- invariant: \(x^* \) falsifies clause in block \(B \)

Start at root and keep invariant until detect non-valid derivation step or until reach leaf (cannot be weakening of axiom)

OBS. Bounded degree \(\Delta \) expander

\[
\text{tree-like refutation size} \approx \Delta \sqrt{n} = 2^{O(\sqrt{n})}
\]
(2) F is **UNSAT** \Rightarrow \texttt{ShallowRef}(F) requires tree-like res refutations size $2^{\Omega(n)}$
(2) F is UNSAT \Rightarrow ShallowRef(F) requires tree-like res refutations size $2^{\Omega(n)}$

- $w(\text{ShallowRef}(F) \vdash \bot) \geq \Omega(w(\text{GPHP}_{2^{c(1+\sqrt{n})}} \vdash \bot)/n)$
(2) \(F \) is UNSAT \(\Rightarrow \) ShallowRef(\(F \)) requires tree-like res refutations size \(2^{\Omega(n)} \)

\[
\omega(\text{ShallowRef}(F) \vdash \bot) \geq \Omega(\omega(\text{GPHP}_{2^{c\sqrt{n}}}^{2^{(c+1)\sqrt{n}}}) \vdash \bot)/n \geq \Omega(2^{c\sqrt{n}}/n)
\]
(2) \(F \) is UNSAT \(\Rightarrow \) ShallowRef\((F)\) requires tree-like res refutations size \(2^{\Omega(n)} \)

- \(w(\text{ShallowRef}(F) \vdash \bot) \geq \Omega(\frac{w(\text{GPHP}_{2^{c\sqrt{n}}} \vdash \bot)}{n}) \geq \Omega(\frac{2^{c\sqrt{n}}}{n}) \)

- [BW’01] size of tree-like resolution refutation of \(\varphi \geq 2^{w(\varphi \vdash \bot) - w(\varphi)} \)
(2) F is UNSAT \Rightarrow ShallowRef(F) requires tree-like res refutations size $2^{\Omega(n)}$

- $w(\text{ShallowRef}(F) \vdash \bot) \geq \Omega(w(\text{GPHP}_{2^{c+1}\sqrt{n}}} \vdash \bot)/n) \geq \Omega(2^{c\sqrt{n}}/n)$

- [BW’01] size of tree-like resolution refutation of $\varphi \geq 2^{w(\varphi \vdash \bot) - w(\varphi)}$

- ShallowRef(F) has width $O(1)$ and $\#$ variables: $\text{poly}(n) \cdot 2^{(c+1)\sqrt{n}}$
(2) F is $\text{UNSAT} \Rightarrow \text{ShallowRef}(F)$ requires tree-like res refutations size $2^{\Omega(n)}$

- $w(\text{ShallowRef}(F) \vdash \bot) \geq \Omega(w(\text{GPHP}_{2^{(c+1)\sqrt{n}}} \vdash \bot)/n) \geq \Omega(2^{c\sqrt{n}}/n)$

- [BW’01] size of tree-like resolution refutation of $\varphi \geq 2^{w(\varphi \vdash \bot) - w(\varphi)}$

- $\text{ShallowRef}(F)$ has width $O(1)$ and # variables: $\text{poly}(n) \cdot 2^{(c+1)\sqrt{n}}$

ShallowRef(F) requires tree-like res refutation size $2^{\Omega(2^{c\sqrt{n}}/n)} \geq 2^{\Omega(n)}$
\[w(\text{ShallowRef}(F) \vdash \bot) \geq \Omega(w(\text{GPHP}_{2^{(c+1)\sqrt{n}}} \vdash \bot)/n) \geq \Omega(2^{c\sqrt{n}}/n) \]

\[[\text{BW'01}] \text{ size of tree-like resolution refutation of } \varphi \geq 2^{w(\varphi \vdash \bot) - w(\varphi)} \]

\[\text{ShallowRef}(F) \text{ has width } O(1) \text{ and } \# \text{ variables: } \text{poly}(n) \cdot 2^{(c+1)\sqrt{n}} \]

\text{ShallowRef}(F) \text{ requires tree-like res refutation size } 2^{\Omega(2^{c\sqrt{n}}/n)} \geq 2^\Omega(n)
(2) F is **UNSAT** \Rightarrow **ShallowRef**(F) requires dag-like res refutations size $2^{\Omega(n)}$

$w(\text{ShallowRef}(F) \vdash \bot) \geq \Omega(w(\text{GPHP}_{2^{2c\sqrt{n}}} \vdash \bot)/n) \geq \Omega(2^{c\sqrt{n}}/n)$

[BW’01] size of tree-like resolution refutation of $\varphi \geq 2^{w(\varphi \vdash \bot) - w(\varphi)}$

ShallowRef(F) has width $O(1)$ and $\#$ variables: $\text{poly}(n) \cdot 2^{(c+1)\sqrt{n}}$

ShallowRef(F) requires tree-like res refutation size $2^{\Omega(2^{c\sqrt{n}}/n)} \geq 2^{\Omega(n)}$
(2) \(F \) is UNSAT \(\Rightarrow \) ShallowRef\((F)\) requires dag-like res refutations size \(2^{\Omega(n)} \)

- \(w(\text{ShallowRef}(F) \vdash \bot) \geq \Omega(w(\text{GPHP}_{2^{(c+1)\sqrt{n}}} \vdash \bot)/n) \geq \Omega(2^c \sqrt{n} / n) \)

- [BW’01] size of resolution refutation of \(\varphi \) \(\geq \exp \left(\Omega \left(\frac{(w(\varphi \vdash \bot) - w(\varphi))^2}{\# \text{var}} \right) \right) \)

- ShallowRef\((F)\) has width \(O(1) \) and \# variables: \(\text{poly}(n) \cdot 2^{(c+1)\sqrt{n}} \)

ShallowRef\((F)\) requires tree-like res refutation size \(2^{\Omega(2^c \sqrt{n} / n)} \geq 2^{\Omega(n)} \)
(2) F is UNSAT \implies ShallowRef(F) requires dag-like res refutations size $2^{\Omega(n)}$

- $w(\text{ShallowRef}(F) \vdash \bot) \geq \Omega(w(\text{GPHP}_{2^{(c+1)\sqrt{n}}/n}) \vdash \bot)/n) \geq \Omega(2^c\sqrt{n}/n)$

- [BW’01] size of resolution refutation of $\varphi \geq \exp \left(\Omega \left(\frac{(w(\varphi \vdash \bot) - w(\varphi))^2}{\# \text{var}} \right) \right)$

- ShallowRef(F) has width $O(1)$ and \# variables: $\text{poly}(n) \cdot 2^{(c+1)\sqrt{n}}$

ShallowRef(F) requires dag-like res refutation size $2^{\tilde{\Omega}(2^{2c-(c+1}\sqrt{n})} \geq 2^{\Omega(n)}$
(2) \(F \) is UNSAT \(\Rightarrow \) ShallowRef\((F) \) requires dag-like res refutations size \(2^{\Omega(n)} \)

- \(w(\text{ShallowRef}(F) \vdash \bot) \geq \Omega(\frac{w(\text{GPHP}_{2c\sqrt{n}} \vdash \bot)}{n}) \geq \Omega(\frac{2^{c\sqrt{n}}}{n}) \)

- [BW’01] size of resolution refutation of \(\varphi \) \(\geq \exp\left(\Omega\left(\frac{(w(\varphi \vdash \bot) - w(\varphi))^2}{\#\text{var}}\right)\right) \)

- ShallowRef\((F) \) has width \(O(1) \) and \# variables: poly\((n) \cdot 2^{(c+1)\sqrt{n}} \)

ShallowRef\((F) \) requires dag-like res refutation size \(2^{\tilde{\Omega}(2^{2(c-(c+1))\sqrt{n}})} \geq 2^{\Omega(n)} \)

choose \(c = 2 \)
(2) F is \textbf{UNSAT} \Rightarrow \textbf{ShallowRef}(F) requires dag-like res refutations size $2^{\Omega(n)}$

- $w(\text{ShallowRef}(F) \vdash \bot) \geq \Omega(w(\text{GPHP}_{2c\sqrt{n}}^{2(c+1)\sqrt{n}} \vdash \bot)/n) \geq \Omega(2^{c\sqrt{n}}/n)$

- [BW'01] size of resolution refutation of $\varphi \geq \exp \left(\Omega \left(\frac{w(\varphi \vdash \bot) - w(\varphi)^2}{\#\text{var}} \right) \right)$

- \textbf{ShallowRef}(F) has width $O(1)$ and \# variables: $\textbf{poly}(n) \cdot 2^{(c+1)\sqrt{n}}$

\textbf{ShallowRef}(F) requires dag-like res refutation size $\tilde{2^{\Omega\left(2^{2c-(c+1)\sqrt{n}}\right)}} \geq 2^{\Omega(n)}$

OBS. this same lower bound holds for PC:
- degree lower bound for $\textbf{GPHP}_s^{\text{poly}(s)}$
- similar size-degree relation

choose $c = 2$
Generalization

If tree-like resolution is automatable:

1. in time $n^{o(\log n)}$ then ETH is false
2. in time $n^{O(\log^{1-\epsilon} n)}$ then $\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\epsilon/2})})$
3. in time $\text{poly}(n)$ then $W[\text{P}] = \text{FPT}$
Generalization

If tree-like resolution is automatable:

1. in time $n^{o(\log n)}$ then ETH is false
2. in time $n^{O(\log^{1-\varepsilon} n)}$ then $\text{NP} \subseteq \text{DTIME}(2^{O(n^{1-\varepsilon}/2)})$
3. in time $\text{poly}(n)$ then $W[\text{P}] = \text{FPT}$

Classical result in parameterized complexity [ADF’95]

If \exists algorithm that given n-variate circuit C of size m decides if C is satisfiable in time $\text{poly}(m) \cdot 2^{o(n)}$ then $W[\text{P}] = \text{FPT}$.
Generalization

Classical result in parameterized complexity [ADF’95]

If there exists an n-variate circuit C' of size m that decides if C' is satisfiable in time $\text{poly}(m) \cdot 2^{o(n)}$ then $W[1] = \text{FPT}$.
Generalization

Classical result in parameterized complexity [ADF’95]

If there exists an algorithm that given \(n \)-variate circuit \(C \) of size \(m \) decides if \(C \) is satisfiable in time \(\text{poly}(m) \cdot 2^{o(n)} \), then \(W[P] = \text{FPT} \).

Main Theorem

\(\exists \) algorithm that given \(n \)-variate circuit \(C \) of size \(m \) outputs CNF \(\mathcal{A}(C) \) in time \(\text{poly}(m) \cdot 2^{O(\sqrt{n})} \) s.t.

1. \(C \) is SAT \(\Rightarrow R^{*}(\mathcal{A}(C)) \leq \text{poly}(m) \cdot 2^{O(\sqrt{n})} \)
2. \(C \) is UNSAT \(\Rightarrow PC(\mathcal{A}(C)) \geq 2^{\Omega(n)} \)
ShallowRef\((C)\)

\[F : \]

\[m \]

\[\sqrt{n} \]

\[2^{\sqrt{n}} \]
ShallowRef(C)
Proof summary

- **Upper bound**: follow the path given by satisfying assignment
- **Lower bound**: width/degree lower bound (from PHP), size-width/degree relation
Proof summary

- **Upper bound**: follow the path given by satisfying assignment
- **Lower bound**: width/degree lower bound (from PHP), size-width/degree relation
- **Lower bound**: width/degree lower bound (from PHP), lift/relativize (needed for CP)
Proof summary

- **Upper bound**: follow the path given by satisfying assignment
- **Lower bound**: width/degree lower bound (from PHP), size-width/degree relation
- **Lower bound**: width/degree lower bound (from PHP), lift/relativize (needed for CP)

Open problems

- Other proof systems: SOS, bounded-depth Frege, stabbing planes
Proof summary

- **Upper bound**: follow the path given by satisfying assignment
- **Lower bound**: width/degree lower bound (from PHP), size-width/degree relation
- **Lower bound**: width/degree lower bound (from PHP), lift/relativize (needed for CP)

Open problems

- Other proof systems: SOS, bounded-depth Frege, stabbing planes
- Tree-like proof systems: Res\((k)\), Res\((\oplus)\), CP
Proof summary

- **Upper bound**: follow the path given by satisfying assignment
- **Lower bound**: width/degree lower bound (from PHP), size-width/degree relation
- **Lower bound**: width/degree lower bound (from PHP), lift/relativize (needed for CP)

Open problems

- Other proof systems: SOS, bounded-depth Frege, stabbing planes
- Tree-like proof systems: Res(k), Res(\oplus), CP
- Weak automatability?
Proof summary

- **Upper bound**: follow the path given by satisfying assignment
- **Lower bound**: width/degree lower bound (from PHP), size-width/degree relation
- **Lower bound**: width/degree lower bound (from PHP), lift/relativize (needed for CP)

Open problems

- Other proof systems: SOS, bounded-depth Frege, stabbing planes
- Tree-like proof systems: $\text{Res}(k)$, $\text{Res}(\oplus)$, CP
- Weak automatability?

Thanks!