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Abstract

Monotone Boolean functions, and the monotone Boolean circuits that compute them, have
been intensively studied in complexity theory. In this paper we study the structure of Boolean
functions in terms of the minimum number of negations in any circuit computing them, a
complexity measure that interpolates between monotone functions and the class of all functions.
We study this generalization of monotonicity from the vantage point of learning theory, giving
near-matching upper and lower bounds on the uniform-distribution learnability of circuits in
terms of the number of negations they contain. Our upper bounds are based on a new structural
characterization of negation-limited circuits that extends a classical result of A. A. Markov. Our
lower bounds, which employ Fourier-analytic tools from hardness amplification, give new results
even for circuits with no negations (i.e. monotone functions).
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1 Introduction
A monotone Boolean function f : {0, 1}n → {0, 1} is one that satisfies f(x) ≤ f(y) whenever x � y,
where � denotes the bitwise partial order on {0, 1}n. The structural and combinatorial properties
of monotone Boolean functions have been intensively studied for many decades, see e.g. [Kor03]
for an in-depth survey. Many famous results in circuit complexity deal with monotone functions,
including celebrated lower bounds on monotone circuit size and monotone formula size (see e.g.
[RW90, Raz85] and numerous subsequent works).

Monotone functions are also of considerable interest in computational learning theory, in
particular with respect to the model of learning under the uniform distribution. In an influential
paper, Bshouty and Tamon [BT96] showed that any monotone Boolean function f : {0, 1}n → {0, 1}
can be learned from uniform random examples to error ε in time nO(

√
n/ε). They also gave a

lower bound, showing that no algorithm running in time 2cn for any c < 1 can learn arbitrary
monotone functions to accuracy ε = 1/(

√
n logn). (Many other works in learning theory such as

[Ang88, KV94, BBL98, AM02, Ser04, OS07, OW09] deal with learning monotone functions from a
range of different perspectives and learning models, but we limit our focus in this paper to learning
to high accuracy with respect to the uniform distribution.)

1.1 Beyond monotonicity: Inversion complexity, alternations, and Markov’s
theorem.

Given the importance of monotone functions in complexity theory and learning theory, it is natural
to consider various generalizations of monotonicity. One such generalization arises from the simple
observation that monotone Boolean functions are precisely the functions computed by monotone
Boolean circuits, i.e. circuits which have only AND and OR gates but no negations. Given this, an
obvious generalization of monotonicity is obtained by considering functions computed by Boolean
circuits that have a small number of negation gates. The inversion complexity of f : {0, 1}n → {0, 1},
denoted I(f), is defined to be the minimum number of negation gates in any AND/OR/NOT circuit
(with access to constant inputs 0/1) that computes f . We write Cnt to denote the class of n-variable
Boolean functions f : {0, 1}n → {0, 1} that have I(f) ≤ t.

Another generalization of monotonicity is obtained by starting from an alternate characterization
of monotone Boolean functions. A function f : {0, 1}n → {0, 1} is monotone if and only if the
value of f “flips” from 0 to 1 at most once as the input x ascends any chain in {0, 1}n from 0n to
1n. (Recall that a chain of length ` is an increasing sequence (x1, . . . , x`) of vectors in {0, 1}n, i.e.
for every j ∈ {1, . . . , ` − 1} we have xj ≺ xj+1.) Thus, it is natural to consider a generalization
of monotonicity that allows more than one such “flip” to occur. We make this precise with the
following notation and terminology: given a Boolean function f : {0, 1}n → {0, 1} and a chain
X = (x1, . . . , x`), a position j ∈ [`− 1] is said to be alternating with respect to f if f(xj) 6= f(xj+1).
We write A(f,X) ⊆ [`− 1] to denote the set of alternating positions in X with respect to f , and we
let a(f,X) = |A(f,X)| denote its size. We write a(f) to denote the maximum of a(f,X) taken over
all chains X in {0, 1}n, and we say that f : {0, 1}n → {0, 1} is k-alternating if a(f) ≤ k.

A celebrated result of A. A. Markov from 1957 [Mar57] gives a tight quantitative connection
between the inversion and alternation complexities defined above:

Markov’s Theorem. Let f : {0, 1}n → {0, 1} be a function which is not identically 0. Then (i) if
f(0n) = 0, then I(f) = dlog(a(f) + 1)e − 1; and (ii) if f(0n) = 1, then I(f) = dlog(a(f) + 2)e − 1.
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This robustness motivates the study of circuits which contain few negation gates, and indeed such
circuits have been studied in complexity theory. Amano and Maruoka [AM05] have given bounds on
the computational power of such circuits, showing that circuits for the clique function which contain
fewer than 1

6 log logn many negation gates must have superpolynomial size. Other works have
studied the effect of limiting the number of negation gates in formulas [Mor09a], bounded-depth
circuits [ST03], constant-depth circuits [SW93] and non-deterministic circuits [Mor09b]. In the
present work, we study circuits with few negations from the vantage point of computational learning
theory, giving both positive and negative results.

1.2 Our results

We begin by studying the structural properties of functions that are computed or approximated
by circuits with few negation gates. In Section 2 we establish the following extension of Markov’s
theorem:

Theorem 1.1. Let f be a k-alternating Boolean function. Then f(x) = h(m1(x), . . . ,mk(x)), where
each mi(x) is monotone and h is either the parity function or its negation. Conversely, any function
of this form is k-alternating.

Theorem 1.1 along with Markov’s theorem yields the following characterization of Cnt :

Corollary 1.2. Every f ∈ Cnt can be expressed as f = h(m1, . . . ,mT ) where h is either PART or
its negation, each mi : {0, 1}n → {0, 1} is monotone, and T = O(2t).

A well-known consequence of Markov’s theorem is that every Boolean function is exactly
computed by a circuit which has only logn negation gates, and as we shall see an easy argument
shows that every Boolean function is 0.01-approximated by a circuit with 1

2 logn+O(1) negations.
In Section 2 we note that no significant savings are possible over this easy upper bound:

Theorem 1.3. For almost every function f : {0, 1}n → {0, 1}, any Boolean circuit C that 0.01-
approximates f must contain 1

2 logn−O(1) negations.

We then turn to our main topic of investigation, the uniform-distribution learnability of circuits
with few negations. We use our new extension of Markov’s theorem, Theorem 1.1, to obtain a
generalization of the Fourier-based uniform-distribution learning algorithm of Bshouty and Tamon
[BT96] for monotone circuits:

Theorem 1.4. There is a uniform-distribution learning algorithm which learns any unknown f ∈ Cnt
from random examples to error ε in time nO(2t

√
n/ε).

Theorem 1.4 immediately leads to the following question: can an even faster learning algorithm
be given for circuits with t negations, or is the running time of Theorem 1.4 essentially the best
possible? Interestingly, prior to our work a matching lower bound for Theorem 1.4 was not known
even for the special case of monotone functions (corresponding to t = 0). As mentioned earlier,
Bshouty and Tamon proved that to achieve accuracy ε = 1/(

√
n logn) any learning algorithm needs

time ω(2cn) for any c < 1 (see Claim 3.13 for a slight sharpening of this statement). For larger
values of ε, though, the strongest previous lower bound was due to Blum, Burch and Langford
[BBL98]. Their Theorem 10 implies that any membership-query algorithm that learns monotone
functions to error ε < 1

2 − c (for any c > 0) must run in time 2Ω(
√
n) (in fact, must make at least
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this many membership queries). However, this lower bound does not differentiate between the
number of membership queries required to learn to high accuracy versus “moderate” accuracy – say,
ε = 1/n1/10 versus ε = 1/10. Thus the following question was unanswered prior to the current paper:
what is the best lower bound that can be given, both as a function of n and ε, on the complexity of
learning monotone functions to accuracy ε?

We give a fairly complete answer to this question, providing a lower bound as a function of
n, ε and t on the complexity of learning circuits with t negations. Our lower bound essentially
matches the upper bound of Theorem 1.4, and is thus simultaneously essentially optimal in all three
parameters n, ε and t for a wide range of settings of ε and t. Our lower bound result is the following:

Theorem 1.5. For any t ≤ 1
28 logn and any ε ∈ [1/n1/12, 1/2− c], c > 0, any membership-query

algorithm that learns any unknown function f ∈ Cnt to error ε must make 2Ω(2t
√
n/ε) membership

queries.

We note that while our algorithm uses only uniform random examples, our lower bound holds
even for the stronger model in which the learning algorithm is allowed to make arbitrary membership
queries on points of its choosing.

Theorem 1.5 is proved using tools from the study of hardness amplification. The proof involves
a few steps. We start with a strong lower bound for the task of learning to high accuracy the class
of balanced monotone Boolean functions (reminiscent of the lower bound obtained by Bshouty and
Tamon). Then we combine hardness amplification techniques and results on the noise sensitivity of
monotone functions in order to get stronger and more general lower bounds for learning monotone
Boolean functions to moderate accuracy. Finally, we use hardness amplification once more to lift
this result into a lower bound for learning circuits with few negations to moderate accuracy. An
ingredient employed in this last stage is to use a k-alternating combining function which “behaves
like” the parity function on (roughly) k2 variables; this is crucial in order for us to obtain our
essentially optimal final lower bound of 2Ω(2t

√
n/ε) for circuits with t negations. These results are

discussed in more detail in Section 3.2.

2 Structural facts about computing and approximating functions
with low inversion complexity

2.1 An extension of Markov’s theorem.

We begin with the proof of our new extension of Markov’s theorem. For any A ⊆ {0, 1}n let
1[A] : {0, 1}n → {0, 1} be the characteristic function of A. For f : {0, 1}n → {0, 1} and x ∈ {0, 1}n,
we write af (x) to denote

af (x) def= max{a(f,X) : X is a chain that starts at x},

and note that a(f) = maxx∈{0,1}n{af (x)} = af (0n). For 0 ≤ ` ≤ a(f) let us write Sf` to denote
Sf`

def= {x ∈ {0, 1}n : af (x) = `}, and let T f`
def= Sf0 ∪ · · · ∪ S

f
` . We note that Sf1 , . . . , S

f
a(f) partition

the set of all inputs: Sfi ∩ S
f
j = ∅ for all i 6= j, and T fa(f) = Sf1 ∪ · · · ∪ S

f
a(f) = {0, 1}n.

We will need the following simple observation:
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Observation 2.1. Fix any f and any x ∈ {0, 1}n. If x ∈ Sf` and y � x then y ∈ Sf`′ for some
`′ ≤ `. Furthermore, if f(y) 6= f(x) then `′ < `.

Theorem 1.1. (Restated) Fix f : {0, 1}n → {0, 1} and let k def= a(f). Then f = h
(
1
[
T f0
]
, . . . ,1

[
T fk−1

])
,

where
(i) the functions 1

[
T f`
]
are monotone for all 0 ≤ ` ≤ k,

(ii) h : {0, 1}k → {0, 1} is PARk if f(0n) = 0 and ¬PARk if f(0n) = 1,
and PARk(x) = x1 ⊕ · · · ⊕ xk is the parity function on k variables. Conversely, for any monotone
Boolean functions m1, . . . ,mk, any Boolean function of the form h(m1, . . . ,mk) is k-alternating.
Proof. Claim (i) follows immediately from Observation 2.1 above. The proof of (ii) is by induction
on k. In the base case k = 0, we have that f is a constant function and the claim is immediate.

For the inductive step, suppose that the claim holds for all functions f ′ that have a(f ′) ≤ k − 1.
We define f ′ : {0, 1}n → {0, 1} as f ′ = f ⊕ 1

[
Sfk
]
. Observation 2.1 implies that Sf

′

` = Sf` for all
0 ≤ ` ≤ k − 2 and Sf

′

k−1 = Sfk−1 ∪ S
f
k , and in particular, a(f) = k − 1. Therefore we may apply

the inductive hypothesis to f ′ and express it as f ′ = h′
(
1
[
T f
′

0
]
, . . . ,1

[
T f
′

k−2
])
. Since T f

′

` = T f` for
0 ≤ ` ≤ k − 2, we may use this along with the fact that 1

[
Sfk
]

= ¬1
[
T fk−1

]
to get:

f = f ′ ⊕ 1
[
Sfk
]

= h′
(
1
[
T f
′

0
]
, . . . ,1

[
T f
′

k−2
])
⊕ ¬1

[
T fk−1

]
= h′

(
1
[
T f0
]
, . . . ,1

[
T fk−2

])
⊕ ¬1

[
T fk−1

]
and the inductive hypothesis holds (note that 0n ∈ Sfk ).

The converse is easily verified by observing that any chain in {0, 1}n can induce at most k + 1
possible vectors of values for (m1, . . . ,mk) because of their monotonicity.

Theorem 1.1 along with Markov’s theorem immediately yields the following corollary:
Corollary 1.2. Every f ∈ Cnt can be expressed as f = h(m1, . . . ,mT ) where h is either PART or
its negation, each mi : {0, 1}n → {0, 1} is monotone, and T = O(2t).

2.2 Approximation.

As noted earlier, Markov’s theorem implies that every n-variable Boolean function can be exactly
computed by a circuit with (essentially) logn negations (since a(f) ≤ n for all f). If we set a less
ambitious goal of approximating Boolean functions (say, having a circuit correctly compute f on a
1− ε fraction of all 2n inputs), can significantly fewer negations suffice?

We first observe that every Boolean function f is ε-close (with respect to the uniform distribution)
to a function f ′ that has a(f ′) ≤ O(

√
n log 1/ε). The function f ′ is obtained from f simply by

setting f ′(x) = 0 for all inputs x that have Hamming weight outside of [n/2−O(
√
n log 1/ε), n/2 +

O(
√
n log 1/ε)]; a standard Chernoff bound implies that f and f ′ disagree on at most ε2n inputs.

Markov’s theorem then implies that the inversion complexity I(f ′) is at most 1
2(logn+ log log 1

ε ) +
O(1). Thus, every Boolean function can be approximated to high accuracy by a circuit with only
1
2 logn+O(1) negations.

We now show that this upper bound is essentially optimal: for almost every Boolean function,
any 0.01-approximating circuit must contain at least 1

2 logn−O(1) negations. To prove this, we
recall the notion of the total influence of a Boolean function f : this is

Inf [f ] =
n∑
i=1

Inf i[f ], where Inf i[f ] = Prx∈{0,1}n [f(x) 6= f(x⊕i)]
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and x⊕i denotes x with its i-th coordinate flipped. The total influence of f is easily seen to equal αn,
where α ∈ [0, 1] is the fraction of all edges e = (x, x′) in the Boolean hypercube that are bichromatic,
i.e. have f(x) 6= f(x′). In Appendix A.1 we prove the following lemma:

Lemma 2.2. Suppose f : {0, 1}n → {0, 1} is such that Inf [f ] = Ω(n). Then a(f) = Ω(
√
n).

It is easy to show that a random function has influence n
2 (1−o(1)) with probability 1−2−n. Given

this, Lemma 2.2, together with the elementary fact that if f ′ is ε-close to f then |Inf(f ′)−Inf(f)| ≤
2εn, directly yields the following:

Theorem 1.3. With probability 1− 2−n, any 0.01-approximator f ′ for a random function f must
have inversion complexity I(f ′) ≥ 1

2 logn−O(1).

Remark 2.3. The results in this section (together with simple information-theoretic arguments
showing that random functions are hard to learn) imply that one cannot expect to have a learning
algorithm (even to constant accuracy) for the class Cn1

2 logn+O(1) of circuits with 1
2 logn + O(1)

negations in time significantly better than 2n. As we shall see in Section 3.1, for any fixed δ > 0 it
is possible to learn Cn( 1

2−δ) logn to accuracy 1− ε in time 2Õ(n1−δ)/ε.

3 Learning circuits with few negations

3.1 A learning algorithm for Cnt .

We sketch the learning algorithm and analysis of Bshouty and Tamon [BT96]; using the results from
Section 2 our Theorem 1.4 will follow easily from their approach. Our starting point is the simple
observation that functions with good “Fourier concentration” can be learned to high accuracy under
the uniform distribution simply by estimating all of the low-degree Fourier coefficients. This fact,
established by Linial, Mansour and Nisan, is often referred to as the “Low-Degree Algorithm:”

Theorem 3.1 (Low-Degree Algorithm ([LMN93])). Let C be a class of Boolean functions such that
for ε > 0 and τ = τ(ε, n), ∑

|S|>τ
f̂(S)2 ≤ ε

for any f ∈ C. Then C can be learned from uniform random examples in time poly(nτ , 1/ε).

Using the fact that every monotone function f : {0, 1}n → {0, 1} has total influence Inf(f) ≤
√
n,

and the well-known Fourier expression Inf(f) =
∑
S f̂(S)·|S|2 for total influence, a simple application

of Markov’s inequality let Bshouty and Tamon show that every monotone function f has∑
|S|>
√
n/ε

f̂(S)2 ≤ ε.

Together with Theorem 3.1, this gives their learning result for monotone functions.
Armed with Corollary 1.2, it is straightforward to extend this to the class Cnt . Corollary 1.2 and

a union bound immediately give that every f ∈ Cnt has Inf(f) ≤ O(2t)
√
n, so the Fourier expression

for influence and Markov’s inequality give that∑
|S|>O(2t)

√
n/ε

f̂(S)2 ≤ ε
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for f ∈ Cnt . Theorem 1.4 follows immediately using the Low-Degree Algorithm.

An immediate question is whether this upper bound on the complexity of learning Cnt is optimal;
we give an affirmative answer in the next subsection.

3.2 Lower bounds for learning.

As noted in the introduction, we prove information-theoretic lower bounds against learning algorithms
that make a limited number of membership queries. We start by establishing a new lower bound
on the number of membership queries that are required to learn monotone functions to high
accuracy, and then build on this to provide a lower bound for learning Cnt . Our query lower bounds
are essentially tight, matching the upper bounds (which hold for learning from uniform random
examples) up to logarithmic factors in the exponent.

We first state the results; the proofs are deferred to Section 3.2.1. We say that a Boolean
function f is balanced if Prx[f(x) = 0] = Prx[f(x) = 1] = 1/2.

Theorem 3.2. There exists a class H of balanced n-variable monotone Boolean functions such
that for any ε ∈ [ 1

n1/6 , 1/2− c], c > 0, learning Hn to accuracy 1− ε requires 2Ω(√n/ε) membership
queries.

This immediately implies the following corollary, which essentially closes the gap in our under-
standing of the hardness of learning monotone functions:

Corollary 3.3. For any ε = Ω
(
1/n1/6

)
bounded away from 1/2, learning n-variable monotone

functions to accuracy 1− ε requires 2Θ̃(
√
n)/ε queries.

Using this class H as a building block, we obtain the following hardness of learning result for
the class of k-alternating functions:

Theorem 3.4. For any function k : N → N, there exists a class H(k) of balanced k = k(n)-
alternating n-variable Boolean functions such that, for any n sufficiently large and ε > 0 such that
(i) 2 ≤ k < n1/14, and (ii) k7/3/n1/6 ≤ ε ≤ 1

2 − c, learning H
(k) to accuracy 1− ε requires 2Ω(k√n/ε)

membership queries.

(We note that the tradeoff between the ranges of k and ε that is captured by condition (ii) above
seems to be inherent to our approach and not a mere artifact of the analysis; see Remark 3.17.)
This theorem immediately yields the following:

Corollary 3.5. Learning the class of k-alternating functions to accuracy 1 − ε in the uniform-
distribution membership-query model requires 2Ω(k√n/ε) membership queries, for any k = O

(
n1/28

)
and ε ∈ [1/n1/12, 1

2 − c].

Corollary 3.6. For t ≤ 1
28 logn, learning Cnt to accuracy 1 − ε requires 2Ω(2t

√
n/ε) membership

queries, for any ε ∈ [27t/3/n1/6, 1
2 − c].
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3.2.1 Proofs.

We require the following standard notion of composition for two functions f and g:

Definition 3.7 (Composition). For f : {0, 1}m → {0, 1} and g : {0, 1}r → {0, 1}, we denote by
g ⊗ f the Boolean function on n = mr inputs defined by

(g ⊗ f)(x) def= g(f, . . . , f︸ ︷︷ ︸
r

)(x) = g(f(x1, . . . , xm), . . . , f(x(r−1)m+1, . . . , xrm))

Similarly, for any g : {0, 1}r → {0, 1} and Fm a class of Boolean functions on m variables, we let

g ⊗Fm = { g ⊗ f : f ∈ Fm }

and g ⊗F = {g ⊗Fm}m≥1.

Overview of the arguments. Our approach is based on hardness amplification. In order to get
our lower bound against learning k-alternating functions, we (a) start from a lower bound ruling
out very high-accuracy learning of monotone functions; (b) use a suitable monotone combining
function to get an XOR-like hardness amplification, yielding a lower bound for learning (a subclass of)
monotone functions to moderate accuracy; (c) repeat this approach on this subclass with a different
(now k-alternating) combining function to obtain our final lower bound, for learning k-alternating
functions to moderate accuracy.[

high-accuracy
monotone

]
(a)

⊗
-like

−−−−−−−−→
monotone

[
moderate accuracy

monotone

]
(b)

⊗
-like

−−−−−−−−→
k-alternating

[
moderate accuracy
k-alternating

]
(c)

(1)

In more detail, in both steps (b) and (c) the idea is to take as base functions the hard class from
the previous step (respectively “monotone hard to learn to high accuracy”, and “monotone hard
to learn to moderate accuracy”), and compose them with a very noise-sensitive function in order
to amplify hardness. Care must be taken to ensure that the combining function satisfies several
necessary constraints (being monotone for (b) and k-alternating for (c), and being as sensitive as
possible to the correct regime of noise in each case).

Useful tools. We begin by recalling a few notions and results that play a crucial role in our
approach.

Definition 3.8 (Noise stability). For f : {0, 1}n → {0, 1}, the noise stability of f at η ∈ [−1, 1] is

Stabη(f) def= 1− 2 Pr[ f(x) 6= f(y) ]

where x is drawn uniformly at random from {0, 1}n and y is obtained from x by independently for
each bit having Pr[yi = xi] = (1 + η)/2 (i.e., x and y are η-correlated).

Definition 3.9 (Bias and expected bias). The bias of a Boolean function h : {0, 1}n → {0, 1} is
the quantity bias(h) def= max(Pr[h = 1 ] ,Pr[h = 0 ]), while the expected bias of h at δ is defined as
ExpBiasδ(h) def= Eρ[bias(hρ)], where ρ is a random restriction on k coordinates where each coordinate
is independently left free with probability δ and set to 0 or 1 with same probability (1− δ)/2.
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Fact 3.10 (Proposition 4.0.11 from [O’D03]). For δ ∈ [0, 1/2] and f : {0, 1}n → {0, 1}, we have

1
2 + 1

2 Stab1−2δ(f) ≤ ExpBias2δ(f) ≤ 1
2 + 1

2

√
Stab1−2δ(f).

Building on Talagrand’s probabilistic construction [Tal96] of a class of functions that are sensitive
to very small noise, Mossel and O’Donnell [MO03] gave the following noise stability upper bound.
(We state below a slightly generalized version of their Theorem 3, which follows from their proof
with some minor changes; see Appendix A.2 for details of these changes.)

Theorem 3.11 (Theorem 3 of [MO03]). There exists an absolute constant K and an infinite family
of balanced monotone functions gr : {0, 1}r → {0, 1} such that Stab1−τ/

√
r(gr) ≤ 1−Kτ holds for

all sufficiently large r, as long as τ ∈ [16/
√
r, 1].

Applying Fact 3.10, it follows that for the Mossell-O’Donnell function gr on r inputs and any τ
as above, we have

1
2 ≤ ExpBiasγ(gr) ≤

1
2 + 1

2
√

1−Kτ ≤ 1− K

4 τ (2)

for γ def= τ√
r
.

We will use the above upper bound on expected bias together with the following key tool from
[FLS11], which gives a hardness amplification result for uniform distribution learning. This result
builds on the original hardness amplification ideas of O’Donnell [O’D03]. (We note that the original
theorem statement from [FLS11] deals with the running time of learning algorithms, but inspection
of the proof shows that the theorem also applies to the number of membership queries that the
learning algorithms perform.)

Theorem 3.12 (Theorem 12 of [FLS11]). Fix g : {0, 1}r → {0, 1}, and let F be a class of m-variable
Boolean functions such that for every f ∈ F , bias(f) ≤ 1

2 + ε
8r . Let A be a uniform distribution

membership query algorithm that learns g ⊗F to accuracy ExpBiasγ(g) + ε using T (m, r, 1/ε, 1/γ)
queries. Then there exists a uniform-distribution membership query algorithm B that learns F to
accuracy 1− γ using O(T · poly(m, r, 1/ε, 1/γ)) membership queries.

Hardness of learning monotone functions to high accuracy. At the bottom level, corre-
sponding to step (a) in (1), our approach relies on the following simple claim which states that
monotone functions are hard to learn to very high accuracy. (We view this claim, as essentially
folklore; as noted in the introduction it slightly sharpens a lower bound given in [BT96]. A proof is
given for completeness in Appendix A.3.)

Claim 3.13 (A slice of hardness). There exists a class of balanced monotone Boolean functions
G = {Gm}m∈N and a universal constant C such that, for any constants 0 < α ≤ 1/10, learning Gm
to error 0 < ε ≤ α/

√
m requires at least 2Cm membership queries.

We now prove Theorem 3.2, i.e. we establish a stronger lower bound (in terms of the range of
accuracy it applies to) against learning the class of monotone functions. We do this by amplifying
the hardness result of Claim 3.13 by composing the “mildly hard” class of functions G with a
monotone function g — the Mossel-O’Donnell function of Theorem 3.11 — that is very sensitive to
small noise (intuitively, the noise rate here is comparable to the error rate from Claim 3.13).

9



Proof of Theorem 3.2. We will show that there exists an absolute constant α > 0 such that for any
n sufficiently large and τ ∈ [ 1

n1/6 , 1/2− c], there exist m = m(n), r = r(n) (both of which are ωn(1))
such that learning the class of (balanced) functions Hn = gr ⊗ Gm on n = mr variables to accuracy
1− τ requires at least 2α

√
n/τ membership queries.

By contradiction, suppose we have an algorithm A which, for all m, r, τ as above, learns the class
Hn to accuracy 1− τ using T = TA(n, τ) < 2α

√
n/τ membership queries. We show that this implies

that for infinitely many values of m, one can learn Gm to error ε = .1/
√
m with 2o(m) membership

queries, in contradiction to Claim 3.13.
Fix any n large enough and τ ∈ [ 1

n1/6 , .1], and choose m, r satisfying mr = n and 5
K ·

τ√
r

= .1√
m
,

where K is the constant from Theorem 3.11. Note that this implies m = K
50 ·

√
n
τ ∈ [Θ(n1/2),Θ(n2/3)]

so indeed both m and r are ωn(1). (Intuitively, the value .1√
m

is the error we want to achieve to get
a contradiction, while the value 5

K ·
τ√
r
is the error we can get from Theorem 3.12.) Note that we

indeed can use the Mossel-O’Donnell function from Theorem 3.11, which requires τ > 16√
r
– for our

choice of r, this is equivalent to τ >
(

16
√
K√

50

)2/3 1
n1/6 . Finally, set ε

def= .1/
√
m.

We apply Theorem 3.12 with g def= gr, γ = (5/K)τ/
√
r and ε = τ/4. (Note that all functions in

Gm are balanced, and thus trivially satisfy the condition that bias(f) ≤ ε
8r , and recall that 1− γ is

the accuracy the theorem guarantees against the original class Gm.) With these parameters we have

ExpBiasγ(g) + ε ≤
Eq.(2)

1− K

4
5τ
K

+ τ

4 = 1− τ ≤ accuracy(A).

Theorem 3.12 gives that there exists a learning algorithm B learning Gm to accuracy 1 − γ ≥
1 − ε with TB = O(T · poly(m, r, 1/τ, 1/γ)) = O(T · poly(n, 1/τ)) membership queries, that is,
TB = TA(n, τ) · poly(n, 1/τ) < 2α

√
n/τ+o(√n/τ) many queries. However, we have 2(α+o(1))

√
n/τ =

2(α+o(1))m·
√
n

τm < 2Cm, where the inequality comes from observing that
√
n

τm = 50
K (so that it suffices

to pick α satisfying 50α/K < C). This contradicts Claim 3.13 and proves the theorem.

Remark 3.14 (Improving this result). Proposition 1 of [MO03] gives a lower bound on the best
noise stability that can be achieved by any monotone function. If this lower bound were in fact
tight — that is, there exists a family of monotone functions {fr} such that for all γ ∈ [−1, 1],
Stab1−γ(fr) = (1− γ)(

√
2/π+o(1))

√
r — then the above lower bound could be extended to an (almost)

optimal range of τ , i.e. τ ∈ [Φ(n)/
√
n, 1

2 − c] for Φ any fixed superconstant function.

From hardness of learning monotone functions to hardness of learning k-alternating
functions. We now establish the hardness of learning k-alternating functions. Hereafter we denote
by H = {gr⊗Gm}m,r the class of “hard” monotone functions from Theorem 3.2. Since gr is balanced
and every f ∈ Gm has bias zero, it is easy to see that H is a class of balanced functions.

We begin by recalling the following useful fact about the noise stability of functions that are
close to PAR:

Fact 3.15 (e.g., from the proof of Theorem 9 in [BT13]). Let r ≥ 1. If f is a Boolean function on
r variables which η-approximates PARr, then for all δ ∈ [0, 1],

Stab1−2δ(f) ≤ (1− 2η)2(1− 2δ)r + 4η(1− η). (3)
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We use the above fact to define a function that is tailored to our needs: that is, a k-alternating
function that is very sensitive to noise and is defined on roughly k2 inputs. Without the last
condition, one could just use PARk, but in our context this would only let us obtain a

√
k (rather

than a k) in the exponent of the lower bound, because of the loss in the reduction. To see why,
observe that by using a combining function on k variables instead of k2, the number of variables of
the combined function gk ⊗ Gm would be only n = km. However, to get a contradiction with the
hardness of monotone functions we shall need k

√
n/ε �

√
m/τ , where τ ≈ ε/k, as the hardness

amplification lemma requires the error to scale down with the number of combined functions.

Definition 3.16. For any odd1 r ≥ k ≥ 1, let PAR′k,r be the symmetric Boolean function on r
inputs defined as follows: for all x ∈ {0, 1}r,

PAR′k,r(x) =


0 if |x| ≤ r−k

2
1 if |x| ≥ r+k

2
PARr(x) otherwise.

In particular, PAR′k,r is k-alternating, and agrees with PARr on the k + 1 middle layers of the
hypercube. By an additive Chernoff bound, one can show that PAR′k,r is η-close to PARr, for
η = e−k

2/2r.

Proof of Theorem 3.4. H(k)
n will be defined as the class PAR′k,r ⊗Hm for some r and m such that

n = mr (see below). It is easy to check that functions in H(k)
n are balanced and k-alternating. We

show below that for n sufficiently large, 2 ≤ k < n1/14 and ε ∈ [(1/300)(k14/n)1/6, 1
2 − c], learning

H(k)
n to accuracy 1− ε requires 2Ω(k√n/ε) membership queries.
By contradiction, suppose we have an algorithm A learning for all n, k, ε as above the class

of k-alternating functions to accuracy 1− ε using TA(n, k, ε) < 2β
k
√
n
ε membership queries, where

β > 0 is a universal constant to be determined during the analysis. We claim that this implies that
for infinitely many values of m, one can learn Hm to some range of accuracies with a number of
membership queries contradicting the lower bound of Theorem 3.2.

Fix any n large enough, k and ε as above (which in particular impose k = O
(
n1/14

)
). The

constraints we impose on m, r and τ are the following:

mr = n; ExpBiasτ (PAR′k,r) + ε ≤ 1− ε; m = ωn(1); τ ≥ 1
m1/6 ; (4)

βk

√
n

ε
< α

√
m

τ
, (5)

where the constraints in (4) are for us to apply the previous theorems and lemmas, while (5) is
needed to ultimately derive a contradiction.

One can show that by taking r def=
⌊

k2

2 ln 5

⌋
≥ 1 and τ

def= 100ε
r , the second constraint of (4) is

satisfied, as then Stab1−τ (PAR′k,r) ≤ 1− 8ε (for the derivation, see Appendix Section A.4). Then,
with the first constraint of (4), we get (omitting for simplicity the floors) m def= nτ

100ε = (2 ln 5) n
k2 ,

1The above definition can be straightforwardly extended to r ≥ k ≥ 1 not necessarily odd, resulting in a similar
k-alternating perfectly balanced function PAR′k,r that agrees with PARr on k + O(1) middle layers of the cube and is
0 below and 1 above those layers. For the sake of simplicity we leave out the detailed description of the other cases.

11



so as long as k = o(
√
n), the third constraint of (4) is met as well. With these settings, the final

constraint of (4) can be rewritten as ε ≥ 1
100

(
r7

n

)1/6
= 1

100(2 ln 5)7/6

(
k14

n

)1/6
. As (2 ln 5)7/6 > 3, it is

sufficient to have ε ≥ 1
300

(
k14

n

)1/6
, which holds because of the lower bound on ε.

It only remains to check Constraint (5) holds:

k

√
n

ε
= 100k

√
n

τr
= 100 k√

r

√
m

τ
≤
(

100
√

2 ln 5
1− 2 ln 5/k2

) √
m

τ
≤ 300

√
2 ln 5 ·

√
m

τ
,

where the first inequality holds because as 1
r ≤

1
k2

2 ln 5−1
and the second holds because k ≥ 2. So for

the right choice of β = Ω(1), e.g. β = α/600, βk
√
n
ε < α

√
m
τ , and (5) is satisfied.

It now suffices to apply Theorem 3.12 to PAR′k,r ⊗Hm, with parameters γ = τ and ε, on
algorithm A, which has accuracy acc(A) ≥ 1− τ ≥ ExpBiasγ(PAR′k,r) + ε. Since the functions of
H are unbiased, it follows that there exists an algorithm B learning Hm to accuracy 1− τ , with
τ > 1/2m1/6, making only

TB(m, τ) = O(TA(n, k, ε) poly(n, k, 1/ε)) = 2βk
√
n
ε

(1+o(1)) < 2α
√
m
τ

membership queries, which contradicts the lower bound of Theorem 3.2.

Remark 3.17 (On the relation between ε and k). The tradeoff in the ranges for k and ε appear to be
inherent to this approach. Namely, it comes essentially from Constraint (4), itself deriving from the
hypotheses of Theorem 3.2. However, even getting an optimal range in the latter would still require
τ = Ω(1/

√
m), which along with r ≈ k2 and τ ≈ ε/r impose k = O

(
n1/6

)
and ε = Ω

(
k3/
√
n
)
.
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A Proofs

A.1 Proof of Lemma 2.2.

Suppose Inf [f ] ≥ αn for some α ∈ (0, 1]: this means that at least an α fraction of all edges are
bichromatic. Define the weight level k (denoted Wk) to be the set of all edges going from a vertex
of Hamming weight k to a vertex of Hamming weight k + 1 (in particular, |Wk| = (n− k)

(n
k

)
), and

consider weight levels n/2− a
√
n, . . . , n/2 + a

√
n−1 (the “middle levels”) for a def=

√
(1/2) ln(8/α).

(We suppose without loss of generality that n/2− a
√
n is a whole number.) Now, the fraction of all

edges which do not lie in these middle levels is at most

1
n2n−1 · 2

n
2−a
√
n−1∑

j=0
|Wk| ≤

2n
n2n−1

n
2−a
√
n−1∑

j=0

(
n

k

)
≤ 4

2n

n
2−a
√
n−1∑

j=1

(
n

k

)
≤ 4e−2a2 = α

2 .

So no matter how many of these edges are bichromatic, it must still be the case that at least an
α/2 fraction of all edges in the “middle levels” are bichromatic.

Since the ratio ∣∣∣Wn/2

∣∣∣∣∣∣Wn/2−a
√
n

∣∣∣ =
n
2
( n
n/2
)(

n
2 + a

√
n
) ( n
n/2−a

√
n

)
converges monotonically from below (when n goes to infinity) to C def= e2a2 , any two weight levels
amongst the middle ones have roughly the same number of edges, up to a multiplicative factor C.
Setting p = α/6C and q = α/6, this implies that at least a p fraction of the weight levels in the
middle levels have at least a q fraction of their edges being bichromatic. (Indeed, otherwise we
would have, letting bk denote the number of bichromatic edges in weight layer k,

α

2 ·
n
2 +a
√
n−1∑

k=n
2−a
√
n

|Wk|

︸ ︷︷ ︸
total

≤
n
2 +a
√
n−1∑

k=n
2−a
√
n

bk ≤
∑

k∈[n2−a
√
n,n2 +a

√
n−1]

bk>q|Wk|

|Wk|+
∑

k∈[n2 a
√
n,n2 +a

√
n−1]

bk≤q|Wk|

q · |Wk|

≤ p · 2a
√
n ·
∣∣∣Wn/2

∣∣∣+ q ·
n
2 +a
√
n−1∑

k=n
2−a
√
n

|Wk| ≤ p · C ·
n
2 +a
√
n−1∑

k=n
2−a
√
n

|Wk|+ q ·
n
2 +a
√
n−1∑

k=n
2−a
√
n

|Wk| .

So α
2 · total ≤ p · C · total + q · .total, which gives α

2 ≤
α

6C · C + α
6 = α

3 , a contradiction.)
Let S be this collection of at least 2a

√
np weight levels (from the middle ones) that each have at

least a q fraction of edges being bichromatic, and write pi to denote the fraction of bichromatic
edges in Wi, so that for each i ∈ S it holds that pi ≥ q. Consider a random chain from 0n to 1n.
The marginal distribution according to which an edge is drawn from any given fixed weight level
i is uniform on Wi, so by linearity, the expected number of bichromatic edges in a random chain
is at least

∑
i∈S pi ≥ 2a

√
npq = Ω(

√
n), and hence some chain must have that many bichromatic

edges.
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A.2 Derivation of Theorem 3.11 using Theorem 3 of [MO03].

The original theorem is stated for τ = 1, with the upper bound being 1− Ω(1). However, the proof
of [MO03] goes through for our purposes until the very end, where they set ε def= 1√

r
and need to

show that
e−2

(
1− (1− ε+ 2

√
ε/r)

√
r
)

= Ω(1).

More precisely, the proof goes overall as follows: for some realization of the Talagrand function
on r variables gr, we want (for some absolute constant K) that

1−Kτ ≥ Stab1− τ√
r
(gr) = 1− 2 Pr

[
gr ◦N1− τ√

r
(x) 6= gr(x)

]
.

That is, one needs to show Pr
[
gr ◦N1− τ√

r
(x) 6= gr(x)

]
≥ K

2 τ ; and in turn, it is sufficient to prove
that for g a random Talagrand function on r variables,

Eg

[
Pr
[
g ◦N1− τ√

r
(x) 6= g(x)

] ]
≥ K

2 τ.

This is where we slightly adapt the [MO03] proof. Where they set a parameter ε to be equal to
1/
√
r and analyze Eg[Pr[ g ◦N1−2ε(x) 6= g(x) ]], we set for our purposes ε def= τ

2
√
r
. The rest of the

argument goes through until the very end, where it only remains to show that

ae−2
(

1− (1− ε+ 2
√
ε/r)

√
r
)
≥ K

2 τ (6)

(a being a small constant resulting from the various conditionings in their proof), or equivalently,
that (1− ε+ 2

√
ε/r)

√
r ≤ 1− e2K

2a τ . But the left-hand side can be rewritten as

(1− ε+ 2
√
ε/r)

√
r = e

√
r ln(1−ε+2

√
ε/r) = e

√
r ln(1−τ/2

√
r+
√

2τ/r3/4)

= e

√
r ln
(

1− τ
2
√
r

(
1− 2

√
2√

r1/2τ

))
≤ e
−
√
r· τ2
√
r

(
1− 2

√
2√

r1/2τ

)
(as τ

2
√
r

(
1− 2

√
2√

r1/2τ

)
< 1)

= e
− τ2

(
1− 2

√
2√

r1/2τ

)
≤ e−

τ
2 (1− 1√

2
) (as τ > 16√

r
)

≤ e−
τ
7 ≤ 1− τ

8 ≤ 1− e2K

2a τ. (first as τ < 1, then for a suitable choice of K)

A.3 Proof of Claim 3.13.

We give the proof for m even; by standard techniques, it extends easily to the odd case. For any m ∈
2N, define Cm as the class of functions f generated as follows: let R = { x ∈ {0, 1}m : |x| = m/2 },
and partition R in |R|/2 pairs of elements (x`, x̄`). For all x ∈ {0, 1}m,

f(x) =


0 if |x| < m/2
r` if x ∈ R and x = x`

1− r` if x ∈ R and x = x̄`

1 if |x| > m/2
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where the |R| /2 bits r` are chosen independently and uniformly at random. Clearly, f is balanced,
and we have

|R| =
(
m

m/2

)
∼

m→∞

√
2
π
· 2m√

m
def= γ2m.

Suppose we have a learning algorithm A for Cm making q < 2Cm membership queries. Fix 0 < α ≤ 1,
and ε = α/

√
m; to achieve error at most ε overall, A must in particular achieve error at most

ε
γ =

√
π
2α on R. But after making q queries, there are still at least t = γ2m/2 − 2Cm > 0.99 |R|

points in R (for m big enough) A has not queried, and hence with values chosen uniformly at
random; on each of these points, A is wrong with probability exactly half, and in particular

Pr
[
error ≤ ε

γ

]
< Pr[ error ≤ 2α ] = Pr

[
t∑
i=1

Xi ≤ 2α |R|
]

≤ Pr
[

t∑
i=1

Xi ≤
200
99 αt

]

≤ e−
(1− 400

99 α)2t
2 = o(1)

with an additive Chernoff bound. This means that with high probability over the choice of the
target concept, A will fail to learn it to accuracy 1− ε.

A.4 Derivation of the bound Stab1−τ (PAR′k,r) ≤ 1− 8ε.

By setting r as stated we get that r ≤ k2/ ln(1/ε) and the distance between PAR′k,r and PARr
becomes η = e−k

2/2r ≤ 1/5. Since we aim at having ExpBiasτ (PAR′k,r) ≤ 1− 2ε, it is sufficient to
have

√
Stab1−τ (PAR′k,r) ≤ 1− 4ε; which would in turn be implied by Stab1−τ (PAR′k,r) ≤ 1− 8ε.

By Fact 3.15, it is sufficient to show that (1− 2η)2(1− τ)r + 4η(1− η) ≤ 1− 8ε; note that since
ε < 1/100 and by our choice of τ ,

(1− 2η)2(1− τ)r + 4η(1− η) ≤ (1− 2η)2

1 + 100ε + 4η(1− η) ≤ (1− 2η)2(1− 50ε) + 4η(1− η)

≤ (1− 4η + 4η2)(1− 50ε) + 4η(1− η)
= 1− 4η − 50ε+ 200ηε+ 4η2 − 200εη2 + 4η − 4η2

= 1− 50ε+ 200εη(1− η) ≤ 1− 50ε+ 32ε = 1− 18ε
≤ 1− 8ε.
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