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Abstract

We investigate randomized LEARN-uniformity, which captures the power of randomness and
equivalence queries (EQ) in the construction of Boolean circuits for an explicit problem. This
is an intermediate notion between P-uniformity and non-uniformity motivated by connections
to learning, complexity, and logic. Building on a number of techniques, we establish the first
unconditional lower bounds against LEARN-uniform circuits:

– For all c ≥ 1, there is L ∈ P that is not computable by circuits of size n · (log n)c generated
in deterministic polynomial time with o(log n/ log log n) equivalence queries to L. In other
words, small circuits for L cannot be efficiently learned using a bounded number of EQs.

– For each k ≥ 1, there is L ∈ NP such that circuits for L of size O(nk) cannot be learned in
deterministic polynomial time with access to no(1) EQs.

– For each k ≥ 1, there is a problem in promise-ZPP that is not in FZPP-uniform SIZE[nk].

– Conditional and unconditional lower bounds against LEARN-uniform circuits in the general
setting that combines randomized uniformity and access to EQs.

In all these lower bounds, the learning algorithm is allowed to run in arbitrary polynomial time,
while the hard problem is computed in some fixed polynomial time.

We employ these results to investigate the (un)provability of non-uniform circuit upper
bounds (e.g., Is NP contained in SIZE[n3]?) in theories of bounded arithmetic. Some questions of
this form have been addressed in recent papers of Kraj́ıček-Oliveira (2017), Müller-Bydzovsky
(2020), and Bydzovsky-Kraj́ıček-Oliveira (2020) via a mixture of techniques from proof theory,
complexity theory, and model theory. In contrast, by extracting computational information from
proofs via a direct translation to LEARN-uniformity, we establish robust unprovability theorems
that unify, simplify, and extend nearly all previous results. In addition, our lower bounds against
randomized LEARN-uniformity yield unprovability results for theories augmented with the dual
weak pigeonhole principle, such as APC1 (Jeřábek, 2007), which is known to formalize a large
fragment of modern complexity theory.

Finally, we make precise potential limitations of theories of bounded arithmetic such as PV
(Cook, 1975) and Jeřábek’s theory APC1, by showing unconditionally that these theories cannot
prove statements like “NP * BPP ∧ NP ⊂ io-P/poly”, i.e., that NP is uniformly “hard” but
non-uniformly “easy” on infinitely many input lengths. In other words, if we live in such a
complexity world, then this cannot be established feasibly.
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1 Introduction

The fundamental question in complexity theory is what can (and cannot) be feasibly computed.
A fundamental meta-question about complexity theory is what lower/upper bounds can (and can-
not) be feasibly proved. The two questions and their intimate relationship are the focus of this
paper. We show new computational complexity lower bounds, and use them to derive new unprov-
ability results. We achieve this by linking these two topics through the investigation of the efficient
learnability of small Boolean circuits for explicit computational problems. We discuss the setting
and explain our results next.

1.1 Overview: Computation, Proofs, and Learnability

Despite substantial efforts, we appear to be still far from settling basic questions about the
complexity of computations, such as the power of efficient algorithms (P vs. NP), the advantage
of randomized computations (P vs. BPP), and the limitations of non-uniform Boolean circuits
(NP vs. P/poly). We have, however, discovered many connections between these problems, and such
connections have led to significant progress in theory of computation, mathematics, and beyond
(cf. [Wig19]). In order to explain how our work relates to these fundamental problems, and the
main connection highlighted by our results, we consider two research themes.

Proofs and Computations. A more refined way to investigate P vs. NP and circuit lower
bounds, and indeed the very nature of complexity, is to measure the feasibility of a computa-
tion not just by the running time/circuit size, but also by how complicated it is to establish its
correctness/existence via a mathematical proof (see, e.g., the textbooks [Kra95; CN10]).

In this research program, we fix an appropriate formal theory T known to formalize core concepts
from algorithms and complexity, such as Cook’s theory PV [Coo75] for polynomial-time reasoning or
Buss’s theory S1

2 [Bus86], and consider the provability of a complexity upper bound in T (cf. [CK07]).
As a concrete example, if T does not prove that SAT ∈ SIZE[n3], then either there is no family of
circuits of size O(n3) that solve SAT, or any proof of the existence of such circuits requires concepts
and arguments that go beyond the reasoning capabilities of T . Consequently, as we change the
base theory T , we are able to simultaneously investigate, in a principled way, the power and limits
of proofs and computations.1

Note that establishing the unprovability of upper bounds is a necessary step towards showing
an unconditional complexity lower bound. This takes us to our next theme.

Circuit Complexity, Uniformity, and Randomness. Given that proving circuit lower bounds
is a notoriously difficult task, several works focused instead on lower bounds against strongly uni-
form families of Boolean circuits, such as DLOGTIME-uniform constructions (cf. [Vol99]). Such
results become more difficult to obtain when one considers weaker notions of uniformity. Indeed,
establishing lower bounds for SAT against P-uniform Boolean circuits of polynomial size is equiva-
lent to separating P and NP, while proving exponential lower bounds against non-uniform circuits
provides an approach to show that P = BPP [IW97].

The investigation of intermediate notions between P-uniform and non-uniform circuits is also
well motivated (see, e.g., [SW14]). For instance, in order to separate P and BPP, it is sufficient
to study randomized uniformity. Relevant to the discussion below, we note that non-uniformity is

1A proof that PV cannot show that SAT ∈ P would significantly advance our understanding of efficient computa-
tions and proofs. Such a result would be implied by a super-polynomial proof size lower bound against the Extended
Frege proof system, a central open question in proof complexity (cf. [Kra19]).
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essentially equivalent to zero-error polynomial-time uniformity with access to an NP oracle, since
small circuits for a hard problem like SAT, when they exist, can be produced in FZPPNP [Bsh+96].
Thus, from the perspective of proving lower bounds, the extension of P-uniformity with randomness
and arbitrary NP queries takes us to non-uniform constructions. In particular, this suggests the
possibility of a rich landscape of uniformity notions between P-uniformity and FZPPNP-uniformity.
As explained next, this turns out to be indeed the case.

A recurring theme in this work is that a mathematical proof of the existence of an object
often provides more information about the object than just existence. This leads to a far-reaching
connection between provability on the one hand, and circuit uniformity on the other hand: if a
theory T proves that a problem admits small Boolean circuits, then such circuits admit a uniform
construction that, while weaker than P-uniformity, is not as general as FZPPNP-uniformity. As a
consequence, establishing certain uniform circuit lower bounds implies that the theory T does not
prove a corresponding non-uniform circuit upper bound.

Interestingly, the right notion of uniformity in this context is related to a natural class of
learning algorithms with access to equivalence queries (EQ).2 This motivates the investigation
of LEARN-uniform Boolean circuits, which are families of circuits for a language L that can be
efficiently constructed with access to the EQ oracle that answers the following question when queried
with a candidate circuit C: Does C compute L? If so, the oracle answers “yes”; otherwise, the
oracle answer is a counterexample: an (arbitrary) input x such that L(x) 6= C(x).3 Provability in
more powerful theories naturally leads to randomized learning algorithms for constructing Boolean
circuits for L, which are significantly more difficult to analyze.

Motivated by this connection and its consequences, we initiate a systematic investigation of
lower bounds against randomized uniformity and LEARN-uniformity. In addition to making explicit
the relation between provability of non-uniform circuit upper bounds and learnability, our main
contributions are:

(i) Building on advances from the study of uniform circuits [SW14], (un)provability of upper
bounds [CK07; KO17; BKO20], and randomness in computation [LOS21], we establish un-
conditional circuit lower bounds against weaker uniformity notions.

(ii) By extracting computational information from proofs via a direct translation to different
forms of LEARN-uniformity, we establish several robust unprovability theorems that unify,
simplify, and extend nearly all previous results [KO17; BM20; BKO20].

(iii) Our lower bounds against the expressive model of randomized LEARN-uniformity yield un-
provability results for theories augmented with the dual weak pigeonhole principle, such as
APC1 [Jeř07a], which can formalize a large part of modern complexity theory [MP20].

(iv) Finally, we show certain separations between uniform and non-uniform computations (e.g., the
possibility that both NP * BPP and NP ⊆ io-SIZE[poly]), if true, cannot be proved feasibly.

We now explain our results in more detail and contrast them with previous work.

2A more general notion of Student-Teacher games that is also motivated by provability has been studied in several
works (cf. [Kra95]). In contrast, our setup is specific to the provability of circuit upper bounds.

3Learnability with EQs is a well-known research area in computational learning. Here, however, we are mainly
concerned with proving the learnability lower bounds for a fixed and known language.
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1.2 Results

1.2.1 Unconditional LEARN-Uniform Circuit Lower Bounds

For concreteness, our results refer to standard Boolean circuits consisting of AND, OR, and
NOT gates of fan-in at most two. For a circuit size bound s(n) and a query bound r(n), we
say that a language L is in LEARNEQ[r]-uniform SIZE[s] if there is a deterministic polynomial-time
algorithm A that, when given 1n as input and oracle access to an equivalence query (EQ) oracle for
L, makes at most r(n) queries to the oracle on circuits of size ≤ s(n) defined over n input variables,
and outputs a circuit C of size ≤ s(n) that computes Ln (i.e., L restricted to {0, 1}n). A query to
the oracle EQ on a circuit D returns “correct” if D = Ln; otherwise it returns a counterexample
x ∈ {0, 1}n such that D(x) 6= Ln(x). Note that the learner must succeed after making at most r(n)
queries, no matter which particular counterexamples are provided by the EQ oracle.

In some results, we will also consider the standard search problem Search-SAT: Given a Boolean
formula ϕ of bitlength n, decide if ϕ is satisfiable, and if it is, then output a satisfying assignment of
ϕ. Note that this is equivalent to the promise problem of producing a satisfying assignment on any
input formula that is satisfiable. This is a fundamental computational problem both in complexity
theory and in the context of SAT solvers. In order to discuss the construction of Boolean circuits
that solve Search-SAT, we adapt our LEARN-uniform framework as follows: the EQ oracle, when
queried on a (multi-output) circuit D, outputs “correct” if D solves Search-SAT on all satisfiable
formulas of length n, or a pair (ϕ, z) with ϕ(z) = 1 (i.e., a satisfiable formula with a proof of
satisfiability) such that D fails to find a satisfying assignment on ϕ (i.e., ϕ(D(ϕ)) = 0). We call an
oracle of this form a Search-SAT-EQ oracle.

We establish the following lower bounds against circuits that can be deterministically con-
structed using equivalence queries.

Theorem 1.1 (Lower bounds against deterministic LEARN uniformity).

1. For all k ≥ 1, there is a language L ∈ P such that L /∈ LEARNEQ[O(1)]-uniform SIZE[nk].

2. For all C ≥ 1 and r(n) = o(log n/ log logn), P * LEARNEQ[r(n)]-uniform SIZE[n · (log n)C ].

3. For all k ≥ 1, NP * LEARNEQ[no(1)]-uniform SIZE[nk].

4. For all k ≥ 1, NP * LEARNEQ[nO(1)]-uniform SIZE[nk] or

Search-SAT /∈ LEARNSearch-SAT-EQ[nO(1)]-uniform SIZE[nk].

Discussion. Items 1 and 2 show that there are relatively easy problems such that small circuits for
them cannot be learned deterministically in polynomial time using a bounded number of equivalence
queries. As we move from P to NP, we are able to handle more equivalence queries in the lower bound
(Item 3 of Theorem 1.1). Finally, Item 4 of Theorem 1.1 rules out polynomial-time constructions
with an arbitrary number of equivalence queries for some computational task that can be efficiently
solved with nondeterminism.

We stress that, in each lower bound stated in Theorem 1.1, the hard problem can be solved in
some fixed polynomial-time bound, while our notions of uniformity allow computations of arbitrary
polynomial time (which moreover are granted access to an EQ oracle). For this reason, simple
diagonalization arguments are not sufficient to establish the lower bounds stated in Theorem 1.1
and in the rest of this paper.

In contrast to Items 1 and 2 of Theorem 1.1, [SW14] established that P * P-uniform SIZE[nk].
Their approach forms the base case of our lower bounds, which in addition need to handle up to
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o(log n/ log logn) EQs. As we explain in Appendix A, even a single EQ can provide significant
power to uniform constructions. Note that one can eliminate each EQ with n bits of advice, but it
is unclear how to analyze the P/O(n)-uniform constructions resulting from the elimination of O(1)
EQs. The fact that the lower bound from [SW14] does not easily extend to EQs is precisely what
creates technical difficulties in the unprovability result from [KO17].

In contrast to Items 3 and 4 of Theorem 1.1, [SW14] proved that NP * PNP
|| -uniform SIZE[nk].

Our results are incomparable in this case, as we need to handle up to nO(1) adaptive EQs, and
each EQ can produce about n bits of information, as opposed to the yes/no answer provided by
an NP oracle. Building on ideas from [CK07], we present in Appendix B a strengthening of the
aforementioned result of [SW14], which is also the starting point for the proof of Items 3 and 4.

Randomized uniformity. Before we consider randomized LEARN-uniform circuits, we turn our
attention to the simpler setting of randomized uniformity. Perhaps surprisingly, it seems that a
proper complexity-theoretic investigation of this notion has not been carried out until our work.
For this reason, we discuss randomized uniformity in more detail.

First, observe that there are two ways of defining P-uniformity. One approach is to insist
that the direct-connection language Ldc of the circuit family {Dn}n≥1 (roughly, the description of
the internal structure of a circuit) is decidable in polynomial time. Another approach is to allow a
polynomial-time computable function F such that F (1n) outputs a (complete description of) circuit
that computes Ln. It is not hard to see that, for this deterministic case, these two definitions are
equivalent. However, when we consider efficient probabilistic computations, it is unclear if the
analogous definitions coincide. On the one hand, if Ldc ∈ BPP (i.e., BPP-uniformity), then there
is a probabilistic polynomial-time algorithm A such that A(1n) outputs a complete description of
the circuit Dn with high probability. (This can be seen as a pseudo-deterministic construction
of circuits for L, using the notion of [GG11].) On the other hand, however, the existence of a
probabilistic polynomial-time algorithm B such that B(1n) outputs with high probability some
circuit that computes Ln (i.e., FBPP-uniformity) does not provide a fixed sequence of circuits for
L, as B may output different circuits for Ln for different random coin tosses. While BPP-uniformity
and its zero-error analogue, ZPP-uniformity, might be useful in some applications, the functional
definitions are more general and considerably harder to analyze.4

Formal definitions of the notions discussed above are provided in Section 2.4. We establish the
following lower bounds against randomized uniformity.

Theorem 1.2 (Lower bounds against randomized uniformity). For all k ≥ 1, we have the following:

1. ZPP * ZPP-uniform SIZE[nk].

2. BPP * BPP-uniform SIZE[nk].

3. promise-ZPP * FZPP-uniform SIZE[nk].

4. MA * FBPP-uniform SIZE[nk].

Discussion. Items 1 and 2 of Theorem 1.2 and Items 3 and 4 are incomparable: the notion of
circuit uniformity is more general in the latter, but the hard problems lie in larger complexity
classes. While we are not aware of directly related results in uniform circuit complexity, we recall

4Note that BPP = FBPP-uniform SIZE[poly]. Also, the standard proof that BPP ⊂ P/poly produces FBPP-uniform
circuits, as different ways of fixing the randomness of an algorithm induce different (deterministic) Boolean circuits.
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the following non-uniform lower bound: [San09] proved that MA/1 * SIZE[nk], and it is a well-
known open problem to remove the advice bit. Theorem 1.2 Item 4 shows that this is possible at
the cost of replacing non-uniformity by FBPP-uniformity.

In terms of technical contributions, Items 1, 2, and 4 of Theorem 1.2 follow by easy adaptations
of existing techniques. We have included them here as they provide context for our results and
open problems, and in particular complement our most interesting contribution in Theorem 1.2,
which is the lower bound against FZPP-uniformity in Item 3. The proof of this result makes use
of a very recent pseudodeterministic PRG against polynomial-time computations [LOS21], which
is combined in a non-trivial way with other techniques. We say more about this in Section 1.3.

Randomized LEARN-uniformity. Finally, we consider randomized LEARN-uniformity, which
combines FBPP-uniformity and the power of equivalence queries, and can be viewed as a kind of
“interactive” uniformity. By asking an extra EQ, we can always assume that the learner is zero-
error : it either outputs a correct circuit of size s, or a fail symbol “⊥”. We allow the learner
to use fresh randomness after receiving the answer to each EQ, and as before, we require the
learner to succeed with high probability no matter the counterexamples provided by the EQ or-
acle. If a size s circuit for language L can be learned this way with at most r EQs, we say that
L ∈ FZPP-LEARNEQ[r]-uniform SIZE[s]. Analyzing randomized LEARN-uniform constructions is
significantly more delicate than proving lower bounds against randomized uniformity or determin-
sitic LEARN-uniformity, as correctness of the learner on a given execution depends both on its
random choices and the provided counterexamples; see Section 2.4 for a formal treatment.

Before we state our lower bounds against randomized LEARN-uniform circuits, recall that
ZPP ⊆ NP ⊆ MA ⊆ ZPPNP (cf. [GZ11]), and that it is a frontier challenge to establish circuit lower
bounds for ZPPNP

|| = ZPPNP[O(logn)] (see [DPV18] for a recent reference). It is also unknown if

almost-everywhere circuit lower bounds hold for MA/O(1) (i.e., lower bounds against io-SIZE[nk]).
A result of this form would have interesting applications (see, e.g., [MW20]).

Following the terminology introduced in [TV07], we use MA//a to denote MA with a(n) advice
bits per input length n that can depend on the random string of the verifier. We let io-SIZEO[s]
denote the class of languages that can be computed on infinitely many input lengths by a circuit
of size s(n) with oracle access to the language O.

Theorem 1.3 (Lower bounds against randomized LEARN uniformity).
If Search-SAT ∈ FZPP-LEARNSearch-SAT-EQ[O(1)]-uniform SIZE[poly], then for every k ≥ 1,

MA//O(1) 6⊂ io-SIZESAT[nk] and ZPPNP[O(1)] 6⊂ io-SIZESAT[nk].

Discussion. In particular, we get an unconditional lower bound against randomized LEARN-
uniform circuits constructed with a constant number of EQs for either Search-SAT or a language
in ZPPNP[O(1)]. This should be contrasted with a result of [San09] showing that ZPPNP[O(1)]/1 6⊂
SIZE[nk].5 The latter does not impose a uniformity condition on the circuits, but computing the
hard language requires advice.

Next, we use these lower bounds to show unprovability results in bounded arithmetic.

1.2.2 Unprovability of Non-Uniform Circuit Upper Bounds in Bounded Arithmetic

Bounded arithmetic theories are fragments of Peano Arithmetic with close ties to computa-
tional complexity and proof complexity. They present a formal notion of reasoning of a predefined

5The standard proof that MA ⊆ ZPPNP [GZ11] actually shows that MA ⊆ ZPPNP[2].
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complexity, with important examples including Cook’s theory PV [Coo75] of polynomial-time rea-
soning, Jeřábek’s theory APC1 [Jeř04; Jeř05; Jeř07a; Jer09] for probabilistic polynomial time,6 and
Buss’s theory S1

2 [Bus86]; in this work, we follow the equivalent two-sorted formulation7 of [CN10],
where PV becomes VPV1, APC1 becomes VAPC1, and S1

2 becomes V1. Informally, a theory captures
reasoning in a complexity class C when the totality of every functions in C is provable within the the-
ory, and, moreover, a proof of a (specific kind of an) existential statement yields an algorithm in the
same class C to compute a witness for that existential quantifier. Such witness-finding algorithms
for various theories of bounded arithmetic follow from the corresponding witnessing theorems, which
exemplify the constructive nature of (existence) proofs in such theories. The witnessing theorems
play the main role in all our unprovability results (see Section 2.5 for more details).

There is a veritable zoo of theories of various power, and numerous works exploring their
connections to complexity theory and proof complexity; see [CN10; Bus97; Kra95; Kra19] for
an introduction. For example, theory VLV (logarithmic-space reasoning) proves the existence of
expander graphs [Bus+20]; VPV1 (polynomial-time reasoning) formalizes a proof of the PCP the-
orem [Pic15b]; and VAPC1 (probabilistic polynomial-time reasoning) establishes the correctness of
randomized algorithms for perfect matching [LC11] and formalizes advanced circuit lower bounds
[MP20].8 For this reason, showing the consistency of a complexity lower bound with such theories
(equivalently, the unprovability of a complexity upper bound) is a significant (and necessary) step
towards understanding computational intractability.

Building on the seminal work of Cook and Kraj́ıček [CK07], [KO17; BM20; BKO20] combined
techniques from logic and complexity theory to establish the unprovability of various complexity
upper bounds in different theories of bounded arithmetic, exploiting appropriate witnessing the-
orems for these theories. However, these witnessing theorems alone are not sufficient to derive
unprovability results, due to the lack of lower bounds against the corresponding notions of circuit
uniformity. To overcome this issue, these papers developed ad-hoc arguments that required, among
other ideas, the formalization of complexity results and dealing with the specifics of the theory.

In contrast, as a consequence of the stronger circuit lower bounds stated in Section 1.2.1,
we establish new results in bounded arithmetic and recover nearly all unprovability results from
[KO17; BM20; BKO20]. Since the formalization of circuit complexity in bounded arithmetic has
been discussed in detail in [Pic15a; KO17; BKO20; MP20] and would require a proper introduction
to bounded arithmetic, we provide here only an informal overview of our results, and refer to the
body of the paper for further discussion.

Theorem 1.4 (Unprovability results for theories VLV, VPV1, V1, and VPV2, informal). For all
k ≥ 1, we have the following:

1. VLV 0 L ⊆ BP-SIZE[nk] (VLV does not prove logspace has branching program size O(nk)).

2. VPV1 0 P ⊆ SIZE[nk].

3. V1 0 NP ⊆ io-SIZE[poly] ∩ io-SIZESAT[nk]. In particular, V1 0 NP ⊆ SIZE[nk].

4. VPV2 0 PNP ⊆ SIZESAT[nk] (where VPV2 captures PNP reasoning).

6The APCi terminology comes from [BKT14] and has been used by other references, such as [MP20].
7The two-sorted framework allows one also to discuss theories capturing small complexity classes within P, e.g.,

theory VLV capturing logarithmic space L.
8See also [Oja04; Lê14] for formalizations in bounded arithmetic of several additional results from algorithms,

probabilistic and extremal combinatorics, and complexity theory.
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Discussion. Theorem 1.4 (Items 2–4) recovers nearly all results from [KO17; BM20; BKO20] on
the unprovability of circuit upper bounds, with the exception of some extensions to infinitely often
inclusions, which we do not systematically pursue here. On the other hand, Theorem 1.4 Item 1
does not have a counterpart in these papers. It is obtained by an adaptation of our LEARN-uniform
lower bound results to the bounded-space setting (see Appendix D).

Thanks to the direct extraction of a LEARN-uniform sequence of circuits from a proof, the
unprovability statements in Theorem 1.4 are all robust with respect to details of the formalization.
For example, let L ∈ NP be the language granted by Theorem 1.4 Item 3 such that V1 0 ϕc,k, where
ϕc,k is a V1-sentence stating that L ∈ SIZE[cnk]. While one can use different algorithms (verifiers)
to specify L when fixing the sentence ϕc,k, as a consequence of our approach via a reduction to an
unconditional lower bound, this is inessential in Theorem 1.4. In previous works, this robustness
was not always clear, or at least required a more elaborate argument.

Probabilistic polynomial-time reasoning. Our lower bounds against randomized LEARN-
uniform circuits can be used to show results for theories extended with various forms of the dual
weak pigeonhole principle (dWPHP), such as Jeřábek’s theories VAPC1 (VPV1 + the dWPHP axiom
scheme) and VAPC2 (the analogue theory extending VPV2). Informally, for a function symbol
F of a theory T , the dWPHP(F )nm axiom (think of m = n + log n for instance) states that if
F : {0, 1}n → {0, 1}m then there exists a “hole” y ∈ {0, 1}m such that no “pigeon” x ∈ {0, 1}n
satisfies F (x) = y. From a computational perspective, this axiom takes us from the polynomial-time
reasoning domain (VPV1) to the probabilistic polynomial-time reasoning domain (VAPC1). This is
because it might not be feasible to produce a string y with this property deterministically, but a
random y is likely to satisfy this condition. Probabilistic arguments are widespread in theoretical
computer science, and it is quite remarkable that the dWPHP axioms alone can provide enough
power for VAPC1 to bootstrap a convenient fragment of probability theory [Jeř04; Jeř05; Jeř07a]
and to establish a vast number of results in algorithms and complexity theory (see, e.g., [LC11;
BKT14; MP20] and references therein).

Theorem 1.5 (Unprovability results for theories extended with dWPHP, informal). For all k ≥ 1,
the following results hold, under appropriate formalizations.

1. VAPC1 does not prove that ZPPNP[O(1)] ⊆ io-SIZE[nk].9

2. VAPC1 does not prove that MA//O(1) ⊆ io-SIZE[nk].10

3. Either V1 + dWPHP 0 SAT ∈ io-SIZE[poly], or ZPPSearch-SAT-EQ * io-SIZESAT[nk].11

4. Either VAPC2 0 SAT ∈ io-SIZE[poly], or ZPPNP * io-SIZESAT[nk]. In particular, VAPC2 0
ZPPNP ⊆ io-SIZE[nk].

Discussion. Given our limited understanding of probabilistic computations and the expressive
reasoning power of theories with dWPHP, it is challenging to establish unprovability results for

9We prove the stronger result that either VAPC1 0 SAT ∈ io-SIZE[poly], or ZPPNP[O(1)] * io-SIZESAT[nk]. However,
it is not clear how to express the latter in VAPC1, as this theory might not be expressive enough to define ZPPNP.

10In order to discuss randomness-dependent advice and to talk about a language L ∈ MA//O(1) in VAPC1, we need
to consider a relativized version of VAPC1 which includes a new relation symbol for the advice function.

11We say that a language L ∈ ZPPSearch-SAT-EQ if there is a zero-error polynomial time algorithm that computes
L when given access to an (arbitrary) Search-SAT-EQ oracle. As opposed to LEARN-uniform constructions, this
algorithm, when computing on input length n, can make oracle queries using circuits on m input bits and of size
poly(m), where m is arbitrary.
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VAPC1 and its extensions. The proof of Theorem 1.5 Item 1 requires several ideas and is one of the
most technical arguments of the paper (see Section 1.3).

In comparison with Theorem 1.4, the upper bounds that we show to be unprovable in Theorem
1.5 are for larger uniform classes, and are close to existing unconditional lower bounds. For instance,
Theorem 1.5 Item 4 should be contrasted with the separation ZPPNP * SIZE[nk] [KW98], while
Item 2 should be contrasted with the lower bounds of [San09; MW20] for MA with advice (note
that neither of these results rules out an infinitely often upper bound). Perhaps surprisingly, in
the case of Item 3, we show that ZPPSearch-SAT-EQ ⊆ io-SIZE[poly], which is believed to be false
for ZPPNP.12 Improving the results in Theorem 1.5 is an important direction for future work (see
Section 1.4).

Unprovability of simultaneous uniform lower bounds and non-uniform upper bounds.
Finally, we revisit the relation between provability of circuit upper bounds and the extent to which
theories of bounded arithmetic can distinguish uniform and non-uniform computations.

Theorem 1.6 (Limits of provability: uniform separations vs. non-uniform inclusions, informal).

1. VPV1 0 (NP * P) ∧ (NP ⊆ io-SIZE[poly]).

2. VAPC1 0 (NP * BPP) ∧ (NP ⊆ io-SIZE[poly]).

Discussion. Theorem 1.6 shows in a precise sense that if uniform computations are “weak” and
non-uniform computations are “strong”, then this cannot be proved feasibly. In order to establish
this result, we essentially show that the polynomial-time reasoning of VPV1 is not “fine-grained”
enough to distinguish between polynomial-time algorithms and polynomial-size circuits, resulting in
the clash between the assumptions of non-existence of polytime algorithms and existence of polysize
circuits that decide SAT on infinitely many input lengths. The proof utilizes the constructive nature
of these theories, expressed though appropriate witnessing theorems (cf. Section 2.5), where the
witnessing theorem appropriate for the circuit upper bound (KPT Witnessing) is played against
the witnessing theorem appropriate for the uniform lower bound (Buss’s Witnessing).

1.3 Techniques

In this section, we explain in more detail some of the techniques used to prove our circuit lower
bounds and unprovability theorems. First, we sketch the ideas behind the proof of Theorem 1.1
Item 1, which shows a LEARN-uniform circuit lower bound for a problem in P. After that, we
explain the witnessing theorem for VPV1, its connection to LEARN-uniform circuits, and how the
aforementioned circuit lower bound implies an unprovability result for VPV1 in a direct way (Theo-
rem 1.4 Item 2). We then discuss some challenges and techniques associated with the investigation
of theories with dWPHP (Theorem 1.5) and randomized uniformity (Theorems 1.2 and 1.3). We
refer to the body of the paper for the techniques and proofs that we do not cover here.

A lower bound against deterministic LEARN-uniform circuits. As in [KO17], the starting
point of our proof is a beautiful result established by [SW14] that P * P-uniform SIZE[nk], which in

our notation can be equivalently stated as P * LEARNEQ[0]-uniform SIZE[nk]. As explained below,
a slightly stronger version of their result will serve as the base case of our inductive argument,
which proceeds via a delicate query elimination strategy.

12We prove the stronger result that BPPSearch-SAT-EQ ⊆ io-SIZE[poly], which provides a natural example of the power
of non-uniformity and infinitely often constructions. See Section 4.4 and Appendix C for more details.
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First, we note that the argument in [SW14] also establishes the following result: either (i) P *
SIZE[nk] (i.e., we have hardness against non-uniform circuits), or (ii) H /∈ io-P/nδ-uniform SIZE[nk]
(i.e., we have almost-everywhere hardness against uniform circuits constructed with nδ bits of
advice), where δ = 1/2k and H ∈ P is an explicit problem obtained from a time-hierarchy theorem.

We can assume that P ⊆ SIZE[nk], since otherwise we are done. Under this assumption, we show
the following “Query Elimination Lemma” (Lemma 3.5): If H ∈ LEARNEQ[r]/a(n)-uniform SIZE[nk]
for some advice function 1 ≤ a(n) ≤ nδ, then H ∈ LEARNEQ[r−1]/a′(n)-uniform SIZE[nk], where
a′(n) ≤ (log n) · a(n)k. In other words, we can eliminate an equivalence query at the cost of an
increase in the advice complexity of the learning algorithm. Note that constantly many applications
of this lemma together with the base case imply Theorem 1.1 Item 1.

In order to prove the Query Elimination Lemma, we consider the first EQ made by the learner,
and argue that it can be correctly answered in polynomial time with a small increase in advice
complexity. Let C be the corresponding circuit of size ≤ nk used as input to the EQ. Since, by
assumption, (i) is false, (ii) must hold. Therefore, using that a(n) ≤ nδ, C cannot compute H on
inputs of length n. Thus, in order to answer this query and establish the lemma, it is sufficient to
produce in polynomial time and with a bounded increase in advice complexity some counterexample,
i.e., an input x such that C(x) 6= H(x).

The language H employed by [SW14] is defined via a hierarchy theorem against determin-
istic time with sub-linear advice. As a key idea, we explore in our argument a “compressible-
counterexample” extension of this hierarchy result (Lemma 2.5). In other words, we argue that
not only an algorithm of bounded running time and advice complexity fails to compute H, but it
must also be incorrect on some n-bit string that admits a short and efficient encoding. (This is
somewhat similar to a recent strategy implemented in [CLW20], where a complexity lower bound
established via a hierarchy theorem is explicitly witnessed.) While it seems that we have made
progress, there is another difficulty: in the proof of the time-hierarchy theorem, to enforce that
H ∈ P, we can only diagonalize against algorithms running in a fixed polynomial-time bound nc.
However, in LEARN-uniformity, the learner can run in any polynomial time bound. Thus, this is
not sufficient to guarantee the existence of a counterexample of the desired form.

It turns out that a similar issue is also present (and addressed) by the lower bound argument
from [SW14]. By combining their techniques and the idea presented above in a non-black-box way,
it is possible to complete the proof of the Query Elimination Lemma.

By a careful implementation of this approach, we can also go beyond r = O(1) EQs in the
context of almost-linear size circuits (Theorem 1.1 Item 2). This is not possible using the less
explicit approach of [KO17]. (The latter employs an iterative argument that composes r different
polynomial-time algorithms extracted from successive applications of Herbrand’s Theorem. This
is no longer a polynomial-time computation if r = ω(1).) Note, however, that the Query Elimi-
nation Lemma mentioned above cannot be applied more than log n/ log log n times, as the advice
complexity becomes too large and we can no longer contradict the base case.

Provability of non-uniform upper bounds and LEARN-uniformity. VPV1 is a univer-
sal theory (its axioms do not contain existential quantifiers) whose function symbols represent
polynomial-time algorithms. We will rely on the following Witnessing Theorem from [KPT91],
which states that if ϕ(X,Y, Z) is a quantifier-free formula and VPV1 ` ∀X ∃Y ∀Z ϕ(X,Y, Z), then
there is a constant k ≥ 1 and VPV1-terms T1, . . . , Tk such that:

T ` ∀X ∀Z1 . . . ∀Zk [ϕ(X,T1(X), Z1) ∨ ϕ(X,T2(X,Z1), Z2) ∨ · · · ∨ ϕ(X,Tk(X,Z1, . . . , Zk−1), Zk)] .

In other words, if the original sentence is provable in VPV1, so is the sentence above. Most impor-
tantly for us, from the soundness of VPV1, this statement is true. Unlike the previous works [KO17;
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BM20; BKO20], this is all we need from logic. We explain next how to think about this sentence
as an interactive protocol, and how this perspective naturally yields LEARN-uniform circuits when
the initial sentence ∀X ∃Y ∀Z ϕ(X,Y, Z) states a non-uniform circuit upper bound.

The KPT Witnessing Theorem has the following intuitive interpretation due to [KPS90]. Con-
sider a search problem Q(X), where on input X, we need to find a string Y such that ∀Z ϕ(X,Y, Z).
Then Q(X) is solvable by the following k-round Student-Teacher protocol : The student starts by
suggesting T1(X) as a solution Y to the search problem Q(X). Either it is correct, or there is a
counterexample Z1 such that ¬ϕ(X,T1(X), Z1). Then a teacher provides some such counterexam-
ple value Z1, and the protocol proceeds to the next round. Generally, in round 1 ≤ i ≤ k, a student
computes Ti(X,Z1, . . . , Zi−1) (based on the counterexamples Z1, . . . , Zi−1 received in the previous
rounds), which is either a correct value for Y and we are done, or there is a counterexample value
Zi, provided by a teacher, such that ¬ϕ(X,Ti(X,Z1, . . . , Zi−1), Zi), in which case we continue to
the next round i+ 1. The correctness guarantee is that, for every input X, the student successfully
solves the search problem Q(X) in some round 1 ≤ i ≤ k.

In the proof of Theorem 1.1 Item 2, we are concerned with the provability of non-uniform
circuit upper bounds for a language L, which can be formalized as follows: for all n ≥ 1 there
exists a circuit C of size ≤ c · nk such that for all inputs z of length n, C(z) = L(z). For L ∈ P,
this statement can be captured by sentences of the form ∀X ∃Y ∀Z ϕ(X,Y, Z), as discussed above
(think of X as 1n, Y as the Boolean circuit C, and Z as the n-bit string z). According to this
dictionary, from the provability of a circuit upper bound, we obtain a Student-Teacher protocol
for the search problem Q(1n), where the student proposes a candidate circuit C, and the teacher
provides a counterexample z to C (an input z such that C(z) 6= L(z)) if one exists. Moreover, the
student always succeeds after at most k queries, no matter the counterexamples provided by the
teacher. Finally, on every choice of n, the student computes according to a constant number of fixed
VPV1 terms T1, . . . , Tk. Since a term of VPV1 is just a composition of finitely many VPV1 function
symbols (polynomial-time algorithms), it follows that the student computes in polynomial time. In
other words, from provability in VPV1 of a non-uniform circuit upper bound for a language in P,
we can extract a LEARNEQ[O(1)]-uniform SIZE[nk] family of circuits for L.

Therefore, by starting with a language L ∈ P such that circuits of size O(nk) for L cannot be
deterministically learned in polynomial time with constantly many EQs, we get that VPV1 cannot
establish non-uniform circuit upper bounds for L.

Jeřábek’s theory VAPC1 and the dWPHP principle. One faces interesting challenges when
trying to show the unprovability of circuit upper bounds in the stronger theory VAPC1 = VPV1 +
dWPHP(VPV1), which adds to VPV1 a collection of axioms dWPHP(F ), one for each polynomial-
time algorithm F in the vocabulary of VPV1. As mentioned in Section 1.2.2, dWPHP(F ) roughly
says that for every n and m(n) > n, if we consider the restriction F : {0, 1}n → {0, 1}m, then
there is y ∈ {0, 1}m such that for no x ∈ {0, 1}n we have F (x) = y. Since dWPHP(F ) is not a
universal sentence, VAPC1 is not a universal theory, and the KPT Witnessing Theorem does not
directly apply to VAPC1. Using a well-known technique from logic (a self-contained exposition
appears in Section 4.3), it is possible to extend the list of function symbols in the vocabulary of
VAPC1 in order to define a conservative extension13 of VAPC1 that has a universal axiomatization.
Roughly speaking, we introduce for each axiom dWPHP(F ) of VAPC1 a new function symbol F ′,
and postulate that F ′(1n) explicitly computes a string y of the desired form. Having done this, it
is possible to apply the KPT Witnessing to the resulting universal theory. Let T1, . . . , Tk for some
k = O(1) be the terms (in the vocabulary of the extended theory) that appear in the conclusion

13That is, a formula without the new function symbol is provable in the extended theory iff it is provable in VAPC1.
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of the KPT Witnessing Theorem when we apply it to a sentence of the appropriate form. Notice
that we can no longer claim that each term Ti computes a polynomial-time function, since Ti might
refer to one of the new function symbols F ′. We discuss next how this issue can be mitigated with
the use of probabilistic polynomial-time computations.

Provability of a sentence in a sound theory implies that the sentence is true in any model of
the theory. In particular, if we assign correct values to all inputs of F ′ relevant in a proof, given
the values of the other relevant variables, we preserve the correctness of the corresponding Student-
Teacher protocol. A natural strategy is to use randomness to define the value of a function F ′

on relevant inputs of the form 1n, since a random string y likely falls outside the range of F . A
careful implementation of this idea allows us to establish a (semantic) KPT Witnessing Theorem
for VAPC1, Theorem 4.7 below.14 Oversimplifying a bit, we show that the provability of a non-
uniform upper bound in VAPC1 yields a FZPP-LEARNEQ[O(1)]-uniform algorithm that outputs a
correct circuit with non-negligible probability. Thus lower bounds against randomized LEARN-
uniform constructions that succeed with 1/nΩ(1) probability for a language in P, or for Search-SAT,
imply a corresponding unprovability result for VAPC1.

Lower bounds against randomized notions of circuit uniformity. We now discuss the
techniques that go into the proof of Theorem 1.2 Item 3 and Theorem 1.3. As alluded to before,
an aspect of randomized uniform constructions (FZPP-uniformity) that makes them difficult to
analyze is that different circuits can be produced for different random coin tosses of the underlying
algorithm. This becomes even more intricate in the presence of EQs (FZPP-LEARNEQ[·]-uniformity),
where the final circuit output by the learner depends on its internal random choices and on the
sequence of counterexamples.

To prove a lower bound against FZPP-uniform SIZE[nk] (Theorem 1.2 Item 3), we combine
several ideas. The starting point for this proof is that the separation P * P-uniform SIZE[nk] from
[SW14] can be adapted to show that ZPP * ZPP-uniform SIZE[nk] (recall that this corresponds
to a simpler pseudodeterministic form of circuit uniformity, where a fixed circuit of each length
is produced with high probability). Moreover, we can tolerate in this lower bound up to nε bits
of advice, for some constant ε(k) > 0. Given this, as a natural goal, we attempt to show that
any FZPP-uniform construction (which might output different circuits) can be converted into a
ZPP-uniform construction (which outputs a canonical circuit) that uses up to nε bits of advice. To
achieve that, we view the computation of the FZPP algorithm A(1n, w) as a function of its random
string w. We have Prw[A(1n, w) 6= ⊥] ≥ 1/2, and since A is zero-error, if this event happens A must
output a correct circuit. Thus to get a lower bound it would be sufficient to have a polynomial-time
computable PRG G of seend length ≤ nε that fools the set {w | A(1n, w) 6= ⊥}: by fixing a seed
z such that A(1n, G(z)) 6= ⊥, we can convert the FZPP-uniform construction into a ZPP-uniform
construction that uses ≤ nε bits of advice to encode z, contradicting an existing lower bound.

While constructing a PRG with these properties is a major open problem, in a very recent work,
[LOS21] established unconditionally the existence of a pseudo-deterministic PRG G′ computable
with one bit of advice and with seed length ≤ nε that fools fixed polynomial-time computations
(such as A(1n, ·)). This allows us to make progress on our plan of using a PRG and a short seed
to fix a circuit in the output of the FZPP computation. Nevertheless, three challenges still remain:
(1) G′ needs 1 bit of advice; (2) G′ is computable with two-sided error, while we need a zero-error
construction; and (3) G′ only works infinitely often, which does not contradict the ZPP-uniform

14Note that assigning an independent random string yn as F ′(1n) for all values of n ∈ N will not satisfy the
dWPHP(F ) axiom, since the probability of succeeding might converge to zero. However, on each input, the student
in the Student-Teacher protocol queries F ′ on a constant number of inputs, and setting the remaining values of F ′

in a valid way guarantees the correctness of the protocol, since it agrees with some model of the theory.
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lower bound (since it is not an almost-everywhere lower bound). We are able to sidestep (1)
by settling for a (weaker) lower bound for a problem in promise-ZPP instead of ZPP. However,
(2) and (3) are more serious issues, and in order to overcome them, an argument that is more
involved than our current plan seems unavoidable. Briefly, to address (2) and to make two-sided
error computations zero-error, we rely on a win-win argument based on the easy witness method
[Kab00; IKW02]. On the other hand, to address (3), we do not rely on the lower bound against
ZPP-uniformity with advice as a black-box. Our argument requires a more delicate case analysis,
and we refer to the actual proof for the details.

Due to use of the pseudodeterministic PRG with 1 bit of advice from [LOS21], the approach de-
scribed above does not yield a lower bound for a language L (i.e., a non-promise problem). Further-
more, the pseudodeterministic PRG from [LOS21] is not known to fool computations with advice
complexity (log n)ω(1), which might be useful when combining the Query Elimination Lemma with
an inductive argument. So, to prove lower bounds against FZPP-LEARNEQ[O(1)]-uniform SIZE[nk]
(Theorem 1.3), we must proceed in a different way.

A direct analysis of FZPP-LEARNEQ[·]-uniform constructions seems challenging: after each query
and counterexample, the learner employs fresh random bits and makes a new equivalence query
that can depend on previous queries, randomness, and obtained counterexamples. As an important
conceptual idea in our proof, we introduce a new model of randomized LEARN-uniformity where
the learner must flip all its random coins in advance of interacting with the EQ oracle. We call this
FZPPrf-LEARNEQ-uniformity, where rf stands for randomness first (see Section 2.4). In this model,
the randomness of the learner is public, and for most choices of its random string, it must behave
as a deterministic learner and succeed no matter the counterexamples provided by the EQ oracle.

In general, it is not clear if every randomized learner can be converted into a randomness-first
learner without blowing up its query complexity and/or running time, since an adversarial EQ
oracle might be able to produce counterexamples that are not so helpful once it has knowledge of
future decisions of the learner. Crucially, we are able to show that, for Search-SAT, a simulation is
possible without increasing the number of queries, while the overhead in the running time can be
kept polynomial if the initial number of queries is constant.

The proof is done in two steps. First, we rely on a certain parallel repetition procedure that
amplifies the success probability of the initial learner without increasing its query complexity. This
explores specific aspects of the Search-SAT problem and of its corresponding equivalence oracle
Search-SAT-EQ, and we refer to Lemma 3.26 for more details. After that, we prove via a delicate
argument that a randomized learner that succeeds with overwhelming probability and that makes
only constantly many queries can be converted into a randomness-first learner. See Lemma 3.29
for the details.

Obtaining lower bounds against randomness-first learners is a more accessible task. Intu-
itively, for most choices of the random string, we can pretend that we have a correct deterministic
LEARNEQ[O(1)]-uniform construction. In order to prove Theorem 1.3, we combine the aforemen-
tioned simulation result with ideas used in the proof of Theorem 1.1 (Items 3 and 4).

1.4 Open Problems

As explained above, there is a rich landscape of circuit uniformity notions between P-uniformity
and non-uniformity, and for the purpose of proving circuit lower bounds for explicit problems, non-
uniformity is essentially equivalent to FZPPNP-uniformity (see Proposition 3.31). The fundamental
connections between mathematical proofs and computation explored here show that some some of
these notions are particularly interesting and appear in a natural context.

Our unconditional circuit lower bounds and unprovability results suggest several challenges and
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frontiers to advance this research program. First, we mention problems related to randomized
uniformity and LEARN uniformity.

1. In connection with Theorem 1.1 (Items 1 and 2), is it possible to establish that
P * LEARNEQ[O(logn)]-uniform SIZE[nk]?

2. Motivated by Theorem 1.1 (Items 3 and 4), prove that NP * LEARNEQ[poly]-uniform SIZE[nk].

3. Strengthen Theorem 1.2 (Item 3) by showing that ZPP * FZPP-uniform SIZE[nk].

4. Motivated by Theorem 1.3, prove that ZPPNP[O(1)] * FZPP-LEARNEQ[O(1)]-uniform SIZE[nk].

We finish with a few related questions about the provability of circuit complexity bounds for
explicit computational problems.

5. Improve the consequence of Theorem 1.4 (Item 3) by proving that V1 0 P ⊆ SIZE[nk]. Using
the witnessing theorem for V1, it is enough to show that P * LEARNEQ[poly]-uniform SIZE[nk]
(note that this is a strengthening of Problems 1 and 2).

6. In connection with Theorem 1.5 (Item 1), prove that VAPC1 0 ZPP ⊆ SIZE[nk]. A first step
might be to obtain solutions to Problems 3 and 4.

7. Finally, can we establish the independence of some natural question in circuit complexity
from a theory such as VPV1? In particular, can we narrow the gap between our results and
the recent result from [PS21] on the unprovability of strong circuit lower bounds in VPV1?

The remainder of the paper. We give the necessary background in Section 2. Our LEARN-
uniform circuit lower bounds are proved in Section 3: Theorem 1.1 Items 1 and 2 in Section 3.1,
and Items 3 and 4 in Section 3.2; Theorem 1.2 Items 1 and 3 in Section 3.3, and Items 2 and 4 in
Section 3.4; Theorem 1.3 is also proved in Section 3.4. Our unprovability in bounded arithmetic
results of Theorems 1.4 and 1.5 are proved in Section 4. Finally, Theorem 1.6 is proved in Section 5.
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2 Preliminaries

2.1 Notation

We use the notation 〈M〉 for a reasonable binary encoding of mathematical object M . To denote
a machine supplied with a particular sequence of advice α, we abuse notation to write M/α.

The ‘◦’ symbol denotes a pairing operation on binary strings so that, given strings x and y,
z = x ◦ y is efficiently computable such that x and y can be efficiently recovered from z; moreover,
we require that |x ◦ y| ≤ |x|+ |y|+O(log |x|).15

15The following standard encoding works: Given x and y, let ` = |x|. Construct z = x ◦ y as follows: write ` in
binary, repeating each bit twice; add a “separator” 01 to signal the end of the encoding of `; and then append the
concatenation of x and y. Clearly, |z| = 2 log |x|+ 2 + |x|+ |y|, and one can efficiently recover x and y from z.
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2.2 Complexity Theory Basics

We assume the basic notions of complexity theory [AB09]. Sometimes we need to use an NP
oracle which, when the oracle query answer is “yes”, will also produce a witness proving that the
answer is “yes”. This type of NP oracle access is denoted by NP[wit, k], where k ∈ N is the number
of queries allowed to be made to the NP oracle. When k is a large enough (say, polynomial in the
input size), then a standard search-to-decision reduction for NP can be used to produce witnesses,
thereby obviating the need for wit; however, when k is small, say a constant, the use of wit seems
essential.

We will need the notion of randomized semantic complexity classes with advice dependent on
randomness, introduced by [TV07] for the case of BPP. Their definition naturally generalizes to
the cases of AM and MA.

Definition 2.1. We say that L ∈ AM//a(n) if there is a deterministic polynomial t(n)-time predi-
cate A and a function α such that, for every n ≥ 1,

Prr∈{0,1}t(n)

[
∀x ∈ {0, 1}n

(
x ∈ L⇐⇒ ∃y ∈ {0, 1}t(n) A(x, y, r, α(r))

)]
≥ 3

4
,

and |α(r)| = a(n) for |r| = t(n).

Definition 2.2. We say that L ∈ MA//a(n) if there is a polynomial t(n)-time algorithm A and a
function α such that, for every n ≥ 1 and every x ∈ {0, 1}n,

x ∈ L =⇒ ∃y ∈ {0, 1}t(n) Prr∈{0,1}t(n) [A(x, y, r, α(r))] ≥ 2/3,

x 6∈ L =⇒ ∀y ∈ {0, 1}t(n) Prr∈{0,1}t(n) [A(x, y, r, α(r))] ≤ 1/3,

and |α(r)| = a(n) for |r| = t(n).

We will often use the following diagonalization result by Kannan [Kan82].

Lemma 2.3 ([Kan82]). For any L ∈ PH and any k ≥ 1, PH 6⊂ io-SIZEL[O(nk)].

We also need the following well-known Karp-Lipton Theorem.

Theorem 2.4 ([KL80; KL82]). If SAT ∈ SIZE[poly], then PH = Σp
2.

2.3 Compressible-Counterexample Hierarchy Theorem

The classic Deterministic Time Hierarchy Theorem of Hartmanis and Stearns [HS65] implies
an almost-everywhere hierarchy against sublinear advice inside P, i.e.,

DTIME[nb+1] 6⊆ io-DTIME[nb]/o(n).

In fact, it implies more: There is a “hard” language in DTIME[nb+1] and a simple efficient “refuter”
algorithm that is able to point out an error input for any given candidate nb-time TM with advice,
and, moreover, this error input is of a very special form that is highly compressible.

Lemma 2.5 (Almost Everywhere P Hierarchy with compressible counterexamples). There is a
language Hb ∈ DTIME[nb+1] satisfying the following:
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• counterexamples: Every candidate nb-time TM M with advice α = {αn}n∈N, for |αn| ∈
o(n), that tries to compute Hb will make a mistake an n-bit input

xerror = 〈M〉 ◦ αn ◦ π,

where π ∈ {0}∗ is a padding string whose length is chosen so that |xerror| = n, for all
sufficiently large input lengths n ≥ 1.

• compressibility of counterexamples: The counterexample input xerror ∈ {0, 1}n is
efficiently compressible to |αn| + O(1) bits by dropping the padding π, and can be efficiently
reconstructed from 〈M〉 ◦ αn by adding back the padding π of appropriate length.16

Proof sketch. Define Hb to be decidable by the following TM A: “On input x ∈ {0, 1}n, try to
interpret x = 〈M〉 ◦ αn ◦ π for some TM M and strings αn ∈ {0, 1}∗ and π ∈ {0}∗. If not possible,
then reject. Otherwise, simulate TM M with advice αn on input x for at most nb time steps, and
accept iff M rejects.”

2.4 Definitions of Circuit Uniformity

A family {Cn}n≥1 of n-input circuits is called uniform if there is a uniform algorithm that, given
n, computes some fixed binary encoding 〈Cn〉 of the circuit Cn. It is common to use the direct
connection encoding of circuits: 〈Cn〉i = 1 iff i encodes a triple (g, h, r) such that g and h gate names
(indices), r is the type of g (AND/OR/NOT/INPUT/OUTPUT, and in case of INPUT, which of
the n input bits g is), and h is a gate feeding in to g in case the type r is not INPUT. Note that if
Cn has s gates, then the direct-connection encoding of Cn is of length |〈Cn〉| ≤ exp(3 log s) ≤ s3.

Remark 2.6. For most of the paper, we need just two properties from binary encodings 〈Cn〉 of
n-input circuits Cn on s(n) gates:

• |〈Cn〉| ≤ poly(s(n)), and

• there is a polytime algorithm for the circuit value problem: given 〈Cn〉 and x ∈ {0, 1}n as
inputs, compute the value Cn(x).

There are two ways to define efficient uniformity: ask for the string function F (n) = 〈Cn〉 to
be efficiently computable (say in time polynomial in n), or ask for the Boolean bit function of the
encoding f(n, i) = 〈Cn〉i to be efficiently computable.

The first way is about the search problem: given n, find a circuit Cn. It can be defined using
uniform function complexity classes as follows.

Definition 2.7 (FC-uniformity). For a uniform complexity class FC of string functions, a language
L is in

FC-uniform SIZE[s(n)]

if there exists an FC function F such that F (1n) outputs a string 〈Cn〉 encoding some n-input
circuit Cn on at most s(n) gates such that Cn correctly computes L ∩ {0, 1}n.

Before giving the second way of defining uniformity, we define padded Direct Connection Lan-
guage (DCL). Fix some canonical (direct connection) encoding 〈Cn〉 of circuits Cn.

16This is under the assumption that the length n is known, which will be the case in our applications. In general,
however, we can always add n in binary to the compressed image, getting 〈M〉◦n◦αn, of length |αn|+2 logn+O(1).
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Definition 2.8 (padded DCL). Let C = {Cn}n≥1 be a circuit family, and let pad(n) ≥ 0. Define
the padded Direct Connection Language for C as follows:

pad(n)-DCL(C) = {(n, 1pad(n), i) | 〈Cn〉i = 1},

where n is given in binary, and the padding pad(n) in unary.

If 0-DCL(C) ∈ P, we say that the circuit family C is polylogtime-uniform. If n-DCL(C) ∈ P, we
say that C is P-uniform. More generally, we have the following definition of C-uniformity for any
uniform complexity class C.

Definition 2.9 (C-uniformity). For a uniform complexity class C, a language L is in

C-uniform SIZE[s(n)]

if there exists a family C = {Cn}n≥1 of n-input circuits computing L ∩ {0, 1}n, with each Cn
containing at most s(n) gates, such that n-DCL(C) ∈ C.

Remark 2.10. It is easy to see that P-uniformity is the same as FP-uniformity. However, a
difference emerges for function classes where the string computed by a function is not uniquely
determined by the input. For example, for the class FNP of NP search problems, F (1n) may output
different circuit descriptions 〈Cn〉 of correct small circuits for a given language L on different
accepting computation branches. Similarly, for randomized search classes like FZPP or FBPP, the
final output string depends on the actual randomness used by the algorithm. Finally, for F (1n)
defined by a learning algorithm with Equivalence Queries (see Definition 2.12 below), the resulting
correct output 〈Cn〉 also depends on the particular answers to the equivalence queries.

Definition 2.11 (Equivalence Query (EQ)). Given a search problem to produce a size at most
s(n) circuit Cn in some circuit class Λ for some Boolean n-variate function f , an equivalence query
(EQ) for f is defined as follows: Given a circuit C ′n ∈ Λ of size at most s(n) (a “candidate” circuit
for f), the output of the EQ is either “yes” if ∀x ∈ {0, 1}n C ′n(x) = f(x) or a counterexample: an
n-bit string xerror such that C ′n(xerror) 6= f(xerror). The choice of the counterexample is arbitrary.

By allowing a bounded number of proper equivalence queries, we generalize the notion of FC-
uniformity as follows.

Definition 2.12 (LEARN-uniformity). For a uniform function class FC, a language L is in

FC-LEARNEQ[r(n)]-uniform SIZE[s(n)]

if there exists an EQ-learning algorithm F ∈ FC such that, F (1n) asks at most r(n) equivalence
queries for L∩{0, 1}n, using candidate circuits in SIZE[s(n)], and finally outputs a description of an
s(n)-gate circuit Cn computing L ∩ {0, 1}n. (For the case FC = FP, we will write LEARN without
the prefix FP.)

Remark 2.13. Note that LEARNEQ[0]-uniformity is exactly the FP-uniformity defined above. On
the other hand, having one equivalence query is strictly more powerful than having zero equivalence
queries! See Proposition A.1 in Section A of the appendix for details.

We further generalize all the uniformity notions defined above by allowing the uniformity algo-
rithms (in C or FC) some amounts of non-uniform advice. We use the standard complexity-theoretic
notation “/a(n)” to indicate that we allow a(n) bits of advice for inputs of length n.
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Randomized LEARN Uniformity. When we allow a randomized algorithm to interact with
the EQ oracle, different definitions of randomized LEARN uniformity are possible. This happens
because a query to the EQ oracle might admit more than one valid answer. Consequently, the
success of a learner no longer depends only on the choice of its random string. Note that, since
the learning algorithm can check with the EQ oracle before committing to the final answer, the
randomized LEARN uniformity model can be assumed to be zero error by the addition of a final
EQ query.

• FZPPrf-LEARNEQ
δ . A more restrictive definition is to say that one can fix the randomness of

the learning algorithm A first, so that, with probability ≥ δ(n) over the choice of randomness
r ∈ {0, 1}poly(n), we obtain a deterministic algorithm Ar that correctly solves the learning
task, for all possible sequences of valid answers from the EQ oracle. Note that here the
same randomness must be used for every possible sequence of EQ answers. We will use
FZPPrf-LEARNEQ to denote this model, where rf stands for “Randomness First”.

• FZPP-LEARNEQ
δ . The most natural definition is to allow the randomized learning algorithm to

use fresh randomness after each interaction with the EQ oracle. We model this computation
by an algorithm A that during the i-th stage of its computation, for 1 ≤ i ≤ r(n) + 1,
has access to input (1n, w1, z1, . . . , wi−1, zi−1,wi), where wj , zj encode previous choices of
random strings and answers provided by the oracle, respectively, and wi is a fresh random
string. Consequently, the execution of A(1n) can be viewed as a rooted tree Tn, where each
maximal path starting from the root is described by a string (w1, z1, . . . , wr, zr, wr+1) and
fully specifies the circuit produced by A.

The success probability of A(1n) is defined recursively via a function γn. (For simplicity, we
assume that in each path exactly r = r(n) queries are made by A(1n) before it outputs a final
circuit.) For a terminal node v = (w1, z1, . . . , wr, zr, wr+1), we let γn(v) = 1 if the output
circuit Cv is correct, and γn(v) = 0 otherwise. In general, there are two cases to consider. For
an internal node of the form v = (w1, z1, . . . , wi, zi), we let γn(v) = E[γn(v,wi+1)]. Finally,
for an internal node v of the form v = (w1, z1, . . . , wi), we let γn(v) = minzv γn(v, zv), where
zv ranges over the possible answers (counterexamples or “correct”) to the i-th query Cv. We
define the success probability of A(1n) as γn(ε), where ε denotes the top node of Tn, and
require that γn(ε) ≥ δ(n).

When the success probability δ is omitted, we tacitly assume δ = 3/4.17

Crucially, the definition of FZPP-LEARNEQ guarantees that if fresh randomness is employed in
each stage, no matter the answers returned by the oracle, provided that they are always correct we
will obtain a correct circuit with probability at least γn(ε). (This can be established by a simple
inductive argument on r.) In some cases, when lower bounding the success probability of a concrete
algorithm A, it might be possible to argue that, in any “good” partial path (w1, z1, . . . , wi−1, zi−1),
with probability at least 1−δ over wi, a “good” random choice is made. In this case, one can lower
bound the overall success probability γ(ε) by (1−δ)r+1 ≥ 1−(r+1) ·δ. Note that this is useful if we
can guarantee δ ≤ 1/3(r + 1). For instance, a general setting where such an analysis is possible is
when the algorithm A is obtained by the obvious randomized simulation of a deterministic algorithm
B that has access to equivalence queries and moreover can make queries to an oracle computing a
language in BPP.

17One way to interpret the two definitions is that in randomness-first learners, the choice of random string is
public and made in advance (i.e., the learner behaves deterministically after that). On the other hand, in the general
learning model, the randomness used by the learner is in a sense private, as the learner can use a “fresh” choice of
randomness after each oracle answer is provided, and the oracle cannot anticipate its future decisions.
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2.5 Bounded Arithmetic and Witnessing Theorems

We will use two-sorted (second-order) theories of bounded arithmetic as in [CN10] (using the
second-order vocabulary introduced by [Zam96]); for the equivalent first-order theories, see, e.g.,
[Bus86; Kra95; Kra19]. In such two-sorted theories, one sort is for natural numbers, usually
denoted by lower-case letters i, j, n,m, . . . , and the other sort is for finite binary strings (sets of
numbers), usually denoted by upper-case letters X,Y, . . . . The only available primitive operations
on strings are the string length, |X|, and the bit predicate X(i). The numbers serve as indices for
the strings, while the strings are the main inputs for Boolean devices (Turing machines or circuits)
usually considered in complexity theory; when numbers are used as inputs for Boolean devices, they
are assumed to be presented in unary notation. Number functions, denoted by lower-case letters
f, g, . . . , output numbers; string functions, denoted by upper-case letters F,G, . . . , output strings;
both kinds of functions may have any combination of number and string inputs.

A formula ϕ in a vocabulary L is a ΣB
i (L)-formula if it has at most i alternating blocks of

bounded string quantifiers ∃∀∃ . . . , and all number quantifiers are bounded; when the vocabulary
L is clear from the context, we will drop its explicit mention. For example, a ΣB

0 -formula has no
string quantifiers, but may have bounded number quantifiers. We denote by T ` ϕ the statement
that theory T proves formula ϕ; and by N � ϕ the statement that ϕ is true in the standard model
N of natural numbers.

We will primarily need the theories VPV1 and V1 (isomorphic to the first-order theories PV1 and
S1

2, respectively), and their approximate-counting extensions with dual Weak Pigeonhole Principles,
VPV1 +dWPHP and V1 +dWPHP (isomorphic to the first-order theories APC1 = PV1 +dWPHP and
S1

2 + dWPHP, respectively). We recall that each theory postulates a slightly different version of the
axiom dWPHP(F )nm, i.e., the corresponding axiom scheme can differ with respect to the relation
between the parameters n (which controls the number of pigeons) and m(n) (which controls the
number of holes). We review the necessary axioms in Section 4 when discussing each theory.

For our purposes, the most important features of these systems of bounded arithmetic are the
concomitant witnessing theorems. Informally, these are results saying that if one can prove the
existence of a “good” object within a system like VPV1 or V1, then one can also extract an efficient
algorithm that will construct (witness) such a “good” object. Depending on the complexity of the
formula defining the “goodness” condition (and on the system of bounded arithmetic used), one
may get a polytime witnessing algorithm (cf. Buss’s Witnessing Theorem 2.14 below) or a polytime
learning algorithm in the model of exact learning with equivalence queries (cf. KPT Witnessing
Theorems 2.16 and 2.17 below).

Theorem 2.14 (Buss’s Witnessing for V1 [Bus86]). Suppose that, for a ΣB
1 -formula ϕ,

V1 ` ∀X ∃Y ϕ(X,Y ).

Then there is an FP algorithm F such that N � ∀X ϕ(X,F (X)).

The following analogue of Buss’s Witnessing for VPV1 can be proved using the Herbrand The-
orem (see, e.g., [CN10, Corollary VIII.2.5]).

Theorem 2.15 (Witnessing for VPV1). Suppose that, for a ΣB
0 -formula ϕ,

VPV1 ` ∀X ∃Y ϕ(X,Y ).

Then there is an FP algorithm F such that N � ∀X ϕ(X,F (X)).

The following is a version of the classical Herbrand Theorem (see, e.g., [CN10, Theorem VIII.6.1]
for the proof).
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Theorem 2.16 (KPT Witnessing [KPT91]). Let T be an universal theory with vocabulary L.
Suppose that, for a ΣB

0 (L)-formula ϕ,

T ` ∀X ∃Y ∀Z ϕ(X,Y, Z).

Then there exist a constant k ≥ 1 and a sequence T1, . . . , Tk of L-string-terms such that

T ` ∀X ∀~Z [ϕ(X,T1(X), Z1) ∨ ϕ(X,T2(X,Z1), Z2) ∨ · · · ∨ ϕ(X,Tk(X,Z1, . . . , Zk−1), Zk)] .

Theorem 2.16 applies to every theory whose axioms are universally quantified formulas. In
particular, it applies to the universal theory VPV1, yielding a polytime learning algorithm (student)
with constantly many counterexample queries (asked of the teacher).

Since V1 is not a universal theory, we cannot apply Theorem 2.16 directly to get KPT Witnessing
for it. However, it is possible to derive a KPT-style Witnessing Theorem for V1, using Theorem 2.14.

Theorem 2.17 (KPT Witnessing for V1 [Kra92; Pud92]). Suppose that, for a ΣB
1 -formula ϕ,

V1 ` ∀X ∃Y ∀Z(|Z| ≤ |X|) ϕ(X,Y, Z).

Then there is an FP algorithm A such that

N � ∀X ∀Z(|Z| ≤ |X|) ϕ(X,A(X), Z),

assuming A has access to the counterexample oracle O(X,Y ), which returns a string Z ≤ |X| such
that ¬ϕ(X,Y, Z) if such a counterexample Z exists, or outputs “yes” if Y is good for all Zs.18

KPT Witnessing Theorems exist also for VPV1 + dWPHP and V1 + dWPHP; see Section 4 for
the statements and proofs.

Finally, we will also use Parikh’s theorem, which can be viewed as a precursor to the witnessing
theorems for bounded arithmetic stated above. This theorem applies to any polynomial-bounded
theory (extending I∆0, and axiomatized by bounded formulas, where each function in the vocabu-
lary is polynomially bounded). In particular, Parikh’s theorem applies to all theories considered in
our paper. When such a theory proves ∀X ∃Y ϕ(X,Y ), we can bound the length of the existentially
quantified string variable Y by a polynomial in X.

Theorem 2.18 (Parikh’s Theorem [Par71]). Let T be a polynomial-bounded theory, and ϕ( ~X, Y )
a bounded formula with all free variables displayed. If T ` ∀ ~X∃Y ϕ( ~X, Y ), then there is a term t
involving only variables in ~X such that T ` ∀ ~X∃Y (|Y | ≤ t( ~X)) ϕ( ~X, Y ).

We will be using KPT Witnessing in connection with circuit search problems: given n ∈ N, find
an n-input circuit C (of small size) that agrees with a given function f on all inputs Z ∈ {0, 1}n.
Under an appropriate formalization, if the existence of small circuits computing f can be established
in VPV1 (resp. V1), then we get from the corresponding KPT Witnessing Theorem that a small
circuit C for f can be learned in polytime (randomized polytime for the theories with dWPHP)
with a constant (resp. polynomial) number of equivalence queries. That is, from a proof of a circuit
upper bound within an appropriate theory, we get (randomized) LEARNEQ-uniformity.

18Such an algorithm A is also called a counterexample computation [Kra95].
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3 LEARN-Uniform Circuit Lower Bounds

3.1 Deterministic LEARN Uniformity for P

Here we show the following

Theorem 3.1. For any constant k ≥ 1, we have

P 6⊂ LEARNEQ[const]-uniform SIZE[O(nk)].

As our techniques relativize, we also get the following extension of this result. Note that an
oracle to a language L is simultaneously provided to the polynomial-time algorithm computing the
hard problem, the uniform algorithm that attempts to produce a circuit, and the output circuit.
Additionally, equivalence queries can be made using circuits that contain L-oracle gates.

Theorem 3.2 (Relativized version of Theorem 3.1). Let L be an arbitrary language. For any
constant k ≥ 1, we have

PL 6⊂ FPL-LEARNEQ[const]-uniform SIZEL[O(nk)].

3.1.1 Base Case: Zero EQs

As a warm-up, we prove the special case of 0 equivalence queries, which is a restatement of a
result from [SW14] since LEARNEQ[0]-uniformity is the same as FP- and P-uniformity.

Theorem 3.3 (Implicit in [SW14]). For any constant k ≥ 1, we have

P 6⊂
(

LEARNEQ[0]/n1/(2k)
)

-uniform SIZE[O(nk)].

Proof. The proof is by contradiction. Suppose P ⊂
(
P/n1/(2k)

)
-uniform SIZE[O(nk)] for some

constant k ≥ 1. We use the uniformity assumption to argue that then there is a constant k′ ≥ 1
such that P ⊆ TIME[nk

′
]/o(n). Finally, we appeal to the classical Time Hierarchy Theorem to get

a contradiction. We give more details next.

1. pick a “hard” language: Consider Hb ∈ P from Lemma 2.5 for b > k to be determined.

2. use uniformity: Since Hb ∈ P, our assumption implies that there is a circuit family C =
{Cn}n≥1 of dnk-size circuits Cn computing Hb, for some constant d ≥ 0, such that

n-DCL(C) ∈ P/n1/(2k),

where
n-DCL(C) = {(n, 1n, i) | 〈Cn〉i = 1}.

3. pad down: For ε = 1/(2k), we can use the same advice-taking polytime algorithm for n-DCL
as above to also get that

nε-DCL(C) ∈ P/m,

where
nε-DCL(C) = {(n, 1nε

, i) | 〈Cn〉i = 1}

and its input length is m ≤ log n+ nε + 3k log n ≤ 2nε.
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4. compress C: Since P ⊂ SIZE[O(nk)] implies that P/n ⊂ SIZE[O(nk)], we get that there is a
family D = {Dm}m≥1 of O(mk)-size circuits Dm for the language nε-DCL(C). That is,

Dm(n, 1n
ε
, i) = 〈Cn〉i,

for all 1 ≤ i ≤ 3k log n. Note that each Dm has at most O((2nε)k) ≤ O(
√
n) gates.

5. use D as advice to speed up Hb: Each Dm can be encoded as a binary string of length
d(n) = O(

√
n(log n)). We will use these d(n) bits of advice in the following “evaluator” TM

E that computes Hb on n-bit inputs.

Given as advice a description of Dm, TM E on input x ∈ {0, 1}n does the following:

(a) Evaluate Dm(n, 1n
ε
, i) over all 1 ≤ i ≤ 3k log n to recover 〈Cn〉.

(b) Evaluate Cn(x) and output the result.

6. diagonalize: It is clear that, with correct advice, the TM E/d(n) correctly computes Hb on
all n-bit strings. The runtime of E is at most O(n3k · n) to construct 〈Cn〉, plus O(n2k) to
evaluate Cn(x).19 Thus the overall time of E/d(n) at most n4k. This contradicts Lemma 2.5
since d(n) ∈ o(n).

Examining the proof of Theorem 3.3 more closely, we see that we’ve actually proved the following
stronger statement.

Lemma 3.4. For any constants k ≥ 1 and b ≥ 4k, at least one of the following must be true:

1. P 6⊂ SIZE[O(nk)],

2. Hb 6∈
(
P/n1/(2k)

)
-uniform SIZE[O(nk)].

3.1.2 Induction: Eliminating One EQ

So far we haven’t used the compressibility of counterexamples in the Time Hierarchy Theorem
of Lemma 2.5. We’ll use this property next when we show how to eliminate equivalence queries
one by one.

Lemma 3.5 (EQ Elimination via Extra Advice). Suppose, for some constants k ≥ 1 and b ≥ 4k,
P ⊂ SIZE[O(nk)] and

Hb ∈
(

LEARNEQ[r]/a(n)
)

-uniform SIZE[O(nk)],

where a(n) = nδ for some 0 < δ < 1/(2k), and r ≥ 1 is arbitrary. Then

Hb ∈
(

LEARNEQ[r−1]/a′(n)
)

-uniform SIZE[O(nk)],

where a′(n) ≤ (c log n) · a(n)k, for some universal constant c > 0.

19For standard descriptions of s-gate circuits, the circuit can be evaluated on any given input in time O(s2) (see,
e.g., [Vol99, Theorem 2.15]).
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Proof. Let C = {Cn}n≥1 be the circuit family of O(nk)-gate circuits that the learning algorithm
makes the first equivalence query on to find out if C correctly computes Hb. Since the first EQ is
computable in FP/a(n), we get that n-DCL(C) ∈ P/a(n).

We next argue that such a uniform circuit family C cannot compute Hb, and moreover, we will
find a compressible counterexample to this first equivalence query. We follow the proof structure
of Theorem 3.3 above.

1. pad down: We can use the same advice-taking polytime algorithm for n-DCL to also get
that

a(n)-DCL(C) ∈ P/m,

where
a(n)-DCL(C) = {(n, 1a(n), i) | 〈Cn〉i = 1}

and its input length is m ≤ log n+ a(n) + 3k log n ≤ 2a(n).

2. compress C: Since P ⊂ SIZE[O(nk)] implies that P/n ⊂ SIZE[O(nk)], we get that there is a
family D = {Dm}m≥1 of O(mk)-size circuits Dm for the language a(n)-DCL(C). That is,

Dm(n, 1a(n), i) = 〈Cn〉i,

for all 1 ≤ i ≤ O(k log n). Each Dm has at most O((2a(n))k) ≤ O(nδk) ≤ O(
√
n) gates, and

so can be encoded as a binary string βn of length d(n) = O(nδk(log n)) ∈ o(n).

3. evaluator TM E: Given as advice a description βn of Dm, TM E on input x ∈ {0, 1}n does
the following:

(a) Evaluate Dm(n, 1a(n), i) over all 1 ≤ i ≤ O(k log n) to recover 〈Cn〉.
(b) Evaluate Cn(x) and output the result.

4. diagonalize: Since the runtime of E at most n4k ≤ nb, it cannot compute Hb by Lemma 2.5.
Moreover, E with advice βn disagrees with Hb on the input

xerror = 〈E〉 ◦ βn ◦ π,

for some π ∈ {0}∗ of appropriate length so that |xerror| = n.

5. eliminate the equivalence query through advice: Since, for the advice βn, we have
by construction that (E/βn)(x) = Cn(x) for all x ∈ {0, 1}n, it follows that

Cn(xerror) 6= Hb(xerror).

We add to the advice of our learning algorithm the succinct encoding 〈E〉 ◦ βn of xerror
to be used as the answer to the first equivalence query, and eliminate that query. The
new learning algorithm now makes (r − 1) equivalence queries, and has advice of length
a(n) +O(a(n)k(log a(n))) ≤ O(a(n)k(log n)), as claimed.

Note that after we eliminate a query, the advice complexity increases, but the same learning
algorithm is maintained.
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3.1.3 Finishing the Proof

Using Lemma 3.5 for equivalence query elimination, we can finish the proof of Theorem 3.1.
We establish a slightly stronger result.

Theorem 3.6. For any constants k ≥ 1 and b ≥ 4k, at least one of the following must be true:

1. P 6⊂ SIZE[O(nk)]

2. Hb 6∈ LEARNEQ[const]-uniform SIZE[O(nk)].

Proof. Towards a contradiction, suppose that, for some constants k ≥ 1, b ≥ 4k, and r ≥ 0, both
P ⊂ SIZE[O(nk)] and Hb ∈ LEARNEQ[r]-uniform SIZE[O(nk)]. Set a0(n) = nγ for some 0 < γ ≤
1/(2k) to be determined. Imagine giving a (useless) advice string 1a0(n) to our assumed learning
algorithm for Hb. Now apply Lemma 3.5 for r rounds, getting a learning algorithm with no EQs,
and advice size ar(n) satisfying the following recurrence: for every 1 ≤ i ≤ r,

ai(n) ≤ (c log n) · ai−1(n)k,

assuming that ai(n) ≤ n1/(2k) for each 0 ≤ i ≤ r. Solving the recurrence, we get that

ar(n) ≤ (c log n)k
r−1+kr−2+···+k+1 · a0(n)k

r ≤ (c log n)rk
r−1

· a0(n)k
r
.

Setting γ = 1/(3kr+1) ensures that ar(n) < n1/(2k), and we get a contradiction by Lemma 3.4.

Proof Sketch of Theorem 3.2. This follows from the observation that all ingredients employed in
the proof of Theorem 3.1 relativize. Crucially, note that the compressible counterexample hierarchy
theorem (Lemma 2.5) admits a simple proof by simulation and diagonalization, and as such, pro-
viding oracle access to a fixed but arbitrary language L does not affect the argument. The proof of
Theorem 3.1 goes through in the presence of the oracle language L because the involved algorithms
and circuits have access to L, thereby the necessary simulations can be efficiently implemented via
a straightforward adaptation of the original argument. Since this is rather standard, we omit the
details.

3.1.4 Beyond a Constant Number of EQs

While we seem unable to go beyond a constant number of EQs for SIZE[O(nk)] for every k ≥ 1,
we can for the special case of k = 1, i.e., for SIZE[O(n)] and even for SIZE[O(n · poly(log n))], as we
show next.

Theorem 3.7 (Super-constant number of EQs). For any constants b ≥ 8 and A ≥ 1, at least one
of the following must be true:

1. P 6⊂ SIZE[O(n · (log n)A)]

2. Hb 6∈ LEARNEQ[r(n)]-uniform SIZE[O(n ·(log n)A)], for any r(n) ≤ (log n)/(10(A+1) log log n).

Proof. Similarly to the proof of Theorem 3.6, we start with (“useless”) advice of length a0(n) =
n1/10, and apply Lemma 3.5 for r(n) rounds. (Note that invoking this lemma a super-constant
number of times is possible because we maintain the same learning algorithm after each query is
eliminated.) For each 1 ≤ i ≤ r, the advice size satisfies the recurrence

ai(n) ≤ (c log n)A+1 · ai−1(n),

which solves to ar(n) ≤ (c log n)r(n)·(A+1) · n1/10 ≤ n(1/10)+((1.1)/10) < n1/4, yielding a contradiction
by Lemma 3.4 as Hb 6∈ (P/n1/4)-uniform SIZE(O(n2)).
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3.2 Deterministic LEARN Uniformity for NP

The proof of the following theorem uses some ideas of [CK07]; in particular, it generalizes the
proof of Lemma B.2 (implicit in [CK07]) given in Appendix B.

Theorem 3.8. If, for some function 1 ≤ r(n) ≤ poly(n),

SAT ∈ LEARNEQ[r(n)]-uniform SIZE[poly],

then PH ⊂ NP/r(poly(n)). Hence, for every k ≥ 1,

NP 6⊂ LEARNEQ[no(1)]-uniform SIZE[O(nk)].

Proof. For some r = r(n), suppose we have a LEARNEQ[r(n)] algorithm A that, on input 1n, con-
structs a poly(n)-size circuit Cn that correctly decides SAT on all n-bit input formulas. We assume
that the learning algorithm, before outputting a correct circuit Cn, makes one last EQ for Cn
(getting the answer “yes” form the EQ oracle).

Claim 3.9. Suppose C is a candidate SAT circuit for formulas of size n such that

1. C is correct on all satisfiable input formulas, but

2. there exists some unsatisfiable formula ψ such that C(ψ) = 1.

Then

either there exists a variable-free formula ψ that evaluates to 0 (i.e., is unsatisfiable), but
C(ψ) = 1,

or there exists an unsatisfiable formula ψ with some variable x such that C(ψ) = 1, but
C(ψ[x = 0]) = C(ψ[x = 1]) = 0.

Proof of Claims 3.9. Suppose the conclusion is false. In other words, Items 1 and 2 above hold,
but we have

(a) For every variable-free formula ψ that evaluates to 0 (i.e., ψ is unsatisfiable), C(ψ) = 0.

(b) For every unsatisfiable formula ψ and for every free variable x of ψ, if C(ψ) = 1 then either
C(ψ[x = 0]) = 1 or C(ψ[x = 1]) = 1.

Now consider the unsatisfiable formula ψ with C(ψ) = 1 provided by Item 2. Consider a free
variable x of ψ. By Item (b) above, there is a way to fix x in ψ to obtain a formula ψ′ such that
C(ψ′) = 1. Since ψ is unsatisfiable, so is ψ′. Repeating this process until no free variables are left,
we arrive at an unsatisfiable variable-free formula ϕ (i.e., ϕ evaluates to 0) such that C(ϕ) = 1.
But this contradicts (a), which concludes the proof.

Defining the advice. As a thought experiment, imagine running A(1n) using the following
strategy when answering EQs that A makes with candidate SAT circuits Ci, 1 ≤ i ≤ r(n), assuming
Ci still doesn’t solve SAT (otherwise, the EQ must be answered with a “yes”):

• if Ci makes mistakes on some satisfiable formulas, then use one of these satisfiable formulas
as an answer to the ith EQ;
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• if Ci is correct on all satisfiable formulas, but makes mistakes on some unsatisfiable formulas,
then answer with an unsatisfiable formula ψ of the form guaranteed to exist by Claim 3.9
above.

Consider the following NP algorithm M : “On input 1n and a string α ∈ {0, 1}`Y r(n)−` (i.e., a
binary string, possibly followed with some string of Y s) for some 1 ≤ ` ≤ r(n),

• for each 1 ≤ i ≤ ` such that αi = 1, guess a formula ϕi of size n, together with a satisfying
assignment wi (such that ϕi(wi) = 1),

• for each 1 ≤ i ≤ ` such that αi = 0, guess a formula ψi of size n and, if ψi has some variables,
then also guess a variable name xi from among the variables of ψi,

• guess the transcript of the partial computation of A on input 1n that makes exactly ` + 1
EQs, using the previously guessed formulas to answer each ith EQ, for 1 ≤ i ≤ `: answer
with ϕi, if αi = 1, or answer with ψi, if αi = 0,

• accept if

– the partial transcript is valid (assuming the guessed EQ answers are correct),

– letting Ci be the candidate circuit produced by the learning algorithm for the ith EQ,
for 1 ≤ i ≤ `, check that, for all 1 ≤ i ≤ `,

∗ Ci(ϕi) = 0, if αi = 1,

∗ (ψi is a variable-free formula that evaluates to 0 and Ci(ψi) = 1) or (Ci(ψi) = 1
and Ci(ψi[xi = 0]) = Ci(ψi[xi = 1]) = 0), if αi = 0.”

Note that for each n, there is at least one string α such that M(1n, α) accepts (as we can use a
run of A(1n) as in the thought experiment above, and define a string α based on that run).

Let α∗n be the lexicographically largest string of length r(n) such that M(1n, α∗n) accepts, where
we define the order on the alphabet symbols {0, 1, Y } as 1 > 0 > Y . Let `∗n be the length of the
binary {0, 1}∗ prefix of α∗n (i.e., α∗n consists of a binary prefix of length `∗n, followed by Y ’s).

By Claim 3.9 and the discussion above, there is at least one accepting branch of M on input
(1n, α∗n). The crucial observation is the following.

Claim 3.10. Every accepting branch (witness) W of the NTM M on input (1n, α∗n) contains a
correct transcript of the computation of A(1n) with `∗n EQs, including a correct SAT circuit C`

∗
n+1.

Proof of Claim 3.10. Indeed, consider such a transcript W . All EQs for the is where (α∗n)i = 1 are
answered correctly (with satisfiable formulas on which Ci says 0), by the definition of M .

For any EQ i where (α∗n)i = 0, if the corresponding circuit Ci is correct on all satisfiable input
formulas, it must be the case that ψi is unsatisfiable. Indeed, since W is an accepting branch of M
and (α∗n)i = 0, we have that (ψi is a variable-free formula that evaluates to 0 and Ci(ψi) = 1) or
(Ci(ψi) = 1 and Ci(ψi[xi = 0]) = Ci(ψi[xi = 1]) = 0). If the former case happens, ψi is obviously
unsatisfiable. Otherwise, since by assumption Ci is always correct on satisfiable formulas, if ψi is
satisfiable we must have that either Ci(ψi[xi = 0]) = 1 or Ci(ψi[xi = 1]) = 1. By assumption this
does not hold, so we get that ψi is unsatisfiable in this case as well. Hence answering the ith EQ
with ψi, where Ci(ψi) = 1, is correct.

On the other hand, suppose there is some i ≤ ` where (α∗n)i = 0 such that Ci makes mistakes on
some satisfiable input formulas. Let i∗ be the first such index i. Then α∗n is not the lexicographically
largest string accepted by M . Indeed, there is some extension of the prefix (α∗n)[1..(i∗−1)]1 that is
also accepted by M .
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We conclude that all the EQs are answered correctly (with satisfiable formulas as counterex-
amples whenever possible). Suppose the circuit C`

∗
n+1 produced after these `∗n EQs is still not a

correct SAT circuit. If it makes mistakes on some satisfiable formulas, then some extension of the
prefix (α∗n)[1..`∗n]1 is also accepted by M . If C`

∗
n+1 is correct on all satisfiable formulas, but not on

all unsatisfiable ones, then some extension of the prefix (α∗n)[1..`∗n]0 is also accepted by M . In both
cases, we get that α∗n is not the lexicographically largest string accepted by M . A contradiction.

Collapsing PH. We will assume the binary prefixes of α∗n of lengths `∗n are given to us as
advice. For any language L ∈ coNP, defined by a formula η(x) = ∀y R(x, y), where y has the
length polynomial in the length of x ∈ {0, 1}n, and the predicate R is in P. For each string x,
define a propositional formula ϕx(y′) such that ∀y′ ϕx(y′) ⇐⇒ ∀y R(x, y). Such a formula can
be constructed in poly(|x|)-time using the Cook-Levin Theorem that SAT is NP-complete. Let
m(|x|) ∈ poly(|x|) be the size of ¬ϕx, the negation of ϕx.

The following NP/r(m(n)) algorithm E will decide L: “On input x ∈ {0, 1}n, given the first
`∗m(n) bits of α∗m(n) as advice α, of length at most r(m(n)),

• guess a string W ∈ {0, 1}O(t), where t = t(m(n)) is the runtime of M(1m(n), α∗m(n)),

• accept if

– W is an accepting branch of the computation of M(1m(n), α∗m(n)),

– the circuit Cm contained within W , for the (`∗n + 1)st EQ, is such that Cm(¬ϕx) = 0.”

For correctness, observe that E accepts x iff a circuit Cm contained within an accepting com-
putation of M(1m, α∗m) (implying that Cm must be a correct SAT circuit by Claim 3.10) says that
¬ϕx is unsatisfiable, which is equivalent to saying that ∀y R(x, y). Thus E accepts x iff η(x), as
required.

Hence we get that Σp
2 ⊂ NP/r(poly(n)), implying the collapse PH = Σp

2 ⊂ NP/r(poly(n)).

Finally, for r(n) ≤ no(1), either SAT 6∈ LEARNEQ[no(1)]-uniform SIZE[poly], or PH ⊂ NP/n. The
latter implies, by Lemma 2.3, the existence of the required hard languages in NP/n and, hence,
also in NP (by making the advice part of the input of the new NP machine).

We can handle more EQs in case of Search-SAT circuit learning algorithms, rather than SAT
circuit learning algorithms. A Search-SAT circuit is a circuit that, given an input formula ϕ, either
outputs a satisfying assignment for ϕ, or says “NO”. A correct Search-SAT circuit is the one that
outputs a satisfying assignment on every satisfiable formula.

Remark 3.11 (Search-SAT-EQ: The EQ oracle for Search SAT). In the following theorem, the
EQ oracle for Search-SAT is the following: given a candidate Search-SAT circuit C, the EQ is
answered “yes”, if C is correct (i.e., finds a satisfying assignment) on all satisfiable formulas; the
EQ query is answered with a formula ϕ and a satisfying assignment w for ϕ such that C(ϕ) fails
to find a satisfying assignment, otherwise. That is, the Search-SAT-EQ oracle provides not only
a satisfiable formula ϕ where C makes a mistake, but also a proof that this formula is satisfiable
(via a satisfying assignment w for ϕ). (This requirement on the EQ oracle for Search-SAT comes
from an actual learning algorithm one gets via KPT Witnessing (cf. Theorem 4.5).) For simplicity,
when discussing Search-SAT we might simply say EQ oracle to refer to a Search-SAT-EQ oracle.
This will always be clear from the context.

Theorem 3.12. If, for some function 1 ≤ r(n) ≤ poly(n),

Search-SAT ∈ LEARNSearch-SAT-EQ[r(n)]-uniform SIZE[poly],
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then, for every k ≥ 1,
NP 6⊂ io-SIZESAT[O(nk)].

In particular, for all k ≥ 1, Search-SAT /∈ LEARNSearch-SAT-EQ[nO(1)]-uniform SIZE[nk] or NP *
LEARNEQ[nO(1)]-uniform SIZE[nk].

Proof. Note that, by definition, every candidate Search-SAT circuit produced by the learning algo-
rithm for EQs is such that it is either correct on all inputs, or that there is a satisfiable formula on
which the circuit fails to find a satisfying assignment. That is, the only possible counterexamples
returned by EQs are satisfiable formulas. Hence, we can use the same argument as in Theorem 3.8
when defining the advice string α∗n, but now it suffices to use the alphabet {1, Y }, rather than
{0, 1, Y }. To describe such an advice string α∗n ∈ {1}∗{Y }∗, it suffices to just specify the length of
the {1}∗ prefix of α∗n, using at most O(log r(n)) bits. For completeness, we give the full proof next.

Step 1: Defining the advice. Let 0 ≤ `(n) ≤ r(n) be the largest number such that
there is a run of the learning algorithm on input 1n with `(n) EQs satisfying the following: given
counterexamples to the previous EQs, for each circuit Ci produced by the learning algorithm for
the ith EQ, 0 ≤ i ≤ `(n), there is a counterexample that is a satisfiable formula ϕi (with a satisfying
assignment wi) such that Ci(ϕi) = 0, and the circuit C`(n)+1 produced after these `(n) EQs must
be a correct Search SAT circuit.

Step 2: Collapsing PH to NP/O(log n). Given the value `(n) as advice, one can decide
UNSAT in NP as follows:

“On input formula ψ of size n, given ` = `(n) as advice,

1. nondeterministically guess size n formulas ϕ1, . . . , ϕ` as well as n-bit assignments
w1, . . . , w`,

2. run the learning algorithm on 1n, answering each ith EQ for the produced circuit
Ci with formula ϕi and assignment wi, for 1 ≤ i ≤ `, (rejecting if the learner makes
fewer than ` EQs),

3. accept if

• for all 1 ≤ i ≤ `, ϕi(wi) = 1,

• for all 1 ≤ i ≤ `, Ci(ϕi) = 0, and

• for the circuit C`+1 produced after ` EQs, C`+1(ψ) = 0.”

For correctness, observe that since ` is the maximum number of EQs that can be answered with
satisfiable counterexamples before a Search-SAT circuit C`+1 is produced by the learning algorithm
that is correct on all SAT instances of size n. Hence, the circuit C`+1 must be a correct circuit for
SAT (on every non-deterministic path where the learner asks ` queries, and there is at least one
such path). Thus, if ψ is unsatisfiable, then there is a way to force ` EQs with some satisfiable
counterexamples ϕ1, . . . , ϕ`, getting a correct SAT circuit C`+1 which will reject ψ. On the other
hand, to incorrectly accept a satisfiable ψ, the nondeterministic algorithm above would need to
force the learning algorithm to use ` EQs, but then the next circuit C`+1 is guaranteed to be a
correct SAT circuit which would always accept ψ.

Note that the advice 0 ≤ `(n) ≤ r(n) has size at most a(n) = dlog(r(n)+1)e bits. Since UNSAT
is coNP-complete under polytime reductions, we get that

coNP ⊂ NP/a(poly(n)).

As a consequence, we also have Σp
2 ⊆ NP/a(poly(n)). By Theorem 2.4, we get PH ⊂ NP/a(poly(n)).

By Lemma 2.3, for every k ≥ 1, there is a language Lk ∈ PH ⊂ NP/O(log n) such that Lk 6∈
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io-SIZESAT[O(nk)]. By a standard argument (making the advice a part of the input), we get a
language L′k ∈ NP such that L′k 6∈ io-SIZESAT[O(nk)].

3.3 Randomized LEARN Uniformity for ZPP

Definition 3.13. A language L is in ZPP-uniform SIZE[s(n)] if there exists a family C = {Cn}n≥1

of s(n)-size circuits Cn for L such that the n-DCL(C) ∈ ZPP.

Theorem 3.14. For any k ≥ 1,

ZPP 6⊂ ZPP-uniform SIZE[O(nk)].

Proof. This follows by a straightforward adaptation of the proof of Theorem 3.21.

We introduce next a potentially larger family of languages.

Definition 3.15 (FZPP Uniformity). We say that a language L is in

FZPP-uniform SIZE[s(n)]

if there is a probabilistic polynomial time algorithm A such that for every n,

Pr
A

[A(1n) 6= ⊥] ≥ 1/2,

and whenever A(1n) 6= ⊥, A(1n) outputs some s(n)-size circuit for L∩{0, 1}n. Note that a different
circuit might be produced for each non-“⊥” computation path.

Observe that changing the success probability 1/2 in the definition above to any value δ ≥
1/poly(n) does not affect the class of languages that admit FZPP-uniform circuits.

We will need a result about (pseudodeterministic) pseudorandom generators (PRGs). We say
that a probabilistic algorithm A computes a function f : {0, 1}∗ → {0, 1}∗ in pseudodeterministic
polynomial time if on every input x, A runs in time poly(|x|) and outputs f(x) with probability at
least 2/3. Similarly, we say that f is computable in pseudodeterministic polynomial time with 1
bit of advice if A requires 1 bit of advice per input length.

Theorem 3.16 (Pseudodeterministic polynomial-time i.o.PRG with 1 bit of advice [LOS21]).
For each ε > 0 and c, d ≥ 1, there is an infinitely often pseudorandom generator G = {Gn}n≥1

mapping nε bits to n bits that is secure against DTIME(nc) with error 1/nd and computable in
pseudodeterministic polynomial time with 1 bit of advice. More generally, G is infinitely often
secure against any ensemble D = {Dn}n≥1 of distributions Dn supported over circuits of size ≤ nc
and samplable in time nc, in the sense that for infinitely many n, with probability at most 1/nd

over C ∼ Dn we have that C 1/nd-distinguishes Un and Gn(Unε).

We note that the argument from [LOS21] can be easily adapted to produce a generator that
maps nε bits to nc bits (instead of just n bits). In our proof, we only need the following weaker
form of the result.

Corollary 3.17. Let c ≥ 1, and let {Cn}n≥1 be a P-uniform sequence of circuits Cn : {0, 1}nc →
{0, 1}. For each ε > 0, there is a pseudorandom generator G = {Gn}n≥1 mapping nε bits to nc bits
that is infinitely often secure against {Cn}n≥1 and computable in pseudodeterministic polynomial
time with 1 bit of advice. In other words, for infinitely many values of n, we have∣∣∣ Pr

x∈{0,1}nc
[Cn(x) = 1]− Pr

z∈{0,1}nε
[Cn(Gn(z)) = 1]

∣∣∣ ≤ 1/n.
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We will instantiate this generator against a DTIME[nc]-uniform sequence {Cn}n≥1 of circuits
Cn : {0, 1}≤nc → {0, 1}, where each Cn has size at most nc. Roughly speaking, this sequence of
(deterministic) circuits is obtained from the computation of a randomized algorithm B(1n) on its
random string w ∈ {0, 1}≤nc

, which can be equivalently viewed as a deterministic computation on
the input string w. After the constant c is fixed, for every ε > 0 we can get a PRG Gn mapping nε

bits to nc bits that fools infinitely many circuits Cn. Moreover, Gn can be computed in probabilistic
polynomial-time with 1 bit of advice.

Theorem 3.18 (Weakness of zero-error uniformity). For every k ≥ 1 and for b ≥ 10k, at least one
of the following statements must be true:

1. ZPP/1 6⊂ SIZE[O(nk)], or

2. Hb 6∈ FZPP-uniform SIZE[O(nk)].

In particular, for every k ≥ 1 we have promise-ZPP 6⊂ FZPP-uniform SIZE[O(nk)].

Proof. Suppose the opposite. Then, for b = 10k, Hb ∈ FZPP-uniform SIZE[O(nk)]. Let A be
a probabilistic polynomial time algorithm that witnesses this FZPP-uniform circuit upper bound.
We model A(1n, w) as a deterministic procedure that runs in time nc for some c ≥ 1, where
w ∈ {0, 1}nc

is interpreted as the “random” string. For a choice of w such that A(1n, w) 6= ⊥, we
let 〈Cnw〉 = A(1n, w) be the description of a circuit Cnw of size O(nk) that is produced by A(1n, w).
Note that each such circuit Cnw computes Hb ∩ {0, 1}n. Also recall that Prw[A(1n, w) 6= ⊥] ≥ 1/2.

Set ε = 1/(3k). We condition on whether there are witnesses w such that A(1n, w) 6= ⊥ and w,
when viewed as a truth table of a Boolean function on (log |w|) inputs, is computable by a Boolean
circuit of size O(nε). In both cases we will reach a contradiction via Lemma 2.5.

• Case 1: Easy witnesses for A(1n, ·) exist infinitely often. Suppose for infinitely
many n, some O(nε)-size circuit E exists whose truth table wE is such that A(1n, wE) =
〈CnwE

〉 6= ⊥. Use the descriptions of such circuits E as a sequence {αn} of advice strings,
where |αn| ≤ O(nε(log n)). Let C = {Cn} be the sequence of O(nk)-size circuits determined
by these advice strings, i.e., Cn = CnwE

for the circuit E being describe by the advice string
αn. For input lengths n, where there is no good advice string αn, we still get some circuit
Cn, but this Cn may not compute Hb ∩ {0, 1}n.

We get that the language
nε-DCL(C) ∈ P/O(m(logm)),

where m = log n+nε+O(k log n) ≤ O(nε) is its input size. Indeed, the following advice-taking
polytime TM computes this language:

“On input n, 1n
ε
, and 1 ≤ i ≤ |〈CnwE

〉|, evaluate the advice circuit E on all its
inputs to reconstruct its truth table wE ∈ {0, 1}n

c
. Run A(1n, wE) to compute the

string 〈CnwE
〉, and output its ith bit.”

Since P ⊂ SIZE[O(nk)], we get that

nε-DCL(C) ∈ SIZE[O((nε(log n))k)] ⊂ SIZE[
√
n],

for our choice of ε = 1/(3k). Using as advice these small circuits D encoding O(nk)-size
circuits CnwE

, we get that

Hb ∈ io-DTIME[nb]/o(n),

contradicting Lemma 2.5.
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• Case 2: A(1n, ·) has only hard witnesses almost everywhere. In this case, for every
large enough n, every string w ∈ {0, 1}nc

such thatA(1n, w) 6= ⊥ is a truth table of exponential
circuit complexity nΩ(1). Moreover, for every n, A(1n, w) /∈ ⊥ for at least 1/2 fraction of all
w’s. Hence, for every large enough n, we can generate a hard truth table in FZPP, which
implies BPP = ZPP, and moreover, BPP/1 = ZPP/1, via the standard “hardness-randomness
tradeoffs” [NW94; IW97].

By Theorem 3.16, there is a pseudodeterminsitic PRG Gn : {0, 1}bnεc → {0, 1}nc
, computable

with 1 bit of advice, that fools A(1n, ·) on infinitely many input lengths n. That is, some
output string w of Gn satisfies A(1n, w) 6= ⊥. We use this generator to define the following
language

LGA = {(n, a, i) | a ∈ {0, 1}nε
, i ∈ {0, 1}O(k logn), A(1n, Gn(a)) 6= ⊥, and

〈
CnGn(a)

〉
i

= 1},

which can be viewed as the concatenation of the languages nε-DCL(CnGn(a)) over all seeds

a ∈ {0, 1}nε
of the PRG Gn.

Given that G is computable with 1 bit of advice in pseudodeterministic polynomial time, and
A(1n, w) is computed by a deterministic polynomial time algorithm, we get that

LGA ∈ BPP/1 = ZPP/1.

The assumption ZPP/1 ⊆ SIZE[O(nk)] implies that LGA admits a sequence {Dm}m≥1 of circuits
of size O((m)k), where m = nε + O(k log n) ≤ O(nε) is the input length of LGA, referring to
an n-input circuit CnGn(a) for some a ∈ {0, 1}nε

.

Since for infinitely many values of n the generator Gn “hits” a good choice of the random
string w where A(1n, w) 6= ⊥, there are infinitely many input lengths n for which there is
a string an ∈ {0, 1}n

ε
(a “good” seed to Gn) such that Dm(n, an, ·) encodes a circuit Cn of

size O(nk) that computes Hb ∩ {0, 1}n. By our choice of ε = 1/3k, the size of Dm is at most
O(n1/3), which implies that Dm(1m, am, ·) is also a Boolean circuit of size at most O(n1/3).

Finally, the existence of infinitely many circuits of this form implies that

Hb ∈ io-DTIME[nb]/o(n),

contradicting Lemma 2.5.

This proves that at least one of the lower bounds in items (1) and (2) of the theorem must hold.
We can merge them into a single statement of the “In particular” part of the theorem because of
the standard connection between advice and promise classes: promise-ZPP ⊂ SIZE[O(nk)] implies
that ZPP/O(n) ⊂ SIZE[O(nk)] (see, e.g., [San09] for an argument).

Remark 3.19. It is known that, for every k ≥ 1, promise-ZPPMCSP 6⊂ SIZE[O(nk)] [IKV18].
Theorem 3.18 removes the need for the MCSP oracle, albeit at the expense of requiring randomized
uniformity.

3.4 Randomized LEARN Uniformity for MA and ZPP with a Restricted Oracle

Definition 3.20. A language L is in BPP-uniform SIZE[s(n)] if there exists a family C = {Cn}n≥1

of s(n)-size circuits Cn for L such that the n-DCL(C) ∈ BPP.

Theorem 3.21. For any k ≥ 1, BPP 6⊂ BPP-uniform SIZE[O(nk)].
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Proof. The argument is very similar to that in Theorem 3.3. Assume that both BPP ⊂ SIZE[O(nk)]
and, for some b ≥ 4k,

Hb ∈ BPP-uniform SIZE[O(nk)].

The latter implies that there is a family C of O(nk)-size circuits Cn for Hb such that

n1/(2k)-DCL(C) ∈ BPP.

Hence, each Cn is computable by a circuit Dm on at most
√
n gates. Note that the evaluator TM

E(x) is deterministic: on advice describing Dm, E constructs Cn and then evaluates Cn on a given
x ∈ {0, 1}n. We get that Hb ∈ TIME[nb]/o(n), contradicting Lemma 2.5.

Extending to the two-sided error randomized search uniformity, we get the following.

Definition 3.22 (FBPP Uniformity). We say that a language L is in

FBPP-uniform SIZE[s(n)]

if there is a probabilistic polynomial time algorithm A such that for every n,

Pr
A

[A(1n) outputs some s(n)-size circuit Cn for L ∩ {0, 1}n] ≥ 2/3.

The success probability 2/3 in the definition of FBPP uniformity can be amplified via standard
techniques: independently generate circuits C1, . . . , C` and output MAJ(C1, . . . , C`). Moreover, by
another standard derandomization argument, a FBPP-uniform sequence of randomized circuits can
be converted into a FBPP-uniform sequence of deterministic circuits. In contrast, we are not aware
of an analogous result in the case of BPP uniformity, since fixing the randomness of a randomized
circuit in different ways induce distinct direct connection languages, and in BPP uniformity a fixed
sequence of deterministic circuits must be specified.

Remark 3.23 (A connection between FBPP uniformity and FP-LEARNEQ[poly] uniformity.). For
certain problems, a lower bound against FBPP uniformity yields a lower bound for the same problem
against FP-LEARNEQ[poly] uniformity. Indeed, let L ∈ P be self-correctable, in the sense that a
circuit C of size s for Ln that is correct on a (1 − 1/nc)-fraction of inputs can be converted in
polynomial time with high probability into a circuit C ′ of size s′ ≥ s that computes Ln. Then, if
L ∈ FP-LEARNEQ[poly]-uniform SIZE[s] we have L ∈ FBPP-uniform SIZE[s′]. This can be done by
exploiting the following idea from learning theory: in order to try to answer an equivalence query
on a circuit of size ≤ s without access to an oracle, a randomized polynomial-time algorithm can
sample a random input and check, using that L ∈ P, if a mistake is found. If so, the equivalence
query is answered correctly and the simulation proceeds. Otherwise, if enough random inputs do
not exhibit a mistake, with high probability the queried circuit is sufficiently close to L. In this
case, the self-corrector for L can be invoked to produce a circuit of size s′ for L. We note that the
assumption that L ∈ P is only used to answer a membership query to L. This assumption can be
dropped when L is downward-self-reducible, using ideas from [IW01].

It is not clear if an analogue of Theorem 3.18 for FBPP holds, i.e., whether promise-BPP 6⊂
FBPP-uniform SIZE[O(nk)] for every k ≥ 1. However, we can show an FBPP-uniform circuit
lower bound for the class MA. The following two theorems should be contrasted with the known
unconditional circuit lower bound for the promise-version of MA: for every constant k ≥ 1,
MA/1 6⊂ SIZE[O(nk)] [San09].
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Theorem 3.24. If SAT ∈ FBPP-uniform SIZE[poly], then, for every k ≥ 1,

BPP 6⊂ io-SIZESAT[O(nk)].

In particular, for every k ≥ 1, MA 6⊂ FBPP-uniform SIZE[O(nk)].

Proof. The assumption implies that SAT ∈ BPP, and hence, we conclude that PH = BPP. The
conclusion follows by Lemma 2.3. To argue the “In particular” part of the theorem, we just use
that SAT ∈ NP ⊆ MA and that BPP ⊆ MA.

Next we consider FZPPrf-LEARNEQ-uniformity.

Theorem 3.25. If, for some poly(n)-time function 1 ≤ r(n) ≤ poly(n),

Search-SAT ∈ FZPPrf-LEARNSearch-SAT-EQ[r(n)]-uniform SIZE[poly],

then PH = ZPPNP[O(a(poly(n)))] ⊂ MA//O(a(poly(n))), and, for every k ≥ 1,

1. MA//O(a(poly(n))) 6⊂ io-SIZESAT[O(nk)], and

2. ZPPNP[O(a(poly(n)))] 6⊂ io-SIZESAT[O(nk)],

where a(n) = dlog(r(n) + 1)e.

Proof. We follow the proof of Theorem 3.12, but adapting it to the case of randomized learning
algorithms. We first prove Items 1 and 2.

Proof of Item 1. Imagine picking a random string α ∈ {0, 1}poly(n) used by the learning algo-
rithm. Once this random string is fixed, with probability at least 3/4, the algorithm becomes a
deterministic learning algorithm, correct on all possible sequences of EQ answers (by the definition
of the randomness-first randomized LEARN uniformity). Call such a random string α good.

For a good random string α, let ` = `(n, α) ≤ r(n) be the maximum number of EQs that one
can force the resulting deterministic learning algorithm to make before it is guaranteed to output
a correct SAT circuit C`+1. Note that this value ` depends both on the input length n and the
randomness α used by the learning algorithm.

To decide if a given formula ψ of size n is unsatisfiable, we can pick a random string α of
polynomial length, get ` = `(n, α) as advice dependent on the randomness α, and run the NP
algorithm from Step 2 of the proof of Theorem 3.12 above. With probability at least 3/4, we get a
good random string α such that, for the advice ` = `(n, α) ≤ r(n), the resulting nondeterministic
algorithm correctly decides UNSAT for all formulas ψ of size n. That is, we get that UNSAT ∈
AM//a(n). Hence, coNP ⊆ AM//a(poly(n)), and so PH ⊂ AM//a(poly(n)), implying the existence
of required hard languages in AM//a(poly(n)) by Lemma 2.3.

Finally, since SAT ∈ SIZE[poly] implies that AM = MA [Arv+95], and this equality extends
to the case of randomness-dependent advice versions of these two classes20, we get that PH ⊂
MA//a(poly(n)), implying Item 1.

Proof of Item 2. As above, we first pick randomness α for our learning algorithm for SAT search
circuits, but instead of asking for the advice ` = `(n, α), we compute this value `(n, α) ourselves,
using a PNP[a(n)] algorithm.

20To go from AM to MA, the idea of [Arv+95] is to guess a Search-SAT polysize circuit C first and then, for given
randomness r chosen by Arthur, use C to witness Merlin’s existential quantifier in the original AM protocol. If an AM
protocol on n-bit inputs uses advice string βn(r) dependent on Arthur’s randomness r, we do the same construction
as above, also using the advice βn(r) for Arthur’s randomness r in the new MA protocol.
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We look for the largest such i so that there is a run of the learning algorithm (using the random-
ness α) with i circuits produced by the learning algorithm all having some satisfiable formulas as
counterexamples. For a particular i, the existence of such a run is an NP question. We can look for
the maximum i ≤ r(n) + 1 by binary search, in PNP, where we only need to ask dlog(r(n) + 1)e NP
queries. If the maximum found i is equal to r(n)+1, we know that the randomness α is “bad”: the
learning algorithm on this α is not guaranteed to find a correct SAT search circuit after r(n) EQs.
In this case, we output ⊥. Otherwise, we’ve certified that randomness α is good: an algorithm is
guaranteed to produce a correct SAT circuit no later than after i EQs.

Thus, we can produce a correct SAT search circuit in FZPPNP[wit,a(n)+1]. This implies that
PH = Σp

2 = ZPPNP[a(poly(n))+2]. Indeed, once we generate a good randomness α (which can be
checked using just an NP oracle, i.e., we don’t need access to NP[wit]), we can view our randomized
algorithm as a deterministic computation (using this fixed randomness). So we get that a correct
Search-SAT circuit can be constructed uniformly by an FPNP[wit,a(n)+1] algorithm. This allows one
then to collapse Σp

2 to PNP[a(poly(n))+2] using an argument of [CK07]; see the proof of Lemma B.2
(Item 1) in Appendix B for details. The required hard languages are then obtained via Lemma 2.3.

Note that the arguments above imply that PH ⊂ MA//a(poly(n)) and PH = ZPPNP[a(poly(n))+2],
as promised.

Next we show that sometimes it is possible to convert a randomized learning algorithm with EQs
to the “randomness first” kind, so that Theorem 3.25 can be applied. More precisely, we establish
this for Search-SAT and for learners that make constantly many Search-SAT-EQs. To achieve that,
we proceed in two steps.

First, we prove that the success probability of the learner can be amplified via a certain parallel
repetition procedure. This increases the running time but maintains the original number of queries.

Lemma 3.26 (Boosting the success probability of a FZPP-LEARNSearch-SAT-EQ[const] algorithm).
For any constant ` ≥ 1, if

Search-SAT ∈ FZPP-LEARNSearch-SAT-EQ[`]
γ -uniform SIZE[a · nb],

where γ(n) ≥ 1/poly(n) and a, b are constants, then for every constant v ≥ 1,

Search-SAT ∈ FZPP-LEARN
Search-SAT-EQ[`]
β -uniform SIZE[poly],

where β(n) ≥ 1− 2−n
v
.

Proof. Let A be a LEARN-uniform construction of Search-SAT circuits of size at most a · nb which
makes at most some constant ` EQs, and succeeds with probability γ(n) ≥ 1/poly(n). For simplicity
of notation, we assume that v = 1. (The parameters can be easily adapted to handle any constant
v.) We view the run of A(1n) as consisting of at most ` rounds. In each round i, the algorithm
picks some randomness r, constructs a candidate Search-SAT circuit C (based on r, the randomness
r1, . . . , ri−1 from the previous rounds, and the previous counterexamples z1, . . . , zi−1 obtained from
the Search-SAT-EQ oracle), and asks the Search-SAT-EQ oracle about C.

We call round i (and the randomness r picked in the round) successful

• either if C is a correct Search-SAT circuit,

• or if, for every counterexample z from the Search-SAT-EQ oracle on C, the algorithm A
succeeds within at most ` − i EQs (rounds) with probability at least γ/2i, when using the
partial computation transcript r1, z1, . . . , ri−1, zi−1, r, z.
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Claim 3.27. If i = 1 or round i−1 is successful, then round i is successful with probability at least
γ/2i, for 1 ≤ i ≤ `.

Proof of Claim 3.27. The proof is by induction on i. It might be helpful to recall the definition
of success probability of a FZPP-LEARNEQ algorithm, which is defined in Section 2.4. For i = 1,
the success probability at least γ of the learning algorithm can be written as an expected success
probability over the random string r chosen in round 1, conditioned on the random choice and the
worst possible counterexample provided by the EQ oracle. This expected success probability being
at least γ by assumption implies that the conditional expected success probability must be at least
γ/2 for at least γ/2 fraction of random strings r.

For 1 < i ≤ `, the success probability of the learning algorithm starting at round i is at least
γ′ = γ/2i−1 by the inductive hypothesis. As in the base case, we write this success probability
as an expectation of conditional success probabilities based on the random string chosen in round
i and the worst possible counterexample for the corresponding EQ, to conclude that, for at least
γ′/2 = γ/2i fraction of random strings, the success probability assigned to the top node of the
corresponding sub-tree is at least γ′/2 = γ/2i.

By Claim 3.27, A succeeds in each round with probability at least γ/2` by getting either a
correct circuit C or a new learning algorithm (with one less EQ) that succeeds with probability
at least γ/2`. Next we show how to boost this success probability to be exponentially close to 1,
without increasing the number ` of EQs.

Error probability reduction via parallel repetition. For m = 2`+1(` + 1)n/γ, pick
` · m random strings R = {rji }1≤i≤`,1≤j≤m uniformly at random. We will think of the blocks
Ri = {r1

i , . . . , r
m
i } of these strings. Once we randomly pick and fix the set R of random strings, the

following learning algorithm BR is a deterministic algorithm with the Search-SAT EQ oracle access:
“On input 1n,

for each round i = 1 . . . `

– using the previous EQ counterexamples z1, . . . , zi−1, let C1
i , . . . , C

mi

i be the candidate
Search-SAT circuits21 produced by

A
(

1n, rj11 , z1, . . . , r
ji−1

i−1 , zi−1, r
ji
i

)
on all i-tuples of random strings from R1 × · · · ×Ri, where each 1 ≤ ji ≤ m,

– define the candidate Search-SAT circuit

C∗i =
mi∨
j=1

Cji

(i.e., C∗i outputs a satisfying assignment on a given input formula iff at least one of the

circuits Cji does),

– ask the EQ for C∗i ; if the answer is “yes”, then output C∗i and halt; otherwise, get a
counterexample zi for C∗i (a satisfiable formula ψ, with a satisfying assignment, such
that C∗i (ψ) fails to find a satisfying assignment for ψ)22 and go to the next round.”

21Recall that each such candidate Search-SAT circuit never makes a mistake on any unsatisfiable formula.
22Note that this zi will be a counterexample for all circuits Cj

i simultaneously.
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The runtime of the described algorithm BR(1n) is at most O(m`) times the runtime of A(1n),
which is still poly(n). Each candidate Search-SAT circuit C∗i is also of size poly(n). Next we argue
the correctness of BR.

Claim 3.28. The algorithm BR on 1n succeeds with probability at least 1− 2−n.

Proof of Claim 3.28. Each counterexample z from the Search-SAT-EQ oracle consists of a formula
ψ of size n and a satisfying assignment to ψ of at most n bits; we can upperbound the size of z by
2n bits. Note that the total number of possible (legal) sequences of ` counterexamples is thus at
most (22n)` = 22`n.

Consider a particular sequence z1, . . . , z` produced by the EQ oracle during a run of BR(1n). In
round 1, the probability that none of the randomly chosen strings r ∈ R1 is good for A(1n) is at
most

(1− γ/2)m ≤ e−mγ/2 ≤ 2−2(`+1)n.

Thus, with high probability, R1 contains a good string r∗1 ∈ R1 (fix one arbitrarily).
Let C1 be the circuit produced by A(1n), using randomness r∗1. If C1 is a correct circuit, then so

is C∗1 produced by BR(1n), using R1. Otherwise, the counterexample z1 from the EQ oracle for C∗1
is a valid counterexample for C1 as well. Hence, A(1n), starting with the partial transcript r∗1, z1,
will succeed within `− 1 rounds, with probability at least γ/2.

For round 2, the probability that none of the randomly chosen strings r ∈ R2 is good for
A(1n, r∗1, z1) is again at most 2−2(`+1)n. So, with high probability, R2 contains a good string
r∗2 ∈ R2 (fix one arbitrarily). Let C2 be the circuit produced by A(1n), using r∗1, z1, r

∗
2. Again, if C2

is correct, then so is C∗2 produced by BR(1n, z1). Otherwise, z2 is a valid counterexample for C2,
and so A(1n, r∗1, z1, r

∗
2, z2) must succeed within `− 2 rounds, with probability at least γ/4. And so

on.
It follows that, for some 1 ≤ t ≤ `, the algorithm A(1n, r∗1, z1, . . . , r

∗
t ) outputs a correct

Search-SAT circuit C in round t, and hence BR(1n, z1, . . . , zt−1) also outputs a correct circuit in
the same round t.

The probability over R that BR(1n) fails to output a correct circuit within ` rounds is at most
the sum of the probabilities that a set Ri fails to contain a good random string r∗i for A(1n), over
all 1 ≤ i ≤ `. The latter is at most ` · 2−2(`+1)n. By the union bound, the probability that R is bad
for at least one sequence of counterexamples out of at most 22`n possible sequences is at most

22`n · ` · 2−2(`+1)n ≤ ` · 2−2n ≤ 2−n,

for large enough n. The claim follows.

By Claim 3.28, the result also follows. We note that the resulting LEARN-uniform construction
provides circuits of polynomially larger size and requires an EQ oracle that is able to answer queries
that describe circuits of polynomially larger size. Its correctness follows from the correctness of the
original algorithm A when interacting with a more limited EQ oracle.

Next, we argue that a learner with overwhelming success probability can be converted into a
randomness-first learner if its query complexity is small.

Lemma 3.29 (Converting a randomized learner to a randomness-first learner). For every constant
` ≥ 1 there is a constant `′ ≥ 1 such that if β(n) ≥ 1− 2−`

′n and

Search-SAT ∈ FZPP-LEARN
Search-SAT-EQ[`]
β -uniform SIZE[poly],

then
Search-SAT ∈ FZPPrf-LEARNSearch-SAT-EQ[`]-uniform SIZE[poly].
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Figure 1: Randomized learner and its game tree when ` = 1.

Proof. Let A be a FZPP-LEARNSearch-SAT-EQ[`] algorithm that constructs poly(n) size circuits that
solve Search-SAT, and assume that it succeeds with success probability β(n) ≥ 1−2−`

′n, where `′ is
a sufficiently large constant independent of n. For convenience, let β(n) = 1− δ, where δ ≤ 2−`

′n.
Recall that the computation of A(1n) can be viewed as a rooted tree T whose paths can be

indexed by strings (w1, z1, . . . , w`, z`), where wi ∈ {0, 1}poly(n) represents a choice of the i-th random
string, and zi encodes the oracle answer to the circuit queried by A(1n, w1, z1, . . . , wi−1).

The proof is by induction on `. When ` = 1, A(1n) makes a single query based on its choice of
w1. Let Cw1 be the corresponding circuit. If Cw1 is correct, z1 represents “correct”. Otherwise, z1

encodes “wrong” and a counter-example to the correctness of Cw1 . Clearly, in this case A is itself
a randomness-first learner with error probability at most δ ≤ 1/4. Consequently, the result holds
for ` = 1. (See Figure 1 for a diagram that represents T in the trivial case ` = 1.)

Next, we analyze the case ` = 2. We would like to prove that, with probability at least 3/4
over the choice of strings w1 and w2, no matter the counter-example z provided by the oracle on
query A(1n, w1) we get that A(1n, w1, z, w2) outputs a correct circuit. Let γ be the function that
describes the success probability of A(1n). By assumption, γ(ε) = 1− δ, where ε denotes the root
of tree T . To estimate the desired probability, we first observe that, with probability at least 1−

√
δ

over the choice of w1, we have γ(w1) ≥ 1 −
√
δ. This follows from a standard Markov argument

and γ(ε) = Ew1 [γ(w1))]. If this is the case, we say that the sub-tree Tw1 is good.
Fix any good sub-tree Tw1 . Since γ(w1) = minz γ(w1, z), for any oracle answer z1 to A(1n, w1),

we get γ(w1, z1) ≥ γ(w1) ≥ 1 −
√
δ. Note that there are at most 2n oracle answers distinct from

“correct” (i.e., counter-examples). For a random choice of w2 ∈ {0, 1}poly(n) (fixed together with
w1 and before we know z1, but assuming a good sub-tree Tw1), by a union bound over the oracle
answers to the first query, we reach a sub-tree Tw1,z1,w2 corresponding to a correct output circuit
A(1n, w1, z1, w2) for Search-SAT except with probability 2n ·

√
δ. In other words, even if the oracle

knows w2 when it is about to answer the query A(1n, w1), with high probability over our choice
of w2, no matter its answer z1, A(1n, w1, z1, w2) outputs a correct circuit. (See Figure 2 for an
informal explanation for this upper bound.)

Overall, over the initial choices of w1 and w2, we obtain a correct deterministic learner for
Search-SAT except with probability

√
δ+ 2n ·

√
δ, where the first term accounts for a bad choice of

w1, and the second term for a bad choice of w2 assuming a good choice of w1. Consequently, A is
a randomness-first learner with success probability at least 1−

√
δ − 2n ·

√
δ ≥ 3/4, if `′ > 2.

In the general case, we proceed by induction. In order to explain how this is done in a more
concrete way, we show how to reduce the ` = 3 case to ` = 2. First, we summarize what we have
shown in the ` = 2 case as follows.
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Figure 2: Randomized learner and its game tree when ` = 2. In this example, if the oracle knows
w1 and w2 before answering the equivalence query, then by replying with counter-example z1 the
learner outputs an incorrect circuit corresponding to path w1, z1, w2. Note that each answer zi
eliminates a fraction of w2’s.

Claim 3.30. If A′ is a randomized learner that makes ` = 2 queries and succeeds with probability
1 − δ′, then except with probability at most δ′1/2 + 2n · δ′1/2, fixing its randomness provides a
deterministic learner that makes ` = 2 queries and succeeds regardless of the oracle answers.

Let A be a randomized learner that makes ` = 3 queries, and assume that A succeeds with
probability at least 1 − δ. In other words, γ(ε) ≥ 1 − δ, where ε denotes the root of T , and T
encodes the interaction of A(1n) with the Search-SAT-EQ oracle. Note that the first random string
w1 selected by A(1n) satisfies the following property: with probability at least 1− δ1/2, no matter
the counter-example z1 provided by the oracle to the first query, the learner descends to a node
(w1, z1) of T such that γ(w1, z1) ≥ 1− δ1/2. (This is similar to the ` = 2 case, and relies only on a
standard Markov argument and the definition of the success probability function γ.) Now what we
know is that, for a good choice of w1 that leads to such a sub-tree, if the oracle decides to answer
with a fixed counter-example z1 ∈ {0, 1}n, then we are in a setting that is similar to Claim 3.30 for
δ′ = δ1/2. In other words, for the learning game that starts at T(w1,z1), we know that except with

probability δ′1/2 + 2n · δ′1/2, fixing the random strings w2 and w3 before interacting with the oracle
produces a correct deterministic learner. Overall, we get to select w1 before the oracle, so except
with probability δ1/2, we are at a good sub-tree Tw1 . However, we cannot control the answer z1

of the oracle, who knows w2 and w3. Thus, to complete the analysis of the ` = 3 case, we union
bound over all possible choices of z1, i.e., we eliminate bad choices of w2 and w3 for each possible
z1, assuming a good w1. The probability of not obtaining a correct deterministic learner after
randomly fixing w1, w2, and w3 is then at most

δ1/2 + 2n · (δ′1/2 + 2n · δ′1/2) = δ1/2 + δ1/4(2n + 22n).

This failure probability is at most 1/4 if we start with a randomized learner that succeeds with
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probability β(n) ≥ 1− δ(n), where δ(n) = 2−`
′n for a large enough constant `′.

The general case follows in the natural way using an induction hypothesis that is similar to Claim
3.30. We omit the details since a precise bound is not needed in other parts of the paper.

The following result shows that, for the purpose of proving circuit lower bounds for some
explicit problem, non-uniformity is essentially equivalent to zero-error uniformity with access to an
NP oracle.

Proposition 3.31 (Power of zero-error uniformity with an NP oracle).

1. For every k ≥ 1, NP ⊂ SIZE[O(nk)] if and only if NP ⊂ ZPPNP-uniform SIZE[O(nk)].

2. For every k ≥ 1, if P ⊂ SIZE[O(nk)], then P ⊂ FZPPNP-uniform SIZE[O(nk+1)]. In particular,
P ⊂ SIZE[O(nk)] for some k ≥ 1 iff P ⊂ FZPPNP-uniform SIZE[O(nk

′
)] for some k′ ≥ 1.

Proof. For Item 1, it suffices to show the implication from a nonuniform circuit upper bound to
the ZPPNP-uniform circuit upper bound. For any k ≥ 1, if NP ⊂ SIZE[O(nk)], then PH = ZPPNP

by [Bsh+96]. For every L ∈ NP, one can specify the family C of lexicographically smallest circuits
Cn of size O(nk) deciding L, so that n-DCL(C) ∈ PH. It follows that n-DCL(C) ∈ ZPPNP.

For Item 2, the learning algorithm of [Bsh+96] is a FZPPNP algorithm that can exactly learn
any size s(n) ≥ n circuit on n inputs, given oracle access to equivalence queries for n-input circuits
of size O(n · s(n)); so the algorithm outputs an equivalent circuit of size O(n · s(n)). Note that for
any language L ∈ P, deciding for a given n-input circuit C of size s′(n) if there is an input x where
C(x) 6= L(x) (and if so, finding such an input x) can be done in PNP in a fairly straightforward
way. That is, one can simulate the EQ oracle for a language L ∈ P with an NP oracle. It follows
that a circuit for L ∈ P ⊂ SIZE[O(nk)] of size O(nk+1) can be found by an FZPPNP algorithm.

4 Unprovability of Circuit Upper Bounds in Bounded Arithmetic

Here we prove that various systems of Bounded Arithmetic cannot prove certain circuit upper
bounds. For any complexity class C, and a constant k ≥ 1, the circuit upper bound statement

C ⊂ SIZE[O(nk)]

means the following: for every Boolean function family f = {fn}n≥1 ∈ C, there is a constant
c ≥ 0, such that, for all input length n ≥ 1, fn ∈ SIZE[cnk]. We say that a theory T proves that
C ⊂ SIZE[O(nk)] if, for every f ∈ C and for some constant c ≥ 0,

T ` ∀n ∃C (size(C) ≤ cnk) ∀X (|X| = n) [C(X) = f(X)],

where the function size(C) (counting the number of gates in a circuit described by a binary string
C), the circuit evaluation C(X), and the function evaluation f(X) must all be expressible in the
language of T .

Remark 4.1. We recall the following facts about some of the theories investigated in this section.

• For VPV1, which contains all polytime algorithms as symbols f of the language of VPV1,
size(C) and circuit evaluation C(X) are all expressible in a straightforward way.

• Similarly for VPV2, which contains function symbols f for all PNP algorithms, the circuit
evaluation problem for circuits C with NP oracle gates is expressible as a PNP function.
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• For V1, the polytime computable circuit evaluation problem can be expressed by a ΣB
1 formula

in the language of V1 [Bus86].

Crucially, one can verify in each case that the corresponding circuit upper bound sentences are
compatible with the witnessing theorems that are needed in our proofs.

Note that, in order to formally state a circuit upper bound sentence for a function or a language,
we fix an algorithm that computes f(X) to refer to f in the sentence. Consequently, different
algorithms that specify the same function or language f ∈ C result in different upper bound
sentences. This can be an issue, since the theory T might not be able to establish that distinct
algorithms compute the same function. However, as explained in Section 1.2.2, the unprovability
results established in this work are all robust to this. In other words, when we show that a theory
T cannot prove circuit upper bounds for a language L ∈ C, this is independent of the algorithm
used to represent L in the upper bound sentence.

We refer the interested reader to [Pic15a; KO17; BKO20; MP20] for additional discussion on
the formalization of circuit complexity in bounded arithmetic.

Remark 4.2 (On the relation between the KPT Theorem and LEARN-uniformity). As explained
in Section 1.3, in the context of circuit upper bounds, we can interpret the disjunction provided by
the KPT Theorem (over the standard model) as a LEARN-uniform construction. Here we clarify
a subtle point that is not essential but that might occur to some readers: there is a trivial reason
for a formula ϕ(X,Ti(X,Z1, . . . , Zi−1), Zi) in the KPT disjunction obtained from a circuit upper
bound sentence to be false on a given (partial) input X,Z1, . . . , Zi−1, regardless of the value of Zi:
the circuit proposed by the term Ti (and that serves as a query to the EQ oracle) is simply not
of the correct form (e.g., it is larger than the size bound or not defined over the right number of
input variables). Since these checks can be done in polynomial time and any value of the variable
Zi serves as a counter-example when this happens, one can simply proceed with the simulation and
pretend that such trivial-to-answer queries are never passed on to the EQ oracle.

4.1 VPV1 and VPV2

Theorem 4.3 ([KO17]). For any constant k ≥ 1, VPV1 does not prove that P ⊂ SIZE[O(nk)].

Proof. Suppose it does. Then by the KPT Witnessing for VPV, we get that

P ⊆ LEARNEQ[const]-uniform SIZE[O(nk)],

contradicting Theorem 3.1.

Theorem 4.4. For any constant k ≥ 1, VPV2 does not prove that PNP ⊂ SIZENP[O(nk)].

Proof. Suppose it does. Then by the KPT Witnessing for the universal theory VPV2, we get that

PNP ⊆ FPNP-LEARNEQ[const]-uniform SIZENP[O(nk)],

contradicting Theorem 3.2 (the relativized version of Theorem 3.1 where the learning algorithm is
an FPNP algorithm).

Since VPV2 is a conservative extension of TV1 (which is the second-order version of the first-order
theory T1

2) [CN10, Theorem VIII.7.11], we also get that TV1 does not prove PNP ⊂ SIZENP[O(nk)],
strengthening a result of [BKO20].
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4.2 V1

The statement V1 ` NP ⊂ SIZE[O(nk)] means that, for every ΣB
1 formula ϕ(X,Y ) (defining an

NP language {X | ∃Y ϕ(X,Y )}) and for some constant c ≥ 0, V1 proves the following:

∀n ∃C (size(C) ≤ cnk) ∀X (|X| = n) [C(X) = 1 ⇐⇒ ∃Y ϕ(X,Y )]. (1)

The “infinitely often” statement V1 ` SAT ∈ io-SIZE[poly] means that

∀n ∃m ≥ n ∃C (size(C) ≤ cmd) ∀ϕ (|ϕ| = m) [C(ϕ) = 1 ⇐⇒ ∃Y ϕ(Y )].

We strengthen a result from [BKO20] as follows.

Theorem 4.5. For any constant k ≥ 1, V1 does not prove that NP ⊂ io-SIZE[O(nk)]. In fact, at
least one of the following must be true:

1. V1 does not prove that SAT ∈ io-SIZE[poly(n)].

2. For any constant k ≥ 1, NP 6⊂ io-SIZESAT[O(nk)].

In particular, for any constant k ≥ 1, V1 does not prove that

NP ⊂ io-SIZE[poly(n)] ∩ io-SIZESAT[O(nk)].

Proof. If V1 doesn’t prove that SAT ∈ io-SIZE[poly], we are done. Otherwise, we argue as follows.

Reducing the “infinitely often” to the “almost everywhere” case. Suppose that V1

proves that SAT ∈ io-SIZE[poly]. As in [BKO20], we use Parikh’s Theorem (Theorem 2.18) applied
to V1 to argue that the existentially quantified number parameter m is bounded by some term
t(n) ≤ poly(n). Since SAT is paddable language (a formula ϕ of size n can be always padded up to
a satisfiability-equivalent formula ϕ′ of size m for any m ≥ n) and m ≤ poly(n), we conclude that
V1 proves that SAT ∈ SIZE[poly], and proceed to the “almost everywhere” case next.

The “almost everywhere” case. If V1 proves that SAT ∈ SIZE[poly], then it also proves that
Search-SAT ∈ SIZE[poly] (as noted by [CK07]). The latter can be formalized as saying that

∀n ∃C (size(C) ≤ cnd) ∀(ϕ,w) ≤ n [ϕ(w) ⇒ ϕ(C(ϕ))],

where C is an encoding of a Search-SAT circuit of poly(n) size, ϕ is a formula, and w is an as-
signment for ϕ. So the above formula says that C finds a satisfying assignment for every input
satisfiable formula ϕ. By the KPT-witnessing for V1 (Theorem 2.17), we get that Search-SAT ∈
LEARNSearch-SAT-EQ[poly]-uniform SIZE[poly]; recall that here the EQ oracle on an incorrect Search-SAT
candidate circuit C must answer with a pair (ϕ,w) where w is a satisfying assignment for ϕ, and
C(ϕ) fails to find a satisfying assignment on input ϕ. By Theorem 3.12, the proof is complete.

4.3 VAPC1: VPV1 + dWPHP

We denote by VAPC1 the second-order analogue of the first-order theory APC1 introduced by
[Jeř05]. That is, VAPC1 = VPV1 + dWPHP(VPV1), where dWPHP(VPV1) is a collection of axioms
dWPHP(F ), one for each VPV1 function symbol F stating that F is not a surjection if the size of
the codomain of F is slightly bigger than the size of its domain. Moreover, we must allow F to
have parameters, denoted by P in the formal statement below. Formally, we have the following:

∀n ∀P ∃Y (|Y | = n+ 1, Y < 2n + 2n/n) ∀X (|X| = n) [F (P,X) 6= Y ].

Here we interpret Y as a binary integer less than 2n+1, and “<” is the standard ordering on integers.
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Remark 4.6. Note the choice of the parameters for the dual Weak Pigeonhole Principle for VAPC1:
it says that, for every choice of parameter P , every polytime computable map F (P, ·) from N = 2n

to N +N/n elements cannot be a surjection. By random guessing, we can get an element outside
the range of F (P, ·) with probability at least 1/(n+1). In contrast, for a stronger system V1, one can
use a version of the dual Weak Pigeonhole Principle for maps from N to N2 elements, achieving
a much higher success probability of at least 1− 1/N for randomly guessing an element outside the
range of a given map. Over V1, the two versions of the dWPHP axioms are equivalent, which is
not known over VPV1 (and is false for the relativized versions of dWPHP) [Jeř07b].

Theorem 4.7 (KPT Witnessing for VAPC1). Suppose that, for a ΣB
0 (VPV1)-formula ϕ,

VAPC1 ` ∀n ∃C ∀Z ϕ(n,C,Z).

Then there are a constant number ` of poly(n)-time computable functions

A1(n,R1), A2(n,R1, Z1, R2), . . . , A`(n,R1, Z1, . . . , R`−1, Z`−1, R`)

and a constant c ≥ 1 such that, for every n ≥ 1, the following holds.

1. With probability at least 1/nc over uniform randomness R1, for C1 = A1(n,R1), either N �
∀Z1 ϕ(n,C1, Z1), or for any Z1 such that N � ¬ϕ(n,C1, Z1), the following holds.

2. With probability at least 1/nc over R2, for C2 = A2(n,R1, Z1, R2), either N � ∀Z2 ϕ(n,C2, Z2),
or for any Z2 such that N � ¬ϕ(n,C2, Z2), the following holds.

...

`. With probability at least 1/nc over R`, for C` = A`(n,R1, Z1, . . . , R`−1, Z`−1, R`), we have
N � ∀Z` ϕ(n,C`, Z`).

Proof. In order to derive a KPT Witnessing Theorem for VAPC1, we first turn VAPC1 into a
universal theory, by making each instance of a dWPHP axiom a universal formula. We follow an
idea of Kraj́ıček [Kra19, Lemma 12.6.2] to apply Skolemization in order to get rid of the existential
variable Y . That is, for each axiom dWPHP(F ), introduce a new function symbol F ′ and the
following (universal) axiom dWPHP(F, F ′):

∀n ∀P ∀X (|X| = n)
[
|F ′(n, P )| = n+ 1 ∧ F ′(n, P ) < 2n + 2n/n ∧ F (P,X) 6= F ′(n, P )

]
.

Intuitively, F ′ is intended to be a multi-valued function that, on inputs n and P , should output
some (arbitrary) string not in the range of F (P, ·).

It is clear that each axiom dWPHP(F ) follows from dWPHP(F, F ′). So if VAPC1 proves

∀n ∃C ∀Z ϕ(n,C,Z),

then so does the universal theory

T = VPV1 ∪ {dWPHP(F, F ′) | F is a VPV1 function symbol}.

By the KPT Witnessing Theorem 2.16, there is a constant ` ≥ 1 and a finite sequence T1, . . . , T` of
string-terms in the vocabulary of VPV1 and the set {F ′ | F is a VPV1 function symbol} such that
T ` Φ, where

Φ = ∀n ∀~Z [ϕ(n, T1(n), Z1) ∨ ϕ(n, T2(n,Z1), Z2) ∨ · · · ∨ ϕ(n, T`(n,Z1, . . . , Z`−1), Z`)] .
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Consequently, if M is a model of T , we have M � Φ. In particular, this is the case for every model
M that extends the standard model N using a valid interpretation over N for the new function
symbols F ′ (i.e., M � dWPHP(FM , F ′M )).

Thanks to the property described above, we conclude the argument by a probabilistic analysis
of randomly constructed interpretations for the new functions symbols extending the standard
model N. The terms Ti, 1 ≤ i ≤ `, may mention some constant number of new function symbols
F ′1, . . . , F

′
c. The idea is to replace each of the occurrences of these functions F ′j with a random

choice of a string in the codomain of the corresponding VPV1 function F (P, ·), for some parameter
value P . Ignoring F ′js, each individual term Ti computes a polytime function, and so can ask for
dWPHP(F, F ′) for parameterized functions F (P, ·) on some poly(n)-bit inputs. Hence, a uniformly
randomly chosen string in the codomain of each such F (P, ·) will fall outside the range of F (P, ·)
with probability at least 1/poly(n) (by the parameters of the dWPHP axioms for VAPC1). Since
each term Ti mentions at most a constant number of F ′js and on any input n there are at most
constantly many values of the parameter P that are relevant (the parameter(s) can depend on n
and on the constantly many counter-examples), the probability that all F ′js in it are computed
correctly by this randomized procedure is at least 1/poly(n). Since the next terms may use the
values of F ′js we chose randomly in Ti, we need to pass our random strings to all subsequent terms
Tj , for i < j ≤ `.

Theorem 4.8. At least one of the following must be true:

1. VAPC1 does not prove that SAT ∈ io-SIZE[poly(n)].

2. There is a constant a ≥ 1 such that PH = ZPPNP[a] ⊂ MA//a, and, for every k ≥ 1,
MA//a 6⊂ io-SIZESAT[O(nk)] and ZPPNP[a] 6⊂ io-SIZESAT[O(nk)].

Proof. Suppose the first case does not hold. As in the proof of Theorem 4.5, we use Parikh’s
Theorem (Theorem 2.18) to conclude that VAPC1 proves that SAT ∈ SIZE[poly(n)]. In turn,
this implies that VAPC1 also proves that Search-SAT ∈ SIZE[poly(n)] (as the implication SAT ∈
SIZE[poly]⇒ Search-SAT ∈ SIZE[poly] is provable already in VPV1 [CK07]).

By the KPT-witnessing for VAPC1 (Theorem 4.7), we get that a Search-SAT circuit of polynomial
size can be learned with probability γ(n) ≥ 1/poly(n), using a constant number of EQs, i.e.,

Search-SAT ∈ FZPP-LEARNSearch-SAT-EQ[const]
γ -uniform SIZE[c · nd],

where c, d are constants. As explained in Remark 4.2, we can assume without loss of generality
that the EQ oracle is never queried on a circuit of size larger than c · nd.

By Lemmas 3.26 and 3.29, the hypothesis of Theorem 3.25 is satisfied, implying Item 2.

Next we would like to unify Items 1 and 2 of Theorem 4.8 above to conclude that VAPC1 cannot
prove some circuit upper bound. To that end, we would like to formalize within VAPC1 Item 2 of
Theorem 4.8. Item 2 talks about hard languages in complexity classes ZPPNP[const] and MA//const,
none of which is directly expressible within VAPC1. However, it is shown in [Jeř07a] that MA can be
formalized within VAPC1, using the ability to count approximately (which comes from the dWPHP
axioms). To formalize MA//const within VAPC1, we add a new, uninterpreted function symbol α,
so that α(n, r) is intended to represent the bits of the constant-length advice string on input size
n, dependent on randomness r. This yields a relativized version VAPC1(α) of the theory VAPC1,
where we can formalize circuit upper bounds for MA//a.

Corollary 4.9. For any constant k ≥ 1, VAPC1(α) does not prove that MA//const ⊂ io-SIZE[O(nk)].
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Proof. Suppose the opposite. Since VAPC1(α) proves MA//const ⊂ io-SIZE[O(nk)], it also proves
that SAT ∈ io-SIZE[poly], and hence also SAT ∈ SIZE[poly] by Parikh’s theorem. We get, via KPT
Witnessing, a learning algorithm for polysize Search-SAT circuits, but now this algorithm may also
use oracle access to the function symbol α. However, since the algorithm is supposed to work for
any interpretation of α (as α is not mentioned in the statement formalizing circuit upper bounds
for SAT), we may interpret α as the constant 0 function, for example, and get a learning algorithm
for Search-SAT that uses only the Search-SAT Equivalence Query oracle. Then, as in the proof of
Theorem 4.8, we get the existence of a hard language L∗ in MA//a, for some constant-size output,
randomness-dependent advice function α∗. But VAPC1(α) proves that all languages in MA//a,
including this L∗, have small circuit sizes, which contradicts the soundness of VAPC1(α).

4.4 V1 + dWPHP

We allow all VPV1 functions symbols to be part of the vocabulary for V1 (which forms a
conservative extension of V1), and, for every VPV1 functions symbol F , define dWPHP(F ) to be
the following axiom:

∀n ∃m ∀P ∃Y (|Y | = m) ∀X (|X| = n) [F (P,X) 6= Y ].

Here again we allow parameters P in our VPV1 functions symbols F . Over V1, this version of
dWPHP is equivalent to the version used in the definition of VAPC1 above (see, e.g., [Jeř07b] for
the proof).

Theorem 4.10 (KPT Witnessing for V1 + dWPHP). Suppose that, for a ΣB
1 (VPV1)-formula ϕ,

V1(VPV1) + dWPHP(VPV1) ` ∀n ∃C ∀Z(|Z| = n) ϕ(n,C,Z).

Then there is a positive integer d such that the following holds. There is a polynomial-time ran-
domized algorithm A∗ such that, for every n ≥ 1, A∗(1n) makes at most nd oracle queries, and with
probability at least 1− 2−n, it outputs a string C ′ such that

N � ∀Z(|Z| = n) ϕ(n,C ′, Z),

assuming A∗ has access to an arbitrary counterexample oracle O(n,C), which returns a string
Z ∈ {0, 1}n such that ¬ϕ(n,C,Z) if such a counterexample Z exists, or outputs “yes” if C is good
for all Zs.23

Proof. We follow [Kra95, Theorem 7.3.7, attributed to A. Wilkie] and apply Herbrandization to
the dWPHP axioms first. Suppose there is a proof of

∀n ∃C ∀Z(|Z| = n) ϕ(n,C,Z),

using the dWPHP(VPV1) axioms for function symbols F1, . . . , Fk, for some constant k ≥ 1. For
simplicity, we assume k = 1, and use the function symbol F ; the case of k > 1 is similar. We get
that there is a V1(VPV1) proof of

∀n [(∃a ∀b ∃P ∀Y (|Y | = b) ∃X(|X| = a) F (P,X) = Y ) ∨ (∃C ∀Z(|Z| = n) ϕ(n,C,Z))] .

23In more detail, A∗(1n) has access to random strings R = R1, . . . , R`, where `(n) = nd, and its success probability
is computed similarly to the statement of Theorem 4.7. However, in contrast with that statement, here there are
`(n) = nd rounds instead of constantly many rounds, and A∗(1n) progresses to the next round with success probability
≥ 1− 2−n instead of just ≥ n−c.
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Introduce Herbrand functions h and H to get rid of the universal quantifiers over b and Y , respec-
tively, with the axioms h(n, a) = 2n + a and |H(n, a, P )| = 2n + a. Note that h is a polytime
computable number function, and so it is already in VPV1. We get that V1(VPV1, H) proves that

∀n [(∃a ∃P ∃X(|X| = a) F (P,X) = H(n, a, P )) ∨ (∃C ∀Z(|Z| = n) ϕ(n,C,Z))] .

Next we apply Herbrandization to get rid of the universal quantifier over Z, by introducing a
Herbrand function W , with the axiom |W (n,C)| = n. Thereby we get that V1(VPV1, H,W ) proves

∀n [(∃a ∃P ∃X(|X| = a) F (P,X) = H(n, a, P )) ∨ (∃C ϕ(n,C,W (n,C)))] .

By a relativized version of Buss’s Witnessing (Theorem 2.14) applied to V1(VPV1, H,W ), we
get a polytime oracle algorithm AH,W , with oracle access to functions H and W , satisfying the
following for any H and W . For every n ≥ 1, AH,W (1n) outputs a′, P ′, X ′, C ′, where a′ ≤ poly(n),
|X ′| = a′, and |C ′| ≤ poly(n), such that the following holds over N:

(F (P ′, X ′) = H(n, a′, P ′)) ∨ ϕ(n,C ′,W (n,C ′)). (2)

Moreover, AH,W (1n) runs in time at most nd for some fixed d, and in particular makes at most nd

queries to H and W .
Consider the following multi-valued function W ∗(n,C) as an instantiation of the oracle W :

W ∗(n,C) =

{
any Z∗(|Z∗| = n) such that ¬ϕ(n,C,Z∗) if it exists

0n otherwise.

That is, W ∗ is the counterexample oracle (Teacher) in the Student-Teacher protocol to find a good
C such that ∀Z(|Z| = n) ϕ(n,C,Z). For this W ∗, the truth of the formula ϕ(n,C ′,W ∗(n,C ′))
yields that

∀Z(|Z| = n) ϕ(n,C ′, Z).

Hence, the C ′ output by the algorithm AH,W
∗
(1n) is a correct solution to the search problem we

want to solve, assuming that the left disjunct in Eq. (2) is false, i.e., that H(n, a′, P ′) 6= F (P ′, X ′).
We can always make the latter happen by instantiating H with the following (not necessarily

efficiently deterministically computable) multi-valued function:

Ĥ(n, a, P ) = any Y ∈ {0, 1}2n+a such that ∀X(|X| = a) F (P,X) 6= Y ,

where such a string Y always exists by the dual pigeon-hole principle. Then the algorithm Â = AĤ

finds a good string C, given access to the counterexample oracle W ∗. The only problem is that Â
is not necessarily a polytime algorithm, given the complexity of computing the function Ĥ.

We use randomness to compute Ĥ correctly, with high probability. We answer each call to
Ĥ(n, a, P ) with a uniformly random string Y ∈ {0, 1}2n+a. For the correctness analysis, note that
the range of F (P, ·) is of size at most 2a, and so the probability that a random Y ∈ {0, 1}2n+a is in
the range of F (P, ·) is at most 2a/22n+a = 2−2n.

Denote by H∗ this (randomized) implementation of Ĥ. Observe that, no matter the queries
made by A, it will succeed in returning good Y s for all at most nd queries to Ĥ with probability
at least 1− nd · 2−2n ≥ 1− 2−n, for all sufficiently large n, as desired.

The oracle algorithm A∗(1n) from the statement implements the computation described above,
using its counterexample oracle O(n,C) to compute a valid W ∗, and its randomness R to implement
Ĥ as H∗ = H∗(R). The success probability of A∗, its number of oracle queries, and the polynomial
upper bound on its running time follow from our discussion.
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Recall that we denote by Search-SAT-EQ the EQ oracle for Search-SAT: on a query C, where C
is a candidate Search-SAT circuit on n-bit inputs, the EQ oracle either says “yes”, if C is a correct
circuit, or provides a formula ψ with a satisfying assignment w (so ψ(w) is true) such that C(ψ)
fails to find a satisfying assignment for ψ. Note that a single oracle call to Search-SAT-EQ may be
simulated with O(n) calls to an NP oracle (or a single call to an NP[wit] oracle), but it is not clear
if one could simulate access to a general NP oracle by using access to the Search-SAT-EQ oracle.
So we have ZPPSearch-SAT-EQ ⊆ ZPPNP, where the class on the left appears to be weaker than the
class on the right (cf. Proposition 4.13 below). We give a more formal definition next.

Definition 4.11 (Randomized machines with access to a Search-SAT-EQ oracle). A language L is
in BPPSearch-SAT-EQ if there is a probabilistic oracle algorithm A running in polynomial time with
a query-size bound s(m) ∈ poly(m) such that A only asks Equivalence Queries about m-input
circuits of size at most s(m), and for every deterministic oracle O that solves Search-SAT-EQ, on
every input x we have Prr[A

O(x, r) = L(x)] ≥ 2/3.24 The class ZPPSearch-SAT-EQ is defined similarly.

Theorem 4.12. At least one of the following must be true:

1. V1 + dWPHP does not prove that SAT ∈ io-SIZE[poly(n)].

2. For every k ≥ 1, ZPPSearch-SAT-EQ 6⊂ io-SIZESAT[O(nk)].

Proof. Assume Item 1 is false. Then, arguing as in the proof of Theorem 4.8, we get by the
KPT-witnessing for V1 + dWPHP (Theorem 4.10) that

Search-SAT ∈ FZPP-LEARNSearch-SAT-EQ[poly]-uniform SIZE[poly].

Since we can construct circuits that solve SAT in zero-error polynomial time using an oracle to
Search-SAT-EQ, it follows by a standard argument that Σp

2 ⊆ ZPPSearch-SAT-EQ. Moreover, under the
inclusion SAT ∈ SIZE[poly], we get via a Karp-Lipton collapse that PH ⊆ Σp

2 ⊆ ZPPSearch-SAT-EQ.
Appealing to Lemma 2.3, we get that Item 2 holds.

While it is believed that ZPPSAT 6⊂ io-SIZE[poly], we unconditionally show that the opposite is
true for the case of the Search-SAT-EQ oracle (which provides some evidence that the Search-SAT-EQ
oracle may indeed be strictly weaker than the SAT oracle). The following result should be contrasted
with Item 2 of Theorem 4.12 above; we give the proof in Appendix C.

Proposition 4.13. BPPSearch-SAT-EQ ⊂ io-SIZE[poly].

4.5 VAPC2: VPV2 + dWPHP

Here VAPC2 = VPV2 + dWPHP(VPV2), where VPV2 is a conservative extension of TV1 (the
second-order version of T1

2), and dWPHP(VPV2) is the dual weak pigeonhole principle for function
symbols of VPV2, which correspond exactly to all PNP algorithms.

Theorem 4.14. At least one of the following must be true:

1. VAPC2 does not prove that SAT ∈ io-SIZE[poly(n)].

2. For every k ≥ 1, ZPPNP 6⊂ io-SIZESAT[O(nk)].

24Note that, when defining LEARN-uniform circuits, the equivalence query oracle is queried on circuits with exactly
n input bits. On the other hand, in this definition, we allow the oracle to be queried on circuits with a number of
input bits that might be different from the input length of the algorithm.
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In particular, for any constant k ≥ 1, VAPC2 does not prove ZPPNP ⊂ io-SIZE[O(nk)].

Proof. If VAPC2 does prove that SAT ∈ io-SIZE[poly(n)], then by Parikh’s Theorem (Theorem 2.18),
we get SAT ∈ SIZE[poly]. By [Bsh+96; Kan82], we conclude that PH = ZPPNP 6⊂ io-SIZESAT[O(nk)].
Since VAPC2 can talk about ZPPNP [Jeř07a], the “In particular” part of the theorem follows.

Remark 4.15. It is known that, for every k ≥ 1, ZPPNP 6⊂ SIZE[O(nk)] [Bsh+96]. So the statement
“ZPPNP ⊂ io-SIZE[O(nk)]” that VAPC2 cannot prove according to Theorem 4.14 is very close to the
unconditionally false statement. (Note however the infinitely often inclusion in Appendix C, which
we currently cannot show to hold on all input lengths.)

5 Non-Uniform Circuit Upper Bounds vs. Uniform Lower Bounds

5.1 NP ⊂ io-P/poly vs. NP * P in VPV1

It may be possible that NP * P (i.e., SAT is hard uniformly) but still NP ⊂ io-P/poly (i.e., SAT
is infinitely often easy nonuniformly). Even if this possibility may be true in the real world, VPV1

won’t be able to prove this!

Formalizations. First we formalize the statements we wish to talk about within VPV1.

• NP ⊂ io-P/poly: It is equivalent to SAT ∈ io-SIZE[poly], which in turn is equivalent to
Search-SAT ∈ io-SIZE[poly]: For constants c, d > 0, we introduce the sentence Φc,d as

∀m ∃n ≥ m ∃C (size(C) ≤ cnd) ∀(ϕ,w) ≤ n [ϕ(w) ⇒ ϕ(C(ϕ))], (3)

where C is an encoding of a candidate Search-SAT circuit of poly(n) size, ϕ is a formula, and
w is an assignment for ϕ.

• NP 6⊆ P: It is equivalent to SAT 6∈ P, which in turn is equivalent to Search-SAT 6∈ FP. The
latter means that, for every VPV1 function G attempting to solve Search-SAT, the following
sentence ΨG is true in the standard model:

∀n ∃m ≥ n ∃(ϕ,w) ≤ m [ϕ(w) ∧ ¬ϕ(G(ϕ))], (4)

i.e., there are infinitely many input lengths m, where there is at least one satisfiable formula
ϕ of size m with a satisfying assignment w such that G fails to find a satisfying assignment
for this ϕ.

The theories VPV1 and V1 are known to have the same sets of Σ1 theorems (statements like the
one in Eq. (4)). So NP 6= P is provable in VPV1 iff it is provable in V1. On the other hand, for Σ2

theorems (statement like Eq. (3)), VPV1 and V1 are not believed to be equivalent (see, e.g., [CN10,
Chap. VIII]). We will prove the following.

Theorem 5.1 (KPT vs. Buss). At least one of the following must be true:

1. VPV1 does not prove that NP ⊂ io-P/poly. Formally, there are no constants c, d such that
VPV1 ` Φc,d.

2. VPV1 does not prove that NP 6⊆ P. Formally, there is a VPV1 function symbol G such that
VPV1 0 ΨG.
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Proof. If Item 1 does not hold, then there are constants c, d such that VPV1 ` Φc,d. As before,
we can apply Parikh’s Theorem (Theorem 2.18) and the paddability of SAT to conclude that
Search-SAT ∈ SIZE[poly] is provable in VPV1. Moreover, the latter inclusion is formalized by a ∀∃∀
sentence. By the KPT Witnessing for VPV1 (Theorem 2.16), we get that

Search-SAT ∈ LEARNSearch-SAT-EQ[`]-uniform SIZE[poly]

for some constant ` ≥ 0; recall that here the equivalence queries for an incorrect candidate
Search-SAT circuit C must be answered with a pair (ϕ,w): a formula ϕ satisfied by an assign-
ment w, but such that C(ϕ) fails to find a satisfying assignment for ϕ (cf. Remark 3.11).

Note that if ` = 0, then NP = P. If Item 2 does not hold, then for every VPV1 function symbol
G, we have VPV1 ` ΨG. This contradicts the soundness of VPV1, and we are done.

For ` > 0, the idea is to use the provability of Item 2 in VPV1 to eliminate the equivalence
queries, and thereby reduce to the case of ` = 0, via Buss-style Witnessing.

Let A(1n) be the polytime learning algorithm for polysize Search-SAT circuits, using at most
` EQs, guaranteed to exist by the KPT Witnessing Theorem. Let A1 be the following polytime
algorithm that attempts to solve Search-SAT: “On input ϕ of size n,

• run A(1n) until it asks its first EQ for some Search-SAT candidate circuit C;

• use C on ϕ, i.e., output C(ϕ).”

If we assume the negation of Item 2, no polytime algorithm (including A1) can solve Search-SAT
on all large enough input lengths. Moreover, VPV1 (or V1) proves that for every polytime algorithm
(including A1), there exist counterexamples (satisfiable formulas where the algorithm fails to find
a satisfying assignment) for infinitely many input lengths.

By an analogue of Buss’s Witnessing Theorem for VPV1, Theorem 2.15, (or by Buss’s Witnessing
for V1, Theorem 2.14), we get polytime algorithms f(1n) and F (1n) such that, for all n ≥ 1, F (1n)
outputs a pair (ϕ,w), where ϕ is a formula of size m = f(1n) ≥ n that is satisfied by the assignment
w but such that A1(ϕ) fails to find a satisfying assignment for ϕ. Note that such a pair (ϕ,w) is an
answer to the first EQ of A(1m). This allows us to eliminate one equivalence query, getting a new
polytime learning algorithm A′ for Search-SAT circuits, which uses at most (`− 1) EQs, as follows:
“On input 1n,

• compute m = f(1n);

• run F (1n) to get a pair (ϕ,w), where ϕ is a formula of size m = f(1n) satisfied by the
assignment w;

• run A(1m) until it asks its first EQ for some Search-SAT candidate circuit C;

• answer the EQ for C with (ϕ,w), and continue running A(1m), asking the remaining at most
`− 1 EQs as usual.”

The new learning algorithm A′(1n) is still a polytime algorithm, albeit a larger polytime than
the runtime of A, since we now also need to run polytime algorithms f and F . On input 1n, it
will output a Search-SAT circuit Cm for inputs of size m, where n ≤ m ≤ poly(n), and hence
|Cm| ≤ poly(m) ≤ poly(n), which can still be used for input formulas of size n by the paddability
of SAT. Since the original algorithm A(1n) is correct for all input lengths n, the new algorithm
A′ is also correct for all input lengths n; we are essentially restricting the old algorithm A to
those, infinitely many and at most poly-spaced apart, input lengths n where the first EQ can be
successfully eliminated via the algorithms f and F .
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Thus, the algorithm A′ uses at most (`− 1) EQs, and learns Search-SAT circuits of polynomial
size, for all input lengths n ≥ 1. We can apply our reasoning above to this new learning algorithm
A′, and eliminate another EQ. After at most ` steps, we will eliminate all EQs, and have an
algorithm that solves Search-SAT for all input lengths, and still runs in polytime, because ` is a
constant. A contradiction.

Connection to “dream breakers”. A line of work starting with [GST07], with followups by
[Ats06; BTW10], considered the question of getting efficient “refuters” for any candidate SAT
algorithms, under the assumption that NP 6= P (or NP 6⊆ BPP). Namely, the task is: for a given
polytime algorithm A trying to solve SAT, design another polytime algorithm R that will generate
SAT instances x such that A(x) is wrong. Most relevant to us is the following result of [BTW10]
for the case of Search-SAT: if NP 6= P, then for every polytime algorithm A attempting to solve
Search-SAT, there is a polytime algorithm R such that, for infinitely many input lengths n, R(1n)
outputs a pair (ϕ,w), where ϕ is a formula satisfied by w, but such that A(ϕ) fails to find a satisfying
assignment for ϕ. That is, this refuter R from [BTW10] finds, infinitely often, a satisfiable formula
together with its satisfying assignment on which the given candidate Search-SAT algorithm fails.
Such refuters were termed dream breakers by [GST07] (attributed to Adam Smith) because they
unequivocally show to the algorithm A that it was wrong on a satisfiable formula.

It is still not known if dream breakers exist in the almost-everywhere setting:

Assuming that NP 6⊆ io-P, is it the case that for every Search-SAT algorithm A there is
a polytime refuter R such that, for all sufficiently large input lengths n, R(1n) finds a
satisfiable formula ϕ of size n and its satisfying assignment w, where A(ϕ) fails?25

We observe that if such “almost everywhere” dream breakers R existed, then we would get the
following implication: If VPV1 ` NP ⊆ io-P/poly (as formalized above), then (in the standard
model, over N) NP ⊆ io-P. This would follow immediately from the proof of Theorem 5.1, since we
could use the assumed refuters R instead of Witnessing functions coming from the VPV1 provable
separation NP 6= P.

5.2 NP ⊂ io-P/poly vs. NP * BPP in VAPC1

Here we generalize Theorem 5.1 to the randomized case: we will work with VAPC1, and show
the unprovability within VAPC1 of the conjunction: NP ⊂ io-P/poly and NP * BPP.

Formalizations. First we formalize the statements we wish to talk about within VAPC1. We will
actually work with a conservative extension VAPC1(α) due to [Jeř07a], with extra axioms stating
that α(n) is a size n truth table of a Boolean function on (log n)-bit inputs that has exponential
(n1/4) average-case circuit complexity (i.e., cannot be computed by any n1/4-size circuit on more
than 1/2 + n−1/4 fraction of inputs). In this extension VAPC1(α), one can define a VPV1(α)
function symbol that can approximate, to within any additive constant error ε > 0, the probability
Prr[p(x, r)], for any polytime predicate p(x, r) on any input x.

• NP ⊂ io-P/poly: The formalization of this statement remains the same: For some constants
c, d > 0,

∀m ∃n ≥ m ∃C (size(C) ≤ cnd) ∀(ϕ,w) ≤ n [ϕ(w) ⇒ ϕ(C(ϕ))], (5)

25Actually, even if R(1n) were to find such pairs (ϕ,w) infinitely often, but for only at most polynomially spaced
apart input lengths n, it would be very interesting, and sufficient for our applications.
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where C is an encoding of a Search-SAT circuit of poly(n) size, ϕ is a formula, and w is an
assignment for ϕ.

• NP 6⊆ BPP: It is equivalent to SAT 6∈ RP, which in turn is equivalent to Search-SAT 6∈ FRP.
The latter means that, for every VPV1 function G(x, r), defining a randomized multi-valued
function mapping input x to an output G(x, r) for a random string r, where |r| ≤ poly(|x|),
the following holds:

∀n ∃m ≥ n ∃(ϕ,w) ≤ m [ϕ(w) ∧ Prr[¬ϕ(G(ϕ, r))] ≥ 1/2] , (6)

i.e., there are infinitely many input lengths m, where there is at least one satisfiable formula
ϕ of size m with a satisfying assignment w such that G fails to find a satisfying assignment
for this ϕ, on at least 1/2 of its random strings r.

Theorem 5.2 (KPT vs. Buss: Randomized Case). At least one of the following must be true:

1. VAPC1(α) does not prove that NP ⊂ io-P/poly.

2. VAPC1(α) does not prove that NP 6⊆ BPP.26

Proof. If Item 1 does not hold, then, as before, we can apply Parikh’s Theorem (Theorem 2.18)
and the paddability of SAT to conclude that Search-SAT ∈ SIZE[poly]. By the KPT Witnessing for
APC1 (Theorem 4.7), we get that

Search-SAT ∈ FZPP-LEARNSearch-SAT-EQ[`]-uniform SIZE[poly]

for some constant ` ≥ 0. Moreover, thanks to the error reduction via parallel repetition as in the
proof of Lemma 3.26, we may assume that the success probability of going to a “good” next round
of this `-round learning algorithm is at least 1− 2−n, for every round.

Note that if ` = 0, then NP ⊆ BPP, and we are done. For ` > 0, the idea is to use the provability
of Item 2 in VAPC1 to eliminate the equivalence queries, via Buss-style Witnessing.

Let A(1n) be the randomized polytime learning algorithm for polysize Search-SAT circuits,
using at most ` EQs, guaranteed to exist by the KPT Witnessing Theorem. Let A1 be the following
randomized polytime algorithm that attempts to solve Search-SAT:

“On input ϕ of size n, run A(1n) until it asks its first EQ for some Search-SAT candidate
circuit C. Output C(ϕ).”

If we assume the negation of Item 2, by an analogue of Buss’s Witnessing Theorem for VAPC1(α)
(see [Kra95, Section 7.3] and [Jeř04]), we get randomized polytime algorithms f(1n) and F (1n) such
that, for all n ≥ 1, with high probability (say, at least 3/4), F (1n) outputs a pair (ϕ,w), where ϕ
is a formula of size m = f(1n) ≥ n that is satisfied by the assignment w but such that A1(ϕ) fails
to find a satisfying assignment for ϕ, on at least 1/2 of its internal random strings.

This allows us to eliminate one equivalence query, getting a new randomized polytime learning
algorithm A′ for Search-SAT circuits, which uses at most (`− 1) EQs, as follows: “On input 1n,

1. compute f(1n) = m and F (1n) = (ϕ,w), where ϕ is a formula of size m satisfied by w;

2. run A(1m) until it asks its first EQ for some Search-SAT candidate circuit C;

26We could even allow V1(α) + dWPHP(α) in this item. Actually, adding the axiom α about hard-on-average
functions to V1 eliminates the need for the dWPHP(α) axioms, as the latter can be proved by V1(α) [Jeř04].

49



3. answer the EQ for C with (ϕ,w), and continue running A(1m), asking the remaining at most
`− 1 EQs as usual.”

Let us analyze the success probability of this new learning algorithm, by analyzing its success
probability of eliminating the first EQ. Step 1 fails with probability at most 1/4 (the error of the
randomized Buss Witnessing). Step 2 fails (chooses bad randomness that doesn’t take the learning
algorithm to the next good round) with probability at most 2−n (by the error reduction performed
on the KPT Learning algorithm). Step 3 fails if the Buss-witness (ϕ,w) is not correct for the circuit
C produced in Step 2 by A. We know this Buss-witness is good for at least 1/2 of the random
strings used by A in Step 2. Thus, the randomness used by A in Step 2 is bad for either making
a good transition to the next round of learning, or obtaining a correct Buss-witness, with total
probability at most 1/2 + 2−n (by the union bound). Hence, the probability that A′ successfully
eliminates its first EQ is at least 1 − (1/4) − (1/2) − 2−n > (1/5) (by the union bound), and so
A′ successfully learns a correct Search-SAT circuit within ` − 1 rounds of interaction with the EQ
oracle with probability at least (1/5)(1− 2−n) ≥ (1/6).

We can again boost the success probability of A′ to 1 − 2−n via parallel repetition as in
Lemma 3.26, keeping ` − 1 as the number of rounds (EQs). The new randomized learning al-
gorithm A′(1n) is still a polytime algorithm, and is correct on all input lengths. We repeat our
process of EQ elimination for at most ` steps, eventually getting a BPP algorithm for Search-SAT.
A contradiction.
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construction in VNC1”. In: Ann. Pure Appl. Log. 171.7 (2020), p. 102796. doi: 10.
1016/j.apal.2020.102796.

[Bus86] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986.

[Bus97] Samuel R. Buss. “Bounded Arithmetic and Propositional Proof Complexity”. In: Logic
of Computation. Springer Berlin Heidelberg, 1997, pp. 67–121.
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A On the Power of Equivalence Queries in Circuit Uniformity

In the result stated below, we observe that the ability to make a single equivalence query
guarantees the existence of efficient uniform constructions that are provably impossible otherwise.
We establish the result for a language L whose deterministic time complexity is only barely super-
polynomial, and note that proving a similar result for a language L ∈ P would show that P 6= NP.

We say that a function γ : N → N is constructible if there is a deterministic polynomial-time
algorithm that on input 1n outputs γ(n).

Proposition A.1. Let k ≥ 1 be an arbitrary constant. The following results hold.

1. Let γ : N → N be a constructible function such that γ(n) = ω(1). Then there is a language
L ∈ DTIME[nγ(n)] such that L ∈ LEARNEQ[1]-uniform SIZE[nk] and L /∈ P-uniform SIZE[nk].

2. If there is L ∈ P such that L ∈ LEARNEQ[1]-uniform SIZE[nk] and L /∈ P-uniform SIZE[nk],
then P 6= NP.

Proof. Let k ≥ 1 be arbitrary. In order to prove the first item, consider a constructible function
γ such that γ(n) = ω(1). Let L be the language defined by the following procedure: on an input
x ∈ {0, 1}n, simulate the n-th Turing machine Mn on input 1n for nγ(n)/2 steps, and accept x if
and only if Mn rejects 1n or does not terminate its computation. By construction, we see that
L ∈ DTIME[nγ(n)]. In addition, since nγ(n)/2 grows faster than any polynomial, by a standard
diagonalization argument we get that L /∈ P. For this reason, we have L /∈ P-uniform SIZE[nk].
Finally, note that on every input length n, L computes either the constant 0 function, or the
constant 1 function, since its output depends on the length of x and not on the bits of x. Given
that checking which case holds can be done via a single equivalence query, it follows that L ∈
LEARNEQ[1]-uniform SIZE[1] ⊆ LEARNEQ[1]-uniform SIZE[nk].

For a proof of the second item, notice that if L ∈ P and NP ⊆ P, then it is possible to answer
the equivalence query in polynomial time. This shows that if L ∈ LEARNEQ[1]-uniform SIZE[nk]
then L ∈ P-uniform SIZE[nk].

54

https://doi.org/10.1137/070702680
https://doi.org/10.1007/s00037-014-0087-y
https://doi.org/10.1007/s00037-014-0087-y
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.2307/2275794


B FPNP[wit,O(log n)] Uniformity for NP

Santhanam and Williams [SW14] proved the following.

Theorem B.1 ([SW14]). For any constant k ≥ 1,

NP 6⊂ PNP
‖ -uniform SIZE[O(nk)].

Here we generalize Theorem B.1 to the case of weaker notion of search FC-uniformity. Recall
that PNP

‖ = PNP[O(logn)] [BH91; Hem89]. We can strengthen Theorem B.1 by relaxing uniformity to

a weaker notion of FPNP[wit,O(logn)]-uniformity. Here there is no unique circuit, but rather a circuit
provided by the uniformity-machine depends on the actual witnesses provided to the NP witness
queries.

We shall need the following lemma.

Lemma B.2 (Implicit in [CK07]). For any poly(n)-computable function r(n) ≤ poly(n), if

SAT ∈ FPNP[wit,r(n)]-uniform SIZE[poly],

then

1. PH = PNP[r(poly(n))+1], and

2. PH ⊂ NP/r(poly(n)).

Proof. For some r = r(n), suppose we have an FPNP[wit,r] algorithm A that, on input 1n, constructs
a poly(n)-size circuit Cn that correctly decides SAT on all n-bit input formulas. Note that r(n) is
a polynomial-time computable upper bound on the number of queries made by A(1n), in the sense
that if correct answers are provided, we are guaranteed that at most r(n) queries are made regard-
less of the witnesses returned by the oracle. By adding dummy queries to the oracle if necessary,
we can assume that A(1n) makes exactly r(n) queries.

Proof of Item 1. Consider the following NP algorithm M : “On input 1n and α ∈ {0, 1}r(n),

• guess the full transcript of A on input 1n, including the answers a1, . . . , ar ∈ {0, 1} to all
r = r(n) NP oracle calls, with witnesses for all ‘YES’-answered calls (i.e., for all those calls i
where ai = 1),

• accept if

– the transcript is valid (assuming the guessed answers to oracle calls are correct),

– the guessed witnesses for ‘YES’-answered oracle calls are correct witnesses,

– the guessed NP oracle answers match α, i.e., α = a1 . . . ar.”

For each n and r = r(n), there is at least one string α ∈ {0, 1}r such that M(1n, α) accepts
(since there is correct transcript of A(1n)). Let α∗n ∈ {0, 1}r be the lexicographically largest binary
string such that M(1n, α∗n) accepts.

Such a string α∗n can be computed in FPNP[r(n)] in a straightforward way: Start with the empty
string α. For r iterations, keep asking the NP oracle if there is an extension α′ ∈ {0, 1}r of the
prefix α1 such that M(1n, α′) accepts; if the NP oracle answers ‘YES’, then set α = α1, else α = α0.

The crucial observation is the following.
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Claim B.3. Every accepting branch (witness) W of the NTM M on input (1n, α∗n) contains a
correct transcript of the computation of A(1n), including a correct SAT circuit Cn within this
transcript.

Proof of Claim B.3. Indeed, consider such a transcriptW . All its ‘YES’-answered NP oracle queries
are correct by the definition of M . If some ‘NO’-answered NP oracle query is an error, then let
1 ≤ i∗ ≤ r be the first ‘NO’-answered query that should have been answered ‘YES’. But then α∗n
is not the lexicographically largest string accepted by M , as there is some extension of the prefix
(α∗n)[1..(i∗−1)]1 that is also accepted by M . A contradiction.

Finally, since SAT ∈ SIZE[poly] implies PH = Σp
2 by Theorem 2.4, the lemma will follow once

we show that Σp
2 ⊆ PNP[r(poly(n))+1]. Consider an arbitrary language L ∈ Σp

2, defined by a formula
η(x) = ∃y ∀z R(x, y, z), where y and z have the lengths polynomial in the length of x ∈ {0, 1}n,
and the predicate R is computable in P.

For each pair of strings (x, y) (of polynomially related lengths), define a propositional formula
ϕx,y(z

′) such that ∀z′ ϕx,y(z′)⇐⇒ ∀z R(x, y, z). Such a formula can be constructed in poly(|x|)-
time using the Cook-Levin Theorem that SAT is NP-complete. Let m(|x|) ∈ poly(|x|) be the size
of ¬ϕx,y, the negation of ϕx,y.

The following algorithm E will decide L: “On input x ∈ {0, 1}n,

• for m = m(n), compute α∗m (as defined above), in polytime, using at most r(m) NP oracle
queries,

• construct the formula Ψ(x) expressing that “∃y ∃W such that

– W is an accepting branch of the computation of M(1m, α∗m),

– the circuit Cm contained within W is such that Cm(¬ϕx,y) = 0.”

• ask another NP oracle query to determine if the constructed formula Ψ(x) is satisfiable,
accepting if it is, and rejecting otherwise.”

First, note that the described algorithm E is computable in PNP[r(m)+1] by construction. It
accepts x iff Ψ(x) ∈ SAT. Note that Ψ(x) ∈ SAT iff a circuit Cm contained within an accepting
computation of M(1m, α∗m) (implying that Cm must be a correct SAT circuit by Claim B.3) says
that ¬ϕx,y is unsatisfiable, for some string y. In turn, ¬ϕx,y ∈ UNSAT for some y is equivalent to
∃y ∀z R(x, y, z). Thus E accepts x iff η(x), as required.

Proof of Item 2. Rather than computing the values α∗n, we will assume they are given to us
as advice. For any language L ∈ coNP, defined by a formula η(x) = ∀y R(x, y), where y has
the length polynomial in the length of x ∈ {0, 1}n, and the predicate R is in P. For each string
x, define a propositional formula ϕx(y′) such that ∀y′ ϕx(y′) ⇐⇒ ∀y R(x, y). Such a formula
can be constructed in poly(|x|)-time using the Cook-Levin Theorem that SAT is NP-complete. Let
m(|x|) ∈ poly(|x|) be the size of ¬ϕx, the negation of ϕx.

The following NP/r(m(n)) algorithm E′ will decide L: “On input x ∈ {0, 1}n, given α = α∗m(n)

as advice of r(m(n)) bits,

• guess a string W ∈ {0, 1}O(t), where t = t(m(n)) is the runtime of M(1m(n), α∗m(n)),

• accept if

– W is an accepting branch of the computation of M(1m(n), α∗m(n)),
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– the circuit Cm contained within W is such that Cm(¬ϕx) = 0.”

For correctness, observe that E′ accepts x iff a circuit Cm contained within an accepting com-
putation of M(1m, α∗m) (implying that Cm must be a correct SAT circuit by Claim B.3) says that
¬ϕx is unsatisfiable, which is equivalent to saying that ∀y R(x, y). Thus E′ accepts x iff η(x), as
required.

Hence we get that Σp
2 ⊂ NP/r(poly(n)), implying the collapse PH = Σp

2 ⊂ NP/r(poly(n)).

The following theorem strengthens Theorem B.1.

Theorem B.4. At least one of the following must be true:

1. SAT 6∈ FPNP[wit,no(1)]-uniform SIZE[poly(n)].

2. For any constant k ≥ 1, NP 6⊂ io-SIZESAT[O(nk)].27

In particular, for every k ≥ 1,

NP 6⊂ FPNP[wit,no(1)]-uniform SIZE[O(nk)].

Proof. If the first item is false, then by Item 2 of Lemma B.2, we get that PH ⊂ NP/n. By
Lemma 2.3, we know that, for every k ≥ 1, PH contains a language Lk 6∈ io-SIZESAT[O(nk)]. By
the collapse of the PH, we conclude that each such Lk ∈ NP/n. Let Mk be a polytime NTM
that decides Lk, given advice {αn}n≥1 for input length n, where |αn| ≤ n. Consider the language
L′k = {(x, a) |Mk(x, a) accepts}. Clearly, L′k ∈ NP. If it were the case that L′k ∈ io-SIZESAT[O(nk)],
then we would also get that Lk ∈ io-SIZESAT[O(nk)] by fixing the a inputs of the circuit for L′k to
the values αn. Hence, for every k ≥ 1, NP 6⊂ io-SIZESAT[O(nk)].

C On the Weakness of the Search-SAT-EQ Oracle

Here we prove Proposition 4.13, re-stated below.

Proposition C.1. BPPSearch-SAT-EQ ⊂ io-SIZE[poly].

Proof. Consider any L ∈ BPPSearch-SAT-EQ, decided by a time O(nc) randomized algorithm A, for
some c > 0, and making Search-SAT-EQ queries about m-input circuits of size at most md for some
fixed d. By definition, A decides L given access to any Search-SAT-EQ oracle. For propositional
formulas ϕ, denote by A(ϕ) the set of all assignments to the variables of ϕ. We argue by cases on
hardness of SAT.

Case 1: SAT ∈ io-P/poly. Then, for a fixed k, SATn has O(nk)-size circuits, infinitely often. We’ll
use this sequence of SAT circuits to answer EQs asked by A. First, observe that the following NP
statement is only true of a proposed Search-SAT circuit C if it errs on some input:

Φ(C) := ∃ψ ∃w ∈ A(ψ) ψ(w) = 1 ∧ ψ(C(ψ)) = 0.

To simulate a Search-SAT-EQ about C, we first check if Φ(C) is satisfiable. If it is not satisfiable,
then we answer that C is a correct circuit. If Φ(C) is satisfiable, then we perform the standard
downward self-reduction to search for ψ and w that witness Ψ(C), and return these. We’ll now
show that this requires only a polynomial amount of advice.

27Actually, by Lemma 2.3, we could use SIZEO for any fixed language L ∈ PH, not just L = SAT.
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First, by the time bounds on A, no queried circuit can be too large: |C| ≤ O(nc) for every
candidate circuit C. So, applying a standard Cook-Levin translation to Φ(C) for any such bounded
C, we know |Φ(C)| ≤ O(n3c). Because we only have O(nk)-size circuits for SAT infinitely often,
it could be the case that every input length of the form O(n3c) is not a length where SAT is easy.
However, there are only fixed polynomial gaps between the input lengths we need to query Φ on.
Therefore, infinitely many of these polynomial ranges contain a length where SAT is easy. SAT is
paddable. So, for every n, if there is a small SAT circuit in the associated range of sizes around
|Φ|, we can supply that circuit and the appropriate amount of padding to use as advice.

This suffices to answer EQs as outlined above, giving L ∈ io-BPP/poly. Standard averaging
arguments then show that we can fix good coins for our simulation of A, and supply them as
poly-bounded advice, putting L ∈ io-P/poly, as desired.

Case 2: SAT 6∈ io-P/poly. We use the following result on “anti-checkers”.

Claim C.2 ([Kra17], see also [Pic15a]). For every constant k ≥ 1, if SAT 6∈ io-SIZE[n2k], then there
is a sequence of sets Rn of satisfiable n-bit formulas of size poly(n), with |Rn| = poly(n), and every
candidate Search-SAT circuit of size O(nk) fails to find a satisfying assignment for some formula
in Rn.

The algorithm A, on inputs of size n, is restricted to ask about m-input circuits of at most md

size, where md is at most nc by the runtime bound on A. Because we assumed SAT 6∈ io-P/poly, we
have immediately that SATm 6∈ io-SIZE[m2d]. So, no circuit queried by A can be a correct circuit for
Search-SATm. Furthermore, we can supply as advice the set Rm and a satisfying assignment for each
formula in Rm, for each m such that A could query with an m-input circuit. This is a polynomial
amount of information. We can now answer EQs by testing a proposed m-input circuit C on each
element ϕ of Rm, until C produces an assignment that does not satisfy ϕ, which is guaranteed to
happen by Claim C.2 above. We respond to the query with ϕ and the satisfying assignment for ϕ
recorded in our advice. This suffices to answer all possible EQ’s, placing L ∈ BPP/poly. Finally, we
conclude with a standard averaging argument to fix good coins for our simulation of A, and supply
them as poly-bounded advice, putting L ∈ P/poly.

D Space Complexity: Theory VLV and Branching Programs

Our LEARN-uniform lower bounds and unprovability results for P and associated theory VPV1

do not rely on particularly “special” features of the complexity class or theory. The proof of circuit
lower bounds uses properties that many computational resources share, including closure under
polynomial padding, efficient simulation of Boolean devices, and constructive hierarchy theorems.
The proof of non-provability uses properties that many efficient second-order theories share: ex-
pressibility of the relevant upper-bound statement and KPT witnessing. Any subclass of P that
enjoys these properties should admit similar LEARN-uniform complexity lower bounds and unprov-
ability results for an associated theory. Here, we demonstrate this explicitly by giving both such
results for the class L (logspace) and associated theory VLV. Formally, we obtain the following:

Theorem D.1. For any constant k ≥ 1, we have

L 6⊂ FL-LEARNEQ[const]-uniform BP-SIZE[O(nk)].

Theorem D.2. For any constant k ≥ 1, VLV does not prove that L ⊂ BP-SIZE[O(nk)].
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D.1 Preliminaries

The following definitions of space complexity reflect the exact number of bits required to write
down a snapshot of a space-bounded machine. This simplifies diagonalization proofs.

Definition D.3 (Space Complexity). Fix deterministic multi-tape Turing Machines as a concrete
model. Input is presented on a special read-only tape, and output is expected on a special write-
only tape. Let M be such a machine with states Q and alphabet Σ. The cell complexity of M ,
denoted s̃M : N→ N, is the maximum number of cells on the work-tape scanned by M on an n-bit
input. The space complexity of M is

sM (n) = log |Σ| · s̃M (n) + log |Q|

We will carefully track non-uniformity. To the concrete model above, we add an additional
read-only tape containing “advice” — a binary string that depends only on the input length.

Definition D.4 (Non-Uniform Space Complexity). Let α = {αn}n∈N be an infinite sequence of
binary strings with bounded length: |αn| = a(n). Let M be a deterministic Turing Machine as
above, with an additional read-only advice tape that contains αn whenever the input is of length
n. The non-uniform cell complexity of M , denoted s̃M (n, αn) : N→ N, is the maximum number of
cells on the work-tape scanned by M on an n-bit input when supplied with αn on the advice tape.
The non-uniform space complexity of M with advice α is

sM (n) = log |Σ| · s̃M (n, αn) + log |Q|

We say that a language L ∈ DSPACE[s(n)]/a(n) if there exists an advice sequence α with
length-bound a(n) and a Turing Machine M that has non-uniform space complexity s(n) with
α deciding L. Just as unrestricted circuits are the non-uniform Boolean device corresponding to
DTIME, branching programs are the non-uniform Boolean device corrosponding to DSPACE.

Definition D.5 (Branching Programs). Let f : {0, 1}n → {0, 1} be a Boolean function on variables
x1, . . . , xn. A Branching Program is a DAG with one source and two sinks, where every non-sink
node has out-degree two. The sinks are labeled with 0 and 1. Each non-sink node is labeled with
a variable xi. Each edge is labeled with 0 or 1. Evaluate a branching program by following the
unique path induced by an assignment to x until you reach a sink; the sink’s label is the output of
the program.

Just as with circuits, a family {Pn}n≥1 of n-input branching programs is called uniform if there
is an algorithm that, given n, computes a fixed binary encoding 〈Pn〉 of the program Pn. We’ll use
the direct connection encoding: bit i of 〈Pn〉 = 1 iff i encodes a tuple (g, h, t, v, b) such that g and
h are node names and t denotes the type of g: 1 if g is a sink, and 0 otherwise. If g is a sink, v = 0
and b is the label of g. Otherwise, v encodes the variable label on g, and b encodes the bit we test
for on the edge between g and h. To capture uniformity with a decision problem, we associate this
encoding with the Direct Connection Language (DCL).

Definition D.6 (Padded DCL for Branching Programs). Let P = {Pn}n≥1 be a circuit family,
and let pad(n) ≥ 0. Define the padded Direct Connection Language for P as follows:

pad(n)-DCL(P ) = {(n, 1pad(n), i) | 〈Pn〉i = 1},

where n is given in binary, and the padding 1pad(n) in unary.
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We define C-uniformity for Branching Programs identically to C-uniformity for circuits. Then,
just as for DTIME, there is a compressible-counterexample hierarchy theorem for DSPACE.

Lemma D.7 (Almost Everywhere L Hierarchy with compressibile counter-examples). There is an
absolute constant c and language Hb ∈ DSPACE[(2b+ c) log n] satisfying the following:

• counterexamples: Every candidate b(log n)-space TM M with advice α = {αn}n∈N, for
|αn| ∈ o(n), that tries to compute Hb will make a mistake an n-bit input

xerror = 〈M〉 ◦ αn ◦ π,

where π ∈ {0}∗ is a padding string whose length is chosen so that |xerror| = n, for all
sufficiently large input lengths n ≥ 1.

• compressibility of counterexamples: The counterexample input xerror ∈ {0, 1}n is
efficiently compressible to |αn| + O(1) bits by dropping the padding π, and can be efficiently
reconstructed from 〈M〉 ◦ αn by adding back the padding π of appropriate length.

Proof. Define Hb to be decidable by the following TM A: “On input x ∈ {0, 1}n, try to interpret
x = 〈M〉◦αn◦π for some TM M and strings αn ∈ {0, 1}∗ and π ∈ {0}∗. If not possible, then reject.
Otherwise, simulate TM M with advice αn on input x using at most b log n space, and accept iff
M rejects.” In space (2b + c) log n, the machine A can detect looping and track simulated space
usage, and so correctly simulate every M that executes in at most b log n space.

Finally, the definition of LEARN-uniformity for DSPACE is nearly identical to that for DTIME
— except we must ensure that the machine does not somehow “cheat” by using any oracle tape as
storage. The following adaptation of Ruzzo, Simon, Tompa [RST84] oracle-access suffices.

Definition D.8 (Space Bounded Equivalence Queries). A space-bounded EQ-oracle TM has a
query tape and an answer tape in addition to input tape, working tape, and output tape. The
query tape is write-only, and the answer tape is read-only. As soon as the machine enters the query
state, the query tape is erased. The answer tape has delimiter symbols that allow the machine to
traverse the sequence of previous counter-examples.

D.2 A LEARN-Uniform Branching Program Lower Bound for L

The structure and ideas are the same as in LEARN-Uniform circuit lower bounds for P. Steps 1
and 2 are identical up to substitution of the appropriate complexity resources; they follow directly
from the hierarchy theorems and assumptions. Steps 3 and 4 go through through similarly for L
because it is closed under poly-length padding. Steps 5 and 6 are analogous: identical in function
but differing in execution. We give abbreviated steps where the difference is not substantial, and
mark where specialization for L was required.

Base Case: Zero EQs.

Theorem D.9 (Implicit in [SW14]). For any constant k ≥ 1, we have

L 6⊂
(

FL-LEARNEQ[0]/n1/(2k)
)

-uniform BP-SIZE[O(nk)].

Proof. The proof is by contradiction. Suppose L ⊂
(
L/n1/(2k)

)
-uniform BP-SIZE[O(nk)] for some

constant k ≥ 1. We use the uniformity assumption to argue that then there is a constant k′ ≥ 1
such that L ⊆ SPACE[k′ log n]/o(n). Finally, we appeal to the classical Space Hierarchy Theorem
to get a contradiction. We give more details next.
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1. pick a “hard” language: Consider Hb ∈ L from Lemma D.7 for b > k to be determined.

2. use uniformity: Since Hb ∈ L, our assumption implies that there is a family of branching
programs P = {Pn}n≥1 of dnk-size programs Pn computing Hb, for some constant d ≥ 0,
such that n-DCL(P ) ∈ L/n1/(2k).

3. pad down: For ε = 1/(2k), we can use the same advice-taking logspace algorithm for n-DCL
as above to also get that nε-DCL(C) ∈ L/m, where its input length is m ≤ 2nε.

4. compress P : Since L ⊂ BP-SIZE[O(nk)] implies that L/n ⊂ BP-SIZE[O(nk)], we get that
there is a family D = {Dm}m≥1 of O(mk)-size branching programs Dm for the language
nε-DCL(P ). That is, Dm(n, 1n

ε
, i) = 〈Pn〉i, for all 1 ≤ i ≤ 3k log n. Note that each Dm has

at most O((2nε)k) ≤ O(
√
n) states.

5. use D as advice to speed up Hb (L-specific): Each Dm can be encoded as a binary
string of length d(n) = O(

√
n(log n)). We will use these d(n) bits of advice in the following

“evaluator” TM E that computes Hb on n-bit inputs.

Given as advice a description of Dm, TM E on input x ∈ {0, 1}n does the following:

(a) Evaluate Dm(n, 1n
ε
, i) over all 1 ≤ i ≤ 3k log n to identify the start state of Pn.

(b) Evaluate Pn(x) implicitly using “on-demand” logspace-transducer composition:

• Keep a “pointer” g naming the current state of Pn
• Evaluate Dm on padded DCL-tuples with g fixed and all other entries free.

One of two conditions will occur:

– g is a sink, and we discover its label. Halt and answer accordingly.

– g is not a sink, so we find exactly two successor states and the variable
v tested by g. Test xv and update g to the appropriate successor state.
Continue.

6. diagonalize (L-specific): It is clear that, with correct advice, the TM E/d(n) correctly
computes Hb on all n-bit strings. The space complexity of E is at most O(9k log n) to name
three state of Pn plus O(c log n) for some absolute constant c to evaluate each state of Dm

on-demand (see [Vol99], proof of Theorem 4.38). Thus the overall space usage of E/d(n) is
at most 9ck log n. Choosing b > 9ck, this contradicts Lemma D.7 since d(n) ∈ o(n).

Induction: Eliminating One EQ. Just as in Section 3.1.2, we can trade equivalence queries
for advice by exploiting the compressibility of counterexamples in the Space Hierarchy Theorem of
Lemma D.7. We’ll eliminate equivalence queries one by one, once again marking where the proof
here differs substantially from the DTIME case.

Lemma D.10 (EQ Elimination via Extra Advice). Suppose, for some constants k ≥ 1 and b ≥ 4k,
L ⊂ BP-SIZE[O(nk)] and

Hb ∈
(

FL-LEARNEQ[r]/a(n)
)

-uniform BP-SIZE[O(nk)],

where a(n) = nδ for some 0 < δ < 1/(2k), and r ≥ 1 is arbitrary. Then

Hb ∈
(

FL-LEARNEQ[r−1]/a′(n)
)

-uniform BP-SIZE[O(nk)],

where a′(n) ≤ (c log n) · a(n)k, for some universal constant c > 0.
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Proof. Let P = {Pn}n≥1 be the family of branching programs with at most O(nk) state that the
learning algorithm makes the first equivalence query on to find out if P correctly computes Hb.
Since the first EQ is computable in FL/a(n), we get that n-DCL(P ) ∈ L/a(n).

We next argue that such a uniform program family P cannot compute Hb, and moreover, we
will find a compressible counterexample to this first equivalence query.

1. pad down: We can use the same advice-taking logspace algorithm for n-DCL to also get that
a(n)-DCL(C) ∈ L/m, where its input length is m ≤ 2a(n).

2. compress C: Since L ⊂ BP-SIZE[O(nk)] implies that L/n ⊂ BP-SIZE[O(nk)], we get that
there is a family D = {Dm}m≥1 of O(mk)-size circuits Dm for the language a(n)-DCL(C).
Each Dm has at most O((2a(n))k) ≤ O(nδk) ≤ O(

√
n) states, and so can be encoded as a

binary string βn of length d(n) = O(nδk(log n)) ∈ o(n).

3. evaluator TM E (L-specific): Given as advice a description βn of Dm, TM E on input
x ∈ {0, 1}n repeatedly evaluates Dm(n, 1a(n), i) over all 1 ≤ i ≤ 3k log n to evaluate Pn(x)
using implicit logspace composition, exactly as in the proof of Theorem D.9 above.

4. diagonalize: (L-specific) Since the space complexity of E is at most 9kc log n, it cannot
compute Hb by Lemma D.7. Moreover, E with advice βn disagrees with Hb on the input

xerror = 〈E〉 ◦ βn ◦ π,

for some π ∈ {0}∗ of appropriate length so that |xerror| = n.

5. eliminate the equivalence query through advice: Since, for the advice βn, we have
by construction that (E/βn)(x) = Cn(x) for all x ∈ {0, 1}n, it follows that

Cn(xerror) 6= Hb(xerror).

We add to the advice of our learning algorithm the succinct encoding 〈E〉 ◦ βn of xerror
to be used as the answer to the first equivalence query, and eliminate that query. The
new learning algorithm now makes (r − 1) equivalence queries, and has advice of length
a(n) + O(a(n)k(log a(n))) ≤ O(a(n)k(log n)), as claimed. Even though it interacts with the
oracle access mechanism, this step is effectively identical to the argument for P. We only
replaced the first query and the advice tape is read-only — just as the query answer tape.

Concluding the Proof of Theorem D.1 Towards a contradiction, suppose that, for some
constants k and r, L ⊂ FL-LEARNEQ[r]-uniform BP-SIZE[O(nk)]. We’ll apply Lemma D.10 for r
rounds, to get a learning algorithm with no EQs and advice size ar(n). First, set a0(n) = nγ for
γ = 1/(3kr+1) as determined in the proof of Theorem 3.6. The same parameters will work for L,
because query-elimination accrues advice at the same rate. So, imagine giving a (useless) advice
string 1a0(n) to our assumed learning algorithm for Hb. We apply Lemma D.10 getting a learning
algorithm with no EQ’s and advice size

ar(n) ≤ (c log n)rk
r−1

· a0(n)k
r
.

Setting γ = 1/(3kr+1) ensures that ar(n) < n1/(2k), and we get a contradiction by Lemma D.9.
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D.3 Unprovability of Non-Uniform Branching Program Upper Bounds in VLV

Just as P has associated theory VPV, L has associated theory VLV [CN10], capturing ”logspace
reasoning”. The language of VLV contains function symbols for all functions in FL. Similarly
to VPV, VLV is a universal theory, and thus KPT witnessing theorem applies, with logspace-
computable terms.

For complexity classes within P, string functions have to be defined by their bit graphs: that
is, each bit of the output of a function is computable by a predicate of the respective complexity,
representable in the language of the theory. In particular, for each string function F (x̄, Ȳ ) in
the language of VLV, there is a predicate BF (i, x̄, Ȳ ) ↔ F (x̄, Ȳ )(i), where BF () is computable in
logspace, and thus by a branching program.

Formalizing Branching Program Upper Bounds. In VLV, branching program size and
branching program evaluation P (X) are all expressible in a straightforward way. We already
used space-efficient evaluation of branching programs in the proofs above, and it is clear that there
is a function in FL which returns the number of states in a given branching program under any
reasonable fixed encoding of branching programs. Finally, O(nk) is logspace-constructible. So,
VLV can indeed formalize “L ⊂ BP-SIZE[O(nk)]”, just as VPV formalizes “P ⊂ SIZE[O(nk)]” in
Section 4.

KPT Witnessing. Recall that the KPT Witnessing of Theorem 2.16 requires only that T be a
universal theory. When applied to VLV, the resulting sequence of string-terms is a composition of FL
functions, meaning that the “student” in the resulting Student-Teacher protocol is an FL function.
Thus, KPT-witnessing a VLV-proof gives FL-LEARNEQ[const] constructions of the implicated objects.
Combining this with the above, we get

Proof of Theorem D.2. Suppose there exists some constant k ≥ 1 such that VLV proves “L ⊂
BP-SIZE[O(nk)].” Then by the KPT Witnessing for VLV, we get that

L ⊂ FL-LEARNEQ[const]-uniform BP-SIZE[O(nk)].

contradicting Theorem D.1.
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