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Abstract

We develop a general framework that characterizes strong average-case lower bounds against
circuit classes C contained in NC1, such as AC0[⊕] and ACC0. We apply this framework to show:

– Generic seed reduction: Pseudorandom generators (PRGs) against C of seed length ≤ n−1 and
error ε(n) = n−ω(1) can be converted into PRGs of sub-polynomial seed length.

– Hardness under natural distributions: If E (deterministic exponential time) is average-case hard
against C under some distribution, then E is average-case hard against C under the uniform
distribution.

– Equivalence between worst-case and average-case hardness: Worst-case lower bounds against
MAJ ◦ C for problems in E are equivalent to strong average-case lower bounds against C. This
can be seen as a certain converse to the Discriminator Lemma [Hajnal et al., JCSS’93].

These results were not known to hold for circuit classes that do not compute majority. Addi-
tionally, we prove that classical and recent approaches to worst-case lower bounds against ACC0

via communication lower bounds for NOF multi-party protocols [H̊astad and Goldmann, CC’91;
Razborov and Wigderson, IPL’93] and Torus polynomials degree lower bounds [Bhrushundi et al.,
ITCS’19] also imply strong average-case hardness against ACC0 under the uniform distribution.

Crucial to these results is the use of non-black-box hardness amplification techniques and the

interplay between Majority (MAJ) and Approximate Linear Sum (S̃UM) gates. Roughly

speaking, while a MAJ gate outputs 1 when the sum of the m input bits is at least m/2, a S̃UM
gate computes a real-valued bounded weighted sum of the input bits and outputs 1 (resp. 0) if the
sum is close to 1 (resp. close to 0), with the promise that one of the two cases always holds. As
part of our framework, we explore ideas introduced in [Chen and Ren, STOC’20] to show that, for

the purpose of proving lower bounds, a top layer MAJ gate is equivalent to a (weaker) S̃UM gate.
Motivated by this result, we extend the algorithmic method and establish stronger lower bounds

against bounded-depth circuits with layers of MAJ and S̃UM gates. Among them, we prove that:

– Lower bound : NQP does not admit fixed quasi-polynomial size MAJ◦S̃UM◦ACC0◦THR circuits.

This is the first explicit lower bound against circuits with distinct layers of MAJ, S̃UM, and THR

gates. Consequently, if the aforementioned equivalence between MAJ and S̃UM as a top gate can
be extended to intermediate layers, long sought-after lower bounds against the class THR ◦ THR
of depth-2 polynomial-size threshold circuits would follow.
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1 Introduction

1.1 Overview

Establishing the intractability of computations and understanding the power of randomness in
algorithms are among the most basic open problems in theoretical computer science. The theory of
computational pseudorandomness provides a firm link between these two research directions. One
of the most celebrated developments in this area is a proof that if E (deterministic exponential
time 2O(n)) requires Boolean circuits of exponential size then P = BPP [IW97, STV01]. This result
and its underlying techniques provide a robust mathematical theory that connects worst-case lower
bounds, average-case hardness, and the construction of pseudorandom generators.

Unfortunately, a large part of this beautiful and far-reaching theory is not known to survive
in restricted computational settings. For instance, while we know since the eighties that E cannot
be (1/2 + n−1/2+Ω(1))-approximated by AC0[⊕] [Raz87], it is an important open problem to obtain
strong average-case hardness results of the form 1/2 + n−k for all k and pseudorandom generators
against this circuit class. The fact that existing connections between hardness and pseudorandom-
ness do not apply in restricted settings is significant, given that known unconditional results and
existing lower bound frontiers lie within weak sub-classes of NC1, such as ACC0.

Several works (e.g. [Vio05, GR08, SV10, LTW11, AS14, GSV18, Vio19, IM21]) have investigated
the difficulty of extending the hardness vs. randomness theory and its consequences to restricted
circuit classes. Roughly speaking, these results show that standard “black-box” techniques to am-
plify computational hardness and construct pseudorandom generators require the underlying circuit
class C to be closed under majority. However, obtaining lower bounds against circuit classes that
are closed under majority is a notorious open problem. This leaves us in this unsatisfying situation
where many benefits of the theory mentioned above only apply to settings where current circuit-
analysis techniques do not hold. In other words, we have the following “lose-lose” scenario: above
TC0 we have no lower bounds, while below it we have lower bounds but no hardness amplification.

In this work, we explore non-black-box techniques to overcome this difficulty, obtaining a general
connection between worst-case lower bounds, strong average-case hardness, and pseudorandomness
for weak circuit classes. Our results build on recent ideas of Chen and Ren [CR20] employed in
the context of the algorithmic method. Using our techniques, we are able to establish fundamental
equivalences that were previously only known for circuit classes containing TC0. As a consequence,
the new results are widely applicable and can affect current frontiers in circuit complexity theory.

A crucial ingredient in our proofs is the interplay between Majority (MAJ) and Approximate

Linear Sum (S̃UM) gates. Roughly speaking, while a MAJ gate outputs 1 when the sum of the

m input bits is at least m/2, a S̃UM gate computes a real-valued bounded weighted sum of the
input bits and outputs 1 (resp. 0) if the sum is close to 1 (resp. close to 0), with the promise that

one of the two cases always holds. S̃UM gates are significantly simpler than MAJ gates (e.g. MAJ
has approximate degree [NS94] of order Ω(m)), but still powerful enough to implement useful
computations, such as hardness amplification for specific problems (a non-black-box element).

Complementing our results about the average-case complexity of restricted circuit classes, we
obtain the first unconditional lower bounds against bounded-depth circuits with distinct layers of

MAJ, S̃UM, and THR gates. These results suggest that further investigating the relation between

MAJ and S̃UM might be a path to lower bounds against depth-2 threshold circuits, a long-standing
open problem in complexity theory (cf. [GHR92, CM18]).
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1.2 Results and techniques

To begin with, we recall some definitions for linear sums of functions. Our notation is taken
from previous work [Wil18a, CW19, CR20, CLW20] on lower bounds via the algorithmic method.
Let C be a class of functions from {0, 1}n → {0, 1}.

SUM ◦ C-circuits. A SUM ◦ C-circuit C : {0, 1}n → R is a circuit that can be written as C(x) =∑`
i=1 αi ·Ci(x), where each αi is a real, and each Ci ∈ C. Here ` is called the sparsity of C, and is

denoted as sparsity(C). We also use complexity(C) to denote max(`,
∑`

i=1 |αi|). Furthermore, if a
SUM ◦ C-circuit C always outputs values in the interval [0, 1], we say it is a [0, 1]-SUM ◦ C-circuit.

S̃UMδ◦C-circuits. Let δ ∈ [0, 0.5). A S̃UMδ◦C-circuit C : {0, 1}n → {0, 1} is defined by a SUM◦C-
circuit L : {0, 1}n → R satisfying the following promise: for every x ∈ {0, 1}n, either |L(x)− 1| ≤ δ
or |L(x)| ≤ δ. (We stress that this promise is only required over inputs x to the SUM ◦ C-circuit
L, and not over all possible input values to the top SUM gate.) We say C(x) = 1 if |L(x)− 1| ≤ δ
and C(x) = 0 otherwise. The sparsity and the complexity of C is defined as the sparsity and the
complexity of L, respectively.

For a circuit class C, we use SUM ◦ C, [0, 1]-SUM ◦ C, and S̃UMδ ◦ C to denote the collection of
such circuit families with at most poly(n) complexity. When C has a clear notion of complexity,
such as circuit size, this also means that the involved C-subcircuits are of polynomial size. In some

statements we might refer to classes such as S̃UMδ ◦ C[s] to emphasize a specific upper bound s on
the complexities of C-subcircuits and of the top gate.

Notation for standard concepts. A MAJ : {0, 1}m → {0, 1} gate MAJ(y1, . . . , ym) outputs 1 if
and only if

∑
i yi ≥ m/2. A THR : {0, 1}m → {0, 1} gate is described by weights w1, . . . , wm, θ ∈ R

and outputs 1 if and only if
∑

iwiyi ≥ θ.
For a probability distribution D over {0, 1}n and Boolean functions f, g : {0, 1}n → {0, 1}, we

say that f is γ-approximated by g over D if Prx∼D[f(x) = g(x)] ≥ γ. For convenience, circuit
lower bounds involving approximations of the form 1/2 + 1/nω(1) might be informally referred to
as strong average-case lower bounds or simply strong correlation bounds.

Our results refer to non-uniform circuit classes, and we use C1 ◦ C2 to refer to circuit families
consisting of a top circuit from C1 composed with bottom circuits from C2.1

We use Un to denote the uniform distribution over {0, 1}n. A distribution D ε-fools a function
f : {0, 1}n → {0, 1} if |Pr[f(D) = 1]−Pr[f(Un) = 1]| ≤ ε. We say that a sequence Gn : {0, 1}`(n) →
{0, 1}n is an infinitely often PRG against a circuit class C with error ε (i.o. ε-PRG) and seed length
` if Gn is computable in time 2O(`(n)) and for infinitely many values of n, the induced distribution
Gn(U`(n)) ε(n)-fools each function f : {0, 1}n → {0, 1} in C.

1.2.1 Equivalences for worst-case and strong average-case hardness

Our first contribution is a general result that tightly connects worst-case lower bounds, strong
average-case hardness, and pseudorandomness in restricted computational models.

1As usual, in the case of C2 = ACC0, where ACC0 =
⋃
m∈N AC0[m] with m here representing the modulo, we

require that each C2-subcircuit of a circuit D from C1 ◦ C2 uses the same fixed m.
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Theorem 1 (Non-black-box equivalences for worst-case and strong average-case hardness). Let
C be a circuit class contained in NC1 that is closed under negations and under a bottom layer of
juntas over O(1) input bits. The following statements are equivalent:

1. There is L ∈ E such that L /∈ S̃UM1/3 ◦ C.

2. There is L ∈ E and δ ≥ 1/poly(n) such that L /∈ S̃UMδ ◦ C.

3. There is L ∈ E such that L /∈ MAJ ◦ C.

4. There is L ∈ E such that, for every k ≥ 1, L cannot be computed by probabilistic C-circuits
with error 1/2− 1/nk.2

5. There is L ∈ E and a distribution ensemble D such that for every k ≥ 1, L cannot be
(1/2 + n−k)-approximated by C under D.

6. There is L ∈ E such that for every k ≥ 1, L cannot be (1/2 + n−k)-approximated by C under
the uniform distribution.

7. There is L ∈ E that cannot be approximated by [0, 1]-SUM ◦ C within `1 distance 1/3.3

8. There is L ∈ E and δ ≥ 1/poly(n) such that L cannot be approximated by [0, 1]-SUM◦C within
`1 distance δ.

9. There is an i.o. ε-PRG G against C with seed length n− 1 and error ε(n) ≤ n−ω(1).4

10. For each γ > 0, there is an i.o. ε-PRG against C with seed length nγ and ε(n) ≤ n−ω(1).

This result can be applied to a variety of natural circuit classes, such as AC0[⊕], ACC0, and
constant-degree polynomial threshold functions (PTFs). We stress that while Theorem 1 requires
the circuit class C to be contained in NC1, in circuit complexity this is the most interesting case for
the result. More precisely, for circuit classes that are above NC1, it is well known that worst-case
hardness for a problem in E can be converted into average-case hardness and PRGs. (Furthermore,

NC1 is closed under a top MAJ or S̃UM gate.) We remark that Theorem 1, with appropriate
modifications, can be adapted to other uniform complexity classes, such as BPE = BPTIME[2O(n)]
and PSPACE. For simplicity, we restrict our discussion to E.

We observe that a connection between worst-case hardness and weak average-case hardness for
functions in E has been established in [GGH+07], under the assumption that the circuit class C
contains AC0 and is closed under composition. In contrast to their work, we have a much weaker
assumption on C, and our setting of parameters allows us to obtain equivalences to PRGs and to
derive consequences that do not follow from their results.

We now highlight three fundamental consequences of Theorem 1. Note that, while our proof

employs S̃UM gates in important ways, none of these results refer to such gates.

2Following standard terminology, a probabilistic C-circuit F is simply a distribution of C-circuits. We say that F
computes a Boolean function g with error ε if for every input x we have PrF [F (x) 6= g(x)] ≤ ε.

3In other words, there is no family of circuits Fn ∈ [0, 1]-SUM ◦ C such that Ex∼{0,1}n [|L(x) − Fn(x)|] ≤ 1/3 for
all large n. This notion plays a crucial role in [CLW20] and other related works.

4More precisely, for each choice of k, there is an infinite set Sk ⊆ N such that G fools circuits from C[nk] on inputs
of length n ∈ Sk with error ε(n) ≤ n−k.
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1. Seed reduction for PRGs. Perhaps surprisingly, the equivalence between Items 9 and 10
of Theorem 1 shows the existence of a generic seed reduction phenomenon for weak circuit classes.
Thus to construct i.o. PRGs of sub-polynomial seed length for a class C satisfying the conditions
of this result it is enough to construct a non-trivial i.o. PRG (i.e. of seed length ≤ n − 1) with
small error. In particular, improving the error parameter of the PRG against AC0[⊕] described in
[FSUV13] to inverse-super-polynomial would lead to major consequences for AC0[⊕]-circuits.

2. Hardness under some distribution implies hardness under the uniform distribution.
Theorem 1 also has important implications to our understanding of the average-case hardness of
problems in E with respect to weak circuit classes. This is an immediate consequence of Items 5 and
6, which establish the result for strong average-case hardness of the form 1/2 + 1/nω(1). In Section
3.3, we observe that our techniques can also translate constant-error average-case hardness under
an arbitrary distribution to constant-error average-case hardness under the uniform distribution.
An interesting application of these results is that the existence of a PRG against C, which was
only known to imply hardness under some distribution (see e.g. Section 3 of [Vio09]), also implies
hardness with respect to the uniform distribution (which in turn is sufficient to construct PRGs).

3. Equivalence between worst-case and average-case hardness. The well-known Discrim-
inator Lemma from Hajnal et al. [HMP+93] has found numerous applications in circuit complexity
lower bounds. It shows that if a Boolean function f cannot be (1/2 + 1/poly(n))-approximated by
a class C then f is not in MAJ ◦C. In other words, one can lift an average-case lower bound against
C to a worst-case lower bound against the stronger class MAJ ◦ C. Interestingly, the equivalence
between Items 3 and 6 in Theorem 1 shows that, for the purpose of proving lower bounds for a prob-
lem in E, a worst-case lower bound against MAJ ◦ C is actually equivalent to a strong average-case
lower bound against C. To our knowledge, this was previously unknown for weak computational
models.5

A consequence of Theorem 1 relevant to the study of S̃UM gates is that if E * S̃UMδ ◦ C for

some δ(n) = 1/nc then E * S̃UM1/3 ◦ C.6 Another interesting implication is that the average-case
lower bounds against [0, 1]-SUM ◦ C under `1 distance investigated in [CLW20] are necessary and
sufficient for strong average-case hardness against C.

Next, we discuss some of the techniques behind Theorem 1.

Theorem 1: Techniques. As alluded to above, the proof of Theorem 1 relies on non-black-
box hardness amplification techniques explored by Chen and Ren [CR20] and on a careful balance

between the strength and weakness of S̃UM gates. To give some intuition, we discuss the main ingre-
dients behind a more direct proof of the following equivalence, which also explains the assumptions
on the circuit class C:

Worst-case hardness against S̃UM ◦ C ⇐⇒ i.o. PRGs against C with error ε = n−ω(1).

5We also remark that it was known [GNW11, Imp95, Kli01] before that for general circuit class C, weak average-
case hardness against MAJ ◦ C implies strong average-case hardness against C.

6We note that a simple error amplification technique for S̃UM (Lemma 20) blows up the complexity of the involved

S̃UM ◦ C-circuits to quasi-polynomial when amplifying from constant-error approximation to inverse polynomial. For
this reason, it does not establish this implication.
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While it is possible to show that a S̃UM gate can be efficiently simulated by a MAJ gate,7 the

opposite simulation does not hold (e.g. consider approximate degree). In this sense, S̃UM gates are
indeed weak. Still, it is possible to show essentially that, for a certain specific NC1-hard problem L

contained in P, a S̃UM gate of polynomial complexity can implement a hardness amplification proof:
roughly speaking, a weak approximator circuit for L can be transformed into a correct circuit for L

by incurring only a top S̃UM gate overhead. This allows us to employ the following win-win analysis.
Either the NC1-hard problem L is 1/2 + n−k-hard against C on infinitely many input lengths for
every choice of k, in which case an i.o. PRG against C can be constructed from L using standard
techniques under the assumption that C is closed under bottom layer O(1)-juntas, or there is a
choice of k such that L can be 1/2+n−k approximated by C-circuits on large enough input lengths.

The latter implies via the hardness amplification reconstruction routine that L ∈ S̃UM ◦ C, which

in turns yields NC1 ⊆ S̃UM ◦ C using the NC1-hardness of L (which in fact admits ultra efficient

reductions). Now under our assumption that C ⊆ NC1, it is easy to see that NC1 = S̃UM ◦ C. As a

consequence, a worst-case lower bound against S̃UM ◦ C provides a worst-case lower bound against
NC1, and again, PRGs can be constructed from such an assumption via standard methods (since
NC1 admits black-box worst-case to average-case amplification).

For the other direction, we start with an i.o. PRG G against C that might have a large seed
length but guarantees low error ε(n) = n−ω(1). Here the important insight is that a low error PRG
that fools C also fools linear combinations of functions in C with bounded coefficients. This implies

that G fools S̃UM ◦ C. Another standard argument shows that from such a PRG one can define a

function in E that is worst-case hard against S̃UM ◦ C.
We stress that two crucial ingredients of our equivalence theorem are the existence of the hard

problem L mentioned above and the use of S̃UM gates. The hard language L is actually a pair of
problems CMD and DCMD with very useful structural properties (see Section 2.2). They have been
explored in a few other works (e.g. [IK02, AIK06, GGH+07, AAW10]), and are tightly connected
to decomposable randomized encodings, which are well-studied in cryptography (see [App17]). The

fruitful interaction between these problems and S̃UM gates was first noticed by [CR20] in the con-
text of the algorithmic method and is a crucial ingredient in their proof that NQP is strongly
average-case hard against ACC0.

While the proof of Theorem 1 avoids the black-box “barrier” and applies to circuit classes that
are not assumed to be closed under majority, our techniques come with certain limitations. As a
consequence of our indirect analysis via a win-win argument, Theorem 1 does not provide almost-
everywhere equivalences for some items and does not scale well to large circuit size bounds above
quasi-polynomial. These are important directions for future work.

Applications to ACC0-circuits lower bound approaches. As a concrete application of The-
orem 1 to current frontiers in circuit complexity, we explore its consequences to the average-case
complexity of ACC0. We use our framework to show that existing “combinatorial” approaches to
worst-case lower bounds would also provide strong average-case hardness against ACC0. Before

7It is possible to approximate all coefficients of the bounded linear sum using sums of powers of 2i with i ∈ Z, then
multiply the linear sum by an appropriate power of 2 to obtain integer coefficients, and finally simulate the resulting
sum by an appropriate THR gate with polynomial weights, which can be translated to a MAJ gate using duplicated
input wires and by negating input variables if necessary.
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stating this result, we briefly recall some concepts.
Let T = R/Z be the one-dimensional torus. A torus polynomial [BHLR19] (see also [Kri21]) is

a real polynomial p(x1, . . . , xn) restricted to the domain {0, 1}n and evaluated modulo one.8 For
the purpose of representing the output of a Boolean function f : {0, 1}n → {0, 1} as a value in
T, we map the output bit f(x) to f(x)/2. For δ < 1/4, we say that f is δ-approximated by a
degree-d torus polynomial if there is a degree-d real polynomial p(x1, . . . , xn) such that if f(x) = 1
then p(x) − bp(x)c ∈ [1/2 − δ, 1/2 + δ] and if f(x) = 0 then p(x) − bp(x)c ∈ [0, δ] ∪ [1 − δ, 1). A
recent approach proposed by [BHLR19] shows that ACC0 lower bounds follow from torus polynomial
degree lower bounds for approximating a Boolean function.

The number-on-forehead (NOF) multi-party communication model was introduced by [CFL83],
and work of [HG91, RW93] show that explicit communication lower bounds in this model (even
in the single-round model where all players simultaneously communicate to a referee) imply lower
bounds against SYM+-circuits, which are known to simulate ACC0 [BT94].

Theorem 2 (Lifting worst-case ACC0 lower bound approaches to strong correlation bounds).
Consider the following statements:

1. Torus Polynomials: There is a language L ∈ E and a function δ(n) ≥ 1/poly(n) such that
L does not have δ-approximation torus polynomials of degree polylog(n).

2. NOF Protocols: There is a language in E that does not admit (single-round) NOF multi-
party protocols with polylog(n) parties of communication cost polylog(n).

In each case, if the corresponding statement holds then there is a language in E that cannot be
(1/2 + 1/poly(n))-approximated under the uniform distribution by ACC0.

As a consequence, lower bounds against these models provide i.o. PRGs of sub-polynomial seed
length against ACC0.

Theorem 2: Techniques. It is not hard to adapt classical techniques to show that if a Boolean
function can be approximated by torus polynomials of bounded degree, then it can also be computed
by NOF protocols of low complexity. For this reason, in order to prove Theorem 2 it is sufficient
to obtain average-case hardness against ACC0 from degree lower bounds for torus polynomials
approximating Boolean functions.9 To achieve this, we refine the argument of [BHLR19] and
invoke our framework. In more detail, we show the stronger result that even functions families in

S̃UM ◦ ACC0 can be approximated by low-degree torus polynomials. This yields the result using
the equivalence between Items 6 and 2 in Theorem 1.

To establish this claim, we make use of low degree “middle-bit polynomials” [GKT92], a sub-class
of SYM+-circuits that is strong enough to simulate ACC0. By a careful adaptation of the argument
of [BHLR19], we are able to show that a linear sum (with bounded coefficients) of middle-bit
polynomials with a special structure can be converted into a torus polynomial. The argument is
somewhat subtle, and involves the manipulation of universal circuits for depth-d ACC0[s] in order

to enforce similar parameters for all middle-bit polynomials feeding the top S̃UM gate. The details
appear in Section 4.

8By a value y (mod 1) we mean its fractional part given by y − byc, where the floor function byc denotes the
largest integer less than or equal to y. For instance, 1.37 (mod 1) is 0.37 and −2.21 (mod 1) is 0.79.

9Alternatively, earlier work on ACC0 already showed that MAJ◦ACC0-circuits can be simulated by NOF protocols
of low communication. Therefore, the NOF protocols part of Theorem 2 follows directly from our Theorem 1.
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1.2.2 Lower bounds against circuits with layers of S̃UM and MAJ gates

Observe that Theorem 1 (via Items 1, 2, and 3) establishes the following equivalence: for the
purpose of proving circuit lower bounds for a function in E, a top layer MAJ gate is equivalent to

a top layer S̃UM gate. Given that S̃UM is simpler than MAJ, and lower bounds against S̃UM ◦ C
offer a path to correlation bounds and PRGs against C, obtaining a better understanding of S̃UM
gates in Boolean circuits might have significant benefits.

In this section, we explore unconditional lower bounds against circuits with layers of MAJ and

S̃UM gates. Our results are connected to the long-standing problem of showing explicit lower
bounds against THR ◦ THR, the class of polynomial-size depth-2 threshold circuits (where size is
measured by number of gates). For convenience of the reader, we review below some results related
to this frontier.

Threshold circuits. Recall that a threshold gate THR over m input bits is described by weights
w1, . . . , wm, θ ∈ R. It outputs 1 on an input y ∈ {0, 1}m if and only if

∑
iwiyi ≥ θ. It is known that

every such gate can be implemented with integer weights of magnitude 2O(m logm) (see [H̊as94]). In
the context of polynomial size circuits, by duplicating input wires a MAJ gate can be equivalently
defined as the restriction of a THR gate to polynomially bounded integer weights. It was shown that
MAJ ◦THR = MAJ ◦MAJ and THR ◦THR is contained in MAJ ◦MAJ ◦MAJ [GHR92]. Exponential
lower bounds are known against THR◦MAJ-circuits [For01], and THR◦MAJ is strictly contained in
THR ◦ THR [CM18]. Recently, [KW16] described a function in P that requires THR ◦ THR-circuits
of size (measured by the number of gates) nearly n3/2. This is the strongest known lower bound
against this class (see their work for extensions to other circuit size measures) for a function in P.
It is also known that ENP does not have n2−ε-size THR ◦ THR-circuits for every constant ε > 0
[ACW16, Tam16].

LTFs ◦ C-circuits: An intermediary class between MAJ ◦ C and THR ◦ C. In order to make
progress toward showing super-polynomial lower bounds against THR ◦ THR-circuits, we study a
newly defined gate LTFs whose power lies between MAJ and THR.10 Let SUM∞◦C be the relaxation
of SUM ◦ C to an unrestricted top SUM gate (i.e. the top gate can use arbitrary real coefficients
that might not be polynomially bounded). For a given function s and a circuit class C, we say that
a function f admits a LTFs ◦ C-circuit of size S if there is a circuit D ∈ SUM∞ ◦ C such that the
following hold: (1) f(x) = 1 if and only if D(x) ≥ 0; (2) |D(x)| ∈ (1/s, s) for every x ∈ {0, 1}n; (3)
the total size of the C-subcircuits of D is at most S. Note that unrestricted weights are allowed in
the top gate, but we are promised that on each input x the value D(x) is neither too close to 0 nor
too large in magnitude.11

We are able to extend the algorithmic method [Wil13] to show that #SAT algorithms for a
circuit class C imply worst-case lower bounds against LTFs ◦ C and average-case lower bounds

against S̃UM ◦ C. Let NQP = NTIME[2polylog(n)] be the class of languages computable in non-
deterministic quasi-polynomial time. We say that a circuit class C is nice if C is closed under

10LTF denotes linear threshold function, another standard name for THR. We employ both names in this paper to
make a clear distinction between the new gates and THR.

11Note that we only impose this constraint for each input x of the combined SUM∞ ◦ C-circuit, and not over all
possible input strings for the top gate.
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negation, (bottom) projections, and a top AND gate of unbounded fan-in, and in addition C-
circuits of size s admit general circuits of depth O(log s). Examples of nice circuit classes include
AC0, ACC0, and AC0[⊕] ◦ THR.

Theorem 3 (Stronger lower bounds from #SAT algorithms).
Let C be a nice circuit class. Suppose there is a constant ε > 0 such that, given a C-circuit of size
2n

ε
over n input variables, its number of satisfying assignments can be deterministically computed

in time 2n−n
ε
. Then the following statements hold:

1. For every constant k > 0, NQP does not have LTF2logk n ◦ C-circuits of size 2logk n.

2. For every choice of constants k > 0 and δ ∈ (0, 0.5), NQP cannot be (1/2 + 2− logk n)-

approximated by S̃UMδ ◦ C-circuits where both the sparsity of the top SUM-gate and the size
of the bottom layer C-circuits are at most 2logk n.12

To our knowledge, these two circuit lower bound consequences are incomparable. By combining
Theorem 3 with existing #SAT algorithms for C = ACC0 ◦ THR-circuits [Wil18b], we obtain the
following unconditional lower bounds.

Corollary 4 (Lower bounds against circuits with S̃UM, THR, and MAJ gates).
The following results hold:

1. For every constant k > 0, NQP does not admit LTF2logk n ◦ACC0 ◦THR-circuits of size 2logk n.

2. For every choice of constants k > 0 and δ ∈ (0, 0.5), NQP cannot be (1/2 + 2− logk n)-

approximated by S̃UMδ ◦ ACC0 ◦ THR-circuits where the top sum has sparsity 2logk n and all
ACC0 ◦ THR-subcircuits have size 2logk n.

3. For every choice of constants k > 0 and δ ∈ (0, 0.5), NQP cannot be computed by MAJ◦S̃UMδ◦
ACC0 ◦ THR-circuits where the top MAJ gate has fan-in 2logk n and all S̃UMδ ◦ ACC0 ◦ THR-
subcircuits have size and sparsity 2logk n.

To contrast these results with previous work, we note that [CW19, Theorem 15] gave a worst-

case lower bound against S̃UMδ ◦ ACC0 ◦ THR-circuits with any constant error δ less than 1/2.

Also, [CR20, Section 5.2] showed a strong average-case lower bound against S̃UMδ ◦ ACC0 ◦ THR-
circuits, where the top sum gate has zero error (i.e., δ = 0). Consequently, Corollary 4 Item 2
simultaneously strengthens both results. On the other hand, Corollary 4 Item 3 shows the first

lower bound against circuits combining layers of S̃UM1/3, MAJ, and THR gates.
Before discussing our techniques in more detail, we mention an open problem and its connection

to THR ◦ THR lower bounds. Recall that this class is contained in MAJ ◦MAJ ◦MAJ. In light of

the super-polynomial lower bound against MAJ ◦ S̃UMδ ◦ ACC0 ◦ THR from Corollary 4 Item 3, it

would be very interesting to understand the relation between MAJ gates and S̃UM gates appearing
in internal layers of Boolean circuits. In particular, we note that if MAJ can be simulated by

S̃UM1/3 ◦ACC0-circuits of quasi-polynomial size (or THR can be simulated by MAJ ◦ S̃UMδ ◦ACC0-
circuits of quasi-polynomial size), then NQP * THR ◦ THR. On the other hand, if this is not the
case, strong average-case lower bounds against ACC0 follow from Theorem 1.

12For the interested reader, we notice that the coefficients of the top S̃UM gate can be unbounded in this lower
bound.
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Theorem 3 and Corollary 4: Techniques. The proofs of the first two items of Corollary 4 are
immediate from the corresponding items of Theorem 3 via the #SAT algorithm for C = ACC0◦THR
given by [Wil18b]. On the other hand, Item 3 of Corollary 4 can be established in different ways.
The first proof is just a standard application of the Discriminator Lemma [HMP+93] together
with the lower bound from Item 2. A second proof follows from Item 1, via a simulation of a

MAJ ◦ S̃UMδ ◦ C-circuit of quasi-polynomial complexity by a LTF2logk n ◦ ACC0 ◦ THR-circuit of size

size 2logk n, for some constant k. This can be done by first reducing the error δ of each S̃UMδ ◦ C-
subcircuit (see Lemma 20), then rewriting the corresponding MAJ ◦ S̃UMε top layers as an LTFs

gate via an appropriate collapse. We omit the details.
The proofs of Items 1 and 2 of Theorem 3 are essentially independent. We discuss each of them

next, starting with Item 1.
An extension of the algorithmic method [Wil13] obtained by [MW20] shows that SAT algorithms

for a circuit class C of sub-exponential size circuits (satisfying minor closure conditions) that run
in time 2n−n

ε
imply that NQP * C. In a more recent work that builds on [Wil18a], [CW19]

established (in particular) that #SAT algorithms of similar running time provide the stronger

lower bound NQP * S̃UM ◦ C. Our proof of Item 1 of Theorem 3 relies on the latter result and
on a win-win argument inspired by [CR20]. In more detail, and oversimplifying a bit, we argue

that if a special NC1-hard problem L (contained in NQP) is not in LTF2logk n ◦ C, then we are done.
Otherwise, we explore LTFs gates and the special form of the NC1-hardness of L to show that

NC1 can be simulated by S̃UM ◦ C-circuits of quasi-polynomial complexity. Given this lemma and
the corresponding simulation, we can reduce the derivation of the desired lower bound to previous
work, i.e., we invoke the aforementioned connection between #SAT algorithms and lower bounds

against S̃UM ◦ C. This provides a language in NQP that is not in S̃UM ◦ C of complexity 2log` n,

where ` = `(k) is large enough. Now by simulating LTF2logk n ◦ C-circuits using quasi-polynomial

size Boolean formulas, and using the collapse of NC1 to quasi-polynomial size S̃UM◦C, it is possible

to argue that L is also hard against LTF2logk n ◦ C.
The proof of Item 2 of Theorem 3 shares some similarities with the argument above, but the

technical details are different. From a high-level perspective, we also employ a win-win argument,
though this time it is based on the average-case complexity of the language L mentioned above.
Moreover, we cannot rely on previous connections between #SAT algorithms and lower bounds in
a black-box way. Given that explaining the relevant details would be fairly technical, we refer the
interested reader to Section 5.3. We mention that a conceptual contribution is that while our proof
of Theorem 3 Part 2 follows the strategy of previous works, such as [Che19, CW19, CR20], on
obtaining lower bounds from meta-algorithms, it does not use PCPs of proximity (PCPP), which
was a key ingredient in the proofs of those works. For this, we rely in part on a PCP stated in
[Vio20], combined with other ideas.

Organization of this paper

In Section 2 we introduce the necessary technical preliminaries for proving our results. In Sec-
tion 3 we prove our main equivalence result (Theorem 1). In Section 4 we present consequences
of our equivalence theorem to previous approaches to ACC0 lower bounds (Theorem 2). Finally,
in Section 5 we prove our worst-case lower bound against LTFquasi-poly ◦ ACC0 ◦ THR-circuits and

strong average-case lower bound against S̃UMδ ◦ACC0 ◦THR-circuits (Theorem 3 and Corollary 4).
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2 Preliminaries

2.1 Notation

We use N to denote the set of all non-negative integers and N≥1 to denote N \ {0}. For every
n ∈ N≥1, we let Un denote the uniform distribution over {0, 1}n. For convenience, in some settings
a Boolean function f : {0, 1}n → {0, 1} will be viewed as a function with output in {−1, 1}, where
−1 and 1 are interpreted as True and False, respectively.

For a predicate P (x), we use 1P (x) to denote its corresponding Boolean value on x. That is,
1P (x) = 1 if P (x) is true, and 0 otherwise. For a real v, we define sign(v) := (−1) · 1v<0 + 1 · 1v≥0.

For two strings α, β ∈ {0, 1}∗, we write α ◦ β to denote the concatenation of α and β.
A projection of a function f(x1, . . . , xn) is a function g(y1, . . . , ym) with a projection mapping

P : {0, 1}m → {0, 1}n such that g(y1, . . . , ym) = f(P (y1, . . . , ym)). By “projection” we mean that
each output bit of P (y1, . . . , ym) is either an input bit yi, its negation, or a constant.

Let a be a positive integer. For an arbitrary ` ≥ 1 and a function h : {0, 1}` → {0, 1}, we say
that h ∈ JUNTAa if the output of h depends on at most a input coordinates.

2.2 A ⊕L-complete problem with good properties

The existence of ⊕L-complete problems with good reducibility properties will be important
for us. (Recall that ⊕L is the class of problems solvable by a nondeterministic logspace Turing
machine that accepts the input if the number of accepting paths is odd.) We define the following
two problems, called Connected Matrix Determinant (CMD) and Decomposed Connected Matrix
Determinant (DCMD):

Definition 5. An instance of CMD is an n×n matrix over F2 where the main diagonal and above
may contain either 0 or 1, the second diagonal (i.e. the one below the main diagonal) contains 1,
and other entries are 0. In other words, the matrix is of the following form (where ∗ represents
any element in F2): 

∗ ∗ ∗ · · · ∗ ∗
1 ∗ ∗ · · · ∗ ∗
0 1 ∗ · · · ∗ ∗
0 0 1 · · · ∗ ∗
...

...
...

. . .
...

...
0 0 0 · · · 1 ∗


.

The instance is an (n(n+ 1)/2)-bit string specifying elements on and above the main diagonal. We
define x ∈ CMD if and only if the determinant (over F2) of the matrix corresponding to x is 1.

An instance of DCMD is a string of length n3(n+ 1)/2. For an input x, DCMD(x) is computed
as follows: we partition x into blocks of length n2, let yi (1 ≤ i ≤ n(n + 1)/2) be the parity of the
i-th block, and define DCMD(x) := CMD(y1 ◦ y2 ◦ · · · ◦ yn(n+1)/2).

The precise definitions of CMD and DCMD are not important here, as we only need the following
two important results about them.

Theorem 6 ([AIK06, GGH+07]). There is a function P : {0, 1}n(n+1)/2×{0, 1}O(n4) → {0, 1}n3(n+1)/2

such that the following hold.
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• For any input x ∈ {0, 1}n(n+1)/2, the random variable P (x,UO(n4)) is uniformly distributed in

{0, 1}n3(n+1)/2.

• For any x ∈ {0, 1}n(n+1)/2 and r ∈ {0, 1}O(n4), let P (x, r) = y, then CMD(x) = DCMD(y)⊕r0,
where r0 is the first bit of r.

• For each fixed randomness r, P (x, r) is a projection over x, computable in polynomial time
given r.

Theorem 7 ([IK02]). CMD is ⊕L-complete under projections.

Observe that if CMD is in a circuit class C closed under projections then all problems in (non-
uniform) NC1 are also in C, given that the problem of evaluating an input Boolean formula is
solvable with logarithmic space.

We refer the reader to the full version of [CR20] for a self-contained exposition of these problems
and their relevant properties, including pointers to related work.

3 Equivalences for worst-case and strong average-case lower bounds

In this section, we prove our equivalence results for worst-case hardness, strong average-case
hardness and pseudorandomness. We start with some useful facts in Section 3.1, then prove Theo-
rem 1 in Section 3.2. In Section 3.3, we further investigate equivalences in the constant-error regime
and their consequences.

3.1 Preliminaries

Notation. For a circuit class C and s ≥ 1, we use S̃UM◦C[s] to denote the class of S̃UM◦C-circuits
where the top SUM gate has complexity at most s and the bottom layer C-circuits have size at
most s.

For a function f : {0, 1}n → {0, 1}, we let f± : {0, 1}n → {−1, 1} be the {−1, 1}-version of f
where we map the output of f from 0 to 1 and 1 to −1. Also, for a circuit class C where the circuits
in C output values in {0, 1}, we denote by C± the {−1, 1}-version of C where the circuits in C±
output values in {−1, 1}.

Pseudorandomness. We need the following Hardness vs. Randomness framework for construct-
ing PRGs.

Lemma 8 (Hardness vs. Randomness [NW94], see also [CR20, Appendix E.3] for the proof). There
is a function G : {0, 1}∗×{0, 1}∗ → {0, 1}∗ such that the following holds. Let n, `, a be integers such
that a ≤ `, and t = O

(
`2 · n1/a/a

)
. Let C be a circuit class closed under negation. For any function

Y : {0, 1}` → {0, 1} represented as a length-2` truth table, if Y cannot be (1/2 + ε/n)-approximated
by C ◦ JUNTAa-circuits where the top circuit has size S, then for every circuit C ∈ C of size S,∣∣∣∣∣ Pr

z∼{0,1}t
[C(G(Y, z)) = 1]− Pr

x∼{0,1}n
[C(x) = 1]

∣∣∣∣∣ ≤ ε.
Moreover, the function G is computable in poly

(
n, 2t

)
time.
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The following simple fact says PRGs imply worst-case hardness.

Proposition 9 (Worst-case hardness from PRGs). Let F be a class of functions. If there is an
i.o. ε-PRG G : {0, 1}r → {0, 1}n with seed length r(n) against Fn, where ε < 1−2r(n)−n, then there
is a language L ∈ E such that L cannot be computed by F .

Proof. Let G : {0, 1}r → {0, 1}n be an i.o. ε-PRG against F , where ε < 1 − 2r−n. We define
Ln := {x : ∃y ∈ {0, 1}r s.t. G(y) = x}. For the sake of contradiction, suppose for every n there is
some function f ∈ Fn that computes Ln. On the one hand, we have

E
x∈{0,1}n

[f(x)] = E
x∈{0,1}n

[Ln(x)] ≤ 2r−n.

On the other hand, we have
E

y∈{0,1}r
[f(G(y))] = 1.

Therefore, we have ∣∣∣∣ E
y∈{0,1}r

[f(G(y))]− E
x∈{0,1}n

[f(x)]

∣∣∣∣ ≥ 1− 2r−n > ε,

which contradicts the security of G.

Hardness amplification. The following result allows us to amplify hardness against NC1.

Lemma 10 (Hardness amplification against NC1, see e.g. [STV01, GGH+07]). Suppose there is a
language L ∈ E such that L /∈ NC1. Then there is a language L′ ∈ E such that for every constant
k ≥ 1, L′ cannot be (1/2 + 1/nk)-approximated by formulas of size nk.

The following notion of `1-approximation by SUM-circuits plays a crucial role in some recent
results on average-case lower bounds via the algorithmic method (e.g. [CLW20, CL21, HV21]).

Definition 11 (`1-approximation by SUM-circuits). Let δ ∈ (0, 1) and let C be a circuit class. We
say that a function f : {0, 1}n → {0, 1} is approximated by a [0, 1]-SUM ◦ C-circuit C within `1
distance δ if

E
x∼Un

[ |f(x)− C(x)| ] ≤ δ.

For functions f, g : {0, 1}n → R, we let 〈f, g〉 := Ex∈{0,1}n [f(x) · g(x)].

Proposition 12. Let δ ∈ (0, 1), f : {0, 1}n → {0, 1}, and C be a circuit class.

1. If f can be approximated by [0, 1]-SUM ◦ C-circuits of complexity s within `1 distance δ, then
there is a SUM ◦ C±-circuit C of complexity O(s) such that ‖C‖∞ ≤ 1 and 〈f±, C〉 ≥ 1− 2δ.

2. If there is a SUM ◦ C±-circuit C of complexity s such that ‖C‖∞ ≤ 1 and 〈f±, C〉 ≥ 1 − 2δ,
then f can be approximated by [0, 1]-SUM ◦C-circuits of complexity O(s) within `1 distance δ.

Proof. We first show Item 1. Let C0 be a [0, 1]-SUM ◦ C-circuit of complexity s that approximates
f within `1 distance δ. Consider the following

C(x) := 1− 2C0(x).
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Note that C can be written as a SUM ◦ C±-circuit of complexity O(s) and that ‖C‖∞ ≤ 1. Also,
since f±(x) ∈ {−1, 1}, for every x we have

|f±(x)− C(x)|+ f±(x) · C(x) = 1,

which gives

〈f±, C〉 = 1− ‖f± − C‖1
= 1− ‖(1− 2f)− (1− 2C0)‖1
= 1− 2‖f − C0‖1
≥ 1− 2δ.

The proof above can be easily adapted to show Item 2 and we omit the details here.

Given a set X and a Boolean function f : X → {−1, 1}, for and integer t ≥ 1 and Xt =
X×. . .×X (t times) we let f⊕t : Xt → {−1, 1} be the Boolean function defined as f⊕t(x1, . . . , xt) :=∏
i∈[t] f(xi). We will need the following XOR lemma from [CLW20].

Theorem 13 ([Lev87] and [CLW20, Lemma 3.8], see also [CL21, Lemma 1.7]). Let F be a class
of Boolean functions that is closed under negation and restriction. For every δ, ε ∈ (0, 1) and every
function f : {0, 1}n → {−1, 1}, if

〈f, C〉 ≤ 1− δ

for every SUM ◦ F-circuit C where the top SUM has complexity 10 · n/ε2 and ‖C‖∞ ≤ 1, then

〈f⊕t, D〉 ≤ (1− δ)t + ε/δ

for any Boolean function D : {0, 1}tn → {−1, 1} in F .

3.2 Proof of Theorem 1

In this subsection, we prove Theorem 1 (restated below).

Reminder of Theorem 1. Let C be a circuit class that satisfies the following:

• C is closed under negation and projection.

• C is closed under a bottom layer of juntas over O(1) input bits. That is⋃
k≥1

C[nk] ◦ JUNTAk ⊆
⋃
k≥1

C[nk].

•
⋃
k≥1 C[nk] ⊆ NC1.

Then the following statements are equivalent:

1. There is L ∈ E such that for every k ≥ 1, L /∈ S̃UM1/3 ◦ C[nk].

2. There is L ∈ E and δ ≥ 1/poly(n) such that for every k ≥ 1, L /∈ S̃UMδ ◦ C[nk].
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3. There is L ∈ E such that for every k ≥ 1, L /∈ MAJ ◦ C[nk].

4. There is L ∈ E such that, for every k ≥ 1, L cannot be computed by a probabilistic C[nk]-circuit
with error 1/2− 1/nk.

5. There is L ∈ E and a distribution D such that for every k ≥ 1, L cannot be (1/2 + n−k)-
approximated by C[nk] under D.

6. There is L ∈ E such that for every k ≥ 1, L cannot be (1/2 + n−k)-approximated by C[nk]
under the uniform distribution.

7. There is L ∈ E such that for every k ≥ 1, L cannot be approximated by [0, 1]-SUM ◦ C[nk]
within `1 distance 1/3.

8. There is L ∈ E and δ ≥ 1/poly(n) such that for every k ≥ 1, L cannot be approximated by
[0, 1]-SUM ◦ C[nk] within `1 distance δ.

9. There is an i.o. ε-PRG G against C with seed length n− 1 and error ε(n) ≤ n−ω(1).
In other words, for each choice of k, there is an infinite set Sk ⊆ N such that G fools circuits
from C[nk] on inputs of length n ∈ Sk with error ε(n) ≤ n−k.

10. For every γ > 0, there is an i.o. ε-PRG against C with seed length nγ and ε(n) ≤ n−ω(1).

Proof.

Proof outline. We will first show Item 2 ⇒ Item 6 ⇒ Item 10 ⇒ Item 1 ⇒ Item 2, establishing
the equivalence of Items 1, 2, 6 and 10. We then show Item 6⇒ Item 5⇒ Item 4⇒ Item 1, which
adds Items 4 and 5 to the list of equivalent items. Next, we show Item 6 ⇒ Item 3 ⇒ Item 4,
which adds Item 3, and Item 10 ⇒ Item 9 ⇒ Item 2, which adds Item 9. Finally, we show Item 6
⇒ Item 7 ⇒ Item 8 ⇒ Item 6, adding Items 7 and 8 to the list and completing the proof. See also
Figure 1.

Item 2 ⇒ Item 6. We consider two cases. If DCMD cannot be
(
1/2 + 1/nk

)
-approximated by

C[nk] for every k ≥ 1 under the uniform distribution, then we are done.
Now consider the case that there is some k ≥ 1 such that DCMD can be

(
1/2 + 1/nk

)
-

approximated by C[nk]. By the random self-reducibility of DCMD/CMD (see Theorem 6 and also

[CR20, Section 3]), for any δ = 1/poly(n), CMD can be computed by a S̃UMδ ◦ C-circuit where
the top SUM-gate has polynomial complexity and the bottom-layer C-circuits have polynomial
size. By Theorem 7, for every polynomial-size parity branching program B, there is a projection

p : {0, 1}n → {0, 1}n
O(1)

such that for every x ∈ {0, 1}n, B(x) = CMD(p(x)). Since C is closed under

projection, this means that every polynomial-size parity branching program has a S̃UMδ ◦ C-circuit
of polynomial complexity and size, which then implies that every function in NC1 also has such a

S̃UMδ ◦ C-circuit. On the other hand, by Item 2, there is a function L ∈ E that has no S̃UMδ ◦ C-
circuit of polynomial complexity and size, so L is not in NC1. Using hardness amplification against
NC1 (Lemma 10), it follows that there is a function in E that is strongly average-case hard against
NC1, which by assumption contains polynomial-size C-circuits.
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1: Worst-case hardness

against S̃UM1/3 ◦ C
2: Worst-case hardness

against S̃UM1/poly(n) ◦ C

3: Hardness against MAJ ◦ C

4: Hardness against
probabilistic-C with
error 1/2− 1/poly(n)

5: Average-case
hardness against C
under some distribution

6: Average-case
hardness against C
under uniform distribution

7: Inapproximability by
[0, 1]-SUM ◦ C within
`1 distance 1/3

8: Inapproximability by
[0, 1]-SUM ◦ C within
`1 distance 1/poly(n)

9: (n− 1)-seed i.o. PRG

against C with error n−ω(1)

10: (nγ)-seed i.o. PRG

against C with error n−ω(1)

Figure 1: Equivalences in Theorem 1, with arrows indicating direct implications that we prove in
order to establish them.
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Item 6 ⇒ Item 10. We construct the PRG using the hardness vs. randomness framework.
Consider Lemma 8 with the following setting of parameters: a := 2/γ and ` := nγ/4. Let
GL` : {0, 1}t → {0, 1}n be the PRG defined as GL`(z) := G(L`, z), where L ∈ E is the language
from Item 6. Note that the seed length t is at most O

(
`2 · n1/a/a

)
≤ nγ and GL` can be computed

in time poly(n, 2t) = 2O(nγ). Let k ≥ 1 be any constant and consider any `-variate C ◦ JUNTAa-
circuit C where the top circuit has size nk = `4k/γ . Since C is closed under a bottom layer of

juntas, we have that C ∈ C
[
`k
′
]

for some large enough k′ > 4k/γ. Also, let ε = 1/nk, which implies

ε/n = 1/nk+1 = 1/`4(k+1)/γ ≥ 1/`k
′
. From Item 6, we have that L` cannot be

(
1/2 + 1/`k

′
)

-

approximated by any circuit from C[`k′ ], for infinitely many values of `. Then by Lemma 8, we
conclude that GL`

(
1/nk

)
-fools any circuit from C[nk], for infinitely many values of n.

Item 10 ⇒ Item 1. Let G : {0, 1}r → {0, 1}n be an i.o. PRG as in Item 10, where r ≤ n − 2.
That is, for each choice of k′, G fools circuits from C[nk′ ] on input length n with error ε(n) ≤ n−k′ ,
for infinitely many values of n.

Let k ≥ 1 and let C ∈ S̃UM1/3 ◦ C[nk]. By Proposition 9, it suffices to show that G is an

i.o.
(
< 3

4

)
-PRG against C. Let C̃ be the corresponding linear sum for C. That is,

C̃(x) :=
∑
i

αi · Ci(x),

where Ci ∈ C[nk] ⊆ C[nk
′:=k+1] and

∑
i |αi| ≤ nk. Since C̃ (1/3)-approximates C in a pointwise

manner, we have ∣∣∣E[C(U)]−E[C̃(U)]
∣∣∣ ≤ 1/3 and

∣∣∣E[C(G)]−E[C̃(G)]
∣∣∣ ≤ 1/3.

Therefore, if we can show that ∣∣∣E[C̃(U)]−E[C̃(G)]
∣∣∣ ≤ δ,

for some δ < 1/12 (infinitely often), then G δ′-fools C (infinitely often), where δ′ = 2/3 + δ < 3/4.
We have ∣∣∣E[C̃(U)]−E[C̃(G)]

∣∣∣ =

∣∣∣∣∣E
[∑

i

αi · Ci(U)

]
−E

[∑
i

αi · Ci(G)

]∣∣∣∣∣
=

∣∣∣∣∣∑
i

αi ·E[Ci(U)]−E[Ci(G)]

∣∣∣∣∣
≤ max

i
|E[Ci(U)]−E[Ci(G)]| ·

∑
i

|αi|

≤ n−k′ · nk ≤ 1/n,

as desired.

Item 1 ⇒ Item 2. This implication is straightforward.

Item 6 ⇒ Item 5 ⇒ Item 4. The first implication is obvious. The contrapositive of the second
implication follows from an averaging argument.
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Item 4 ⇒ Item 1. It suffices to show that for every k ≥ 1, every function in S̃UM1/3 ◦ C[nk] has

a probabilistic C[nk]-circuit with error 1/2− 1/nO(k).
For the simplicity of presentation, we will consider Boolean functions that take inputs from

{0, 1}n and output values in {−1, 1}. Let f± : {0, 1}n → {−1, 1} ∈ S̃UM1/3 ◦ C±[nk]. Then there is

a linear sum of C±[nk]-circuits

f1(x) :=
∑
i

αi ·
(

1− Ci(x)

2

)
,

where Ci : {0, 1}n → {−1, 1} ∈ C±[nk] and
∑

i |αi| ≤ nk, such that

• if f±(x) = 1, then f1(x) ≤ 1/3, and

• if f±(x) = −1, then f1(x) ≥ 2/3.

Next, let
f2(x) := 1/2− f1(x).

It is easy to see that

• if f±(x) = 1, then f2(x) ≥ 1/6, and

• if f±(x) = −1, then f2(x) ≤ −1/6.

Now note that since C± is closed under negation, f2 can be written as

f2(x) :=
∑
j

βj ·Dj(x),

where for each j, Dj : {0, 1}n → {−1, 1} ∈ C±[nk], βj ≥ 0, and T :=
∑

j βj ≤ nO(k). Finally, let

f3(x) :=
f2(x)

T
.

Let D be the probabilistic C±[nk]-circuit where Dj is sampled with probability βj/T . Then for
every x we have ED[D(x)] = f3(x). Moreover, if f±(x) = 1, then

1

6T
≤ E
D

[D(x)]

= Pr
D

[D(x) = 1]−Pr
D

[D(x) = −1]

= Pr
D

[D(x) = 1]− (1−Pr
D

[D(x) = 1])

= 2 ·Pr
D

[D(x) = 1]− 1,

which implies

Pr
D

[D(x) = 1] ≥ 1

2
+

1

12T
.

Similarly, we can show that if f±(x) = −1, then

Pr
D

[D(x) = −1] ≥ 1

2
+

1

12T
.

Therefore, D is a probabilistic C±[nk]-circuit for f± with error 1/2− 1/nO(k).
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Item 6 ⇒ Item 3. This follows from the standard Discriminator Lemma [HMP+93].

Item 3 ⇒ Item 4. We will show that for every k ≥ 1, every function that has a probabilistic
C[nk]-circuit with error 1/2− 1/nk is contained in MAJnO(k) ◦ C[nO(k)].

Let f : {0, 1}n → {0, 1} and D be the probabilistic C[nk]-circuit for f with error 1/2 − 1/nk.
That is, for every x,

Pr
D

[D(x) = f(x)] ≥ 1/2 + 1/nk.

By the Chernoff bound, if we sample t := O(n2k · n) circuits C1, . . . , Ct from D, then

Pr
C1,...,Ct∼D

[
Pr
i∈[t]

[Ci(x) = f(x)] ≥ 1/2 + 1/(2nk)

]
≥ 1− 2−2n.

By a union bound over x ∈ {0, 1}n, there exist t circuits C1, . . . , Ct such that for every x,

Pr
i∈[t]

[Ci(x) = f(x)] ≥ 1/2 + 1/(2nk).

Therefore, by taking the majority of these t circuits, we obtain a MAJnO(k) ◦ C[nO(k)]-circuit that
computes f .

Item 10 ⇒ Item 9 ⇒ Item 2. This first implication is obvious. The proof of the second
implication is essentially the same as that of “Item 10 ⇒ Item 1”. From Item 9, we get an

i.o. PRG with seed length n− 1 that
(
< 1

2

)
-fools S̃UMδ ◦ C-circuits for some δ = 1/poly(n), which

by Proposition 9 implies Item 2. We omit the details here.

Item 6 ⇒ Item 7. Let L : {0, 1}∗ → {0, 1} be the language from Item 6. For the sake of
contradiction, suppose there is a k ≥ 1 such that L can be approximated by [0, 1]-SUM ◦ C[nk]-
circuits within `1 distance 1/3. Then by Item 1 of Proposition 12, we have that for every n, there
is a SUM ◦ C±[O

(
nk
)
]-circuit C such that ‖C‖∞ ≤ 1 and

〈(L±)n, C〉 ≥ 1/3.

Suppose

C(x) :=
∑
i

|αi| · Ci(x),

where Ci ∈ C±[O
(
nk
)
] and

∑
i |αi| ≤ O

(
nk
)
. Then

1/3 ≤

〈
(L±)n,

∑
i

αi · Ci

〉
=
∑
i

αi · 〈(L±)n, Ci〉

≤
∑
i

|αi| · 〈(L±)n, Ci〉

≤ max
i
〈(L±)n, Ci〉 ·

∑
i

|αi|

≤ max
i
〈(L±)n, Ci〉 ·O

(
nk
)
,
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which implies that there exists some i such that

〈(L±)n, Ci〉 ≥
1

O(nk)
.

This contradicts Item 6.

Item 7 ⇒ Item 8. This implication is obvious.

Item 8 ⇒ Item 6. By Item 2 of Proposition 12, we have that Item 8 implies that there is a
language L : {0, 1}∗ → {−1, 1} in E and δ = 1/`b, where b ≥ 1 is a constant, such that for every
k′ ≥ 1, on infinitely many input lengths there is no SUM ◦ C±[`k

′
]-circuit C with ‖C‖∞ ≤ 1 such

that
〈L`, C〉 ≤ 1− 2δ. (1)

Now consider the following language L′ : {0, 1}∗ → {−1, 1}: on input x of length n, let ` be
the largest integer such that ` · `b log2(`) ≤ n and view the input as x = (x1, . . . , xt, y), where
t := `b log2(`) and xi ∈ {0, 1}` for i ∈ [t]. Then let

L′(x) :=
∏
i∈[t]

L(xi).

Note that for large enough n we have

n < 2` · t < `b+2.

We claim that L′ is strongly average-case hard against C±-circuits. For the sake of contradiction,
suppose there is k ≥ 1 and an n-variate circuit C ′ ∈ C±[nk] such that, for all large enough n,

〈L′n, C ′〉 >
1

nk
.

By an averaging argument, where we fix the y-part of the input to some value, there exists some
(` · t)-variate C±-circuit C ′ of size nk ≤ `k(b+2) such that〈

L⊕t` , C
′′〉 > 1

nk
.

Note that for δ = 1/`b and our choice of t = `b log2(`), we have

1

nk
> (1− 2δ)t +

1

2δ · `k(b+2) · `b
.

By Theorem 13, there is a SUM ◦ C± C where ‖C‖∞ ≤ 1, the top SUM has complexity 10 · ` ·(
`k(b+2) · `b

)2 ≤ `O(kb) and the bottom layer C±-circuits have size `k(b+2) such that

〈L`, C〉 > 1− 2δ,

for all large enough `. This contradicts Equation (1).
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3.3 A weak equivalence theorem in the constant-error regime

In this subsection, we show a weaker equivalence theorem for the constant-error regime.

Theorem 14 (Non-black-box equivalences in the low-error regime). Let ε ∈ (0, 0.5) and C be a
circuit class that satisfies the following:

• C is closed under negation and projection.

•
⋃
k≥1 C[nk] ⊆ NC1.

Then the following statements are equivalent:

1. There is L ∈ E such that for every k ≥ 1, L cannot be (1/2 + ε)-approximated by C[nk] under
the uniform distribution.

2. There is L ∈ E such that, for every k ≥ 1, L cannot be computed by a probabilistic C[nk]circuit
with error 1/2− ε.

3. There is L ∈ E and a distribution D such that for every k ≥ 1, L cannot be (1/2 + ε)-
approximated by C[nk] under D.

4. There is an i.o. ε-PRG against C with seed length n− 1 and error ε.

Proof. The equivalence of Item 2 and Item 3 follows from Yao’s minimax theorem. In the following,
we show Item 4 ⇒ Item 2, Item 2 ⇒ Item 1 and Item 1 ⇒ Item 4, which will complete the proof.

Item 4 ⇒ Item 2. Let G = {Gn} be the i.o.-PRG given by Item 4. Fix a k ≥ 1. For every
n ≥ 1, consider Gn : {0, 1}n−1 → {0, 1}n, and define the function fn : {0, 1}n → {0, 1} where
fn(x) := 1x∈Im(Gn). Suppose that for all sufficiently large n, fn has a probabilistic C[nk]-circuit with
error 1/2−ε, which we denote by Dn. Then we have for every x ∈ {0, 1}n that |EDn [Dn(x)]−f(x)| ≤
1/2− ε.

Let p = |Im(Gn)|
2n . Note that p ≤ 1/2. We have

E
Dn,x∼Un−1

[Dn(Gn(x))] =
∑

x∈{0,1}n−1

1

2n−1
E
Dn

[Dn(Gn(x))]

=
∑

x∈Im(Gn)

|G−1
n (x)|
2n−1

E
Dn

[Dn(x)]

=

 ∑
x∈Im(Gn)

2 · |G−1
n (x)| − 1

2n
E
Dn

[Dn(x)]

+

 ∑
x∈Im(Gn)

1

2n
E
Dn

[Dn(x)]


≥ (1/2 + ε) ·

 ∑
x∈Im(Gn)

2 · |G−1
n (x)| − 1

2n

+ p · E
D,x∼Un

[Dn(x) | x ∈ Im(Gn)]

=
(1/2 + ε)

2n
· (2n − |Im(Gn)|) + p · E

D,x∼Un
[Dn(x) | x ∈ Im(Gn)]

= (1− p) · (1/2 + ε) + p · E
D,x∼Un

[Dn(x) | x ∈ Im(Gn)].
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Moreover,
E

Dn,x∼Un
[Dn(x)] ≤ (1− p) · (1/2− ε) + p · E

D,x∼Un
[Dn(x) | x ∈ Im(Gn)].

Combining these two, we have

E
Dn,x∼Un−1

[Dn(Gn(x))]− E
Dn,x∼Un

[Dn(x)] ≥ ε.

Therefore, there is a circuit in the support of Dn that breaks the PRG Gn. Since the argument
holds for every n ≥ 1, we conclude that {Gn}n is not an i.o.-PRG, a contradiction. Therefore, for
infinitely many n, fn does not have probabilistic C[nk]-circuits with error 1/2− ε.

Item 2 ⇒ Item 1. We consider two cases.

1. If DCMD cannot be (1/2 + ε)-approximated by C[nk] for every k ≥ 1 under the uniform
distribution, then we are done.

2. Otherwise, there is some k ≥ 1 such that DCMD can be (1/2 + ε)-approximated by C[nk]-
circuits. By Theorem 6, CMD has a probabilistic C[nO(k)]-circuit with error 1/2− ε. Then by
Theorem 7, it implies that every function in NC1 has a polynomial-size probabilistic C-circuit
with error 1/2 − ε. By the assumed Item 2, there is a function L in E that does not have
polynomial-size C-circuit with error up to 1/2− ε, which implies that L is not in NC1. Using
the standard hardness amplification (Lemma 10), there is a function in E that is strongly
average-case hard against NC1, which contains polynomial-size C-circuits.

Item 1 ⇒ Item 4. We construct the PRG as G(x) := x ◦ f(x) where ◦ denotes concatenation.
The security of the PRG can be shown by the standard connection between average-case hardness
and unpredictability.

In particular, under quite minor assumptions on the circuit class C, it follows that even weak
average-hardness under an arbitrary distribution implies similar average-case hardness under the
uniform distribution. This complements the corresponding implication from Theorem 1, which
works in a different regime of parameters and makes a somewhat stronger assumption on C.

4 Lifting worst-case ACC0 lower bound approaches to strong cor-
relation bounds

In this section, we prove Theorem 2. In Section 4.1 we introduce some necessary technical

ingredients for the proof. In Section 4.2 we prove the important technical lemma that S̃UMδ ◦ACC0-
circuits can be approximated by low-degree torus polynomials. In Section 4.3 we finish the proof
of Theorem 2.

4.1 Preliminaries

For three numbers a, b and c > 0, we write a = b± c to mean that b− c ≤ a ≤ b+ c.
In the following we recall two important technical facts about ACC0-circuits, which will be crucial

for the proofs in this section.
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Theorem 15 (See e.g. [BHLR19, Theorem 19]). Let f : {0, 1}n → {0, 1} be computable by ACC0-
circuits of depth d and size poly(n). Then for any e ≥ 1 there exists an integer polynomial F (x) of

degree eO(d) · (log n)O(d2) which satisfies the following: there is some k ≥ e such that

∀x ∈ {0, 1}n, F (x) = f(x)2k + E(x) (mod 2k+e),

for some error E(x) ≤ 2k−e.

Note that invoking the result above for different circuits and the same parameter e does not
guarantee the same value k. A simple way to achieve this is with the use of universal circuits.

Fact 16. For any constants d,m ≥ 1 and any s ≥ 1, there is an encoding 〈·〉 of n-variate circuits
consisting of (unbounded fan-in) AND, OR and MODm gates with size at most s and depth at most
d, and a universal circuit U consisting of (unbounded fan-in) AND, OR and MODm gates with size
s′ = sO(1) and depth d′ = O(d), such that for any such circuit C, we have

• |〈C〉| = sc, where c > 0 is a constant.

• for any x ∈ {0, 1}n, U(〈C〉, x) = C(x).

4.2 S̃UM ◦ ACC0 as torus polynomials

In this subsection, we prove that every S̃UM ◦ ACC0-circuit of polynomial complexity can be
approximated by some torus polynomial of degree polylog(n).

Lemma 17. Let d,m ≥ 1 be constants and let δ ∈ (0, 0.5). If a function f : {0, 1}n → {0, 1} has a

S̃UMδ ◦ ACd[m]-circuit where the complexity of the top sum and the size of the ACd[m]-subcircuits
are poly(n), then for every constant b ≥ 1, f has a (δ/2 + 1/nb)-approximation torus polynomials
of degree polylog(n).

To prove Lemma 17, we will show two lemmas. The first says that we can “represent” a
polynomial-complexity linear sum of ACC0-circuits with real coefficients by a linear sum with integer
coefficients that also has some good property. The second lemma then shows that a function with
such a representation admits a pointwise approximation by a low-degree torus polynomial.

Lemma 18. For any δ ∈ (0, 0.5) and any circuit class C, let f : {0, 1}n → {0, 1} be a S̃UMδ ◦ C-
circuit where the complexity of the top sum and the size of the C-subcircuits are poly(n). Then there
are S = poly(n) circuits C1, . . . , CS ∈ C[poly(n)], S integers α1, . . . , αS, and an integer T such that

•
∑

i∈[S] |αi| ≤ poly(n),

• T is a power of 2 with |T | ≤ poly(n), and

• for every input x
S∑
i=1

αi · Ci(x) = T ·
(
f(x)± δ′

)
,

where δ′ = δ + 1
S .
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Proof. The basic idea is to truncate the decimal fraction of the real coefficients in the original linear
sum up to certain precision, and then multiply it by some power of 2.

Since f is a S̃UMδ ◦ C-circuit of complexity poly(n), there are S = poly(n) many circuits
C1, C2, . . . , CS ∈ C[poly(n)], and S real numbers β1, . . . , βS such that

S∑
i=1

βi · Ci(x) = f(x)± δ.

Also, since the coefficients are polynomially bounded, we can write, for every i ∈ [S],

βi = sign(βi) ·

O(log(n))∑
j=0

aj · 2j +

∞∑
k=1

bk
2k

 ,

where aj , bk ∈ {0, 1}. Now let

β′i := sign(βi) ·

O(log(n))∑
j=0

aj · 2j +

d2 log(S)e∑
k=1

bk
2k

 .

Note that

|βi − β′i| ≤
∞∑

k=d2 log(S)e+1

1

2k
≤ 1

S2
.

Therefore, for every x,∣∣∣∣∣
S∑
i=1

β′i · Ci(x)−
S∑
i=1

βi · Ci(x)

∣∣∣∣∣ ≤
S∑
i=1

Ci(x) · |βi − β′i| ≤
1

S
.

Now let
T := 2d2 log(S)e.

Note that T is a power of 2 and |T | ≤ poly(n). Also, let

αi := T · β′i

Note that αi is an integer and |αi| ≤ poly(n). Finally, we have

S∑
i=1

αi · Ci(x) = T ·
S∑
i=1

β′i · Ci(x)

= T ·

((
S∑
i=1

βi · Ci(x)

)
± 1/S

)
= T · (f(x)± δ ± 1/S) ,

as desired.

Lemma 19. Let d,m ≥ 1 be constants and let f : {0, 1}n → {0, 1} be a function with the following
property: there are S = poly(n) polynomial-size ACd[m]-circuits C1, . . . , CS, S integers α1, . . . , αS,
and an integer T such that
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•
∑

i∈[S] |αi| ≤ poly(n),

• T is a power of 2 with |T | ≤ poly(n), and

• for every input x
S∑
i=1

αi · Ci(x) = T · (f(x)± δ) .

Then for every constant b ≥ 1, f has a (δ/2 + 1/nb)-approximation torus polynomials of degree
polylog(n).

Proof. Let U be the universal circuit for ACd[m]-circuits of size at most s from Fact 16, where s
is the maximum size of C1, . . . , CS . Applying Theorem 15 with the parameter e = dlog2(n)e to U ,
we get an integer polynomial F (x) of degree polylog(n) and some number k ≥ e such that for every
ACd[m]-circuit C of size at most s and every input x ∈ {0, 1}n,

F (〈C〉, x) = U(〈C〉, x) · 2k + E(〈C〉, x) (mod 2k+e),

for some E(〈C〉, x) ≤ 2k−e. Let

p(x) :=
1

2 · 2k · T
·
S∑
i=1

αi · F (〈Ci〉, x).

Note that p has degree polylog(n), since the restricted function F (〈Ci〉, ·) is a polynomial of degree
polylog(n). We claim that p(x) approximates f in the torus. To see this, note that we have

q(x) :=

S∑
i=1

αi · F (〈Ci〉, x) (mod 2k+e)

=

S∑
i=1

αi ·
(
U(〈Ci〉, x) · 2k + E(〈Ci〉, x)

)
(mod 2k+e)

=
S∑
i=1

αi ·
(
Ci(x) · 2k + E(〈Ci〉, x)

)
(mod 2k+e)

=

(
2k ·

S∑
i=1

αi · Ci(x)

)
+

(
S∑
i=1

αi · E(〈Ci〉, x)

)
(mod 2k+e)

= 2k · (T · (f(x)± δ)) +

(
S∑
i=1

αi · E(〈Ci〉, x)

)
(mod 2k+e)

= 2k · T · f(x)± 2k · T · δ +

(
S∑
i=1

αi · E(〈Ci〉, x)

)
(mod 2k+e)

Therefore, we can write

q(x) = 2k · T · f(x)± 2k · T · δ + E′(x) + r(x) · 2k+e,
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where |E′(x)| ≤ poly(n) · 2k−e and r(x) is an integer. Finally, we have

p(x) =
q(x)

2 · 2k · T
=
f(x)

2
± δ

2
+

E′(x)

2 · 2k · T
+ r(x) · 2e

2 · T
.

Since T is a power of 2, and by our choice of e, the last summand r(x) · 2e

2·T is an integer. Also,

since |E′(x)| ≤ poly(n) · 2k−e, the second last summand
∣∣∣ E′(x)

2·2k·T

∣∣∣ ≤ poly(n)
2e . As a result, we have

p(x) =
f(x)

2
± δ

2
± 1

nω(1)
(over T),

as desired.

Proof of Lemma 17. The lemma follows directly from Lemma 18 and Lemma 19.

4.3 Proof of Theorem 2

Now we are ready to prove Theorem 2 (restated below).

Reminder of Theorem 2. Consider the following statements:

1. Torus Polynomials: There is a language L ∈ E and a function δ(n) ≥ 1/poly(n) such that
L does not have δ-approximation torus polynomials of degree polylog(n).

2. NOF Protocols: There is a language in E that does not admit (single-round) NOF multi-
party protocols with polylog(n) parties of communication cost polylog(n).

In each case, if the corresponding statement holds then there is a language in E that cannot be
(1/2 + 1/poly(n))-approximated under the uniform distribution by ACC0.

Proof.

1. Torus Polynomials. By the assumption of the theorem and Lemma 17, we get that for some

δ ≥ 1/poly(n) and for every d,m ≥ 1, the language L cannot be computed by a S̃UMδ ◦ ACd[m]-
circuit where the complexity of the top sum and the size of the ACd[m]-subcircuits are poly(n). In

other words, there is δ = 1/poly(n) such that E * S̃UMδ ◦ACC0. Then by Theorem 1 (from Item 2
to Item 6), there is a language in E that is strongly average-case hard against ACC0.

2. NOF Protocols. Note that NOF multi-party protocols with polylog(n) parties and polylog(n)
communication cost can simulate MAJ ◦ ACC0-circuits [BT94] (see also [Wil18b, Theorem 2.2]).
This item then follows from Theorem 1 (from Item 3 to Item 6).

5 Lower bounds against circuits with MAJ, THR, and S̃UM gates

In this section, we prove Theorem 3 and Corollary 4. In Section 5.1 we introduce some important
technical ingredients for our proofs in this section. In Section 5.2 we prove Item (1) of Theorem 3
and Item (1) of Corollary 4. In Section 5.3 we prove Item (2) of Theorem 3 and Items (2) and (3)
of Corollary 4.
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5.1 Preliminaries

For a S̃UM ◦ C-circuit, we refer to the largest absolute value of the coefficients in the top SUM-
gate as its magnitude, the sparsity of the top SUM-gate as its sparsity, and the largest size of the
sub-C-circuits as its size.

Error reduction for approximate linear sums. The following error reduction lemma will be
useful in our proof for the Item (2) of Theorem 3.

Lemma 20. Let C be a circuit class. Suppose f has a S̃UMδ ◦C-circuit where the top SUM-gate has
sparsity S, magnitude T , and constant error δ ∈ (0, 0.5). Then for every ε > 0, f has an equivalent

S̃UM ◦ ANDOδ(log(1/ε)) ◦ C-circuit with

• error ε,

• sparsity SOδ(log(1/ε)), and

• magnitude SOδ(log(1/ε)) · T .

Proof. The idea is to reduce the error using the polynomial computing MAJ. For 0 ≤ α ≤ 1, let
Ber(α) be the distribution over {0, 1} such that Pry∼Ber(α)[y = 1] = α. The following claim is a
well-known fact, which follows from a standard application of Chernoff bound.

Claim 21. There is an abosolute constant K such that the following holds. For every constant
α > 0 and every ε > 0, let t =

⌈
K
α2 log(1/ε)

⌉
. Then it holds that

Pr
x1,...,xt∼Ber(1/2+α)

[MAJ(x1, . . . , xt) = 1] ≥ 1− ε

and
Pr

x1,...,xt∼Ber(1/2−α)
[MAJ(x1, . . . , xt) = 1] ≤ ε.

Now we start our proof. Let f̃ : {0, 1}n → R be the corresponding linear sum of C-circuits for
f . That is,

f̃(x) :=

S∑
j=1

αj · Cj(x),

where for each j ∈ [S], Cj is a C-circuit and |αj | ≤ T . For every δ > 0, let cδ > 0 be a large
enough constant to be specified later. let t = cδ · log(1/ε) ≤ Oδ(log 1/ε). Also let p : Rt → R be the
multi-linear polynomial computing MAJ on t input bits. Namely, for each x ∈ {0, 1}t it holds that
p(x) = MAJ(x). Note that p has degree at most t. Define

q(x) :=
f̃(x) + δ

1 + 2δ
.

Note that for every x ∈ {0, 1}n, we have 0 ≤ q(x) ≤ 1.
Since p is multi-linear, for every input x ∈ {0, 1}n, we have

p(q(x), q(x) . . . , q(x)) = E
y1,y2,...,yt∼Ber(q(x))

[p(y1, y2, . . . , yt)]

= Pr
y1,y2,...,yt∼Ber(q(x))

[MAJ(y1, y2, . . . , yt) = 1]. (2)
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We now show that the function

P (x) := p(q(x), q(x) . . . , q(x))

ε-approximates f . If f(x) = 0, then f̃(x) ∈ [−δ, δ], which implies 0 ≤ q(x) < 2δ
1+2δ < 1/2.

Otherwise, we have f(x) = 0 and f̃(x) ∈ [1 − δ, 1 + δ], which implies that 1
2 <

1
1+2δ < q(x) ≤ 1.

Now, by Claim 21 and (2), for large enough constant cδ and t = cδ log(1/ε), it holds that P (x) ∈ [0, ε]
for q(x) < 1

2 and P (x) ∈ [1− ε, 1] for q(x) > 1/2.

Since p is a multi-linear polynomial, we can write P (x) as P (x) =
∑t

i=0 βi · q(x)i for proper

coefficients (βi)
t
i=0. Being an affine transformation of f̃ , q can also be computed by a sum of C-

circuits of sparsity S. Then, for each i ∈ {0, . . . , t} we can compute q(x)i by a sum of C-circuits of
sparsity at most Si. Hence, P can be written as a linear sum of

∑t
i=0 S

i = O(St) ANDt ◦C-circuits.
This justifies the sparsity requirement in the conclusion of the lemma. Verifying the magnitude
requirement is straightforward. This completes the proof.

Efficient construction of probabilistic proofs systems (PCPs). We will make use of the
following PCP construction from [Vio20].

Lemma 22 ([Vio20, Lemma 11]). Let M be an algorithm running in time T = T (n) ≥ n on inputs
of the form (x, y) where |x| = n. Given x ∈ {0, 1}n one can output in time poly(n, log T ) a collection
of poly(r) circuits qij : {0, 1}r → {0, 1}r for i ∈ [poly(r)] and j ∈ [3], and Ri : {0, 1}3 → {0, 1} such
that:

• Proof length. 2r ≤ T · polylog(T ).

• Completeness. If there is y such taht M(x, y) accepts then there is a map π{0, 1}r → {0, 1}
such that for any z ∈ {0, 1}r and i ∈ [poly(r)] we have Ri(π(qi1(z)), π(qi2(z)), π(qi3(z))) = 1.

• Soundness. If no y causes M(x, y) to accept, then for every map π : {0, 1}r → {0, 1}, at most
1−1/rO(1) fraction of the pairs (z, i) ∈ {0, 1}r×[poly(r)] have that Ri(π(qi1(z)), π(qi2(z)), π(qi3(z))) =
1.

• Complexity. Each qij is a projection (a.k.a. 1-local), i.e., each output bit of qij is one input
bit, the negation of an input bit, or a constant; each Ri is an OR of three literals.

Tests on approximate linear sums. We also need the following “close-to-Boolean” test, adapted
from [CW19].

We start with some definitions. For a function f : {0, 1}n → R, we define the Boolean function
associated with f as bin(f) = 1f(x)≥1/2. For any function f : {0, 1}n → R and a real p ≥ 1, we
define its `p-norm as

‖f‖p :=

(
E

x∼Un
|f(x)|p

)1/p

.

We also define the `∞-norm as
‖f‖∞ := max

x∈{0,1}n
|f(x)|.
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Lemma 23 (Following [CW19, Lemma 33]). For any integer S > 0, let

f =
∑
i∈[S]

αi · Ci,

where for every i ∈ [S], αi ∈ R and Ci is a C-circuit. Suppose the #SAT problem on AND8 ◦ C-
circuits of n-bit inputs can be computed in time T (n). Then for any ε ∈ (0, 0.01), there is an
algorithm A running in time O

(
T (n) · S8

)
such that:

• if ‖f − bin(f)‖∞ ≤ ε, then A accepts;

• if ‖f − bin(f)‖4 ≥ 3 · ε, then A rejects;

• otherwise, A can output anything.

Proof. Let P : R→ R be a degree-8 polynomial defined as

P (z) := z4 · (1− z)4.

It is easy to verify that for any z ∈ R, letting dbin(z) := |z − bin(z)|, we have

• P (z) ≤ dbin(z)4 · (1 + dbin(z))4 and

• P (z) ≥ dbin(z)4 · 2−4.

On the one hand, if ‖f − bin(f)‖∞ ≤ ε, then dbin(f(x)) ≤ ε for every x, which implies

E
x

[P (f(x))] ≤ ε4 · (1 + ε)4 ≤ ε4 · 1.014.

On the other hand, if ‖f − bin(f)‖4 ≥ 3 · ε, then we have

E
x

[P (f(x))] ≥ 2−4 ·E
x

[
dbin(f(x))4

]
= 2−4 · ‖f − bin(f)‖44 ≥ (3/2)4 · ε4.

Therefore, to distinguish the two cases, it suffices to compute

E
x

[P (f(x))],

which can be done by making O
(
S8
)

calls to the #SAT algorithm for AND8 ◦ C-circuits.

Finally, the following inequality will also be useful for us.

Lemma 24 (Cauchy-Schwarz). For any functions f, g : {0, 1}n → R and integer t ≥ 1, we have

‖f · g‖t ≤ ‖f‖2t · ‖g‖2t .
Proof. We have

‖f · g‖t = E
x

[
|f(x) · g(x)|t

]1/t
≤ E

x

[
|f(x)|t · |g(x)|t

]1/t
=
〈
|f |t, |g|t

〉1/t

≤
∥∥|f |t∥∥1/t

2
·
∥∥|g|t∥∥1/t

2

= E
x

[
|f(x)|2t

]1/(2t) ·E
x

[
|g(x)|2t

]1/(2t)
= ‖f‖2t · ‖g‖2t ,

as desired.
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5.2 LTFquasipoly(n) ◦ C lower bounds

In this section we prove Item (1) of Theorem 3 (restated below). Recall that a circuit class C is
nice if C is closed under negation, (bottom) projections, and a top AND gate of unbounded fan-in,
and in addition C-circuits of size s admit general circuits of depth O(log s).

Reminder of Item (1) of Theorem 3. Let C be a nice circuit class. Suppose there is
a constant ε > 0 such that, given a C-circuit of size 2n

ε
over n input variables, its number of

satisfying assignments can be computed in time 2n−n
ε
. Then for every constant k > 0, NQP does

not have LTF2logk n ◦ C-circuits of size 2logk n.

First, we state the following useful lemma.

Lemma 25. Let C be a circuit class that is closed under negation and projection. Let s : N→ N be a
non-decreasing function computable in polynomial time. If DCMD can be computed by an ensemble
of LTFs(n) ◦ C-circuits {Cn} of size s(n), then for every δ ∈ (0, 0.5), CMD can be computed by an

ensemble of S̃UMδ ◦ C-circuits of size poly(n, s(O(n2)), 1/δ).

Before proving Lemma 25, we show how it implies Item (1) of Theorem 3.

Proof Sketch of Item (1) of Theorem 3. Let s(n) := 2logk n. Depending on the complexity of DCMD,
there are two cases.

1. If DCMD cannot be computed by LTFs(n) ◦ C-circuits of size at most 2logk n, then we are done
since DCMD is itself in NQP.

2. Otherwise, DCMD can be computed by LTFs(n)◦C-circuits of size at most 2logk n. By Lemma 25

we know that CMD can be computed by S̃UM1/3 ◦ C-circuits of size poly(n, s(O(n2))). By

Theorem 7, NC1 collapses to S̃UM1/3 ◦ C-circuits of quasi-polynomial size.

We choose d to be a large enough constant such that s(n)-size LTFs(n) ◦ C-circuits can be

simulated by (general) circuits of depth at most logd n.13 Since NC1 collapses to S̃UM1/3 ◦ C
of quasi-polynomial size, we can then choose d′ such that every circuit of depth at most logd n

can be simulated by a S̃UM1/3 ◦ C-circuit of size at most 2logd
′
n.

Assuming the 2n−n
ε
-time CAPP algorithm for 2n

ε
size C-circuits, it follows from [CW19] and

[CR20] that NQP cannot be computed by S̃UM1/3 ◦ C-circuits of size 2logd
′
n, which in turn

implies that NQP cannot be computed by LTFs(n) ◦ C-circuits of size at most 2logk n. This
completes the proof.

Now we prove Lemma 25.

13Using similar reasoning as in [CW19, Propositon 40], we can assume the top LTF gate has coefficients being
rationals with numerator and denominator bounded by 2poly(s), where s is the sparsity of the top gate. Then, given
that C is a nice circuit class, C-circuits of size s can be simulated in depth O(log s), and it is clear that we can simulate
LTFs(n) ◦ C by low-depth circuits.
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Proof of Lemma 25. We use the randomized reduction from DCMD to CMD. Suppose that there
is a LTFs ◦ C-circuit computing DCMD. By Theorem 6, for every n ≥ 1, there is an m = m(n) ≤
O(n2) and a random reduction from CMDn to DCMDm. That is, there is a function R : {0, 1}n ×
{0, 1}O(n2) → {0, 1}m such that the following hold.

1. For every r ∈ {0, 1}O(n2), it holds that CMD(x) = r0 ⊕ DCMD(R(x, r)) where r0 denotes the
first bit of r.

2. For every y ∈ {0, 1}m, Pr
r∈{0,1}O(n2) [R(x, r) = y] = 2−m.

3. R computes a projection of input bits.

Let C =
∑t

i=1 αiCi be the assumed s(m)-size LTFs(m) ◦ C-circuit for DCMDm. We let

V := E
x∼{0,1}m

[|C(x)|].

It follows from the definition of LTFs(n) ◦ C-circuits that V ≥ 1/s.
Now we construct a probablistic SUM ◦ C-circuit D to compute CMDn as follows.

• On an input x ∈ {0, 1}n, D samples a uniform random string r ∈ {0, 1}O(n2), and outputs
C(R(x, r)) · (−1)r0 .

Let PD(x) denote the expectation of output of D given x ∈ {0, 1}n as input. By the random
reduction property we have that PD(x) = V · (−1)CMDn(x). For brevity, we use f : {0, 1}n → {0, 1}
to denote CMDn in the following.

Since C is a LTFs(m) ◦ C-circuit, the output of D is always bounded by s(m). Hence, we choose
` = Θ

(
s(m)4 · n · δ−4

)
and sample ` circuits from D, denoted by D1, . . . , D`. By a Chernoff bound

and union bound, we can fix a choice of D1, . . . , D` such that for every x ∈ {0, 1}n, it holds that∣∣∣∣∣1` ∑̀
i=1

Di − V · (−1)f(x)

∣∣∣∣∣ ≤ δ

5s(m)
. (3)

Define D(x) := 1
`

∑`
i=1Di(x). Note that D is a SUM ◦ C-circuit. Finally, we define

D′(x) :=
1

2
+

D(x)

2
(
V + δ

s

)
which is just an affine transformation of D. Then, it follows that for every x ∈ {0, 1}n, we have:

|D′(x)− f(x)| ≤ 1

2(V + δ/s)
|D(x) + (V + δ/s)− 2 · f(x)(V + δ/s)|

≤ 1

2(V + δ/s)

(∣∣∣V · (−1)f(x) + (V + δ/s)− 2 · f(x)(V + δ/s)
∣∣∣+

δ

5s

)
≤ 2δ/s

2(V + δ/s)

≤ δ. (V ≥ 1/s)
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Finally, combing the 2n−n
ε

time #SAT algorithm for 2n
ε
-size ACC0◦THR-circuits from [Wil18b],

Item (1) of Corollary 4 (restated below) follows immediately.

Reminder of Item (1) of Corollary 4. For every constant k > 0, NQP does not admit

LTF2logk n ◦ ACC0 ◦ THR-circuits of size 2logk n.

5.3 Average-case lower bounds against S̃UM ◦ ACC0 ◦ THR

Next we prove Item (2) of Theorem 3 (restated below).

Reminder of Item (2) of Theorem 3. Let C be a nice circuit class. Suppose there is
a constant ε > 0 such that, given a C-circuit of size 2n

ε
over n input variables, its number of

satisfying assignments can be computed in time 2n−n
ε
. Then for every choice of constants k > 0

and δ ∈ (0, 0.5), NQP cannot be (1/2 + 2− logk n)-approximated by S̃UMδ ◦ C-circuits where both the

sparsity of the top SUM-gate and the size of the bottom layer C-circuits are at most 2logk n.

Although Items (1) and (2) of Theorem 3 seem incomparable, we observe that both of them

imply a quasi-polynomial size MAJ ◦ S̃UM ◦ C lower bound, as sketched in the introduction of the
paper.

Again, applying the 2n−n
ε
-time #SAT algorithm for size-2n

ε
ACC0 ◦ LTF-circuits, Item (2)

of Corollary 4 follows immediately. In turn, Item (3) of Corollary 4 follows from Item (2) and
a standard application of the Discriminator Lemma.

Reminder of Items (2) and (3) of Corollary 4. The following results hold:

2 For every choice of constants k > 0 and δ ∈ (0, 0.5), NQP cannot be (1/2 + 2− logk n)-

approximated by S̃UMδ ◦ ACC0 ◦ THR-circuits where the top SUM-gate has sparsity 2logk n

and all ACC0 ◦ THR-subcircuits have size 2logk n.

3 For every choice of constants k > 0 and δ ∈ (0, 0.5), NQP cannot be computed by MAJ◦S̃UMδ◦
ACC0 ◦ THR-circuits where the top MAJ gate has fan-in 2logk n and all S̃UMδ ◦ ACC0 ◦ THR-
subcircuits have size and sparsity 2logk n.

The proof of Item (2) of Theorem 3 follows the framework of [CR20]. In particular, we prove
the following lemma in substitution of [CR20, Theorem 5.1] in the original proof.

Lemma 26. Let C be a nice circuit class. There is a universal constant δCMD > 0 such that, if the
followings hold:

1. there is a constant δ ∈ (0, 0.5) such that CMD can be computed by a family of S̃UMδCMD
◦S̃UMδ◦

C-circuits, where the top S̃UM has sparsity and magnitude at most 2logO(1) n, the middle S̃UMδ

gates have sparsity at most 2logO(1) n, and the bottom C-circuits have size at most 2logO(1) n,
and

2. there is a constant ε > 0 such that given a C-circuit on n-bit inputs of size at most 2n
ε
, the

number of satisfying assignments to the circuit can be computed in time 2n−n
ε
,
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then NE can certify nΩ(1) depth hardness. Namely, there is an O(2n) time algorithm A(x, y) such
that, for infinitely many n: (1) A(1n, tt(f)) = 1 for a function f : {0, 1}n → {0, 1} implies that f
does not admit no(1)-depth circuits and (2) A(1n, tt(f)) = 1 for some n-bit function f .

Given Lemma 26, Item (2) of Theorem 3 can be proved in the same way as that of [CR20].

Proof Sketch of Item (2) of Theorem 3. For the sake of contradiction, if there exists some k such

that NQP can be (1/2 + 2− logk n)-approximated by S̃UMδ ◦ C of sparsity and C-circuit size at most

2logk n, then by the property of DCMD/CMD (Theorem 6 and Theorem 7), the first item in the
assumption of Lemma 26 (see [CR20, Section 3]) holds. Now, with the non-trivial #SAT algorithm
for C-circuits, we can certify nΩ(1) depth hardness in NE. Such a hardness certifier can be used to
construct functions in NQP that cannot be (1/2 + 2− logk n)-approximated by (general) circuits of
depth at most logO(k) n (see [CR20, Section 4]). This completes the proof, since it is possible to

simulate S̃UMδ ◦ C-circuits as in the statement of the theorem using circuits of depth logO(k) n by
upper bounding the bit complexity of their coefficients (see [CW19, Propositon 40]).

The rest of this section is devoted to prove lemma 26.

5.3.1 Certifying low-depth circuits: Proof of Lemma 26

Given Lemma 20, the proof of Lemma 26 proceeds in the same way as that of [CR20, Theorem
5.1], using the observation that we can now derive from Item 1 of the assumption in Lemma 26 via

error reduction and a collapse that CMD has a S̃UM2δCMD
◦ C-circuit of sparsity (not complexity)

at most 2logO(1) n. We highlight that the original proof combined the PCP of [BV14] with PCPs
of proximity (PCPP) for technical reasons, while we will present a proof that only uses the PCP
of [BV14] (more precisely, a slight variant presented in [Vio20]). By combining this PCP with
Lemma 20, we can prove Lemma 26 without PCPP.

We are now ready to show Lemma 26.

Proof of Lemma 26. Let δCMD < 1/8. We have the following observation.

Claim 27. Let c ≥ 1 be a constant. Suppose Item 1 in the statement of Lemma 26 holds. Then

CMD has a S̃UM1/nc ◦ C-circuit with sparsity and C-circuit size 2logO(1) n.

Proof of Claim 27. By the first assumption of Lemma 26, CMD has a S̃UMδCMD
◦ S̃UMδ ◦ C-circuit.

Here the top S̃UM gate has sparsity S1 = 2logO(1) n and magnitude T1 = 2logO(1) n, the middle S̃UMδ

gates have sparsity at most 2logO(1) n and error δ ∈ (0, 0.5), and the bottom C-circuits have size at

most 2logO(1) n. We first use Lemma 20 to reduce the error of each S̃UMδ ◦ C-subcircuit from δ to

1

8 · S1 · T1
.

Note that this step only expands the C-circuit size, sparsity and magnitude of the S̃UM ◦ C-circuits
by a quasi-polynomial factor. Then we replace each of these subcircuits with their corresponding

linear sums and merge them with the top sum. After this we get a S̃UM1/4 ◦ C-circuit computing

CMD with sparsity and C-circuit size at most 2logO(1) n. Finally, we apply Lemma 20 again to reduce

the error of the S̃UM ◦ C to 1/nc. This step only incurs a quasi-polynomial blow-up in the circuit
sparsity, magnitude and size. This completes the proof.
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Let L be a unary language in NTIME[2n]\NTIME[o (2n)]. Consider the PCP of Lemma 22 for
L. For z ∈ {0, 1}r where r = r(n) = n + O(log n), and i ∈ [poly(r)], denote the queries Qi(z) by(
qi1(z), qi2(z), qi3(z)

)
∈ {0, 1}r × {0, 1}r × {0, 1}r, where qi1, q

i
2, q

i
3 are all projection functions. By

Lemma 22, we have:

• If x ∈ L, then there exists a proof π : {0, 1}r → {0, 1}, such that

E
z∼{0,1}r,i∼[poly(n)]

[
Ri
(
π(qi1(z)), π(qi2(z)), π(qi3(z))

)]
= 1.

• If x 6∈ L, then for every proof π : {0, 1}r → {0, 1}, we have

E
z∼{0,1}r,i∼[poly(n)]

[
Ri
(
π(qi1(z)), π(qi2(z)), π(qi3(z))

)]
≤ 1− 1/nb

for some absolute constant b ≥ 1.

Note that in the above, the sets of query functions and predicates depend on x. We define a PCP
verifier V : {0, 1}n × {0, 1}2

r

→ {0, 1} as follows:

V (x, y) = 1 ⇐⇒ E
z∼{0,1}r,i∼[poly(n)]

[
Ri
(
πy(q

i
1(z)), πy(q

i
2(z)), πy(q

i
3(z))

)]
= 1,

where πy : {0, 1}r → {0, 1} is the function whose truth table is y. It is clear that V can be computed
in time 2n · poly(n).

Next, we show that V certifies rΩ(1)-depth hardness. Namely, for infinitely many n, we have
1n ∈ L, but for any y such that V (1n, y) = 1, πy cannot be computed by circuits of depth no(1).

For the sake of contradiction, suppose for every 1n ∈ L, V on input 1n has a witness that can
be computed by circuit of depth h = h(r) = ro(1). We will design an algorithm to decide L in time
NTIME[o (2n)], which contradicts that L /∈ NTIME[o(2n)]. The assumption above implies that, for
every large enough n, if 1n ∈ L, there exists some proof oracle π∗, which has a depth-h circuit,
such that

E
z∼{0,1}r,i∼[poly(n)]

[
Ri
(
π∗(qi1(z)), π∗(qi2(z)), π∗(qi3(z))

)]
= 1. (4)

Since CMD is ⊕L-complete under projection (Theorem 7) and π∗ has circuit of depth h, there is

a projection function R : {0, 1}r → {0, 1}2
O(h)

such that for every u ∈ {0, 1}r, it holds π∗(u) =

CMD(R(u)). Therefore, by Claim 27, π∗ has a S̃UMε ◦ C-circuit with sparsity at most S = 2h
O(1)

,

size at most m = 2h
O(1)

, and error ε = 1/rc, where c > 0 is a sufficiently large constant to be chosen
later.

Now we describe an algorithm A to decide L in o(2n) time. On an input 1n, A first guesses a
linear sum of at most S C-circuits, where each C-subcircuit has size at most m. Let’s call it π̃. A
then runs the “close-to-Boolean” test in Lemma 23 with parameter ε on π̃◦qij for every i ∈ [poly(r)]
and j ∈ [3]. It rejects immediately if any of these tests rejects. Note that this can be done using
the assumed non-trivial #SAT algorithm for C-circuits. If 1n ∈ L, then the algorithm finds a linear
sum of C-circuits π̃ that is pointwise ε-close to the “low-depth” proof oracle π∗. In this case, we
have for every i ∈ [poly(r)] and j ∈ [3] that:

• π∗ ◦ qij = bin(π̃ ◦ qij)
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•
∥∥∥bin(π̃ ◦ qij)− π̃ ◦ qij

∥∥∥
∞

=
∥∥∥π∗ ◦ qij − π̃ ◦ qij∥∥∥∞ ≤ ε,

so such a “good” guess will never be rejected by the above test. Moreover, for all the guesses that
are not rejected by the test, we have, for every i ∈ [poly(r)] and j ∈ [3],∥∥bin(π̃ ◦ qij)− π̃ ◦ qij

∥∥
4
≤ 3 · ε.

Note that for every i ∈ [poly(r)], the predicate function Ri can be written as a multi-linear
polynomial on its inputs, i.e.,

Ri(u1, u2, u3) =
∑
T⊆[3]

aT ·
∏
j∈T

uj ,

where for every T ⊆ [3] we have aT ∈ [−5, 5], since Ri maps {0, 1}3 to {0, 1}. Next, we show the
following claim.

Claim 28. We have∣∣∣∣Ez,i [Ri (π̃(qi1(z)), π̃(qi2(z)), π̃(qi3(z))
)]
− E
z,i

[
Ri
(
bin(π̃(qi1(z))), bin(π̃(qi2(z))), bin(π̃(qi3(z)))

)]∣∣∣∣ ≤ O(ε).

Proof. It suffices to show that for every i ∈ [poly(r)] and T ⊆ [3], the quantity∣∣∣∣∣∣Ez
∏
j∈T

π̃(qij(z))

−E
z

∏
j∈T

bin(π̃(qij(z)))

∣∣∣∣∣∣ (5)

is at most O(ε). Let us fix i ∈ [poly(r)] and denote π̃(qij(z)) by gj(z) for each of j ∈ [3]. We upper
bound (5) by cases.

|T | = 1. Assume without loss of generality that T = {1}, we have

(5) =
∣∣∣E
z

[g1(z)− bin(g1(z))]
∣∣∣ ≤ ‖g1 − bin(g1)‖1 ≤ ‖g1 − bin(g1)‖4 ≤ 3 · ε.

|T | = 2. Assume without loss of generality that T = {1, 2}. Using Lemma 24, we have

‖g1g2 − bin(g1)bin(g2)‖2 ≤ ‖g1g2 − g1bin(g2)‖2 + ‖g1bin(g2)− bin(g1)bin(g2)‖2
= ‖g1 · (g2 − bin(g2))‖2 + ‖(g1 − bin(g1)) · bin(g2)‖2
≤ ‖g1‖4 · ‖g2 − bin(g2)‖4 + ‖g1 − bin(g1)‖4 · ‖bin(g2)‖4
≤ (1 + 3ε) · 3ε+ 3ε · 1
≤ 3ε(2 + 3ε),

where the second last inequality uses that ‖g1‖4 ≤ ‖g1 − bin(g1)‖4 + ‖bin(g1)‖4 ≤ 1 + 3ε. Then

(5) ≤ ‖g1g2 − bin(g1)bin(g2)‖1 ≤ ‖g1g2 − bin(g1)bin(g2)‖2 ≤ 3ε(2 + 3ε).
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|T | = 3. Again, using Lemma 24 , we have

(5) ≤ ‖g1g2g3 − bin(g1)bin(g2)bin(g3)‖1
≤ ‖g1g2g3 − g1g2bin(g3)‖1 + ‖g1g2bin(g3)− bin(g1)bin(g2)bin(g3)‖1
= ‖g1g2 · (g3 − bin(g3))‖1 + ‖(g1g2 − bin(g1)bin(g2)) · bin(g3)‖1
≤ ‖g1g2‖2 · ‖g3 − bin(g3)‖2 + ‖g1g2 − bin(g1)bin(g2)‖2 · ‖bin(g3)‖2
≤ ‖g1‖4 · ‖g2‖4 · ‖g3 − bin(g3)‖2 + ‖g1g2 − bin(g1)bin(g2)‖2 · ‖bin(g3)‖2
≤ (1 + 3ε)2 · 3ε+ 3ε(2 + 3ε) · 1
= O(ε).

This completes the proof of Claim 28.

On the one hand, if 1n ∈ L, then there exist a good guess π̃ such that bin(π̃) = π∗ and therefore

E
z,i

[
Ri
(
bin(π̃(qi1(z))), bin(π̃(qi2(z))), bin(π̃(qi3(z)))

)]
= 1,

which, by Claim 28, implies that

E
z,i

[
Ri
(
π̃(qi1(z)), π̃(q2(z)), π̃(q3(z))

)]
≥ 1−O(ε) ≥ 1−O (1/nc) ≥ 1− 1/

(
2nb
)
, (6)

by choosing c to be a large enough constant. On the other hand, if 1n 6∈ L, then for any guess π̃,
we have

E
z,i

[
Ri
(
bin(π̃(qi1(z))), bin(π̃(qi2(z))), bin(π̃(qi3(z)))

)]
≤ 1− 1/nb,

which gives

E
z,i

[
Ri
(
π̃(qi1(z)), π̃(q2(z)), π̃(q3(z))

)]
≤ 1− 1/nb +O(ε) < 1− 1/

(
2nb
)
.

Given a #SAT algorithm for C-circuit of size 2r
Ω(1)

with running time 2r−r
Ω(1)

, then we can compute
the expectation in (6) in time o(2n) (check e.g. [CR20], [CLW20]), which allows us to put L in
NTIME[o(2n)]. This is a contradiction. Hence, we conclude that for infinitely many n, we have
1n ∈ L but any proof y ∈ {0, 1}2npoly(n) for 1n cannot be computed by a circuit of depth no(1).
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