
Reverse Mathematics of Complexity Lower Bounds

Lijie Chen∗ Jiatu Li† Igor C. Oliveira‡

March 8, 2024

Abstract

Reverse mathematics is a program in mathematical logic that seeks to determine which ax-
ioms are necessary to prove a given theorem. In this work, we systematically explore the reverse
mathematics of complexity lower bounds. We explore reversals in the setting of bounded arith-
metic, with Cook’s theory PV1 as the base theory, and show that several natural lower bound
statements about communication complexity, error correcting codes, and Turing machines are
equivalent to widely investigated combinatorial principles such as the weak pigeonhole principle
for polynomial-time functions and its variants. As a consequence, complexity lower bounds can
be formally seen as fundamental mathematical axioms with far-reaching implications.

The proof-theoretic equivalence between complexity lower bound statements and combina-
torial principles yields several new implications for the (un)provability of lower bounds. Among
other results, we derive the following consequences:

• Under a plausible cryptographic assumption, the classical single-tape Turing machine
Ω(n2)-time lower bound for Palindrome is unprovable in Jeřábek’s theory APC1. The
conditional unprovability of this simple lower bound goes against the intuition shared by
some researchers that most complexity lower bounds could be established in APC1.

• While APC1 proves one-way communication lower bounds for Set Disjointness, it does not
prove one-way communication lower bounds for Equality, under a plausible cryptographic
assumption.

• An amplification phenomenon connected to the (un)provability of some lower bounds,
under which a quantitatively weak n1+ε lower bound is provable if and only if a stronger
(and often tight) nc lower bound is provable.

• Feasibly definable randomized algorithms can be feasibly defined deterministically (APC1

is ∀Σb
1-conservative over PV1) if and only if one-way communication complexity lower

bound for Set Disjointness are provable in PV1.

∗Miller Institute for Basic Research in Science. University of California at Berkeley. Email: lijiechen@berkeley.edu
†Computer Science & Artificial Intelligence Laboratory. Massachusetts Institute of Technology. Email: jiatuli@mit.edu
‡Department of Computer Science. University of Warwick. Email: igor.oliveira@warwick.ac.uk

mailto:lijiechen@berkeley.edu
mailto:jiatuli@mit.edu
mailto:igor.oliveira@warwick.ac.uk

Contents
1 Introduction 1

1.1 Context and motivation . 1
1.2 Results . 2
1.3 Techniques . 8
1.4 Concluding remarks and open problems . 11

2 Preliminaries 12
2.1 Basic notation . 12
2.2 Bounded arithmetic . 12
2.3 Combinatorial principles . 16

3 Equivalence Class for WPHP(PV) 18
3.1 Technical lemmas . 18
3.2 CC lower bounds for EQ ⇔ WPHP(PV) . 18
3.3 Singleton bound for ECC ⇔ WPHP(PV) . 23
3.4 Summary of the equivalence class . 24

4 Equivalence Class for WPHP′(PV) 24
4.1 Formalization and technical lemmas . 25
4.2 Single-tape lower bounds ⇒ WPHP′(PV) . 27
4.3 WPHP′(PV) ⇒ uniform CC lower bounds . 30
4.4 Uniform CC lower bounds ⇒ single-tape lower bounds 31
4.5 Uniform one-way CC lower bounds ⇔ WPHP′(PV) 32
4.6 Summary of the equivalence class . 33

5 Equivalence Class for WPHPWIT(PV) 34
5.1 Technical lemmas . 34
5.2 SetDisj lower bounds and WPHPWIT(PV) . 34
5.3 Distance lower bounds for decodable ECC ⇔ WPHPWIT(PV) 36
5.4 Summary of equivalence class . 37

6 Consequences 38
6.1 Conditional unprovability of simple lower bounds . 38
6.2 On the derandomization of feasibly definable randomized algorithms 39
6.3 Amplification of lower bounds . 41
6.4 Connections to TFNP . 41

1 Introduction
1.1 Context and motivation

Establishing lower bounds on the amount of resources needed to solve different computational
tasks is a central research direction in theoretical computer science. While this endeavor has
been highly successful with respect to certain resources (e.g., communication complexity), in many
fundamental settings (e.g., circuit size and running time) progress has been much more limited.

This has motivated a sequence of influential works on the difficulty of establishing complexity
lower bounds. In particular, several “barrier” results have been proposed, such as relativization
[BGS75], natural proofs [RR97], and algebrization [AW09]. While these results provide useful
information on the limitations of certain lower bound techniques, they fall short of providing a
systematic explanation for the difficulty of proving lower bounds. For instance, there are approaches
for proving lower bounds on circuit size that seem to avoid all the aforementioned barriers, often
leading to their own ad-hoc explanations for the lack of lower bounds (see, e.g., [CHO+22]). Perhaps
more importantly, these barriers to proving lower bounds do not consider a standard notion of proof,
and often cannot say anything relevant about approaches that combine different proof strategies.

In recent years, there has been a surge of results aimed at providing a more principled investiga-
tion of the difficulty of proving lower bounds. This research is rooted in methods and perspectives
from logic, and consider provability in the standard mathematical sense. A major goal is to iden-
tify a suitable logical theory T able to formalize the vast majority of known results from algorithms
and complexity, and to determine if complexity lower bounds of interest are (un)provable in the
same theory T. In case an unprovability result of this form is possible, it would be a significant
achievement in theoretical computer science similar to other major unprovability results, such as
the independence of the continuum hypothesis from ZFC set theory [Göd38, Coh63]. While we
appear to be far from achieving this goal, modest progress in this direction can still be beneficial.
For instance, it can lead to new proofs of existing theorems, a more robust notion of “barrier”
for existing techniques, or simply contribute to our understanding of proof complexity, which in-
vestigates the inherent hardness of proving mathematical statements, and is another fundamental
research direction in complexity theory.

A vast body of work has highlighted certain fragments of Peano Arithmetic collectively known
as Bounded Arithmetic as a natural and robust class of theories for the formalization of both basic
and advanced results from algorithms and complexity theory (see, e.g., [Kra95, Oja04, Jeř05, CN10,
LC11, Lê14, Pic14, BKT14, KO17, MP20, BKKK20, Gay22] and references therein). These theories
aim to capture proofs that manipulate and reason with concepts from a given complexity class
(e.g., a proof by induction whose inductive hypothesis can be expressed as an NP predicate). The
earliest example was the theory I∆0 introduced by Parikh [Par71], who investigated the intuitive
concept of feasibility in arithmetic and considered the infeasibility of exponentiation. Some other
widely investigated examples include Cook’s theory PV1 [Coo75], which formalizes polynomial-
time reasoning; Jeřábek’s theory APC1 [Jeř07a], which extends PV1 with the dual weak pigeonhole
principle for polynomial-time functions, and formalizes probabilistic polynomial-time reasoning;
and Buss’s theories Si2 and Ti

2 [Bus86], which incorporate induction principles corresponding to
different levels of the polynomial-time hierarchy.

In connection with the major goal highlighted above, research on the provability of complexity
lower bounds has made notable progress on two complementary fronts: the formalization of several
known results from algorithms and complexity in theories of bounded arithmetic; and results on the

1

unprovability of complexity lower bounds in the same theories (often conditional on a computational
assumption).

The former direction has a long and rich history that dates back to the work of Razborov
[Raz95a, Raz95b], Krajíček [Kra95, Section 15.2], and other researchers from the nineties. For
instance, it is known that PV1 can prove the PCP Theorem [Pic15b], and that APC1 can prove
several well-known circuit lower bounds [MP20], such as monotone circuit lower bounds for k-
Clique, and bounded-depth circuit lower bounds for the Parity function. The references cited
above describe numerous other formalizations in PV1 or in its extensions, such as the explicit
construction of expander graphs [BKKK20], and the correctness of randomized polynomial-time
matching algorithms [LC11].

On the other hand, despite much effort (see, e.g., [Raz95a, Raz95b, Kra11, Pic15a, MP20]
and references therein), much less is known about the unprovability of lower bounds in bounded
arithmetic. In an exciting recent work, Pich and Santhanam [PS21], and subsequently Li and
Oliveira [LO23], obtained the first unconditional results showing that certain complexity lower
bounds are unprovable in PV1, APC1, and even in stronger theories.

Nevertheless, these recent unprovability results can only deal with significantly strong (non-
uniform) NP-vs-coNSUBEXP style average-case lower bounds [PS21, LO23]. Since our understand-
ing of average-case complexity in the setting of sub-exponential size co-nondeterministic circuits is
rather limited, it is not ruled out that the corresponding lower bound statements could even be
false. No approach to attack the unprovability of worst-case lower bounds, let alone central goals
such as NP ⊈ P/poly, is currently known.

1.2 Results
Overview. To advance this research program, we focus in this work on the formalization and
unprovability of worst-case lower bounds. Our main contributions can be informally described as
follows:

(i) Reverse mathematics of lower bounds. To pinpoint the exact strength of the theories and
axioms needed for the formalization of lower bound statements of interest, we systematically
explore the reverse mathematics of lower bounds. More precisely, we aim to determine the
fundamental principles (axioms) needed to establish certain lower bounds, by showing (over
a weak base theory) that the lower bound statement and the corresponding principle are
equivalent (i.e., can be derived from each other). We succeed in showing that natural lower
bound statements from communication complexity, error correcting codes, Turing machines,
and certain basic principles for polynomial-time functions are all equivalent over PV1. In light
of these results, complexity lower bounds can be formally seen as fundamental mathematical
axioms with far-reaching proof-theoretic implications.

(ii) Consequences for the (un)provability of lower bounds. The novel correspondences between
lower bounds and combinatorial principles provided by our results have several consequences
for the provability of worst-case lower bounds. Under plausible cryptographic assumptions,
we show that certain two-party communication complexity lower bounds and the classical
single-tape Turing machine lower bound for computing Palindrome are unprovable in APC1.
This is surprising, given the results and intuition from previous papers suggesting that many
sophisticated lower bounds can be established in APC1. We obtain in some cases a fine-grained
understanding of the provability of lower bounds, showing for instance that APC1 can prove

2

communication lower bounds for Set Disjointness but is unlikely to prove communication
lower bounds for Equality. Additionally, our results highlight an interesting amplification
phenomenon connected to the (un)provability of lower bounds in certain theories, under
which a quantitatively weak lower bound is provable if and only if a stronger lower bound is
provable. Finally, we obtain a completeness result that highlights the centrality of proving
communication lower bounds for Set Disjointness in PV1 in connection to the problem of
derandomizing feasible arguments.

We now describe our results and technical contributions in detail.

In reverse mathematics (see [Sti20] for a gentle introduction, and [Sim09, DM22] for more de-
tails), we begin by establishing a foundational language and a fundamental axiom system known as
the base theory. This base theory is deliberately chosen to be limited in its capacity to demonstrate
the majority of the theorems one wishes to explore. However, it still possesses sufficient strength to
facilitate the formulation of essential definitions required to express these theorems. In this paper,
we take the first-order theory PV1 [Coo75, KPT91, Jeř06] as the base theory. Next, we informally
describe this theory (see Section 2.2 for a formal description).

Theory PV1. This is a first-order theory whose intended model is the set N of natural numbers,
together with the standard interpretation for constants and functions symbols such as 0,+,×, etc.
(Under a standard translation between natural numbers and binary strings, the theory is equally
suitable to reason about string-valued computations.) The language (vocabulary) of PV1 contains
a function symbol for each polynomial-time algorithm f : Nk → N (where k is any constant).
These function symbols, and the axioms defining them, are obtained through Cobham’s convenient
characterization of polynomial-time functions via an initial set of basic functions, composition,
and an operation called bounded recursion on notation [Cob65]. PV1 also postulates an induction
axiom scheme that simulates binary search. For the purpose of this exposition, one can think
of PV1 as a theory with induction for quantifier-free formulas, which correspond to polynomial-
time predicates. For a reader that might not be familiar with bounded arithmetic, we note that
PV1 admits equivalent (and perhaps more accessible) formalizations that do not require Cobham’s
result, such as the one presented in [Jeř06].1

As discussed below and in Section 2, the vocabulary of PV1 allows us to formalize in a natural
way many statements of interest in algorithms and complexity. At the same time, PV1 can be seen
as the weakest theory in Buss’s hierarchy (see its characterization from [Jeř06]), which means that
while versatile enough to express several statements, it might not be strong enough to prove the
theorems that we would like to explore. These properties make PV1 an excellent choice as the base
theory in our investigations of the reverse mathematics of lower bounds.

In our results we will consider some pigeonhole principles that have been widely investigated in
bounded arithmetic.

Pigeonhole principles for polynomial-time functions. We informally introduce a few vari-
ants of the pigeonhole principle, referring to Section 2.3 for the formal treatment. The pigeonhole

1We might use simply PV when referring to the vocabulary of PV1, since the first-order formulation of the theory
[KPT91] (denoted PV1) and its equational version [Coo75] (denoted PV) share the same vocabulary.

3

principle PHP(f) states that an integer function f cannot be injective if its co-domain is smaller
than its domain. On the other hand, the dual pigeonhole principle dPHP(f) states that an integer
function f cannot be surjective if its co-domain is larger than its domain. We will also need a
“composed” version of these two principles, called witnessing pigeonhole principle PHPWIT(f, g),
which states that for any two functions f : [a] → [b] and g : [b] → [a] such that a < b, f ◦ g is not
the identity function.2 It is possible to derive PHPWIT(f, g) from each of the other two principles.
We refer to [Jeř07b] and references therein for much more information about them.

In these principles, we allow the function(s) to take extra parameters, meaning that the principle
applies to each choice of the parameter (see Section 2.3). For instance, in the case of a function
f(x, y) with two input parameters, PHP(f) is a sentence stating that, for every choice of the input
y, the resulting function f(·, y) cannot be injective if its co-domain is smaller than its domain.
Informally, from a computational perspective, one can think of the extra input y as a non-uniform
advice string when invoking the pigeonhole principle on f(·, y).

Our results will concern weak versions of these principles. The meaning of “weak” is that each
principle is postulated not for domains and co-domains of different sizes but of noticeably different
sizes, i.e., of order 2n versus (1 + 1/n) · 2n. We write WPHP(f), dWPHP(f), and WPHPWIT(f) to
denote the sentence corresponding to the weak version of each principle.

In some results, we will need to explicitly forbid functions with extra input parameters. In this
case, we use WPHP′(f) to denote the “uniform” version of the principle.

Finally, we write WPHP(PV) to denote the set {WPHP(f) | f is a PV function} of sentences.
The sets WPHP′(PV), dWPHP(PV), and WPHPWIT(PV) are defined in an analogous way.

Formalizations. Our equivalences will involve pigeonhole principles (introduced above), commu-
nication complexity, time complexity of Turing machines, and bounds for error correcting codes.
We now explain how to use the vocabulary of PV1 to express some of these statements.

For a PV1 function symbol f(x, y), which we view as a two-party function, we let LBf
n,m denote

the formula stating that the two-party deterministic communication complexity of f on n-bit strings
x and y is larger than m. In more detail, for n,m ∈ Log, this is expressed as3

LBf
n,m , ∀P (CC(P, 1n, 1m)→ Failf (P, 1n)).

Here CC(P, 1n, 1m) denotes that P, viewed as a communication protocol over inputs of length n,
always communicates at most m bits. On the other hand, Failf (P, 1n) expresses that there is a
pair of n-bit inputs (x, y) such that the output of P on (x, y) is different from f(x, y). In order
to explicitly describe the sub-formulas CC(P, 1n, 1m) and Failf (P, 1n), it is necessary to specify
the communication transcript of P on a given input (x, y). The key point is that if P encodes the
next-bit message functions and the final decision of the players in the communication protocol, then
a polynomial-time function that is explicitly given P and the pair (x, y) can produce the transcript
of the protocol on (x, y).4 Consequently, it is not hard to formalize the sentence in PV1.

2This principle is also known as the retraction pigeonhole principle in the literature (see, e.g., [Jeř07b]).
3Here, the intended meaning of the notation n ∈ Log is that n is the length of a number. Roughly speaking, this

allows the statement to reason about numbers bounded by 2poly(n), which corresponds to poly(n)-bit strings. This is
standard notation in bounded arithmetic, and we refer to Section 2 for more details.

4We describe the different functions involved in the specification of a protocol using Boolean circuits. This does
not restrict the protocols because the size of the circuits can be arbitrary. Since an explicitly described circuit can be
evaluated on a given input in polynomial time, the formalization can be done with appropriate PV1 function symbols.

4

Similarly, we will use LB−→
f
n,m to denote that the one-way two-party deterministic communication

complexity of f is larger than m.
Given an explicit single-tape Turing machine M and a constructive time-bound t, let UM (1t, x)

be the PV function that simulates the Turing machine M on the input x for t steps and returns
the output. For every language L ∈ P, we define LBL

1-tape(M, t) as the sentence:

LBL
1-tape(M, t) , ∀n ∈ Log ∃x ∈ {0, 1}n

(
L(x) ̸= UM (1c(M)·t(n), x)

)
,

where c(M) ∈ (0, 1) is a small constant that depends only on M . (We aim to formalize lower
bounds of the form Ω(t).) (The specification above is informal, as we need to use a PV function
symbol for L in the sentence LBL

1-tape(M, t) to express L(x).)
We can capture the Palindrome lower bound against time Ω(t) as a set LBPAL

1-tape(t) of sentences
defined as

LBPAL
1-tape(t) , {LBPAL

1-tape(M, t(n)) |M is a single-tape machine},

where PAL is the language of palindromes, i.e., PAL , {w ∈ {0, 1}∗ | w = rev(w)}, where rev(·) is
the reversion function rev(w1w2 . . . wk) , wkwk−1 . . . w1.

Due to space constraints, we defer the discussion on error correcting codes to the body of the
paper.

Note that some principles and statements are captured by a collection of sentences instead of
a single sentence. For this reason, we introduce the following definition. Let T be a theory, and
let Φ1,Φ2 be sets of formulas. Then Φ2 is said to be a T-consequence of Φ1, denoted by Φ1 ⊢T Φ2,
if Φ1,T ⊢ φ for every φ ∈ Φ2. We say Φ1 and Φ2 are equivalent with respect to T, denoted by
Φ1 ≡T Φ2, if Φ1 ⊢T Φ2 and Φ2 ⊢T Φ1.

Equivalences (Reversals). We are now ready to state our results. We start off with an equiv-
alence class for the weak pigeonhole principle WPHP(PV).

Theorem 1.1 (Informal; see Theorem 3.11 for additional equivalences and the precise statement).
Let ε ∈ (0, 1) be a constant. The following statements are equivalent with respect to PV1:

(i) WPHP(PV), i.e., the weak pigeonhole principle for PV functions.
(ii) ∀n ∈ Log LBEQ

n,n−1, i.e., EQn has communication complexity > n− 1.
(iii) ∀n ∈ Log LB−→

EQ
n,nε, i.e., EQn has communication complexity > nε against one-way protocols.

(iv) The singleton bound for error correcting codes.

In other words, the weak pigeonhole principle is not only sufficient but also necessary to prove
two-party deterministic communication complexity lower bounds for the equality function (which
is one of the most well-known results in communication complexity theory, see, e.g. [AB09, Theo-
rem 13.4]). This is also known as a reversal in the setting of reverse mathematics, i.e., when the
axioms used to prove a theorem are also shown to be necessary to establish the theorem.

Our next result provides an equivalence class for the uniform variant of the weak pigeonhole
principle, i.e., WPHP′(PV). In particular, we show WPHP′(PV) is equivalent to the classic Ω(n2)-
time lower bound for Palindrome against one-tape Turing machines [Maa84].

Theorem 1.2 (Informal; see Theorem 4.9 for additional equivalences and the precise statement).
Let β ∈ (0, 1) be any constant. The following statements are equivalent with respect to PV1:

5

(i) WPHP′(PV), i.e., the uniform weak pigeonhole principle for PV functions.
(ii) LBPAL

1-tape(n
2), i.e., Palindrome requires Ω(n2) time on single-tape Turing machines.

(iii) LBPAL
1-tape(n

1+β), i.e., Palindrome requires Ω(n1+β) time on single-tape Turing machines.

It is possible to extend Theorem 1.2 with communication complexity lower bounds that are
analogous to those from Theorem 1.1, but involve uniform communication protocols. We omit
them here due to space constraints, and refer to Theorem 4.9 for these additional equivalences.

Finally, in our next result we describe an equivalence class for the weak witnessing pigeonhole
principle WPHPWIT(PV).

Theorem 1.3 (Informal; see Theorem 5.7 for additional equivalences and the precise statement).
Let ε ∈ (0, 1) be any constant. The following statements are equivalent with respect to PV1:

(i) WPHPWIT(PV), i.e., the weak witnessing pigeonhole principle for PV functions.
(ii) ∀n ∈ Log LB−→

SetDisj
n,n−1 , i.e., SetDisj has communication complexity > n − 1 against one-way

protocols.
(iii) ∀n ∈ Log LB−→

SetDisj
n,nε , i.e., SetDisj has communication complexity > nε against one-way protocols.

(iv) The singleton bound for decodable error correcting codes.

Consequences. Note that the main novelty of our results is that, as opposed to several previous
papers that have formalized complexity lower bounds in different theories, here we establish equiv-
alences between lower bound statements and different principles. This is precisely what allows us
to derive new consequences on the unprovability of lower bounds that were not previously possible.

Unprovability of simple complexity lower bounds. Since there is evidence that several variants of the
pigeonhole principle are not provable in PV1, our results suggest that this theory is not sufficient
to formalize some elementary complexity lower bound results. Moreover, the same argument can
be extended to Jeřábek’s theory APC1 [Jeř07a], which is defined as PV1 + dWPHP(PV). We refer
to Section 6.1 for the formal statements of the cryptographic assumptions employed in the next
result.

Corollary 1.4 (Informal; see Section 6 for the precise statements). For every ε, β ∈ (0, 1), the
following results hold:

(i) Under the existence of collision resistant hash functions (CHRF), APC1 does not prove the
sentence ∀n ∈ Log LB−→

EQ
n,nε, i.e., that EQn has communication complexity > nε against one-way

protocols.

(ii) Under the existence of keyless collision resistant hash functions (CHRF′), APC1 does not prove
that Palindrome requires Ω(n1+β) time on single-tape Turing machines.

Fine-grained understanding of the proof complexity of lower bounds. As a consequence of The-
orem 1.1 and Theorem 1.3, the weak witnessing pigeonhole principle is equivalent to one-way
communication lower bounds for Set Disjointness, while the weak pigeonhole principle is equivalent
to one-way communication lower bounds for Equality. The fact that WPHPWIT(PV) can be derived
from WPHP(PV) agrees with the status of Set Disjointness as a harder communication problem
than Equality [BFS86], which means that it is easier to prove communication complexity lower

6

bounds for Set Disjointness than for Equality. Interestingly, since WPHPWIT(PV) is available in
APC1 (it follows from dWPHP(PV)), we get that APC1 proves one-way communication lower bounds
for Set Disjointness, while it is unlikely to prove one-way communication lower bounds for Equality
(Corollary 1.4).

Amplification of provable lower bounds. Note that Theorem 1.1, Theorem 1.2, and Theorem 1.3
also highlight an interesting phenomenon concerning the (un)provability of lower bounds: a weak
lower bound is provable in the base theory PV1 if and only if a significantly stronger (and in our
examples tight) lower bound is provable. Moreover, it follows from Theorem 1.1 that PV1 proves
one-way communication lower bounds for Equality if and only if it proves a lower bound against
protocols with an unbounded number of rounds.

Derandomization of feasible arguments and completeness. Finally, we discuss an application of
our results to derandomization. Recall that APC1 is a theory associated with probabilistic feasi-
ble reasoning, while PV1 is associated with (deterministic) feasible reasoning. A significant open
problem in bounded arithmetic is whether probabilistic feasible reasoning can be “derandomized”,
i.e., whether APC1 = PV1 (see Section 6.2 for more details). A related question of particular rele-
vance to complexity lower bounds is whether this equivalence holds with respect to certain classes
of sentences. To give an example, note that many complexity lower bounds against deterministic
non-uniform computational models (in particular, the lower bounds we considered in the equiva-
lence classes of variants of pigeonhole principles) can be formalized as ∀Σb

1 sentences of the following
format:

For every input length n ∈ Log, n > n0, for every (non-uniform) device A from the
model, there is an input x ∈ {0, 1}n such that A(x) ̸= f(x).

Consequently, under the hypothesis that APC1 is ∀Σb
1-conservative over PV1, we get that every such

lower bound that can be proved using feasible probabilistic reasoning (i.e., APC1 reasoning) can be
proved using feasible deterministic reasoning (i.e., PV1 reasoning). Similarly, we say that a search
problem P (represented by an open PV1-formula) admits a feasible deterministic (resp. randomized)
polynomial-time algorithm if ∀x ∃y P (x, y) is provable in PV1 (resp. APC1). The problem of
derandomizing feasible definable randomized algorithms can be formalized as:

Is APC1 ∀Σb
1-conservative over PV1?

We refer the reader to [Kra24] for a more extensive discussion of this and related questions.
An important property of the witnessing pigeonhole principle is that APC1 = PV1+dWPHP(PV)

is ∀Σb
1-conservative over PV1 + WPHPWIT(PV) ([Jeř04, Jeř07a]; see Theorem 2.10), namely any

∀Σb
1-sentence provable in APC1 is also provable in PV1 +WPHPWIT(PV). This, together with the

equivalence between ∀n ∈ Log LB−→
SetDisj
n,nε and WPHPWIT(PV) (Theorem 5.7), leads to the following

consequence.

Corollary 1.5. The following statements are equivalent.
1. APC1 is ∀Σb

1-conservative over PV1, i.e., feasibly definable randomized algorithms can be
feasibly defined deterministically.

2. PV1 ⊢ WPHPWIT(PV), namely PV1 proves the weak witnessing pigeonhole principle for PV
functions.

7

3. PV1 ⊢ ∀n ∈ Log LB−→
SetDisj
n,nε , namely PV1 proves a nΩ(1) communication complexity lower bound

for SetDisj against one-way protocols.

An interpretation of this result is that the one-way communication complexity lower bound for
Set Disjointness is an APC1-complete lower bound with respect to PV1, in the sense that it is prov-
able in APC1, and if it is provable in PV1, then every lower bound (formalized as a ∀Σb

1 sentence)
provable in APC1 is also provable in PV1.

We further elaborate on the aforementioned implications and discuss additional applications of
our results in Section 6. In particular, Section 6.4 discusses immediate consequences for subclasses
of TFNP and their reducibilities.

Relevant related work. The classical reverse mathematics program was started by Friedman
[Fri75] and developed extensively by Simpson (see, e.g., [Sim09]) and other researchers. Similarly,
the investigation of the weakest logical theory able to formalize results relevant to algorithms and
complexity has been an active area of research for several decades, with S. Cook as one of its earliest
and most prominent researchers. The textbook [CN10] provides a comprehensive exposition of the
area (see, e.g., [BKKK20, TC21] for more recent papers). While [CN10] does not have a focus on
the provability of complexity lower bounds nor on reversals, such as the ones presented here, it is
an excellent resource for a reader interested in the broader context of the reserve mathematics of
algorithms and complexity theory.

The result that is closest to our contributions is a certain equivalence between the dual weak
pigeonhole principle dWPHP(PV) and circuit lower bounds from [Jeř04]. In more detail, [Jeř04]
showed that dWPHP(PV) is equivalent (over S12) to a statement asserting the existence of a family of
Boolean functions with exponential circuit complexity. On the other hand, here we focus on different
pigeonhole principles and employ the weaker base theory PV1.5 The technique introduced by [Jeř04]
to show this reversal is a central tool in some recent papers in complexity theory [Kor21, CHR23].

Finally, there is a rich literature on pigeonhole principles in bounded arithmetic. We refer to
[PWW88, Kra01, Tha02, Jeř07b, KT08, BKT14] and references therein for a partial list.

A complete diagram of implications and equivalence classes appears in Figure 1 on page 48.

1.3 Techniques
In order to explain some of the ideas present in the proofs of these results, we focus on some

non-trivial implications within Theorem 1.1, Theorem 1.2, and Theorem 1.3.

WPHP(PV) and Communication Lower Bounds for EQ. First, we discuss the equivalence be-
tween Items (i) and (ii) in Theorem 1.1. Consider the direction WPHP(PV) ⊢PV1 ∀n ∈ Log LBEQ

n,n−1.
To establish this communication complexity lower bound for the Equality function, we show that
the classical fooling set argument (see, e.g., [KN97]) can be formalized in PV1 + WPHP(PV). To
achieve this, we consider a function f with extra parameters such that, as we fix one of its inputs
to be the description of a candidate protocol P communicating at most n − 1 bits on every input
pair (x, y) with x, y ∈ {0, 1}n, f(x,P) outputs the transcript of P over the input pair (x, x). By the

5It is unclear if Jeřábek’s equivalence can be proved over PV1 instead of S1
2.

8

weak pigeonhole principle, there are distinct x, y such that f(x,P) = f(y,P), i.e., the transcripts
of P on (x, x) and (y, y) are identical. We now argue as in the standard proof via the fooling set
method, i.e., by analyzing the behavior of P over the input pair (x, y) to reach a contradiction.
The latter requires an inductive argument over the number of rounds of the protocol, which we
verify to be feasible with the induction principle available in PV1.

For the other direction, i.e., to show that ∀n ∈ Log LBEQ
n,n−1 ⊢PV1 WPHP(PV), we argue its

contrapositive (in PV1) as follows. Let f be any PV function symbol, possibly with extra parameters.
Suppose that there is a choice of the extra parameters such that f violates the weak pigeonhole
principle, i.e., f is an injection from [(1 + 1/n) · 2n] to [2n], for some n. By a standard argument,
one can amplify the parameters and show the existence of an injective map from [2n

′
] to [2n

′−1],
i.e., from n′-bit strings to (n′ − 1)-bit strings, for some n′. We then exploit this map to design a
non-trivial one-way communication protocol that allows Alice and Bob to compute Equality over
n′-bit strings with communication cost n′−1. Finally, we argue that the correctness of this protocol
can be proved in PV1, which establishes that ¬∀n ∈ Log LBEQ

n,n−1.
While the argument presented above describes the intuition behind the equivalence between

the communication lower bound for Equality and the weak pigeonhole principle, we stress that
it needs to be formalized with the reasoning available over the base theory PV1. Part of the
technical work behind this formalization involves setting up appropriate notions and definitions from
communication protocols in PV1. To the best of our knowledge, the formalization of communication
complexity in bounded arithmetic has not been explored prior to this work.

To provide some intuition for the amplification phenomenon appearing in results such as The-
orem 1.1, we note (as hinted above) that some formulations of the weak pigeonhole principle in
PV1 with different shrinkage are known to be equivalent. Consequently, once one establishes an
equivalence between WPHP(PV) and complexity lower bounds, it is sometimes possible to follow
the implications in the equivalence to amplify provable lower bounds. In the case of Theorem 1.1
Item (iii), as explained above, the shrinkage is closely related to the communication cost of the
protocol.

WPHP′(PV) and Turing Machine Lower Bounds for Palindrome. The proof of Theorem 1.2
builds on some ideas and intuitions developed in the proof of Theorem 1.1. In our discussion of
Theorem 1.2, we first consider the implication from Item (iii) to Item (i), i.e.,

LBPAL
1-tape(n

1+β) ⊢PV1 WPHP′(PV).

The intuition is that if, towards a contradiction, WPHP′(PV) does not hold, we can obtain a PV
function f that is a “perfect” hash function, which means that it compresses a string and has no
collision. While the mild compression provided by f can be amplified using known techniques from
bounded arithmetic, an important issue with any potential use of f in the design of an algorithm for
Palindrome is that f is a polynomial-time function that might require much more than quadratic
time on a single-tape Turing machine.

A key idea in our proof is to apply the Merkle-Damgård construction [Mer89, Dam89], a tech-
nique from cryptography which improves both the shrinkage and running time of collision-resistant
hash functions. In our setting, we show that this construction allows us to obtain a perfect hash
function with n1+γ time complexity and shrinkage nγ , for a small γ = γ(β). Intuitively, this makes
it possible to decide Palindrome in n1+β time by hashing the left part and (the reverse of) the right
part of the input string, then applying a straightforward algorithm on the hash values.

9

To formally prove the theorem, we need to check that the algorithm can be effectively imple-
mented in a single-tape Turing machine, which is a rather limited device for computations restricted
to sub-quadratic time. Moreover, the correctness of the construction needs to be proved in PV1,
namely with induction only for quantifier-free formulas. These points turn out to require a some-
what delicate analysis. To handle this, we present an explicit description of the different stages of
the associated single-tape Turing machine. A careful construction followed by a detailed argument
allow us to verify that the aforementioned points do not create issues in the proof.

For the other non-trivial implication, i.e., showing that WPHP′(PV) ⊢PV1 LBPAL
1-tape(n

2), we
rely on the close relationship between the weak pigeonhole principle and two-party (deterministic)
communication lower bounds, as established in Theorem 1.1. In more detail, we formalize in
PV1 the lower bound for single-tape Turing machines obtained via communication complexity.
While this is typically done using randomized communication lower bounds (see, e.g., [KN97,
Lemma 12.7]) or non-uniform communication lower bounds, it is also possible to rely on a weaker
communication lower bound, where the next-bit message functions of both parties are uniform
deterministic polynomial-time algorithms, through a more careful argument. Crucially, the proof
can be carried out in PV1 +WPHP′(PV1).

WPHPWIT(PV) and One-Way Communication Lower Bounds. We now explain the equiv-
alence between Item (i) and Item (ii) in Theorem 1.3. The implication from Item (ii) to Item
(i)

∀n ∈ Log LB−→
SetDisj
n,n−1 ⊢PV WPHPWIT(PV)

is similar to the “reversals” in Theorem 1.1 and Theorem 1.2. Towards a contradiction, we assume
that Item (i) does not hold. Then there is a pair of PV functions f : [(1 + 1/n) · 2n] → [2n] and
g : [2n]→ [(1+1/n)·2n] such that g◦f : [2n]→ [2n] is the identity function. Similarly to the proof of
Theorem 1.1, we can further construct a pair of functions f ′ : [2n′

]→ [2n
′−1] and g′ : [2n′−1]→ [2n

′
]

such that g′ ◦ f ′ is the identity function. In other words, (g′, f ′) is a lossless compression of n′-
bit strings to (n′ − 1)-bit strings. This enables the violation of the one-way communication lower
bound, since Alice can send an (n′ − 1)-bit compression of her input that can be decompressed by
Bob.

To establish the converse direction WPHPWIT(PV) ⊢PV ∀n ∈ Log LB−→
SetDisj
n,n−1 , we need to utilize

the properties of Set Disjointness (as in known lower bound proofs) while making sure that the
proof can be carried out in PV1 + WPHPWIT(PV). The outline of the argument is as follows.
Assume that there is a one-way communication protocol for Set Disjointness with communication
complexity at most n − 1. We notice that the message sent by Alice only depends on her input
x ∈ {0, 1}n. Therefore, Bob is able to compute SetDisj(x, y) for every y ∈ {0, 1}n given the message
from Alice. Consequently, Bob can compute the bit xj = 1− SetDisj(x, ej) for every j ∈ [n], where
ej ∈ {0, 1}n is the indicator string with the j-th coordinate set to 1 and every other coordinate set
to 0. This yields a pair of functions constituting a lossless compression of n-bit strings to (n−1)-bit
strings, thus violates WPHPWIT(PV):

• f : {0, 1}n → {0, 1}n−1, where f(x) is the message sent by Alice given the input x;
• g : {0, 1}n−1 → {0, 1}n, where the j-th bit of g(z) is the negation of the output of Bob in the

communication protocol given the message z from Alice and the input ej ∈ {0, 1}n.

10

1.4 Concluding remarks and open problems
In relation to the major research goal emphasized in Section 1.1, our results and previous work

on the formalization of lower bounds indicate that a suitable logical theory T should contain at
least PV1 and the principles WPHP(PV) and dWPHP(PV). In particular, the intuition shared
by some researchers that most complexity lower bounds can be established in APC1 is probably
misguided, in light of the existence of simple lower bounds that cannot be proved in this theory
under a plausible cryptographic assumption.

We note that, by the main unprovability result of [LO23], PV1+WPHP(PV)+dWPHP(PV) does
not prove that Σ3-SIZE[poly] cannot be approximated by Π3-SIZE[2n

δ
] circuits. While this result is

unconditional, it would be much more interesting to show the unprovability of lower bounds that
are close to major open problems in complexity theory. Even if we consider a weaker theory, such
as PV1, showing the unprovability of SAT /∈ SIZE[poly] would represent a significant progress in our
understanding of which lower bounds can be feasibly proved.

In terms of open problems, in addition to encouraging the reader to explore equivalences between
their favorite lower bound statements and different mathematical principles, we mention below a
few directions that we find particularly intriguing or of technical interest.

Note that, as opposed to Theorem 1.1, in Theorem 1.3 we do not establish an equivalence
between one-way and unbounded-round communication lower bounds. Is it possible to derive
multi-round communication complexity lower bounds from WPHPWIT(PV)?

Does PV1 prove the nondeterministic time hierarchy theorem, i.e., that NTIME[nc] ⊈ NTIME[nd]
for 1 < d < c? An immediate issue here is that the standard proof of this hierarchy theorem requires
a lazy diagonalization argument over input lengths that are exponentially far apart. However, there
are alternate arguments that do not need to consider exponentially large intervals of input lengths
(see [FS16, FS17] and references therein). If PV1 cannot establish this result, is there a natural
equivalence class that captures this lower bound?

While it seems plausible that explicit lower bounds against Boolean formulas of size n1.99 might
be provable in PV1, the situation with respect to formulas of size n2.01 (or larger) appears more
intricate. In particular, we speculate that near-cubic formula lower bounds for Andreev’s function
might be equivalent (over the base theory PV1) to an appropriate variant of the weak witnessing
pigeonhole principle WPHPWIT. (Whether this principle and its variants can be established in PV1

remains an interesting open problem.)

Acknowledgements. We would like to thank Jan Krajíček and Neil Thapen for discussions on
pigeonhole principles, and Ryan Williams for discussions on the reverse mathematics of commu-
nication complexity. We are also grateful to Jan Krajíček and Zhenjian Lu for sharing several
comments about a first draft of the paper. Igor C. Oliveira received support from the Royal So-
ciety University Research Fellowship URF\R1\191059; the UKRI Frontier Research Guarantee
Grant EP/Y007999/1; and the Centre for Discrete Mathematics and its Applications (DIMAP) at
the University of Warwick. Lijie Chen is supported by a Miller Research Fellowship. Jiatu Li is
supported by an MIT Akamai Presidential Fellowship.

11

2 Preliminaries
2.1 Basic notation

Following standard set-theoretic notation, we will identify a number n with the set {0, 1, . . . , n−
1}. In particular, we will identify {0, 1} with 2, as well as a string x ∈ {0, 1}n with a number x < 2n.

We use x∥y to denote the concatenation of two strings x and y. We use ∆(x) to denote the
Hamming weight of x and δ(x) to denote the relative Hamming weight of x; similarly, we use
∆(x, y) and δ(x, y) to denote the Hamming distance and relative Hamming distance between x and
y, respectively.

Let C be a complexity class. We define i.o.-C to be the complexity class consisting of languages
L such that for some L̂ ∈ C , L agrees with L̂ on infinitely many input lengths. We assume basic
familiarity with standard complexity classes such that NTIME[T] and DTIME[T] (see, e.g., [AB09]).

2.2 Bounded arithmetic
Bounded arithmetic is a collective name of several fragments of Peano Arithmetic whose proof-

theoretic capabilities are closely linked to complexity classes such as P, the polynomial-time hierar-
chy, or constant-depth circuits. In this paper, we will mostly work with the theory PV1 introduced
by Cook [Coo75] corresponding to polynomial-time computation. In this subsection, we present
the intuition and sketch the formal definition of the theory PV1 (see [Coo75, Kra95, CN10, Kra19]
for the formal definition and more related discussion).

Polynomial-time constructive proofs. One of the main motivations to introduce the theory
PV (short for polynomially verifiable) is to define a fragment of Peano Arithmetic that captures
polynomial-time constructive proofs, in the sense that if ∀xφ(x) is provable in the theory, the
proof provides a uniform method to verify φ(a) given a that only manipulates polynomial-time
computable functions.

For a concrete example, the sentence

∀n g(n) ≤ f(n) where f(n) , 2n− 1, g(n) ,
{
1 n = 1

2g(⌊n/2⌋) + 1 n > 1

can be efficiently verified by a structural induction over the definition of g, which is a simple
unwinding of the definition of a polynomial-time function. The correctness of the AKS primality
test [AKS04]

∀n (AKS(u) = “prime”↔ ∀1 < d < n d ∤ n),

on the other hand, is not likely to be verifiable in polynomial time. This is because when AKS(u) =
“composite”, there is no polynomial-time algorithm that provides a nontrivial divisor of n to justify
the validity of the resulting formula, unless factoring is easy; indeed, one can check that the proof
in [AKS04] utilizes functions that appear to be beyond the reach of polynomial-time functions.
The upshot is that there are properties of polynomial time computations that might not be feasibly
verifiable.

Jumping ahead, a suitable theory for polynomial-time reasoning should be able to define all
polynomial-time computable functions (even if we cannot feasibly prove all their properties). It

12

will consist of the defining axioms for these functions (encoding how they relate to each other),
and support structural induction over the definition of polynomial-time functions. Moreover, the
polynomial-time functions introduced in the theory must be verified to run in polynomial time.
For this, we can pick a finite set of initial functions, which obviously run in polynomial time in the
standard model and this fact is accepted through axioms, so that all other functions introduced in
the theory must be verified to run in polynomial-time given the information available about the
initial functions.

Equational Theory PV. Following the intuition sketched above, Cook [Coo75] defines PV as
an equational theory (i.e. the only relation is equality and there are no quantifiers) via Cobham’s
recursive-theoretic characterization of polynomial-time functions [Cob65]. Cobham [Cob65] proved
that the function class F defined as the minimal set of functions over the natural numbers closed
under the following rules is exactly the class of all polynomial-time computable functions.

• (Base functions). The constant function c(x) = 0; functions s0(x) = 2x and s1(x) = 2x + 1
for binary encoding of natural numbers; the projection functions πiℓ(x1, . . . , xℓ) = xi; and the
function #(x, y) = 2|x|·|y|, where |x| denotes the length of its binary encoding.

• (Composition). If h is an ℓ-ary function and g1, . . . , gℓ are {n1, n2, . . . , nℓ}-ary functions, then
the composition of f and g1, . . . , gℓ is an (n1 + n2 + · · ·+ nℓ)-ary function defined as

f(x11, . . . , x1n1 , . . . , xℓ1, . . . , xℓnℓ
) , h(g1(x11, . . . , x1n1), . . . , gℓ(xℓ1, . . . , xℓnℓ

)).

• (Limited Recursion on Notation). For functions g(x⃗), h0(x⃗, y, z), h1(x⃗, y, z), and k(x⃗, y), a
function f(x⃗, y) such that

f(x⃗, 0) , g(x⃗),

f(x⃗, s0(y)) , h0(x⃗, y, f(x⃗, y)),

f(x⃗, s1(y)) , h1(x⃗, y, f(x⃗, y)),

f(x⃗, y) ≤ k(x⃗, y) for all x⃗ and y,

is said to be constructed from g, h0, h1, k by limited recursion on (binary) notation.

Here we make a few comments on the definition of F . Compositions involving #(x, y) can lead to
functions with an arbitrary polynomial growth rate on the input length, as |#(x, y)| = |x| · |y|+ 1.
Also, one can show that the inequality f(x⃗, y) ≤ k(x⃗, y) in limited recursion of notation provides
in a sense a verification that f(x⃗, y) runs in polynomial time with a function k(x⃗, y) that is already
known to run in polynomial time. (Indeed, by dropping the inequality f(x⃗, y) ≤ k(x⃗, y) from the
definition of limited recursion on notation one can get functions beyond polynomial time.)

The main technical issue to define PV is to properly account for the limited recursion on notation.
Clearly, f(x⃗, y) ≤ k(x⃗, y) cannot be proved without defining f in the theory. However, we cannot
define f before it is verified to run in polynomial time within the theory. Cook [Coo75] managed to
slacken the inequality constraint to length constraints of the form |hi(x⃗, y, z)| ≤ |z|+ |ki(x⃗, y)| over
hi for some existing functions ki (i ∈ {0, 1}), which can be described by adding auxiliary functions
like size comparison and string concatenation.

To introduce all (countably infinitely many) functions in the theory PV, Cook defines PV func-
tions and PV derivations by a simultaneous recursion:

13

• Initial functions (including base functions of Cobham’s class F and auxiliary functions for
length comparison) and terms (i.e. composition of functions and open variables) obtained
from initial functions are objects of order 0. Axioms that define the initial functions are
PV-derivations of order 0.

• For every i ∈ N, an order-(i+1) PV-function is either a PV-function of order i, or a composition
of PV-functions of order i, or is defined by limited induction on notation by order-i PV-
functions, as long as the length inequality constraints |hi(x⃗, y, z)| ≤ |z|+ |ki(x⃗, y)| (i ∈ {0, 1})
admit order-i derivations.

• For every i ∈ N, an order-(i+1) PV-derivation is a sequence of equations involving objects of
order-(i+ 1), where the equations are either order-i PV-derivations or are obtained from de-
duction rules corresponding to symmetricity of equality, transitivity of equality, substitutions
to equality, and the induction over notation. The induction over notation performs structural
induction over the PV-functions defined by limited induction over notation, that is:

◦ Let f be defined from (h1, h2, g, k1, k2) using limited induction over notation, and sim-
ilarly let f ′ be defined from (h′1, h

′
2, g
′, k′1, k

′
2). From h1 = h′1, h2 = h′2, g = g′, k1 = k′1,

and k2 = k′2, one can deduce f = f ′.

A PV-function is any order-i function symbol defined above, for an arbitrary i ∈ N. The theory PV
is axiomatized by the union of all equations appearing in order-i PV-derivations, over an arbitrary
i ∈ N.

First-Order Theory PV1. Cook [Coo75] and a subsequent paper by Krajíček, Pudlák, and
Takeuti [KPT91] defined a first-order theory PV1 axiomatized by all provable equations in PV, as
well as an induction axiom scheme postulating that over any quantifier-free formula φ(x⃗, y):

∀x⃗ ∀b
(
φ(x⃗, 0) ∧ ¬φ(x⃗, b)→ ∃a < b (φ(x⃗, a) ∧ ¬φ(x⃗, a+ 1))

)
. (1)

(Here, a + 1 is defined by the PV-function that computes addition.) This sentence is logically
equivalent to the standard (bounded) induction axiom:

∀x⃗ ∀b
(
φ(x⃗, 0) ∧ ∀a < b (φ(x⃗, a)→ φ(x⃗, a+ 1))→ φ(x⃗, b)

)
.

It can be proved that PV1 is conservative over PV [Coo75] (i.e. every provable PV-equation in PV1

is also provable in PV) and is axiomatizable by universal sentences [KPT91, Kra95].
Conceptually, the induction axiom is polynomially verifiable since the definition of the following

function h explicitly justifies the existence of a in Equation (1):

• h(x⃗, l, r) performs a binary search in the interval [l, r] with the invariant that φ(x⃗, l)∧¬φ(x⃗, r).
If l = r + 1, h(x⃗, l, r) outputs l. If l < r + 1, let m = ⌊ l+r

2 ⌋ be the midpoint of [l, r], the
algorithm outputs h(x⃗, l,m) if ¬φ(x⃗,m) and outputs h(x⃗,m, r) otherwise.

This function h can clearly be verified syntactically to run in polynomial time, as the interval is
halved in the recursion and the truth-value of φ(x⃗, y) can be checked in polynomial time given
(x⃗, y). Moreover, the definition of h clearly indicates that h(x⃗, 0, b) will output an a that witnesses
the existential quantifier in Equation (1) by a structural induction. Note that the same argument
cannot generalize to induction for formulas with quantifiers, as the truth-value of the formula cannot
be checked in verifiable polynomial time (even if a polynomial-time algorithm exists).

14

Formalizations in PV1. In the formalization of lower bounds and upper bounds in PV1, we will
often use bounded quantifiers, denoted by ∀y ≤ t(x⃗) or ∃y ≤ t(x⃗) for some term t, which means
that the quantifier runs over all numbers y ≤ t(x⃗). Formally, they are defined as abbreviations:

∀y ≤ t(x⃗) φ(x⃗, y) , ∀y (y ≤ t(x⃗)→ φ(x⃗, y))

∃y ≤ t(x⃗) φ(x⃗, y) , ∃y (y ≤ t(x⃗) ∧ φ(x⃗, y)).

We will use standard abbreviations to formalize statements in PV1. For a sentence φ(n), the
abbreviation ∀n ∈ Log φ(n) means that ∀v ∀n (n = |v| → φ(n)), and ∃n ∈ Log φ(n) means that
∃v ∃n (n = |v| ∧ φ(n)). Here | · | denotes the length symbol, and its intended interpretation is
that |v| corresponds to the bitlength of the integer v. We often write x ∈ {0, 1}n when formalizing
complexity-theoretic statements in bounded arithmetic. Formally, this is an abbreviation for x < 2n

by identifying {0, 1}n and 2n. In order to avoid excessive notation, when referring to quantities
such as a(1+1/c) intended to be positive integers in bounded theories, we omit the ceiling function
and view it as the smallest integer larger than or equal to a(1 + 1/c).

Results in this paper involves proofs inside the theory PV1. Instead of a formal proof from
axioms and rules of PV1, we will write “semi-formal” proofs, typically starting with a sentence like
“we argue in PV1”, that describe the idea of the proof and the main technical steps to formalize the
idea in PV1. Conceptually, we need to ensure that every function defined (explicitly or implicitly)
during the proof must be verified to run in polynomial time, and all the deductions must be made in
a way that is obvious according to the syntactical definition of some (polynomial-time computable)
functions; in particular, one can only perform induction to quantifier-free formulas. Similarly, we
may also only present an informal statement instead of giving a concrete formalization in L(PV)
when the result is robust to any reasonable formalization.

To characterize the non-constructive parts of a statement, we may formalize an upper or lower
bound by a set of sentences instead of a single sentence. For instance, NP ⊈ i.o.-P/poly can be
formalized as

“NP ⊈ i.o.-P/poly” , {“SAT /∈ i.o.-SIZE[cnk]” | c, k ∈ N}, (2)

where for some fixed function n0 : N×N→ N, “SAT /∈ i.o.-SIZE[cnk]” states that for every n ∈ Log,
n > n0(c, k), and every circuit C : {0, 1}n → {0, 1} of size cnk, C does not compute SAT over
input length n. We say T ⊢ “NP ⊈ i.o.-P/poly” if and only if there exists a function n0(·, ·) such
that T proves every sentence in the set in Equation (2). This is a standard approach in bounded
arithmetic (see, e.g. [PS21, LO23]).

Toolkits in PV1. We need the following known formalization of standard tools such as error-
correcting codes in bounded theories. Note that we employ the same symbols (∆ and δ) to represent
the PV function symbols corresponding to the computation of the Hamming weight and Hamming
distance of a string.

Lemma 2.1 (Error-correcting codes, implicit in [Jeř05]). There is a constant c, a PV-function E,
and a PV-function D such that the following is provable in PV1:

• (Polynomial rate). ∀n ∈ Log ∀x ∈ {0, 1}n |E(x)| = cnc.

• (Decoding). ∀n ∈ Log ∀x ∈ {0, 1}n ∀e ∈ {0, 1}cnc
(δ(e) ≤ 0.1→ D(E(x)⊕ e) = x), where ⊕

denotes bit-wise XOR of two binary strings.

15

Lemma 2.2 (P ⊆ P/poly, implicit in [Jeř07a, Pic15b]). For every PV function f , there is a constant
c such that PV proves the following: for every n ∈ Log, there is a circuit C : {0, 1}n → {0, 1} of size
at most cnc such that for every x ∈ {0, 1}n, Eval(x,C) = f(x), where Eval(x,C) is the PV-function
that evaluates the circuit C over input x.

2.3 Combinatorial principles
In this subsection, we define the combinatorial principles we will need and explore their basic

proof complexity properties.

Pigeonhole Principles. We start by introducing three versions of pigeonhole principle: (weak)
pigeonhole principle, dual (weak) pigeonhole principle, and witnessing pigeonhole principle.
Definition 2.3 ((Weak) pigeonhole principle). Let a > b > 0 be numbers and f : a × N → b
be a function, where the second input is a parameter. The pigeonhole principle of f , denoted by
PHPa

b (f), refers to the sentence stating that, for every z, f(·, z) is not injective, i.e.,

PHPa
b (f) , ∀z (∃u < a f(u, z) > b) ∨ (∃x < a ∃y < a (x ̸= y ∧ f(x, z) = f(y, z))).

The weak pigeonhole principle of f , denoted by WPHP(f), is defined as

WPHP(f) , ∀b > 0 ∀c ∈ Log PHP
b(1+1/c)
b (f).

(When referring to PHPa
b (f) and WPHP(f) as sentences in a formal theory, we consider a and b as

formal variables and f as a function symbol of arity two. The same will be the case in the next
definitions.)
Definition 2.4 (Dual (weak) pigeonhole principle). Let b > a > 0 be numbers and f : a× N→ b
be a function, where the second input is a parameter. The dual pigeonhole principle of f , denoted
by dPHPa

b (f), refers to the sentence stating that, for every z, f(·, z) is not surjective, i.e.,

dPHPa
b (f) , ∀z ∃y < b ∀x < a f(x, z) ̸= y.

The dual weak pigeonhole principle of f , denoted by dWPHP(f), is defined as

dWPHP(f) , ∀a > 0 ∀c ∈ Log dPHPa
a(1+1/c)(f).

The pigeonhole principle (resp. dual pigeonhole principle) states that an integer function cannot
be injective (resp. surjective) if its co-domain is smaller (resp. larger) than its domain. We will also
need a “composed” version of these two principles, called witnessing pigeonhole principle, which
states that for any two functions f : a → b and g : b → a (possibly with parameters) such that
a < b, f ◦ g is not the identity function.
Definition 2.5 (Witnessing (weak) pigeonhole principle). Let b > a > 0 be numbers, f : a×N→ b
and g : b × N → a be functions, where the second input of each function is a parameter. The
witnessing pigeonhole principle of the pair of functions (f, g), denoted by PHPWITb

a(f, g), refers to
the sentence stating that for every z1 and z2, f(g(·, z1), z2) is not an identity function, i.e.,

PHPWITb
a(f) , ∀z1 ∀z2 (∃u < b g(u, z1) > a) ∨ (∃y < b f(g(y, z1), z2) ̸= y).

The witnessing weak pigeonhole principle of (f, g), denoted by WPHPWIT(f, g), is defined as

WPHPWIT(f, g) , ∀a > 0 ∀c ∈ Log PHPWITa(1+1/c)
a (f, g).

16

We use WPHP(PV) to denote the set {WPHP(f) | f is a PV function} of formulas, and use
dWPHP(PV) and WPHPWIT(PV) likewise.

Consequences. Similar to the notion of reduction in computational complexity, we use φ ⊢T ψ
to denote that ψ is a consequence of φ (or ψ reduces to φ) with respect to the theory T. In other
words, it suffices to prove φ in order to prove ψ when reasoning in the theory T. The formal
definition is given below.

Definition 2.6. Let T be a theory and φ1, φ2 be formulas. Then φ2 is said to be a T-consequence
of φ1, denoted by φ1 ⊢T φ2, if φ1,T ⊢ φ2. We say φ1 and φ2 are T-equivalent, denoted by φ1 ≡T φ2,
if φ1 ⊢T φ2 and φ2 ⊢T φ1.

Moreover, we can also define the T-consequence relation between sets of formulas by viewing a
set as the (infinite) conjunction of the formulas inside the set.

Definition 2.7. Let T be a theory and Φ1,Φ2 be sets of formulas. Then Φ2 is said to be a T-
consequence of Φ1, denoted by Φ1 ⊢T Φ2, if Φ1,T ⊢ φ for every φ ∈ Φ2. We say Φ1 and Φ2 are
T-equivalent, denoted by Φ1 ≡T Φ2, if Φ1 ⊢T Φ2 and Φ2 ⊢T Φ1.

Proof Complexity of Pigeonhole Principles. We present several known results about the
proof complexity of the three variants of the pigeonhole principle introduced in Section 2.3.

The following two propositions show that the witnessing pigeonhole principle for functions f, g
is a consequence of both the dual weak pigeonhole principle for f and the weak pigeonhole principle
for g with respect to PV1.

Proposition 2.8. Let f, g be arbitrary functions. Then PHPWITb
a(f, g) is a PV1-consequence of

dPHPa
b (f). Moreover, WPHPWIT(f, g) is a PV1-consequence of dWPHP(f).

Proof. We argue in PV1. Suppose that, towards a contradiction, that PHPWITb
a(f, g) is false. In

other words, there exist z1, z2 such that for every y < b, f(g(y, z1), z2) = y. We now prove that
dPHPa

b (f) is false. Let z , z2. For every y < b, we can see that x , g(y, z1) satisfies that
f(x, z) = y, which completes the proof. The “moreover” parts follow straightforwardly.

Proposition 2.9. Let f, g be arbitrary functions. Then PHPWITb
a(f, g) is a PV1-consequence of

PHPb
a(g). Moreover, WPHPWIT(f, g) is a PV1-consequence of WPHP(g).

Proof. We argue in PV1. Suppose that, towards a contradiction, that PHPWITb
a(f, g) is false. In

other words, there exist z1, z2 such that for every y < b, f(g(y, z1), z2) = y. We now prove that
PHPb

a(g). Let z , z1. For every x1, x2 < a, x1 ̸= x2, we can see that

f(g(x1, z1), z2) = x1 and f(g(x2, z1), z2) = x2,

which implies that g(x1, z1) ̸= g(x2, z1). This means PHPb
a(g) is false.

Jeřábek [Jeř04, Jeř07a] shows that PV1+dWPHP(PV) is a ∀Σb
1-conservative extension of PV1+

WPHPWIT(PV). That is, every ∀Σb
1 formula provable in PV1 + dWPHP(PV) is also provable in

PV1 +WPHPWIT(PV).

Theorem 2.10 ([Jeř04, Jeř07a]). PV1+dWPHP(PV) is ∀Σb
1-conservative over PV1+WPHPWIT(PV).

In particular, if PV1 ⊢WPHPWIT(PV), then PV1 + dWPHP(PV) is ∀Σb
1-conservative over PV1.

17

Note that many almost-everywhere circuit lower bounds (e.g. ⊕ /∈ i.o.-AC0[nk]) can be formal-
ized by ∀Σb

1 sentences. This means that if the lower bound is provable in PV1 + dWPHP(PV), it
can also be proved in PV1 +WPHPWIT(PV).

Uniform Variants of Pigeonhole Principles. In the definition of PHP, dPHP, and PHPWIT,
the functions f and g are allowed to take an extra parameter z ∈ N, which makes the principles
work for functions with “non-uniform” advice. Similarly, we can also consider the uniform versions
of the principles.

Definition 2.11. (Uniform (weak) pigeonhole principle) Let a > b > 0 be numbers and f : a→ b
be a function. The uniform pigeonhole principle of f , denoted by PHP′ab (f), refers to the sentence
stating that f is not injective, i.e.,

PHP′ab (f) , ∃x < a ∃y < a (x ̸= y ∧ f(x) = f(z)).

The uniform weak pigeonhole principle of f , denoted by WPHP′(f), is defined as

WPHP′(f) , ∀b > 0 ∀c ∈ Log PHP
′b(1+1/c)
b (f).

We can also define dPHP′, dWPHP′, PHPWIT′, and WPHPWIT′ as above. Similarly to the
non-uniform case, we can show that PHPWIT′ is a consequence of both PHP′ and dWPHP′.

Proposition 2.12. Let f, g be arbitrary functions. Then PHPWIT′ba (f, g) is a PV1-consequence of
dPHP′ab (f). Moreover, WPHPWIT′(f, g) is a PV1-consequence of dWPHP′(f).

Proposition 2.13. Let f, g be arbitrary functions. Then PHPWIT′ba (f, g) is a PV1-consequence of
PHP′ba (g). Moreover, WPHPWIT′(f, g) is a PV1-consequence of WPHP′(g).

3 Equivalence Class for WPHP(PV)

We first explore the equivalence class of weak pigeonhole principle for PV functions. In partic-
ular, we will show that WPHP(PV) is equivalent to deterministic communication lower bounds for
EQ against non-uniform protocols with respect to PV1.

3.1 Technical lemmas
Lemma 3.1 (Implicit in [PWW88, Tha02, Jeř07b]). Let t(·) be any PV function such that PV1 ⊢
∀x t(x) ≥ 2x. Then WPHP(PV) ≡PV1 {∀a PHP

t(a)
a (f) | f is a PV function}.

3.2 CC lower bounds for EQ ⇔ WPHP(PV)

We start by showing that deterministic communication complexity lower bounds for Equality
is equivalent to the weak pigeonhole principle.

18

Formalization of CC lower bounds. Let f : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function.
Recall that a communication protocol for f describes a strategy to compute f(x, y) through the
interaction between two players called Alice and Bob, where Alice has access to x while Bob has
access to y. Their goal is to minimize the communication complexity of the protocol, which is the
maximum number of bits transmitted by the players over all input pairs (x, y). We refer to [KN97]
for more details.

We describe next a natural way to formalize communication protocols in bounded theories. We
will be concerned with protocols where the messages produced by Alice and Bob can be computed
by Boolean circuits. Since we will not upper bound the size of the circuits, this assumption is
without loss of generality, i.e., every communication protocol can be captured by our formalization.

Let n ∈ Log, t ∈ Log, and x, y ∈ {0, 1}n be the inputs for Alice and Bob, respectively. A t-round
communication protocol consists of 2t + 2 Boolean circuits (S1, C1), (S2, C2), . . . , (St, Ct), (D, d),
where Si : {0, 1}i−1 → {0, 1} decides which player to speak in the i-th round given the transcript of
the first i−1 rounds, and Ci : {0, 1}n×{0, 1}i−1 → {0, 1} outputs a single-bit message of the player
given the player’s input (x for Alice and y for Bob) and the transcript of the first i−1 rounds. Let π
be the full transcript after t rounds of communication. The circuit D : {0, 1}t → {0, 1} decides the
player to output the answer: If D(π) = 0, Alice outputs d(x, π), and otherwise, Bob outputs d(y, π).
We say a communication protocol P computes f(x, y) if f(x, y) = [D(π) = 0] · d(x, π) + [D(π) =
1] · d(y, π). The communication complexity of the protocol is the number of bits exchanged by
players, and in our formalization, it is simply the number of rounds t.

To formalize communication complexity lower bounds, we define the following functions and
formulas in PV1.

• CC(P, 1n, 1m) means that the communication complexity of the protocol P over input length
n (for each player) is at most m.

• π(P, 1n, x, y, i) denotes the first i bits transmitted given the input pair x, y ∈ {0, 1}n, which
can be defined recursively as

π(P, 1n, x, y, 0) , ε

π(P, 1n, x, y, i) , π(P, 1n, x, y, i− 1)∥Ci(z, π(P, 1n, x, y, i− 1)), (i ≥ 1)

where z = x if Si(π(P, 1n, x, y, i − 1)) = 0, and z = y if Si(π(P, 1n, x, y, i − 1)) = 1. For
simplicity, we use πi to denote π(P, 1n, x, y, i) if it is clear from the context, and use π(x, y)
or simply π to denote the entire transcript, i.e., π(x, y) , π(P, 1n, x, y, t) if the protocol has
t rounds.

• p(P, 1n, x, y, i) denotes the player to speak in the i-th round given input x, y ∈ {0, 1}n, defined
as Si(π(P, 1n, x, y, i− 1)). We use pi to denote p(P, 1n, x, y, i) if it is clear from the context.

• Failf (P, 1n) means the protocol P fails to compute f , that is,

Failf (P, 1n) , ∃x, y ∈ {0, 1}n f(x, y) ̸= [D(π) = 0]d(x, π) + [D(π) = 1]d(y, π).

• LBf
n,m means that there is no communication protocol P with input length n and communi-

cation complexity m that computes f . That is, for n,m ∈ Log,

LBf
n,m , ∀P (CC(P, 1n, 1m)→ Failf (P, 1n)).

19

One-way communication protocols. We are also interested in communication protocols with
only one round, i.e., one of the player transmits a string and then the other decides. We assume that
Alice transmits the message and Bob decides. More formally, a one-way communication protocol
is defined as two circuits (gA, dB), where given the input (x, y) ∈ {0, 1}n × {0, 1}n, Alice transmits
π = gA(x) to Bob and Bob outputs dB(y, π). The protocol is said to compute f : {0, 1}n×{0, 1}n →
{0, 1} if f(x, y) = dB(y, gA(x)), and the communication complexity of the protocol is the output
length of the circuit gA.

Similarly to the discussion above, we can define the following formulas.
• CC(P, 1n, 1m) means that the communication complexity of the protocol P over input length
n (for each player) is at most m, i.e., the output length of gA is at most m.

• Failf (P, 1n) means the protocol P fails to compute f , that is,

Failf (P, 1n) , ∃x, y ∈ {0, 1}n dB(y, gA(x)) ̸= f(x, y).

• LB−→
f
n,m means that there is no one-way communication protocol P with input length n and

communication complexity m that computes f . That is, for n,m ∈ Log,

LB−→
f
n,m , ∀P (CC(P, 1n, 1m)→ Failf (P, 1n)).

EQ lower bounds and WPHP. It is well known that the communication complexity of EQ(x, y) ,
[x = y] is at least n. This lower bound can be formulated in PV1 by the formula LBEQ

n,n−1, where
for n,m ∈ Log,

LBEQ
n,m , ∀P (CC(P, 1n, 1m)→ FailEQ(P, 1n)).

Theorem 3.2 (WPHP(PV)⇒ LBEQ). For n,m ∈ Log, m < n, PHP2n
2m(PV) ⊢PV1 LBEQ

n,m.

Proof. This follows the standard fooling set proof of the communication complexity lower bound
(see, e.g., [AB09]). We argue in PV1. Fix n ∈ Log and a protocol P. We need to show that
CC(P, 1n, 1m) implies FailEQ(P, 1n).

Suppose that CC(P, 1n, 1m) is true, we define the circuit E : {0, 1}n → {0, 1}m as E(x) ,
π(x, x), i.e., E(x) outputs the transcript of the protocol after running on the input (x, x). By
PHP2n

2m(PV), we can see that there exist distinct x, y ∈ {0, 1}n such that E(x) = E(y). (Concretely,
we consider the PV function Eval : {0, 1}n → {0, 1}∗ such that Eval(x,C) evaluates C(x), and plugin
the circuit E.) In other words, π(x, x) = π(y, y), that is, the transcript of the communication
protocol on the input (x, x) is the same as that on the input (y, y).

Claim 3.3 (in PV1). If π(x, x) = π(y, y) then π(x, y) = π(x, x) = π(y, y).

Let π , π(x, x) = π(y, y) = π(x, y). Given Claim 3.3, we can see that the output of P on (x, y)
is equal to the output of P on either (x, x) or (y, y): If D(π) = 0, the output of the protocol is
d(x, π), which is the same as the output of the protocol on the input (x, x); otherwise, the output
of the protocol is d(π, y), which is the same as the output of the protocol on the input (y, y).
However, as EQ(x, y) = 0 but EQ(x, x) = EQ(y, y) = 1, the protocol P cannot be correct, and thus
FailEQ(P, 1n) follows.

It remains to prove Claim 3.3. Indeed, we will prove that

π(P, 1n, x, y, i) = π(P, 1n, x, x, i) = π(P, 1n, y, y, i)

20

for every i ≤ m. We prove this equation by an induction on i, which utilizes the induction principle
for quantifier-free formulas and therefore is admissible in PV1. For i = 0, the equation trivially
holds, since the transcript is an empty string.

Now we assume that the equation holds for i − 1. That is, the transcripts of the protocol on
inputs (x, x), (y, y), and (x, y) in the first i− 1 rounds are the same. To prove the equation for i,
we only need to show that the bit exchanged in the last round is the same on inputs (x, x), (y, y),
and (x, y). Let πi−1 be the transcript of the previous rounds.

• If Si(πi−1) = 0, i.e., it is Alice to speak. Alice sends Ci(x, πi−1) on inputs (x, y) and (x, x).
Since the full transcripts on inputs (x, x) and (y, y) are the same, we know that on all of these
three inputs, the communication transcripts are πi = πi−1∥Ci(x, πi−1).

• Otherwise, it is Bob to speak. Bob sends Ci(y, πi−1) on inputs (x, y) and (y, y). Since the
full transcripts on inputs (x, x) and (y, y) are the same, we know that on all of these three
inputs, the communication transcripts are πi = πi−1∥Ci(y, πi−1).

This proves Claim 3.3.

Theorem 3.4 (LBf ⇒ LB−→
f). For n,m ∈ Log, m < n, and PV function f , LBf

n,m ⊢PV1 LB−→
f
n,m.

Proof. We argue in PV. Suppose, towards a contradiction, that LB−→
f
n,m is false, then there are

circuits gA : {0, 1}n → {0, 1}m and dB : {0, 1}n × {0, 1}m → {0, 1} such that dB(y, gA(x)) = f(x, y)
for every x, y ∈ {0, 1}n. Consider the following protocol P with m rounds:

• For every i ∈ [m], Si(·) , 0, i.e., it is always Alice to speak.
• D(·) , 1, i.e., it is always Bob to decide.
• For every i ∈ [m], Ci(x, ·) outputs the i-th bit of gA(x).
• d(y, π) , dB(y, π).

It is clear that this protocol solves f on input length n with communication complexity m, which
contradicts LBf

n,m.

Theorem 3.5. For n,m ∈ Log, m < n, LB−→
EQ
n,m ⊢PV1 PHP2n

2m(PV).

Proof. We argue in PV1. Towards a contradiction, we assume that there is a PV function h :
{0, 1}n × {0, 1}∗ → {0, 1}m, an n ∈ Log, and a parameter z such that for all x, y ∈ {0, 1}n,
h(x, z) ̸= h(y, z). Consider the following one-way communication protocol P for EQ. Let (x, y) ∈
{0, 1}n × {0, 1}n be the input, where Alice holds x and Bob holds y. Alice sends h(x, z) ∈ {0, 1}m
to Bob, and Bob accepts if and only if h(x, z) = h(y, z).

Note that to formalize this protocol in PV1, we need to construct the circuit C(x) , h(x, z)
such that ∀x C(x) = h(x, z) is provable, which is possible with Lemma 2.2.

We now show that ¬(CC(P, n,m) → FailEQ(P, n)) for the protocol P. It is clear that the
communication complexity of the protocol is at most m, which means that CC(P, n,m). It remains
to show that the communication protocol is correct, i.e., ¬FailEQ(P). That is, for every x, y ∈
{0, 1}n,

dB(y, gA(x)) = EQ(x, y),

which is equivalent to
h(x, z) = h(y, z)↔ x = y.

This holds thanks to the guarantee on h with parameter z, since for all x, y ∈ {0, 1}n with x ̸= y,
h(x, z) ̸= h(y, z).

21

The three theorems above shows that one-way communication complexity lower bounds for EQ,
communication complexity lower bounds for EQ, and weak pigeonhole principle are all equivalent.

Corollary 3.6. For every n,m ∈ Log, m < n, LBEQ
n,m ≡PV1 LB−→

EQ
n,m ≡PV1 PHP2n

2m(PV).

Fooling Set Method. Indeed, one can observe that the proof of Theorem 3.2 not only works for
communication lower bound for EQ, but also works for the fooling set method (see, e.g., [AB09])
in general under a suitable formalization.

Let n ∈ Log and f : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function. A fooling set for
f is a subset S ⊆ {0, 1}n × {0, 1}n of possible input pairs such that for all distinct input pairs
(x1, y1), (x2, y2) ∈ S, it is not the case that f(x1, y1) = f(x1, y2) = f(x2, y1) = f(x2, y2). The
fooling set method shows that if f admits a fooling set of size at least 2m, then the communication
complexity of f is at least m. In the proof of Theorem 3.2, we utilized the fact that SEQ , {(x, x) |
x ∈ {0, 1}n} is a fooling set for EQ of size 2n.

To formalize the definition in PV1, we can define a set S using a Boolean circuit C : {0, 1}n ×
{0, 1}n that decides the membership relation, i.e., (x, y) ∈ S if and only if C(x, y) = 1. (For SEQ,
the circuit simply checks whether the two input strings are identical.) The size inequality |S| ≥ 2k

can be formalized by a circuit F : [2k] → S that is provably injective. Therefore, the fooling set
method can be formalized by the following formula:

• FSetn,m , ∀ circuit f : {0, 1}n × {0, 1}n → {0, 1}, circuit C : {0, 1}n × {0, 1}n → {0, 1}, and
circuit F : [2m+1]→ {0, 1}n × {0, 1}n, if F is an injective map to S , C−1(1) and C−1(1) is
a fooling set, i.e.,

1. ∀i ∈ [2m+1], C(F (i)) = 1 and
2. ∀i, j ∈ [2m+1], i ̸= j → F (i) ̸= F (j),
3. ∀(x1, y1) ̸= (x2, y2), C(x1, y1) = 1 ∧ C(x2, y2) = 1 implies ¬(f(x1, y1) = f(x1, y2) =
f(x2, y1) = f(x2, y2))

then it follows that LBf
n,m.

Proposition 3.7. For every n,m ∈ Log such that m < n, FSetn,m ⊢PV1 LBEQ
n,m.

Proof Sketch. Fix f , EQ, C(x, y) , [x = y], and F : [2m+1] → {0, 1}n × {0, 1}n such that F (i)
outputs (xi, xi), where xi is the lexicographic i-th string of length n. One can easily prove the three
requirements in the definition of FSet. Therefore, it follows that LBEQ

n,m.

Theorem 3.8 (WPHP(PV)⇒ FSet). For every n,m ∈ Log, m < n, PHP2m+1

2m (PV) ⊢PV1 FSetn,m.

Proof Sketch. Fix n,m ∈ Log. Assume that there are circuits f, C, F that satisfies the require-
ments in the definition of FSet. For any protocol P, we need to show that CC(P, 1n, 1m) implies
Failf (P, 1n).

Suppose that CC(P, 1n, 1m) is true. Let π : {0, 1}n × {0, 1}n → {0, 1}m be the circuit that
computes the transcript corresponding to an input pair. Furthermore, we define D : [2m+1] →
{0, 1}m as D(i) , π(F (i)). By PHP2m+1

2m (PV), there are i ̸= j such that D(i) = D(j). Let
(xi, yi) , F (i) and (xj , yj) , F (j). Since F is an injective map to S , C−1(1), (xi, yi) and (xj , yj)

22

are distinct input pairs in the fooling set S such that π(xi, yi) = π(xj , yj). Therefore, by the
definition of the fooling set, we get that

¬(f(xi, yi) = f(xi, yj) = f(xj , yi) = f(xj , yj)).

However, since the protocol has the same transcript over input pairs (xi, yi) and (xj , yj), one can
prove by induction over the number of rounds that f(xi, yi) = f(xi, yj) = f(xj , yi) = f(xj , yj)
following the proof of Claim 3.3, which leads to a contradiction. Since the induction hypothesis is
captured by a quantifier-free formula, the proof can be formulated in PV1.

Since the communication lower bound against EQ is equivalent to the weak pigeonhole principle,
the fooling set method is in the same equivalent class.

Corollary 3.9. WPHP(PV) ≡PV1 ∀n,m ∈ Log, m < n→ FSetn,m.

3.3 Singleton bound for ECC ⇔ WPHP(PV)

Except for the communication complexity lower bounds, we will show that the singleton bound
for error-correcting codes is equivalent to WPHP(PV).

The formalization of error-correcting codes in bounded arithemtic is straightforward. Let E :
{0, 1}n → {0, 1}m be a Boolean circuit. It is said to be an [n, d,m]-code if for every x, y ∈ {0, 1}n,
x ̸= y implies that ∆(E(x), E(y)) ≥ d. Let n,m, d ∈ Log and E be a Boolean circuit, we can
formalize the definition in PV1 with:

DistECC(E, n, d,m) , ∀x, y ∈ {0, 1}n (x = y ∨∆(E(x), E(y)) ≥ d).

The singleton bound states that for every [n, d,m]-code, m ≥ d+ n− 1. This can be formalized
as the following ∀Σb

1-sentence

Singleton , ∀n,m, d ∈ Log ∀E : {0, 1}n → {0, 1}m DistECC(E, n, d,m)→ m ≥ d+ n− 1.

Theorem 3.10. WPHP(PV) ≡PV1 Singleton.

Proof. (WPHP(PV) ⊢PV1 Singleton). This follows from the standard proof of the singleton bound.
We argue in PV1 + WPHP(PV). Suppose, towards a contradiction, that there is a circuit E :
{0, 1}n → {0, 1}m such that DistECC(E, n, d,m) is true and m < n + d − 1. Let E′ : {0, 1}n →
{0, 1}m−d+1 be the circuit that outputs the firstm−d+1 bits of E, and f : {0, 1}n×N→ {0, 1}m−d+1

be the function defined as f(x,C) , C(x). As m < n + d − 1, we know by WPHP(f) that there
must be two distinct strings x, y ∈ {0, 1}n such that E′(x) = E′(y). It then follows that E(x) and
E(y) agree on the first m−d+1 bits and thus ∆(E(x), E(y)) ≤ d−1, which leads to a contradiction
to DistECC(E, n, d,m).

(Singleton ⊢PV1 WPHP(PV)). Note that by Lemma 3.1, it suffices to prove ∀a PHP
t(a)
a (PV)

for an arbitrary function t(a) ≥ 2a. Let c be the constant in Lemma 2.1, and E,D be the PV-
functions. Fix t(a) = 2log

2c a. For every PV function f and any number a, we need to show that
PV + Singleton ⊢ PHP

t(a)
a (f). (For simplicity, we assume that a = 2n, but it is straightforward to

verify that the proof still works for an arbitrary a.)
Since PHP

t(a)
a (PV) is provable for every fixed a ∈ N, we can assume that n is sufficiently

large such that n2c ≥ cnc. Suppose, towards a contradiction, that PHP
t(a)
a (f) is not true, which

23

means that there exists a z such that for any distinct x, y ∈ {0, 1}n2c , f(x, z) ̸= f(y, z), where
f(·, z) : {0, 1}n2c → {0, 1}n. By Lemma 2.2, we can obtain a circuit C : {0, 1}n2c → {0, 1}n that
computes f(·, z). Consider the circuit E′ : {0, 1}n2c → {0, 1}cnc defined as E′(x) , E(C(x)). We
now prove that E′ is an [n2c, 0.2cnc, cnc] code.

• Let x, y ∈ {0, 1}n2c be distinct strings. As the circuit C violates pigeonhole principle, we
know that C(x) ̸= C(y), which further means that ∆(E(C(x)), E(C(y))) ≥ 0.2cnc as E is an
error-correcting code that corrects a 0.1 fraction of errors.

This clearly violates the singleton bound as n2c ≥ cnc.

3.4 Summary of the equivalence class
We summarize the equivalence class for WPHP(PV) in the following theorem.

Theorem 3.11. Let ε ∈ (0, 1) be any constant. The following sentences or sets of sentences are
equivalent with respect to PV1.

1. WPHP(PV), i.e., the weak pigeonhole principle for PV function symbols.
2. {∀n ∈ Log PHP2n

2n−1(g) | g is a PV function}. This stands for the weak pigeonhole principle
for PV functions with single-bit shrinkage.

3. {∀n ∈ Log PHP2n

2nε (g) | g is a PV function}. This stands for the weak pigeonhole principle
for PV functions with polynomial length shrinkage.

4. ∀n ∈ Log LBEQ
n,n−1, i.e., EQ has communication complexity greater than n− 1.

5. ∀n ∈ Log LBEQ
n,nε, i.e., EQ has communication complexity greater than nε.

6. ∀n ∈ Log LB−→
EQ
n,n−1, i.e., EQ has communication complexity greater than n−1 against one-way

protocols.
7. ∀n ∈ Log LB−→

EQ
n,nε, i.e., EQ has communication complexity greater than nε against one-way

protocols.
8. ∀n,m ∈ Log,m < n→ FSetn,m, i.e., the fooling set method.
9. Singleton, i.e., the singleton bound for error correcting codes.

Proof. (1) ≡PV1 (2) ≡PV1 (3): This is an easy corollary of Lemma 3.1.
(2) ⊢PV1 (4): This follows from Theorem 3.2.
(4) ⊢PV1 (5): Trivial, since quantitatively stronger lower bounds imply weaker lower bounds

under any reasonable formalization.
(5) ⊢PV1 (7) and (4) ⊢PV1 (6) follow from Theorem 3.4.
(7) ⊢PV1 (3) and (6) ⊢PV1 (2) follow from Theorem 3.5.
(1) ≡PV1 (8): This is given by Corollary 3.9.
(1) ≡PV1 (9): This is given by Theorem 3.10.

4 Equivalence Class for WPHP′(PV)

In this section, we will show that the Ω(n2) time lower bounds for Palindrome against single-
tape Turing machines [KN97, Section 12.2] and uniform communication complexity lower bounds
for EQ are all equivalent to weak uniform pigeonhole principle.

24

4.1 Formalization and technical lemmas
We first demonstrate the formalization of lower bounds that we will consider, and present several

technical lemmas used in the proofs.

Formalization of single-tape Turing machine lower bounds. Let Q , {0, 1, . . . , q − 1} be
the set of states, Σ , {⊥, 0, 1} be the alphabet set, and A , {→,←}. A single tape Turing machine
M can be defined by a set of states Q, a set of accepting states S ⊆ Q, and a transition function
δ : Q × Σ → Σ × A × Q, which means that if the symbol under the head is σ and the current
state is u, δ(u, σ) specifies the new cell symbol σ′ ∈ Σ, the movement a ∈ A, and the state v ∈ Q
afterwards. The head is set to the first character of the input at the beginning of the computation,
and the output is defined as the string on the tape (excluding all “⊥”s) at the end. The tape of
the Turing machine is infinite on both sides. We define the output of the Turing machine as the
string in the tape once the machine reaches some accepting state.

Let UM (1t, x) be the PV function that simulates the Turing machine M on the input x for t
steps and returns the output. For every language L ∈ P, every function c : N → Q ∩ [0, 1], and
every constructive time bound t, we define LBL

1-tape(M, t) as the ∀Σb
1-sentence:

LBL,c
1-tape(M, t) , ∀n ∈ Log ∃x ∈ {0, 1}n

(
L(x) ̸= UM (x, 1c(M)·t(n))

)
.

We use the function c(M) because we aim to formalize an Ω(t(n)) lower bound whose asymptotic
constant might depend on the description length of the machine M . When c(M) = 1, we will omit
c and simply write LBL

1-tape(M, t).
We can define the Palindrome lower bound against time Ω(t) as the set LBPAL,c

1-tape(t) of sentences
defined as

LBPAL,c
1-tape(t) , {LB

PAL,c
1-tape(M, t(n)) |M is a single-tape machine},

where PAL is the language of palindromes, i.e., PAL , {w∥rev(w) | w ∈ {0, 1}∗}, where rev(·) is the
reversion function rev(w1w2 . . . wk) , wkwk−1 . . . w1.

Technical lemmas. We will need the following technical lemmas before proving the equivalence
between the uniform weak pigeonhole principle and the lower bound for PAL.

Lemma 4.1 (Implicit in [PWW88, Jeř07b]). Let t(·) be any PV function such that PV ⊢ ∀x t(x) ≥
2x. Then WPHP′(PV) ≡PV1 {∀a PHP

′t(a)
a (f) | f is a PV function}.

Lemma 4.2. For every PV-function f , there is a single-tape Turing machine Mf and a constant
d such that PV1 proves that ∀n ∈ Log, ∀x⃗ ∈ {0, 1}n,UMf

(x⃗, dnd) = f(x⃗). Moreover, such a Turing
machine still exists (potentially with a larger constant d) even if we only have a single tape that is
infinite in only one direction.

Proof Sketch. We prove this by performing a structural induction over all PV function symbols.
It is easy to verify that PV1 proves that every initial function of PV can be computable by a
polynomial-time Turing machine with a single tape that is infinite in one direction. Therefore, it
remains to consider the functions introduced by composition and limited induction on notation.

Let f be a PV-function introduced by the composition of g(z1, . . . , zℓ) and h1(x⃗1), . . . , hℓ(x⃗ℓ).
By the induction hypothesis, we know that g(z⃗) and each hi(x⃗i), i ∈ [ℓ] can be computed by a

25

polynomial-time Turing machine with only one tape that is infinite in one direction. We assume
that (x, y) is encoded as [x,⊥, y] on the tape, where x and y are encoded in binary. Consider the
following single-tape Turing machine Mf for f :

• Let [x⃗1,⊥, x⃗2,⊥, . . . ,⊥, x⃗ℓ] be the input. We assume that the tape is infinite on the left side.

• For every i ∈ [ℓ], the algorithm works as follows. Assume that before the i-th iteration,
the tape configuration is [x⃗i,⊥, . . . ,⊥, x⃗ℓ,⊥, h1(x⃗1),⊥, . . . ,⊥, hi−1(x⃗i−1)]. It computes hi(x⃗i)
using the Turing machine Hi (with an infinite tape on one direction) for hi on the tape
to the left of x⃗i and leads to the tape configuration [h(x⃗i),⊥, . . . ,⊥, x⃗ℓ,⊥, h1(x⃗1),⊥, . . . ,⊥
, hi−1(x⃗i−1)]. After that, we move h(x⃗i) to the rightmost block so that the tape configuration
becomes [x⃗i+1,⊥, . . . ,⊥, x⃗ℓ,⊥, h1(x⃗1),⊥, . . . ,⊥, hi(x⃗i)].

• Now we have [h1(x⃗1),⊥, . . . ,⊥, hℓ(x⃗ℓ)]. The algorithm can then run the Turing machine for
g to compute g(h1(x⃗1), . . . , hℓ(x⃗ℓ)) = f(x⃗).

It is easy to verify that the Turing machine runs in polynomial time and that PV1 proves the
correctness of the Turing machine above using the corresponding function symbol UMf

.
Let f(x⃗, y) be introduced by limited recursion on notation from g(x⃗), h0(x⃗, y, z), h1(x⃗, y, z),

k0(x⃗, y), and k1(x⃗, y) with the following defining axioms

f(x⃗, 0) = g(x⃗); f(x⃗, 2y) = h0(x⃗, y, f(x⃗, y)); f(x⃗, 2y + 1) = h1(x⃗, y, f(x⃗, y)),

and PV-derivations (of smaller order) such that

|hi(x⃗, y, z)| ≤ |z|+ |ki(x⃗, y)|

for i ∈ {0, 1}, where the inequalities are encoded by PV-equations. By the induction hypothesis,
we know that g, h0, h1, k0, k1 can be computed by polynomial-time Turing machines with a single
tape that is infinite on one direction. Consider the following single-tape Turing machine Mf that
computes f :

• Let [x⃗,⊥, y] be the input. We assume that the tape is infinite on the left side.

• Mf first copies x⃗ to the left, which leads to the tape configuration [x⃗,⊥, x⃗,⊥, y]. Then, it
runs the single-tape Turing machine for g to compute g(x⃗). The tape configuration after this
step will be [f(x⃗, 0),⊥, x⃗,⊥, y].

• Let yi be the i-th most significant bit of y, ℓ(y, i) be the i most significant bits of y, that
is, ℓ(y, 0) , 0 and ℓ(y, i + 1) , 2ℓ(y, i) + yi+1. For every i ∈ [|y|], the algorithm works as
follows. Assume that the tape configuration before this step is [f(x⃗, ℓ(y, i − 1)),⊥, x⃗,⊥, y⃗].
The algorithm copy x⃗ and ℓ(y, i− 1) to the left, which yields the tape configuration

[x⃗,⊥, ℓ(y, i− 1),⊥, f(x⃗, ℓ(y, i− 1)),⊥, x⃗,⊥, y⃗],

and also remembers yi in its internal state. The algorithm then runs the Turing machine for
hyi to compute hyi(x⃗, ℓ(y, i−1), f(x⃗, ℓ(y, i−1))) = f(x⃗, ℓ(y, i)). Note that the provable length
inequality |hi(x⃗, y, z)| ≤ |z|+ |ki(x⃗, y)| ensures that the running time in the i-th step is O(nc)
for every i ≤ |y|, where c is some universal constant independent of i.

26

• In the end, [f(x⃗, y),⊥, x⃗,⊥, y] is on the tape and Mf simply removes x⃗ and y and terminates.

It is easy to check by induction over quantifier-free formulas that Mf runs in polynomial time and
Mf correctly computes f . Moreover, PV1 proves the correctness of the Turing machine above using
the corresponding function symbol UMf

.

The reason we need the simulation of PV functions with Turing machines with tapes infinite on
only one side is that it makes it easier to invoke a Turing machine as a sub-routine. Concretely, as
we will need to design single-tape Turing machines in sub-quadratic time, the simulation makes it
possible to run the invoked sub-routine near the head while the head is moving back and forth.

4.2 Single-tape lower bounds ⇒ WPHP′(PV)

We first show that the uniform weak pigeonhole principle for PV functions is a consequence of
an n1+Ω(1) lower bound against single-tape Turing machines for Palindrome.

Theorem 4.3. LBPAL
1-tape(βn

1+β) ⊢PV1 WPHP′(PV) for every constant β > 0.

The intuition of the theorem is that if, towards a contradiction, WPHP′(PV) does not hold,
we can obtain a PV function that is a “perfect” hash function, which means that it compresses a
string with no collision. By applying the Merkle-Damgård construction, we can further obtain a
perfect hash function with n1+Ω(1) time complexity and better shrinkage. This makes it possible to
decide Palindrome in n1+Ω(1) time by hashing the left and right halves of the string and applying
a straightforward algorithm on the hash value.

To formally prove the theorem, we need to check that the algorithm can be effectively imple-
mented in single-tape Turing machines, and the correctness can be proved in PV1, namely with
induction only for quantifier-free formulas.

Proof of Theorem 4.3. Let f be an arbitrary PV-function. We will show that PV1+LBPAL
1-tape proves

WPHP′(f). By Lemma 4.1, it suffices to show that for every PV-function g, PV1 + LBPAL
1-tape proves

∀a > 0 PHP′2aa (g).
We now start to argue in PV1. Suppose, towards a contradiction, that there is an a such that

PHP′2aa (g) is false, i.e., for every x, y < 2a, we have g(x) < a, g(y) < a, and g(x) ̸= g(y). We
assume for simplicity that a is a power of two, and discuss the other cases at the end of the proof.
In such case, g is an injective function from n bits to n− 1 bits. Let M,d be the single-tape Turing
machine and the constant in Lemma 4.2 such that UM (x, dnd) = g(x) for every x. Note that we
can assume a is larger than any fixed constant, since the uniform pigeonhole principle is true over
the standard numbers and provable in PV1 when the parameters are of constant size.

We will now describe a Turing machine M ′ with a tape that is infinite on both sides that aims
to solve PAL using M . Let x be the input.

Stage 1: Compute the length of the input. The goal of the first step is to compute the
length of the input and write it down on both sides of the input. Concretely, the tape configuration
after the step will be [n,⊥, x,⊥, n], where n = |x| is encoded in binary.

The algorithm is to scan the entire string from left to right and maintain a binary counter near
the head. Let i = 0, 1, . . . , n be an index. At the end of the i-th iteration, the tape configuration
will be [x′,⊥, i,⊥, x′′], where |x′| = i, |x′′| = n − i, and the head is at the underlined ⊥. (We will

27

use σ to denote the position of the head throughout this subsection.) In the (i + 1)-th iteration,
the algorithm works as follows.

1. Probe the first bit b of x′′ and move it to the right of x′. After this step, the tape configuration
should be [x′, b,⊥, i,⊥, x′′′], where x′′ = b∥x′′′. The time complexity is O(log n).

2. Increase the counter i by 1. If there is no overflow, the time complexity is O(log n). Otherwise,
we move x′, b to the left by one block to make room for the carried bit. Since the overall time
for this will be O(1 + 2 + 4 + · · ·+ n) = O(n), the amortized time complexity will be O(1).

At the end of the algorithm, the tape configuration will be [x,⊥, n]. We can then perform the
algorithm reversely to obtain the tape configuration [n,⊥, x,⊥, n]. The overall time complexity for
this step is O(n log n).

Stage 2: Split the string. We will then split the input string x from the middle. The tape
configuration after the step will be [n,⊥, x1,⊥, x2,⊥, n], where x1 and x2 are the first and last
⌊n/2⌋ bits of x, respectively.

We first use the trick of maintaining a counter near the head, as in step 1, to locate the middle
of the string and obtain the tape configuration [n,⊥, x1,⊥, n,⊥, ⌊n/2⌋,⊥, x2,⊥, n]. Concretely, we
will maintain in the i-th step the tape configuration [n,⊥, x′,⊥, n,⊥, i,⊥, x′′,⊥, n], where |x′| = i,
|x′′| = n − i, and x′∥x′′ = x. We stop when i = ⌊n/2⌋, which can be checked in-place as ⌊n/2⌋ is
equal to n right shifted by 1.

After that, we move x2 and n to the left bit by bit to obtain the tape configuration [n,⊥, x1,⊥
, x2,⊥, n]. Since |n|+ |i| = O(log n), this will take O(n log n) time. The overall time complexity in
this step will be O(n log n).

Stage 3: Hashing. Now it remains to decide whether x1 is equal to the reverse of x2. Let
n′ , ⌊n/2⌋, ε ∈ (0, 1) be a constant to be determined later, and m , nε. We define the following
sequences of hash functions:

• H0 : {0, 1}m → {0, 1}m−1. H0(x) , g(x).

• H1 : {0, 1}m+1 → {0, 1}m−1. H1(x∥b) , g(H0(x)∥b).

• H2 : {0, 1}m+2 → {0, 1}m−1. H2(x∥b) , g(H1(x)∥b).

• . . .

• Hn′−m : {0, 1}n′ → {0, 1}m−1. Hn′−m(x∥b) , g(Hn′−m−1(x)∥b).

Let H , Hn′−m. The goal of the step is to compute H(x1) and H(rev(x2)), where rev denotes the
reversion of strings. After this step, the tape configuration should be [H(x1),⊥,H(rev(x2))].

Consider the following algorithm. We first construct the tape configuration [n,⊥, x1−1,⊥, x1−1∗,⊥
, x2,⊥, n], where x1−1 consists of the first m− 1 bits of x1, and x1−1∗ consists of the remaining bits.
Let i = 0, 1, . . . , n′ −m be an index. At the end of the i-th round, the tape configuration will be
[n,⊥,Hi(x

1
i),⊥, x1i∗,⊥, x2,⊥, n], where x1i consists of the first m + i bits of x1, and x1i∗ consists of

the remaining n′ −m − i bits. For convenience, let H−1 denote the identity function. In the i-th
step, the algorithm works as follows.

28

1. At the beginning, the tape configuration is [n,⊥,Hi−1(x
1
i−1),⊥, x1(i−1)∗,⊥, x

2,⊥, n].

2. Probe the first bit b of x1(i−1)∗, and copy Hi−1(x
1
i−1) and b to the left of the string. The tape

configuration afterwards will be [Hi−1(x
1
i−1), b,⊥, n,⊥,Hi−1(x

1
i−1),⊥, x1(i−1)∗,⊥, x

2,⊥, n].

3. We evaluate g(Hi−1(x
1
i−1)∥b) with the single-tape Turing machine M on a one-way infinite

tape, so that it does not affect the right part of the tape. We will end up with the tape
configuration [Hi(x

1
i),⊥, n,⊥,Hi−1(x

1
i−1),⊥, x1(i−1)∗,⊥, x

2,⊥, n].

4. We move Hi(x
1
i) to the right to obtain [n,⊥,Hi(x

1
i),⊥, x1i∗,⊥, x2,⊥, n]

After n′ − m + 1 steps, we will obtain [n,⊥,H(x1),⊥, x2,⊥, n]. We can then perform the
algorithm reversely to obtain [n,⊥,H(x1),⊥,H(rev(x2)),⊥, n]. We can then remove the input
length n on both sides in linear time.

The complexity bottleneck is the third step of the algorithm. Since M runs in dnd time on input
length n, the evaluation of g will cost dndε time in each step, therefore the overall time complexity
will be bounded by 10n · dndε. We set ε , β/(20d) so that the time complexity is at most n1+β/10

for sufficiently large input lengths.

Step 4: Brute-force. We accepts if and only if H(x1) = H(rev(x2)). This can be computed in
O(m2) = o(n) time using a straightforward algorithm on a single-tape Turing machine.

The time complexity of the algorithm M ′ is at most βn1+β for n > n0, where n0 ∈ N is some
fixed (standard) constant. Let n ∈ Log be the smallest number such that 2n

ε
= α. Recall that we

can assume that α is larger than any fixed constants, therefore, we can also assume that n > n0.
By LBPAL

1-tape(βn
1+β), we know that there exists a string x of length n such that M ′(x) ̸= PAL(x). It

remains to show that this is impossible.
We skip the analysis of the first two steps and the last step as it is straightforward. Assume

that the tape configuration is [n,⊥, x1,⊥, x2,⊥, n]. Let Ĥ(x, i) be the PV-function such that
Ĥ(x, i) = Hi(x), recursively defined as

Ĥ(x, i) =

g(x) i = 0

g(Ĥ(x′, i− 1)∥b) i > 0, x = x′∥b′

0 otherwise

We can prove by induction (over quantifier-free formulas) that the Turing machine correctly
computesH(x1) andH(x2), that is, the tape configuration after the computation is [Ĥ(x1,m−n′),⊥
, Ĥ(rev(x2), n′ −m)]. For the input length n that we are considering, m = nε = logα. It remains
to prove that Ĥ is a perfect hash function, that is for every ℓ ∈ Log and every x, y ∈ {0, 1}ℓ,
Ĥ(x, ℓ−m) = Ĥ(y, ℓ−m) implies x = y.

Fix any ℓ ∈ Log and x, y ∈ {0, 1}ℓ. Let xi and yi be the first m+ i bits of x and y, respectively.
We prove by induction on i that if i ≤ ℓ−m, Ĥ(xi, i) = Ĥ(yi, i)→ xi = yi. (Note that this is an
induction of quantifier-free formula, which can be implemented in PV1.)

• (Base Case). When i = 0, the function Ĥ(·, i) : {0, 1}m+i → {0, 1}m−1 is defined as
Ĥ(x, 0) = g(x). Since g violates pigeonhole principle on input length m, we know that
g(x0) = g(y0) implies x0 = y0.

29

• (Induction). Assume that i ≤ ℓ −m and Ĥ(xi−1, i − 1) = Ĥ(yi−1, i − 1) → xi−1 = yi−1 is
true. Let xi = xi−1∥b and yi = yi−1∥c. Suppose that Ĥ(xi, i) = Ĥ(yi, i). We need to show
that xi = yi. By the definition of Ĥ, we know that

Ĥ(xi, i) = g(Ĥ(xi−1, i− 1)∥b),
Ĥ(yi, i) = g(Ĥ(yi−1, i− 1)∥c).

Since g violates the pigeonhole principle on input length m and Ĥ(xi, i) = Ĥ(yi, i), we know
that Ĥ(xi−1, i − 1)∥b = Ĥ(yi−1, i − 1)∥c, which means that Ĥ(xi−1, i − 1) = Ĥ(yi−1, i − 1)
and b = c. By induction hypothesis, we further know that xi−1 = yi−1, which, together with
b = c, implies that xi = yi.

Finally, we consider the case when α is not a power of two. One can verify that the proof above
still works if we replace the “hash function” Hi : {0, 1}m+i → {0, 1}m−1 with Hi : a × {0, 1} → a,
where m = ⌊log a⌋, defined inductively as

H0(x) = g(x)

Hi+1(x, b) = g(Hi(x), b)

by identifying each u ∈ {0, 1}m as a number in 2m ⊆ a.

4.3 WPHP′(PV) ⇒ uniform CC lower bounds
Similarly to the equivalence between WPHP(PV) and communication complexity lower bounds

for EQ, we will show that WPHP′(PV) is sufficient to prove uniform communication complexity
lower bounds for EQ.

Let f : {0, 1}n × {0, 1}n → {0, 1}m be a Boolean function. A uniform communication protocol
for f with t rounds is described by four PV functions P = (S,C,D, d), where

• S(πi−1, 1
n, i) ∈ {0, 1} chooses the player to speak in the i-th round given the transcript π of

the first i− 1 rounds;

• C(πi−1, z, 1
n, i) outputs the message to exchange in the i-th round given previous messages

πi−1 and the input z of the player to speak, as chosen by S(πi−1, 1n, i);

• D(π, 1n) chooses the player to output the answer given the full transcript π after t rounds;

• d(π, z, 1n) outputs the answer given the full transcript π and the input z of the player to
decide, as chosen by D(π, 1n).

We define the functions and formulas CC(P, 1n, 1m), πi = πi(x, y), π = π(x, y) = πt(x, y), and
Failf (P, n) as in Section 3.2.

Let LB′fn,m(P) denote the formula that states that if P is a communication protocol with com-
munication complexity m on input length n, then it must fail to compute f . That is, for every
n,m ∈ Log, every PV function f , and every uniform communication protocol P, we define

LB′fn,m(P) , CC(P, 1n, 1m)→ Failf (P, 1n).

Theorem 4.4. Let n,m ∈ Log, n > m. For every uniform communication protocol P, there is a
PV function f such that PHP′2n2m (f) ⊢PV1 LB′EQn,m(P).

30

Proof Sketch. Similar to the non-uniform case, we use the standard fooling set argument. We argue
in PV1. Let P = (gA, gB, dB) be any uniform communication protocol such that CC(P, n,m) is true.
Let f : {0, 1}n → {0, 1}m be the function that given x ∈ {0, 1}n, simulates P on input (x, x) and
outputs the transcript π ∈ {0, 1}m. Note that f is a PV-function as S,C,D, d are PV-functions. By
PHP′2

n

2m (f), there are x, y ∈ {0, 1}n such that f(x) = f(y). By the same argument as in Theorem 3.2,
we can show that the communication transcript for P given (x, x) is the same as the transcript
given (x, y), which means that the protocol must be wrong on one of the inputs.

Let m = m(n) be a PV function. We can define LB′fn,m(PV) as the set of sentences

∀n ∈ Log LB′fn,m(n)(P)

for every uniform communication protocol P = (S,C,D, d).

Corollary 4.5. WPHP′(PV) ⊢PV1 LB′EQn,n−1(PV).

4.4 Uniform CC lower bounds ⇒ single-tape lower bounds
Now we show that CC lower bounds against uniform communication protocol for equality is

sufficient to prove the single-tape Turing machine lower bound for Palindrome. This follows from
a careful formalization of the standard proof of the Palindrome lower bound in PV1.

Theorem 4.6. For every constant β ∈ (0, 1), LB′EQn,βn(PV) ⊢PV1 LBPAL,c
1-tape(n

2), where c(M) ,
β/(15|M |), and |M | is the number of bits required to describe the internal state of M .

Proof. Let M be any single-tape Turing machine and β ∈ (0, 1) be a constant. We need to show
that PV1 + LB′EQn,βn(PV) proves LBPAL,c

1-tape(M,n2), where c(M) , β/(15|M |).
We argue in PV1. Suppose, towards a contradiction, that LBPAL,c

1-tape(M,n2) is false. This means
that there exists an input length n ∈ Log such that the single-tape Turing machine M decides
Palindrome in c(M) · n2 time.

Let c = c(M) and t = cn2. Without loss of generality, we assume that n = 3n′, and consider
inputs of the form x∥0n′∥y ∈ {0, 1}n, where x, y ∈ {0, 1}n′ . At the beginning of the computation,
the tape contains only the input string x∥0n′∥y. Let b1, b2, . . . , bn′ denote the n′ cells on the tape
corresponding to the middle string 0n

′ . During the entire t steps of computation, we know by an
averaging argument that for every (x, y), there is an i ∈ [n′] such that the head moves across the
border between bi and the block to its right for at most t/n′ = 3cn times. This can be proved
in PV1: As n′ ∈ Log, we can define a PV function that enumerates all i ∈ [n′] and finds the
lexicographic first such i, and proves its correctness by induction over quantifier-free formulas. We
call any such index i a splitting point corresponding to the input x0n′

y.
Let Li be the left fragment of the tape from bi (including bi) and Ri be the right fragment

excluding bi. Let k = |M | be the number of bits to describe the internal states of the Turing
machine M . We now describe a communication protocol that attempts to solve EQ over input
length n′ with communication complexity O(3ckn).

1. Alice runs the Turing machine M on x∥0n′∥rev(x) ∈ {0, 1}n, and finds the lexicographic first
splitting point i. Similarly, Bob runs the Turing machine M on y∥0n′∥rev(y) and finds the
lexicographic first splitting point j. Alice transmits i to Bob. If i ̸= j, Bob rejects. Otherwise,
Alice and Bob proceed as follows.

31

2. Alice and Bob aim to jointly simulate the single-tape Turing machine M over the input
x∥0n′∥rev(y). Alice is responsible for the blocks in Li and Bob is responsible for the blocks in
Ri. At the beginning, Alice and Bob initialize their tape cells according to their corresponding
inputs obtained from x and y, respectively.

3. If the head is in the portion of the tape of Alice (resp. Bob), Alice (resp. Bob) simulates the
machine by themself. When the head moves across the border of their tapes, say from Alice’s
tape to Bob’s tape, Alice notifies Bob the internal state of the machine using a k-bit message.

4. If the head crosses the splitting point i for more than 3cn times, Alice and Bob terminate the
protocol and reject the input.

The communication complexity in the first step is only O(log n). Since the head moves across
the border of Alice’s and Bob’s tape for at most 3cn times during the simulation (before they
terminate the protocol and reject), the total length of the transcript encoded in binary is at most
5 ·3ckn. Since we choose c = β/(15k), the communication complexity of the protocol is at most βn.
Moreover, it is easy to verify that the communication protocol is uniform as they are simulating
a uniform Turing machine. By LB′EQn,βn(PV), we know that the communication protocol cannot be
correct; that is, there is a pair of (x, y) such that the communication protocol does not output
EQ(x, y). Consider the following two cases.

• If x = y, then i = j and thus Bob will not reject in the first step. Moreover, i is a correct
splitting point corresponding to the input x∥0n′∥rev(y), and therefore the head crosses the
splitting point for at most 3cn time. By induction on the number of steps, we can prove
that the communication protocol correctly simulates M on the input x∥0n′∥rev(y) and it will
accept, as M is a correct algorithm for Palindrome.

• Now we assume that x ̸= y. If i ̸= j, Bob will reject in the first step. Also if i = j but i is not
a splitting point corresponding to the input x∥0n′∥rev(y), they will reject according to the
Item 4. Otherwise, by induction on the number of steps, we can prove that the communication
protocol correctly simulates M on the input x∥0n′∥rev(y) and it will reject, as M is a correct
algorithm for Palindrome and x ̸= y if and only if rev(x) ̸= rev(y).

Note that we only need induction for quantifier-free PV1 formulas in both cases above. There-
fore, it is impossible that the communication protocol does not output EQ(x, y), which leads to a
contradiction.

4.5 Uniform one-way CC lower bounds ⇔ WPHP′(PV)

We have shown that uniform CC lower bounds for EQ, single-tape Turing machine lower bounds
for Palindrome, and WPHP′(PV) are all equivalent. Indeed, we can also show that uniform one-way
CC lower bounds for EQ is also in the equivalence class.

A uniform one-way communication protocol is defined by two PV-functions gA, dB, where
gA(x, 1

n) → π outputs the message to transmit, and dB(x, π, 1
n) ∈ {0, 1} outputs Bob’s answer.

The behavior of a uniform one-way protocol can be defined naturally following the non-uniform
case (see Section 3.2). We can define the formulas CC(P, 1n, 1n) and Failf (P, 1n) as in Section 3.2.

Let LB−→
′f
n,m(P) denote the formula that if P is a uniform one-way communication protocol with

communication complexity m on input length n, then it must fail to compute f . That is, for every

32

n,m ∈ Log, every PV function f , and every uniform communication protocol P, we define

LB−→
′f
n,m(P) , CC(P, 1n, 1m)→ Failf (P, 1n).

Theorem 4.7 (LB′f ⇒ LB−→
′f). Let n,m ∈ Log and f be a PV function. For every uniform one-way

protocol P, there is a uniform communication protocol P such that LB′fn,m(P) ⊢PV1 LB−→
′f
n,m(P).

Proof Sketch. The proof is essentially the same as Theorem 3.4. Let P = (gA, dB) be a uniform
one-way communication protocol. We can define another uniform communication protocol P, in
which Alice transmits the i-th bit of gA(x) in the i-th round, and Bob outputs dB(y, gA(x)) after
he received all messages from Alice. It is easy to verify that if P violates the lower bound LB−→

′f
n,m,

P also violates the lower bound LB′fn,m as it is simulating P.

Theorem 4.8 (LB−→
′EQ ⇒WPHP′). Let n,m ∈ Log, m < n, and f be a PV function. For every PV

function g, there is a one-way communication protocol P such that LB−→
EQ
n,m(P) ⊢PV1 PHP′2

n

2m (g).

Proof Sketch. The proof is essentially the same as Theorem 3.5. For every PV function g : {0, 1}n →
{0, 1}m, we can construct the following uniform one-way communication protocol for EQ: Alice
transmits g(x) ∈ {0, 1}m to Bob, and Bob outputs 1 if and only if g(x) = g(y). The correctness of
the communication protocol follows from the fact that PHP′2

n

2m (g) is false, i.e., g is a “perfect” hash
function. This violates the lower bound LB−→

EQ
n,m(P).

4.6 Summary of the equivalence class
Now we summarize the equivalence class for WPHP′(PV).

Theorem 4.9. Let ε, β ∈ (0, 1) be arbitrary constants. The following sets of sentences are equivalent
with respect to PV1.

1. WPHP′(PV), i.e., the uniform weak pigeonhole principle for PV function symbols.
2. {∀n ∈ Log PHP′2

n

2n−1(g) | g is a PV function}. This stands for the uniform weak pigeonhole
principle for PV functions with single-bit shrinkage.

3. {∀n ∈ Log PHP′2
n

2nε (g) | g is a PV function}. This stands for the uniform weak pigeonhole
principle for PV functions with polynomial length shrinkage.

4. {∀n ∈ Log LB′EQn,n−1(P) | P is a uniform communication protocol}, i.e., EQ has uniform com-
munication complexity greater than n− 1.

5. {∀n ∈ Log LB′EQn,nε(P) | P is a uniform communication protocol}, i.e., EQ has uniform com-
munication complexity greater than nε.

6. {∀n ∈ Log LB−→
′EQ
n,n−1(P) | P is a uniform one-way communication protocol}, i.e., EQ has uni-

form communication complexity greater than n− 1 against one-way protocols.
7. {∀n ∈ Log LB−→

′EQ
n,nε(P) | P is a uniform one-way communication protocol}, i.e., EQ has uni-

form communication complexity greater than nε against one-way protocols.
8. LBPAL,c

1-tape(n
2), i.e., Palindrome requires Ω(n2) time on single-tape Turing machines, where the

constant factor c(M) , 1/(100|M |), and |M | is the number of bits used to describe the internal
state of the Turing machine.

9. LBPAL
1-tape(βn

1+β), i.e., Palindrome requires n1+Ω(1) time on single-tape Turing machines.

33

Proof. (1) ≡PV1 (2) ≡PV1 (3): This is an easy corollary of Lemma 4.1.
(2) ⊢PV1 (4) follows from Theorem 4.4.
(4) ⊢PV1 (5) and (8) ⊢PV1 (9): Trivial, since quantitatively stronger lower bounds imply weaker

lower bounds under any reasonable formalization.
(4) ⊢PV1 (6) and (5) ⊢PV1 (7) follow from Theorem 4.7.
(6) ⊢PV1 (2) and (5) ⊢PV1 (3) follow from Theorem 4.8.
(6) ⊢PV1 (8) follows from Theorem 4.6.
(9) ⊢PV1 (1) follows from Theorem 4.3.

5 Equivalence Class for WPHPWIT(PV)

In this section, we explore the equivalence class of witnessing pigeonhole principle for PV func-
tions. We will show that various lower bounds for the set-disjointness function are equivalent to
the witnessing pigeonhole principle.

5.1 Technical lemmas
Lemma 5.1 (Implicit in [PWW88, Jeř07b]). Let t(·) be any PV function such that PV ⊢ ∀x t(x) ≥
2x. Then WPHPWIT(PV) ≡PV1 {∀a PHPWIT

t(a)
a (f, g) | f, g are PV functions}.

5.2 SetDisj lower bounds and WPHPWIT(PV)

For strings x, y ∈ {0, 1}n, we let ⟨x, y⟩ ,
∑

i xi · yi. The set-disjointness function SetDisj :
{0, 1}n×{0, 1}n → {0, 1} is defined as SetDisj(x, y) , [⟨x, y⟩ = 0], i.e., SetDisj(x, y) = 1 if and only
if there is no i ∈ [n] such that xi = yi = 1. It is well known that the communication complexity of
SetDisj is at least n.

SetDisj lower bounds from WPHP(PV). Let n,m ∈ Log, n < m. Recall that the (non-uniform)
communication complexity lower bound for SetDisj is formalized as the sentence:

LBSetDisj
n,m , ∀P (CC(P, 1n, 1m)→ FailSetDisj(P, 1n)).

Theorem 5.2. For n,m ∈ Log, m < n, PHP2n
2m(PV) ⊢PV1 LBSetDisj

n,m .

Proof Sketch. This follows the standard fooling set proof of the communication complexity lower
bound (see, e.g., [AB09]), which is similar to the proof of Theorem 3.2. For simplicity, we only sketch
the proof and identify the differences. Below we use x to denote the coordinate-wise complement
of a string x.

Let n ∈ Log and P be a protocol such that CC(P, 1n, 1m). We define the circuit D : {0, 1}n →
{0, 1}m as D(x) , π(x, x), where ⟨x, x⟩ = 0. That is, D(x) runs the protocol over the input (x, x)
and outputs the transcript. By PHP2n

2m(PV), it follows that for distinct x, y ∈ {0, 1}n, D(x) = D(y).
We can then prove by induction that π(x, y) = π(x, x) = π(y, y).

However, since SetDisj(x, x) = SetDisj(y, y) = 1 but SetDisj(x, y) = 0, the protocol P cannot
be correct no matter which player will output the answer. This means that FailSetDisj(P, n) is true,
which completes the proof.

34

Note that one can also apply Theorem 3.8 and plug in the fooling set construction S , {(x, x) |
x ∈ {0, 1}n} of size n.

We do not know whether the inversion of the theorem holds. It is an interesting open problem
to find an equivalence for LBSetDisj.

One-way lower bounds for SetDisj. We also define the communication complexity lower bound
for SetDisj against one-way (non-interactive) communication protocols. Let n,m ∈ Log and LB−→

SetDisj
n,m

be the sentence
LB−→

SetDisj
n,m , ∀P (CC(P, 1n, 1m)→ FailSetDisj(P, 1n)).

Theorem 5.3 (WPHPWIT ⇒ LB−→
SetDisj). Let n,m ∈ Log, n > m. Then PHPWIT2m

2n (PV) ⊢PV1

LB−→
SetDisj
n,m .

Proof. We argue in PV1. Towards a contradiction, we assume that there are n,m ∈ Log, n > m, and
a one-way protocol P with communication complexity at most m that correctly computes SetDisj.
In other words, there are functions gA : {0, 1}n → {0, 1}m and dB : {0, 1}n × {0, 1}m → {0, 1} such
that for every x, y ∈ {0, 1}n, SetDisj(x, y) = dB(y, gA(x)). We now define a pair of functions (f1, f2)
that violates PHPWIT2m

2n (PV).
• f2 : {0, 1}n × {0, 1}∗ → {0, 1}m is defined as f2(x,C) , C(x), where the second input is a

circuit C : {0, 1}n → {0, 1}ℓ. The second input will be fixed to be gA.
• f1 : {0, 1}m × {0, 1}∗ → {0, 1}n is defined as follows. Let the second input be fixed as the

circuit dB. On the input y ∈ {0, 1}m, for any i ∈ [m], the i-th output bit equals to 1 if and
only if dB(ei, y) = 0, where ei ∈ {0, 1}n is the string with the i-th index being 1 and other
indices being 0.

Then we will show that PHPWIT2m
2n (f1, f2) does not hold, that is, for every x ∈ {0, 1}n,

f1(f2(x, gA), dB) = x. For any i ∈ [m], the i-th bit of f1(f2(x, gA)) equals to 1 if and only if
dB(e

i, gA(x)) = 0, which, by the assumption that P is a correct communication protocol for SetDisj,
holds if and only if ⟨ei, x⟩ = 1 (i.e. xi = 1). This means that the i-th bit of f1(f2(x, gA)) equals to
xi and therefore f1(f2(x, gA)) = x.

We know show the inverse of the theorem. Indeed, we can prove the stronger result that any
one-way communication complexity lower bound implies PHPWIT.
Theorem 5.4 (LB−→⇒ PHPWIT). Let n,m ∈ Log, m < n. Then for every PV function h : {0, 1}n×
{0, 1}n → {0, 1}, LB−→

h
n,m ⊢PV1 PHPWIT2m

2n (PV).

Proof. We argue in PV1. Towards a contradiction, we assume that PHPWIT2m
2n (PV) does not hold,

that is, there are PV functions f : {0, 1}m × {0, 1}∗ → {0, 1}n and g : {0, 1}n × {0, 1}∗ → {0, 1}m,
n,m ∈ Log, m < n, and z1, z2 such that f(g(·, z1), z2) is an identity function. We will construct
a one-way communication protocol that computes h on input length n ∈ Log with communication
complexity at most m ∈ Log, which leads to a contradiction with LB−→

h
n,m. The communication

protocol is as follows: On input (x, y) ∈ {0, 1}n × {0, 1}n, where Alice holds x and Bob holds y.
• Alice sends g(x, z1) ∈ {0, 1}m to Bob, that is, the circuit gA(x) , g(x, z1).
• Bob accepts if and only if h(f(g(x, z1), z2), y) = 1, that is, the decision circuit dB(y) ,
h(f(g(x, z1), z2), y) (see Lemma 2.2).

The communication complexity of the protocol is clearly m. Since f(g(x, z1), z2) = x for every x,
the protocol correctly computes h(x, y). This concludes the proof.

35

5.3 Distance lower bounds for decodable ECC ⇔ WPHPWIT(PV)

We will also show that a distance lower bound for decodable error-correcting codes as an analog
of the singleton bound is equivalent to WPHPWIT(PV).

An [n, e,m]-decodable error-correcting code is defined by a pair of circuits (E,D), where E :
{0, 1}n → {0, 1}m, D : {0, 1}m → {0, 1}n, such that for every error vector γ ∈ {0, 1}m of Hamming
weight at most e, D(E(x) ⊕ γ) = x. Let n, e,m ∈ Log and (E,D) be a pair of circuits, we can
formalize the definition in PV1 with:

DistDecECC(E,D, 1n, 1e, 1m) , ∀x ∈ {0, 1}n ∀γ ∈ {0, 1}m (∆(y) ≤ e→ D(E(x)⊕ γ) = x).

A variant of the singleton bound for decodable ECC states that m ≥ n+ ⌊log
(
m
e

)
⌋, which can

be formalized as

Singleton′ , ∀n, e,m ∈ Log ∀(E,D)

(
DistDecECC(E,D, 1n, 1e, 1m)→ m ≥ n+

⌊
log

(
m

e

)⌋)
.

To prove the equivalence between Singleton′ and WPHPWIT, we will need the following lemma
that gives an explicit encoding of strings with a fixed Hamming weight.

Lemma 5.5. PV1 proves that for every m, e ∈ Log, there is a pair of circuits (Fm,e, Gm,e), where
Fm,e : [

(
m
e

)
] → Hm,e, Gm,e : Hm,e → [

(
m
e

)
], Hm,e , {x ∈ {0, 1}m | |x| = e}, such that Fm,e ◦ Gm,e

and Gm,e ◦ Fm,e are identity functions on their domains, respectively.

Proof Sketch. We will define Fm,e(k) to be the k-th string (in lexicographic order) with Hamming
weight e, and Gm,e(x) to be the rank of x in lexicographic order. We can construct Fm,e and Gm,e

recursively as follows.
• If m = e, Hm,e = {1m}, we define Fm,e(1) , 1m and Gm,e(1

m) , 1.
• If e = 0, Hm,e = {0m}, we define Fm,e(1) , 0m and Gm,e(0

m) , 1.
• Otherwise, we know by the binomial formula that

(
m
e

)
=

(
m−1
e−1

)
+
(
m−1
e

)
.

◦ If k ≤
(
m−1
e

)
, Fm,e(k) , 0∥Fm−1,e(k); otherwise, Fm,e(k) , 1∥Fm−1,e−1(k −

(
m−1
e

)
).

◦ Gm,e(0∥x) , Gm−1,e(x); G(m, e)(1∥x) , Gm−1,e−1(x) +
(
m−1
e

)
.

As m, e ∈ Log, the recursive definition is realizable in PV. Moreover, by induction over quantifier-
free formulas, which is admissible in PV1, we can prove that Fm,e(Gm,e(x)) = x for every x ∈ Hm,e

and Gm,e(Fm,e(k)) = k for every k ∈ [
(
m
e

)
].

Theorem 5.6. WPHPWIT(PV) ≡PV1 Singleton′.

Proof. (WPHPWIT(PV) ⊢PV1 Singleton′). This follows from the standard proof of the lower bound.
We argue in PV1 +WPHPWIT(PV). Let h(m, e) ,

⌊
log

(
m
e

)⌋
for simplicity. (Note that

(
m
e

)
can be

defined in PV1 as m, e ∈ Log.) Suppose, towards a contradiction, that there are n, e,m ∈ Log and
circuits E,D such that DistDecECC(E,D, n, e,m) but m < n + h(m, e). Let (F,G) be the pair of
circuits in Lemma 5.5, where F : [

(
m
e

)
]→ Hm,e and G : Hm,e → [

(
m
e

)
]. Consider the following pair

of circuits (A,B).

• A : {0, 1}n+h(m,e) → {0, 1}m, where the input consists of a string x ∈ {0, 1}n and a number
k ∈ [

(
m
e

)
] encoded in binary, we compute A(x∥k) , E(x)⊕ F (k).

36

• B : {0, 1}m → {0, 1}n+h(m,e). Given the input y ∈ {0, 1}m, we compute x , D(y), λ ,
E(x)⊕ y, and output B(y) , x∥G(λ).

By WPHPWIT(PV), there exists a string z ∈ {0, 1}n+h(m,e) such that B(A(z)) ̸= z. Let z = x∥k
for x ∈ {0, 1}n and k ∈ {0, 1}h(m,e), and γ = F (k). One can see that

B(A(x∥k)) = D(E(x)⊕ γ)∥G(F (k)) = D(E(x)⊕ γ)∥k,

where γ is of Hamming weight at most e. This means that D(E(x) ⊕ γ) ̸= x, which violates the
correctness of the error-correcting code.

(Singleton′ ⊢PV1 WPHPWIT(PV)). By Lemma 5.1, it suffices to prove that Singleton′ ⊢PV1

∀a PHPWIT
t(a)
a (PV) for any PV function t such that t(a) ≥ 2a. Let c be the constant in Lemma 2.1

and (E,D) be the ECC. Fix t(a) = 2log
2c(a). For every pair (f, g) of PV functions and any a, we

need to show that PV+Singleton′ ⊢ PHPWIT
t(a)
a (f, g). We assume for simplicity that a = 2n, while

the proof clearly generalizes to all a.
Let (f, g) be any pair of PV functions and a be a number. Since PHPWIT

t(a)
a is provable for

each fixed a ∈ N, we can assume that n is sufficiently large such that n2c ≥ cnc. We argue
in PV1 + Singleton′ that PHPWIT

t(a)
a (f1, f2) holds. Towards a contradiction, we assume that there

exist z1, z2 such that for every u ∈ {0, 1}n2c , f1(f2(u, z2), z1) = u. Let F1, F2 be the Boolean circuits
such that Fi(·) = fi(·, zi) for i ∈ {1, 2} by Lemma 2.2. We define the following [n2c, 0.1cnc, cnc]
decodable error-correcting code (E′, D′) that violates the singleton bound.

• E′ : {0, 1}n2c → {0, 1}cnc , defined as E′(u) = E(F2(u)).
• D′ : {0, 1}cnc → {0, 1}n2c , defined as D′(v) = F1(D(v)).

We first verify the correctness. For every u ∈ {0, 1}n2c and every error vector γ ∈ {0, 1}cnc of
Hamming weight at most 0.1cnc, we have

D′(E′(u)⊕ γ) = F1(D(E(F2(u))⊕ γ)) = F1(F2(u)) = u.

Moreover, since n2c > cnc, this ECC clearly violates the singleton bound.

5.4 Summary of equivalence class
Now we summarize the equivalence class for WPHPWIT(PV).

Theorem 5.7. Let ε ∈ (0, 1) be a constant. The following sentences or sets of sentences are
equivalent with respect to PV1.

1. WPHPWIT(PV), i.e., the weak witnessing pigeonhole principle for PV function symbols.
2. {∀n ∈ Log PHPWIT2n

2n−1(f, g) | f, g are PV functions}. This stands for the witnessing pigeon-
hole principle for PV functions with single-bit stretch/shrinkage.

3. {∀n ∈ Log PHPWIT2n

2nε (f, g) | f, g are PV functions}. This stands for the witnessing pigeon-
hole principle for PV functions with polynomial length stretch/shrinkage.

4. ∀n ∈ Log LB−→
SetDisj
n,n−1 , i.e., SetDisj has communication complexity greater than n − 1 against

one-way protocols.
5. ∀n ∈ Log LB−→

SetDisj
n,nε , i.e., SetDisj has communication complexity greater than nε against one-way

protocols.
6. Singleton′, i.e., the singleton bound for decodable error correcting codes.

37

Proof. (1) ≡PV1 (2) ≡PV1 (3): This is an easy corollary of Lemma 5.1.
(2) ⊢PV1 (4) follows from Theorem 5.3.
(4) ⊢PV1 (5): Trivial, since quantitatively stronger lower bounds imply weaker lower bounds

under any reasonable formalization.
(5) ⊢PV1 (3) follows from Theorem 5.4.
(1) ≡PV1 (6) follows from Theorem 5.6.

6 Consequences
In this section we highlight some consequences of our results.

6.1 Conditional unprovability of simple lower bounds
We have established the equivalence between natural combinatorial principles and simple com-

plexity lower bounds, such as the communication complexity lower bound for Equality, and the
lower bound against single-tape Turing machines for Palindrome. As explained below, this im-
plies that many simple complexity lower bounds are not provable in PV1 (nor in APC1) assuming
standard cryptographic assumptions.

Definition 6.1 (Collision-Resistant Hash Function). A collision-resistant hash function (CRHF)
consists of a probabilistic polynomial-time function Gen(1n) and a deterministic polynomial-time
function Eval(k, x). Gen(1n) generates a key k ∈ {0, 1}∗ given 1n, and Eval(k, ·) : {0, 1}n → {0, 1}m
computes the hash function on a given input x and choice of key k, where we assume that m(n) <
n. The security guarantee is that for any probabilistic polynomial-time adversary A and for n
sufficiently large,

Pr
A, k←Gen(1n)

[A(1n, k) outputs distinct x1, x2 such that Eval(k, x1) = Eval(k, x2)] = 1/nω(1).

Theorem 6.2 (Folklore, see, e.g., [Kra01]). Assuming the existence of collision-resistant hash
functions, WPHP(PV) cannot be proved in APC1 , PV1 + dWPHP(PV).

Proof Sketch. Towards a contradiction, we assume that WPHP(PV) can be proved in APC1. It
follows by the witnessing theorem for APC1 (see, e.g., [Tha02, Jeř05]) that there is a polynomial-
time probabilistic algorithm for the following search problem that succeeds with at least 1/poly(n)
success probability: Given a Boolean circuit C : {0, 1}n → {0, 1}n−1, output two distinct strings
x, y ∈ {0, 1}n such that C(x) = C(y). This can be used to break any collision resistant hash
function.

Similarly to Definition 6.1, we review the notion of a keyless collision-resistant hash function.

Definition 6.3 (Keyless Collision-Resistant Hash Function). A keyless collision-resistant hash
function (CRHF’) with hash value length m = m(n) < n is a deterministic uniform polynomial-time
algorithm h : {0, 1}n → {0, 1}m such that for every uniform probabilistic polynomial-time adversary
A(1n), for every large enough input length n. we have

Pr
A(1n)

[A(1n) outputs distinct x1, x2 such that h(x1) = h(x2)] = 1/nω(1).

38

Note that the existence of keyless CHRF is a stronger cryptographic assumption than the
existence of CHRF.

Theorem 6.4 (Folklore). Assuming the existence of keyless collision-resistant hash functions,
WPHP′(PV) cannot be proved in APC1.

Proof Sketch. Let h be a keyless collision-resistant hash function. Towards a contradiction, we
assume that WPHP′(h) can be proved in APC1. Then by the witnessing theorem for APC1 (see,
e.g., [Tha02, Jeř05]), there is a polynomial-time probabilistic algorithm for the following search
problem that succeeds with at least 1/poly(n) success probability: Given 1n, output distinct strings
x, y ∈ {0, 1}n such that h(x) = h(y). This breaks the keyless collision resistant hash function h.

Therefore, our equivalence results have the following corollaries.

Corollary 6.5. Under the existence of CRHF, the following lower bounds cannot be proved in
APC1.

• ∀n ∈ Log LB−→
EQ
n,nε, i.e., EQ has communication complexity greater than nε against one-way

protocols.
• Singleton, i.e., the singleton bound for error correcting codes.

Corollary 6.6. Under the existence of keyless CRHF, the following lower bound cannot be proved
in APC1.

• LBPAL
1-tape(βn

1+β) for any fixed constant β ∈ (0, 1), i.e., Palindrome requires n1+Ω(1) time on
single-tape Turing machines.

These results indicate that although APC1 is expressive enough to formalize sophisticated
complexity-theoretic results such as the PCP theorem [Pic15b] and the Razborov-Smolensky lower
bound against AC0[p] [MP20], it still has some inherent weaknesses that prevent it from proving
very simple lower bounds. This may suggest that unprovability of complexity lower bounds against
PV + dWPHP(PV) +WPHP(PV) will be a better evidence that there is no “simple” proof for the
lower bound compared to an unprovability result against APC1.

6.2 On the derandomization of feasibly definable randomized algorithms
While generic derandomization (e.g. BPP = P) is possible in the computational regime under

plausible assumptions [NW94, IW97, TV07], a significant open problem in bounded arithmetic is
whether probabilistic feasible reasoning can be “derandomized”. A recent conditional result [ILW23]
shows that APC1 is not conservative over PV1, which in a sense rules out (under a cryptographic
assumption) the possibility of the most generic notion of “derandomizing probabilistic feasible
reasoning”. Taking a step back, we can consider whether every feasibly definable randomized
algorithm is feasibly definable deterministically.

The witnessing theorem for PV1 [Coo75, Bus86] shows that if a ∀Σb
1-sentence ∀x ∃y ≤ t(x) is

provable in PV1, then the search problem of given x finding a y ≤ t(x) such that ϕ(x, y) holds
(under N) can be solved by a deterministic polynomial time algorithm. Similarly, the witnessing
theorem for APC1 (see, e.g., [Tha02, Jeř05]) shows that if a ∀Σb

1-formula ∀x ∃y ≤ t(x) ϕ(x, y) can
be proved in APC1, then there is a randomized polynomial-time algorithm that given any x outputs
a y ≤ t(x) such that ϕ(x, y) is true (in the standard model N). As explained in Section 1.1, we
say that a search problem P (represented by an open PV formula) admits a feasible deterministic

39

(resp. randomized) polynomial-time algorithm if ∀x ∃y P (x, y) is provable in PV1 (resp. APC1). The
problem of derandomizing feasible definable randomized algorithms can be formalized as follows:

Is APC1 ∀Σb
1-conservative over PV1? (⋆)

Another facet of (⋆) is related to the derandomization of proofs of complexity-theoretic lower
bounds. Recall that most complexity lower bounds against deterministic non-uniform computa-
tional models can be formalized as ∀Σb

1 sentences of the following format:

For every input length n ∈ Log, n > n0, for every (non-uniform) device A from the
model, there is an input x ∈ {0, 1}n such that A(x) ̸= f(x).

Therefore, the ∀Σb
1-conservation of APC1 over PV1 (as in (⋆)) implies that every such lower bound

that can be proved using feasible probabilistic reasoning (i.e., APC1 reasoning) can be proved using
feasible deterministic reasoning (i.e., PV reasoning).

The APC1-complete lower bound. An important property of the witnessing pigeonhole prin-
ciple is that APC1 = PV1 + dWPHP(PV) is ∀Σb

1-conservative over PV1 +WPHPWIT(PV) (see The-
orem 2.10), namely any ∀Σb

1-sentence provable in APC1 is also provable in PV1 +WPHPWIT(PV).
This, together with the equivalence between LBSetDisj

n,nε and WPHPWIT(PV), leads to the following
consequence.

Corollary 6.7. The following statements are equivalent.
1. APC1 is ∀Σb

1-conservative over PV1, i.e., feasibly definable randomized algorithms can be
feasibly defined deterministically.

2. PV1 ⊢ WPHPWIT(PV), namely PV1 proves the weak witnessing pigeonhole principle for PV
functions.

3. PV1 ⊢ ∀n ∈ Log LB−→
SetDisj
n,nε , namely PV1 proves a nΩ(1) communication complexity lower bound

for SetDisj against one-way protocols.

Proof. (1) ⇒ (2): Since WPHPWIT(f, g) is a ∀Σb
1-sentence for every pair of PV functions (f, g)

(see Theorem 2.10), and APC1 ⊢ WPHPWIT(f, g) (see Proposition 2.8), it follows that the ∀Σb
1-

conservation of APC1 over PV1 implies the provability of WPHPWIT(f, g) in PV1.
(2) ⇔ (3) is a direct consequence of Theorem 5.7.
(2) ⇒ (1): Assume that PV1 ⊢WPHPWIT(PV). Then PV1 +WPHPWIT(PV) and PV1 are the

same theory. Therefore, Theorem 2.10 implies that APC1 is ∀Σb
1-conservative over PV1.

An interpretation of this result is that the one-way communication complexity lower bound for
SetDisj is an APC1-complete lower bound with respect to PV1. Similarly, every lower bound in the
equivalence class of WPHPWIT(PV), say the singleton bound for decodable error correcting codes,
is APC1-complete.

The “easiest” communication complexity lower bound. Our results show that the one-
way communication complexity lower bound for SetDisj is the “easiest” communication complexity
lower bound, in the sense that it is implied by any communication complexity lower bound. This
is formally captured by the following corollary.

40

Corollary 6.8. Let f be an arbitrary PV function. For n,m ∈ Log such that m < n, LB−→
f
n,m ⊢PV

LB−→
SetDisj
n,m . Moreover, for any constant ε ∈ (0, 1),

∀n ∈ Log LB−→
f
n,nε ⊢PV1 ∀n ∈ Log LB−→

SetDisj
n,n−1 ,

that is, LB−→
SetDisj
n,n−1 is the easiest communication complexity lower bound.

Proof. This is a direct consequence of Theorem 5.3 and Theorem 5.7.

Therefore, it suffices to prove any communication complexity lower bound against one-way
protocols in PV1 to prove (⋆), or to derandomize feasible randomized algorithms, or to derandomize
lower bounds proved by probabilistic feasible reasoning.

6.3 Amplification of lower bounds
The equivalences between lower bound statements and pigeonhole principles imply that the

provability of many weak lower bounds come with an associated amplification phenomenon, in
the sense that a weaker lower bound yields a quantitatively stronger lower bound (i.e. in PV1).
Concretely, PV1 proves the following:

• EQ has non-uniform (resp. uniform) communication complexity nΩ(1) implies EQ has non-
uniform (resp. uniform) communication complexity n.

• Palindrome requires n1+Ω(1) time by single-tape Turing machines implies it requires Ω(n2)
time by single-tape Turing machines.

• SetDisj has one-way communication complexity nΩ(1) implies SetDisj has one-way communi-
cation complexity n.

Intuitively, this is because there are quantitative connections between these lower bounds and
pigeonhole principles, where the complexity corresponds to the stretch or shrinkage of the function
in the corresponding pigeonhole principle. For instance, the complexity of EQ is related to the out-
put length of the function for the pigeonhole principle in Theorems 3.2 and 3.5. The amplification
results therefore follow from the equivalence of the variants of the pigeonhole principle for different
stretch or shrinkage (see Lemma 3.1, 4.1, and 5.1).

6.4 Connections to TFNP

A line of work related to our results is the program of classifying the computational complexity
of total functions in NP and in the polynomial-time hierarchy (see, e.g., [KKMP21] and references
therein). Recall that many subclasses of TFNP are defined according to natural combinatorial
principles; for instance, the class PPP corresponds to the usual pigeonhole principle (with 2n pigeons
and 2n − 1 holes), while the class PEPP corresponds to the dual pigeonhole principle (with 2n − 1
pigeons and 2n holes). In this subsection, we rely on an existing connection between bounded
arithmetic and TFNP to extract from our equivalences in the context of reverse mathematics efficient
reductions among problems in TFNP. The presentation below assumes basic familiarity with TFNP.

Definition 6.9. The class PWPP (Polynomial Weak Pigeonhole Principle; see [Jeř16]) is the set of
TFNP problems that are Turing reducible to the following problem: given a circuit D : {0, 1}n →
{0, 1}n−1, the solutions are pairs of distinct strings x, y ∈ {0, 1}n such that D(x) = D(y).

41

Definition 6.10 (Refutation Problem of a Complexity Lower Bound). Let

∀n ∈ Log ∀C : {0, 1}n → {0, 1} ∃x ∈ {0, 1}n φ(n,C, x)

be a lower bound sentence that is true over the standard model and is formalized by a ∀Σb
1-formula

in the language of PV1, where C encodes an n-input computation device from a fixed computational
model C (e.g., a single-tape machine with a clocked time bound), and φ(n,C, x) is a quantifier-free
formula which states that C makes a mistake on the input x (with respect to some fixed task, e.g.,
deciding the language Palindrome).

The refutation problem of the lower bound is the following total search problem: given 1n and
a computation device C ∈ C , the solutions are strings x ∈ {0, 1}n such that φ(n,C, x) is true in
the standard model, i.e., C makes a mistake on the input x.

We will need the standard Herbrand Theorem from logic (see, e.g., [Bus98, TS00, Koh08]).

Theorem 6.11 (Herbrand Theorem). Let T be a first-order universal theory (i.e. the axioms are
universal sentences), and φ(x⃗, y) be a quantifier-free formula with free variables as displayed. If
T ⊢ ∀x⃗ ∃y φ(x⃗, y), then there are finitely many terms t1, . . . , tk in the language of T such that

T ⊢ ∀x⃗
(
φ(x⃗, t1(x⃗)) ∨ . . . ∨ φ(x⃗, tk(x⃗))

)
.

Theorem 6.12. Let Φ , ∀n ∈ Log ∀C : {0, 1}n → {0, 1} ∃x ∈ {0, 1}n φ(n,C, x) be a lower bound
formalized by a ∀Σb

1-formula in the language of PV1. Then:

• If WPHP(PV) ⊢PV1 Φ, then the refutation problem of Φ is in PWPP.

• If Φ ⊢PV1 WPHP(PV), then the refutation problem of Φ is PWPP-hard under Turing reduc-
tions.

Therefore, if WPHP(PV) ≡PV1 Φ, then the refutation problem of Φ is PWPP-complete under Turing
reductions.

Proof Sketch. This connection is well known to researchers in bounded arithmetic, and as such we
only provide a sketch of the argument. Moreover, we only discuss the first bullet, since the second
bullet can be proved in similar way.

Suppose that WPHP(PV) ⊢PV1 Φ, which means that PV1 + WPHP(PV) ⊢ Φ. We know by
Lemma 3.1 that PV1+PHP2n

2n−1(PV) ⊢ Φ. Moreover, let Eval(x,C) be the PV function that evaluates
the Boolean circuit C : {0, 1}n → {0, 1}n−1 over the input x ∈ {0, 1}n. Then PV1+PHP2n

2n−1(Eval) ⊢
Φ (see Lemma 2.2).

Let f be a new function symbol whose intended interpretation is as follows: given any input
D describing a circuit D : {0, 1}n → {0, 1}n−1, f outputs a pair (x, y) of distinct strings such that
D(x) = D(y). Then PHP2n

2n−1(Eval) can be restated as a universal sentence in the language of PV1

extended with the new function symbol f .
Let PHP2n

2n−1(Eval, f) be the universal sentence discussed above, L(PV, f) be the language of
PV extended with f , and T , PV1+PHP2n

2n−1(Eval, f). It is easy to argue that the universal theory
T proves Φ, since PHP2n

2n−1(Eval) can be derived from PHP2n

2n−1(Eval, f). Therefore, by Herbrand
Theorem (see Theorem 6.11), there is a constant k ∈ N and terms t1, . . . , tk in L(PV, f) such that

T ⊢ ∀n ∈ Log ∀C : {0, 1}n → {0, 1}
(
φ(n,C, t1(1

n, C)) ∨ . . . ∨ φ(n,C, tk(1n, C))
)
.

42

(Note that each term ti takes 1n instead of n as input (in addition to C), since ∀n ∈ Log is a
shorthand for ∀N ∀n = |N |). Each term ti is a finite composition of PV functions and of the
function symbol f . Consequently, over the standard model N, each tNi can be computed by a
polynomial-time Turing machine Mi with an f -oracle (see, e.g., [LO23] for a similar argument).

By the soundness of T over the standard model N, for every choice of the input length n and
of the circuit C, at least one term tNi (i.e. the corresponding oracle Turing machine Mi) correctly
solves the refutation problem of Φ on input C. In other words, for every n and every n-input
computation device C, there is some i such that Mi(1

n, C) with oracle access to f (a fixed but
arbitrary black-box that finds a collision in a given circuit D) runs in polynomial time and outputs
an x such that φ(n,C, x) is true, i.e., C makes a mistake on the input x. Note that the predicate
φ(n,C, x) can be decided in polynomial time, since φ is a quantifier-free formula in the language
of PV. Consequently, we can efficiently check if a proposed solution x is correct. Since there are
finitely many machines Mi, this provides a polynomial-time Turing reduction from the refutation
problem of Φ to the complete problem of PWPP.

This means that our equivalence result (Theorem 3.11) involving WPHP(PV) and complexity
lower bounds can be directly translated into the PWPP-completeness of the refutation problems of
these lower bounds, which include communication lower bounds for EQ and the singleton bound
for error correcting codes.

We observe that this result also holds in the context of the equivalence class for WPHPWIT,
where the corresponding subclass of TFNP will be the class with the complete problem LossyCode
that was recently introduced by [Kor22].

Note that the converse of Theorem 6.12 is not necessarily true. Even if there is a polynomial-
time Turing reduction between a refutation problem and the complete problem of PWPP, the proof
of its correctness may not be formalizable in PV1.

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of mathe-
matics, pages 781–793, 2004.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.
Transactions on Computation Theory (TOCT), 1(1), 2009.

[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication
complexity theory. In Symposium on Foundations of Computer Science (FOCS), pages
337–347, 1986.

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizatons of the P =? NP
Question. SIAM J. Comput., 4(4):431–442, 1975.

[BKKK20] Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký. Expander
construction in VNC1. Annals of Pure and Applied Logic, 171(7):102796, 2020.

43

[BKT14] Samuel R. Buss, Leszek A. Kołodziejczyk, and Neil Thapen. Fragments of approximate
counting. Journal of Symbolic Logic, 79(2):496–525, 2014.

[Bus86] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986.

[Bus98] Samuel R. Buss. Handbook of Proof Theory. Elsevier, 1998.

[CHO+22] Lijie Chen, Shuichi Hirahara, Igor C. Oliveira, Ján Pich, Ninad Rajgopal, and Rahul
Santhanam. Beyond natural proofs: Hardness magnification and locality. J. ACM,
69(4):25:1–25:49, 2022.

[CHR23] Lijie Chen, Shuichi Hirahara, and Hanlin Ren. Symmetric exponential time re-
quires near-maximum circuit size. Electronic Colloquium on Computational Complexity
(ECCC), TR:23:144, 2023.

[CN10] Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cam-
bridge University Press, 2010.

[Cob65] Alan Cobham. The intrinsic computational difficulty of functions. Proc. Logic, Method-
ology and Philosophy of Science, pages 24–30, 1965.

[Coh63] Paul J. Cohen. The independence of the continuum hypothesis. Proceedings of the
National Academy of Sciences, 50(6):1143–1148, 1963.

[Coo75] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus (prelim-
inary version). In Symposium on Theory of Computing (STOC), pages 83–97, 1975.

[Dam89] Ivan Bjerre Damgård. A design principle for hash functions. In Conference on the
Theory and Application of Cryptology, pages 416–427. Springer, 1989.

[DM22] Damir D. Dzhafarov and Carl Mummert. Reverse mathematics: problems, reductions,
and proofs. Springer Nature, 2022.

[Fri75] Harvey Friedman. Some systems of second order arithmetic and their use. In Pro-
ceedings of the International Congress of Mathematicians, volume 1, pages 235–242,
1975.

[FS16] Lance Fortnow and Rahul Santhanam. New non-uniform lower bounds for uniform
classes. In Conference on Computational Complexity (CCC), pages 19:1–19:14, 2016.

[FS17] Lance Fortnow and Rahul Santhanam. Robust simulations and significant separations.
Inf. Comput., 256:149–159, 2017.

[Gay22] Azza Gaysin. Proof complexity of CSP. arXiv:2201.00913, 2022.

[Göd38] Kurt Gödel. The consistency of the axiom of choice and of the generalized continuum-
hypothesis. Proceedings of the National Academy of Sciences, 24(12):556–557, 1938.

[ILW23] Rahul Ilango, Jiatu Li, and R. Ryan Williams. Indistinguishability obfuscation, range
avoidance, and bounded arithmetic. In Symposium on Theory of Computing (STOC),
pages 1076–1089. ACM, 2023.

44

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Symposium on the Theory of Computing (STOC),
pages 220–229, 1997.

[Jeř04] Emil Jeřábek. Dual weak pigeonhole principle, boolean complexity, and derandomiza-
tion. Annals of Pure and Applied Logic, 129(1-3):1–37, 2004.

[Jeř05] Emil Jeřábek. Weak pigeonhole principle and randomized computation. PhD thesis,
Charles University in Prague, 2005.

[Jeř06] Emil Jeřábek. The strength of sharply bounded induction. Mathematical Logic Quar-
terly, 52(6):613–624, 2006.

[Jeř07a] Emil Jeřábek. Approximate counting in bounded arithmetic. Journal of Symbolic Logic,
72(3):959–993, 2007.

[Jeř07b] Emil Jeřábek. On independence of variants of the weak pigeonhole principle. J. Log.
Comput., 17(3):587–604, 2007.

[Jeř16] Emil Jeřábek. Integer factoring and modular square roots. Journal of Computer and
System Sciences, 82(2):380–394, 2016.

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H. Papadimitriou.
Total functions in the polynomial hierarchy. In Innovations in Theoretical Computer
Science Conference (ITCS), pages 44:1–44:18, 2021.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

[KO17] Jan Krajíček and Igor C. Oliveira. Unprovability of circuit upper bounds in Cook’s
theory PV. Logical Methods in Computer Science, 13(1), 2017.

[Koh08] Ulrich Kohlenbach. Applied Proof Theory - Proof Interpretations and their Use in
Mathematics. Springer Monographs in Mathematics. Springer, 2008.

[Kor21] Oliver Korten. The hardest explicit construction. In Symposium on Foundations of
Computer Science (FOCS), pages 433–444, 2021.

[Kor22] Oliver Korten. Derandomization from time-space tradeoffs. In Shachar Lovett, editor,
Computational Complexity Conference (CCC), pages 37:1–37:26, 2022.

[KPT91] Jan Krajíček, Pavel Pudlák, and Gaisi Takeuti. Bounded arithmetic and the polynomial
hierarchy. Annals of Pure and Applied Logic, 52(1-2):143–153, 1991.

[Kra95] Jan Krajíček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. En-
cyclopedia of Mathematics and its Applications. Cambridge University Press, 1995.

[Kra01] Jan Krajíček. On the weak pigeonhole principle. Fundamenta Mathematicae,
1(170):123–140, 2001.

[Kra11] Jan Krajícek. On the proof complexity of the Nisan-Wigderson generator based on a
hard NP ∩ coNP function. Journal of Mathematical Logic, 11(1), 2011.

45

[Kra19] Jan Krajíček. Proof Complexity. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2019.

[Kra24] Jan Krajícek. Proof complexity generators. Monograph (In Progress), 2024.

[KT08] Leszek Aleksander Kolodziejczyk and Neil Thapen. The polynomial and linear hierar-
chies in models where the weak pigeonhole principle fails. J. Symb. Log., 73(2):578–592,
2008.

[LC11] Dai Tri Man Le and Stephen A. Cook. Formalizing randomized matching algorithms.
Log. Methods Comput. Sci., 8(3), 2011.

[LO23] Jiatu Li and Igor C. Oliveira. Unprovability of strong complexity lower bounds in
bounded arithmetic. In Symposium on Theory of Computing (STOC), 2023.

[Lê14] Dai Tri Man Lê. Bounded Arithmetic and Formalizing Probabilistic Proofs. PhD thesis,
University of Toronto, 2014.

[Maa84] Wolfgang Maass. Quadratic lower bounds for deterministic and nondeterministic one-
tape turing machines. In Symposium on Theory of Computing (STOC), pages 401–408.
ACM, 1984.

[Mer89] Ralph C Merkle. One way hash functions and des. In Conference on the Theory and
Application of Cryptology, pages 428–446. Springer, 1989.

[MP20] Moritz Müller and Ján Pich. Feasibly constructive proofs of succinct weak circuit lower
bounds. Annals of Pure and Applied Logic, 171(2), 2020.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994.

[Oja04] Kerry Ojakian. Combinatorics in Bounded Arithmetic. PhD thesis, Carnegie Mellon
University, 2004.

[Par71] Rohit Parikh. Existence and feasibility in arithmetic. Journal of Symbolic Logic,
36(3):494–508, 1971.

[Pic14] Ján Pich. Complexity Theory in Feasible Mathematics. PhD thesis, Charles University
in Prague, 2014.

[Pic15a] Ján Pich. Circuit lower bounds in bounded arithmetics. Annals of Pure and Applied
Logic, 166(1):29–45, 2015.

[Pic15b] Ján Pich. Logical strength of complexity theory and a formalization of the PCP theorem
in bounded arithmetic. Logical Methods in Computer Science, 11(2), 2015.

[PS21] Ján Pich and Rahul Santhanam. Strong co-nondeterministic lower bounds for NP
cannot be proved feasibly. In Symposium on Theory of Computing (STOC), pages
223–233, 2021.

[PWW88] Jeff B. Paris, A. J. Wilkie, and Alan R. Woods. Provability of the pigeonhole principle
and the existence of infinitely many primes. J. Symb. Log., 53(4):1235–1244, 1988.

46

[Raz95a] Alexander A. Razborov. Bounded arithmetic and lower bounds in boolean complex-
ity. In P. Clote and J. Remmel, editors, Feasible Mathematics II, pages 344––386.
Birkhäuser, 1995.

[Raz95b] Alexander A Razborov. Unprovability of lower bounds on circuit size in certain frag-
ments of bounded arithmetic. Izvestiya: mathematics, 59(1):205, 1995.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and
System Sciences, 55(1):24–35, 1997.

[Sim09] Stephen George Simpson. Subsystems of second order arithmetic, volume 1. Cambridge
University Press, 2009.

[Sti20] John Stillwell. Reverse mathematics. Springer, 2020.

[TC21] Iddo Tzameret and Stephen A. Cook. Uniform, integral, and feasible proofs for the
determinant identities. J. ACM, 68(2):12:1–12:80, 2021.

[Tha02] Neil Thapen. The weak pigeonhole principle in models of bounded arithmetic. PhD
thesis, University of Oxford, 2002.

[TS00] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2 edition, 2000.

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity
via uniform reductions. Comput. Complex., 16(4):331–364, 2007.

47

d
W
P
H
P
(P

V
)

W
P
H
P
W
IT
(P

V
)

W
P
H
P
(P

V
)

P
H
P
W
IT

2
n

2
n
Ω
(
1
)
(P

V
)

P
H
P
W
IT

2
n

2
n
−

1
(P

V
)

L
B −→

S
et
D
is
j

n
−
1

L
B −→

S
et
D
is
j

n
Ω
(
1
)

S
in
g
le
to
n
′

S
in
g
le
to
n

F
S
et

∃
H

ar
d

T
ru

th
T

ab
le

M
an

y
R

es
ul

ts
in

C
om

pl
ex

it
y

T
he

or
y

an
d

C
om

bi
na

to
ri

cs

(e
.g

.[
P

ic
15

b,
O

ja
04

])

P
H
P
2
n

2
n
Ω
(
1
)
(P

V
)

P
H
P
2
n

2
n
−

1
(P

V
)

L
B

E
Q

n
Ω
(
1
)

L
B −→

E
Q

n
Ω
(
1
)

L
B

E
Q

n
−
1

L
B −→

E
Q

n
−
1

L
B

S
et
D
is
j

n
Ω
(
1
)

W
P
H
P
′ (
P
V
)

P
H
P
′2

n

2
n
−

1
(P

V
)

P
H
P
′2

n

2
n
Ω
(
1
)
(P

V
)

L
B

′E
Q

n
−
1

L
B

P
A
L

1
-t
a
p
e
(Ω

(n
2
))

L
B

P
A
L

1
-t
a
p
e
(n

1
+
Ω
(1

)
)

L
B

′E
Q

n
Ω
(
1
)

L
B −→

′E
Q

n
Ω
(
1
)

T
he

or
em

5.
6

Theorem3.10

Corollary3.9

P
ro

po
si

ti
on

2.
9

P
ro

po
si

ti
on

2.
8

Σ
b 1
-c

on
se

rv
at

iv
e

[J
eř

04
,

Je
ř0

7a
]

cr
yp

to
gr

ap
hi

c
[I

LW
23

]
×

[P
W

W
88

, J
eř

07
b]

[P
W

W
88

,J
eř

07
b]

T
he

or
em

5.
3

T
he

or
em

5.
3

trivial

S
1
2[Jeř07a]

[Jeř07a]

[P
W

W
88

, J
eř

07
b]

[P
W

W
88

,J
eř

07
b]

T
he

or
em

3.
2

T
he

or
em

3.
2

T
he

or
em

3.
4

T
he

or
em

3.
5

T
he

or
em

3.
4 T

he
or

em
3.

5

T
he

or
em

5.
2

L
B −→

h n
−
1
∃ h

tri
via

l

Theo
re

m
5.

4

L
B −→

h n
Ω
(
1
)
∃h

trivial

T
he

or
em

5.
4

T
he

or
em

3.
4

tr
iv

ia
l

× cryptographic(folklore)

[PWW88,Jeř07b] [PWW88,Jeř07b]

tr
iv

ia
l

cr
yp

to
gr

ap
hi

c
(f

ol
kl

or
e)

×

T
he

or
em

4.
4

Theorem4.6 trivial

T
he

or
em

4.
3

L
B −→

′E
Q

n
−
1

The
or

em
4.

7
Theo

re
m

4.
8 T

he
or

em
4.

4 Theo
re

m
4.7

T
he

or
em

4.
8

Eq
ui

va
le

nc
e

cl
as

s
fo

r
W
P
H
P
W
IT

(T
he

or
em

5.
7)

Eq
ui

va
le

nc
e

cl
as

s
fo

r
W
P
H
P

(T
he

or
em

4.
9) Eq

ui
va

le
nc

e
cl

as
s

fo
r
W
P
H
P
′

(T
he

or
em

4.
9)

Fi
gu

re
1:

La
nd

sc
ap

e
of

co
m

bi
na

to
ria

lp
rin

ci
pl

es
an

d
lo

we
r

bo
un

ds
.

(I
n

th
is

di
ag

ra
m

,Π
→

∆
de

no
te

s
Π
⊢ P

V
1
∆

,Π
⇒

∆
de

no
te

s
Π
⊢ S

1 2
(P

V
)
∆

,a
nd

Π
×99
K
∆

de
no

te
s
Π
̸⊢ P

V
1
∆

(u
nd

er
pl

au
sib

le
as

su
m

pt
io

ns
).

48

	Introduction
	Context and motivation
	Results
	Techniques
	Concluding remarks and open problems

	Preliminaries
	Basic notation
	Bounded arithmetic
	Combinatorial principles

	Equivalence Class for WPHP(PV)
	Technical lemmas
	CC lower bounds for EQ WPHP(PV)
	Singleton bound for ECC WPHP(PV)
	Summary of the equivalence class

	Equivalence Class for WPHP'(PV)
	Formalization and technical lemmas
	Single-tape lower bounds WPHP'(PV)
	WPHP'(PV) uniform CC lower bounds
	Uniform CC lower bounds single-tape lower bounds
	Uniform one-way CC lower bounds WPHP'(PV)
	Summary of the equivalence class

	Equivalence Class for WPHPWIT(PV)
	Technical lemmas
	SetDisj lower bounds and WPHPWIT(PV)
	Distance lower bounds for decodable ECC WPHPWIT(PV)
	Summary of equivalence class

	Consequences
	Conditional unprovability of simple lower bounds
	On the derandomization of feasibly definable randomized algorithms
	Amplification of lower bounds
	Connections to TFNP

