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Abstract

We establish new separations between the power of monotone and general (non-monotone)
Boolean circuits:

– For every k ≥ 1, there is a monotone function in AC0 (constant-depth poly-size circuits)
that requires monotone circuits of depth Ω(logk n). This significantly extends a classical
result of Okol’nishnikova [Oko82] and Ajtai and Gurevich [AG87]. In addition, our sep-
aration holds for a monotone graph property, which was unknown even in the context of
AC0 versus mAC0.

– For every k ≥ 1, there is a monotone function in AC0[⊕] (constant-depth poly-size circuits
extended with parity gates) that requires monotone circuits of size exp(Ω(logk n)). This
makes progress towards a question posed by Grigni and Sipser [GS92].

These results show that constant-depth circuits can be more efficient than monotone formulas
and monotone circuits when computing monotone functions.

In the opposite direction, we observe that non-trivial simulations are possible in the absence
of parity gates: every monotone function computed by an AC0 circuit of size s and depth d

can be computed by a monotone circuit of size 2n−n/O(log s)d−1

. We show that the existence of
significantly faster monotone simulations would lead to breakthrough circuit lower bounds. In
particular, if every monotone function in AC0 admits a polynomial size monotone circuit, then
NC2 is not contained in NC1.

Finally, we revisit our separation result against monotone circuit size and investigate the
limits of our approach, which is based on a monotone lower bound for constraint satisfaction
problems (CSPs) established by Göös, Kamath, Robere and Sokolov [GKRS19] via lifting tech-
niques. Adapting results of Schaefer [Sch78] and Allender, Bauland, Immerman, Schnoor and
Vollmer [ABI+09], we obtain an unconditional classification of the monotone circuit complexity
of Boolean-valued CSPs via their polymorphisms. This result and the consequences we derive
from it might be of independent interest.
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1 Introduction

A Boolean function f : {0, 1}n → {0, 1} is monotone if f(x) ≤ f(y) whenever xi ≤ yi for each
coordinate 1 ≤ i ≤ n. Monotone Boolean functions, and the monotone Boolean circuits1 that
compute them, have been extensively investigated for decades due to their relevance in circuit com-
plexity [Raz85a], cryptography [BL88], learning theory [BT96], proof complexity [Kra97, Pud97],
property testing [GGLR98], pseudorandomness [CZ16], optimisation [GJW18], hazard-free compu-
tations [IKL+19], and meta-complexity [Hir22], among other topics. In addition, over the last few
years a number of results have further highlighted the importance of monotone complexity as a
central topic in the study of propositional proofs, total search problems, communication protocols,
and related areas (see [dRGR22] for a recent survey).

Some of the most fundamental results about monotone functions deal with their complexities
with respect to different classes of Boolean circuits, such as the monotone circuit lower bound of
Razborov [Raz85b] for Matching and the constant-depth circuit lower bound of Rossman [Ros08b]
for k-Clique. Particularly important to our discussion is a related strand of research that contrasts
the computational power of monotone circuits relative to general (non-monotone) AND/OR/NOT
circuits, which we review next.

Weakness of Monotone Circuits. The study of monotone simulations of non-monotone com-
putations and associated separation results has a long and rich history. In a sequence of celebrated
results, [Raz85b, And85, AB87, Tar88] showed the existence of monotone functions that can be com-

puted by circuits of polynomial size but require monotone circuits of size 2n
Ω(1)

. In other words, the
use of negations can significantly speedup the computation of monotone functions. More recently,
Göös, Kamath, Robere and Sokolov [GKRS19] considerably strengthened this separation by show-
ing that some monotone functions in NC2 (poly-size O(log2 n)-depth fan-in two circuits) require

monotone circuits of size 2n
Ω(1)

. (An earlier weaker separation against monotone depth nΩ(1) was
established in [RW92].) Therefore, negations can also allow monotone functions to be efficiently
computed in parallel.

Similar separations about the limitations of monotone circuits are also known at the low-
complexity end of the spectrum: Okol’nishnikova [Oko82] and (independently) Ajtai and Gurevich
[AG87] exhibited monotone functions in AC0 (i.e., constant-depth poly-size AND/OR/NOT circuits)
that require monotone AC0 circuits (composed of only AND/OR gates) of super-polynomial size.2

This result has been extended to an exponential separation in [COS17], which shows the existence

of a monotone function in AC0 that requires monotone depth-d circuits of size 2Ω̃(n1/d) even if MAJ

(majority) gates are allowed in addition to AND/OR gates.3

Strength of Monotone Circuits. In contrast to these results, in many settings negations do
not offer a significant speedup and monotone computations can be unexpectedly powerful. For

1Recall that in a monotone Boolean circuit the gate set is limited to {AND,OR} and input gates are labelled by
elements from {x1, . . . , xn, 0, 1}.

2We refer to [BST13] for an alternate exposition of this result.
3Separations between monotone and non-monotone devices have also been extensively investigated in other set-

tings. This includes average-case complexity [BHST14], different computational models, such as span programs
[BGW99, RPRC16] and algebraic complexity (see [CDM21] and references therein), and separations in first-order
logic [Sto95, Kup21, Kup22]. We restrict our attention to worst-case separations for Boolean circuits in this paper.
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instance, monotone circuits are able to efficiently implement several non-trivial algorithms, such
as solving constraint satisfaction problems using treewidth bounds (see, e.g., [Oli15, Chapter 3]).
As another example, in the context of cryptography, it has been proved that if one-way functions
exist, then there are monotone one-way functions [GI12]. Below we describe results that are more
closely related to the separations investigated in our paper.

In the extremely constrained setting of depth-2 circuits, Quine [Qui53] showed that monotone
functions computed by size-s DNFs (resp., CNFs) can always be computed by size-s monotone DNFs
(resp., CNFs). Some results along this line are known for larger circuit depth, but with respect to
more structured classes of monotone Boolean functions. Rossman [Ros08a, Ros17b] showed that
any homomorphism-preserving graph property computed by AC0 circuits is also computed by mono-
tone AC0 circuits.4 Under no circuit depth restriction, Berkowitz [Ber82] proved that the monotone
and non-monotone circuit size complexities of every slice function are polynomially related.5

Despite much progress and sustained efforts, these two classes of results leave open tantalising
problems about the power of cancellations in computation.6 In particular, they suggest the following
basic question about the contrast between the weakness of monotone computations and the strength
of negations:

What is the largest computational gap between the power of monotone and
general (non-monotone) Boolean circuits?

A concrete formalisation of this question dates back to the seminal work on monotone complexity
of Grigni and Sipser [GS92] in the early nineties. They asked if there are monotone functions in AC0

that require super-polynomial size monotone Boolean circuits, i.e., if AC0 ∩Mono * mSIZE[poly].
In case this separation holds, it would exhibit the largest qualitative gap between monotone and
general Boolean circuits, i.e., even extremely parallel non-monotone computations can be more
efficient than arbitrary monotone computations.

1.1 Results

Our results show that, with respect to the computation of monotone functions, highly parallel
(non-monotone) Boolean circuits can be super-polynomially more efficient than unrestricted mono-
tone circuits. Before providing a precise formulation of these results, we introduce some notation.

For a function d : N → N, let mDEPTH[d] denote the class of Boolean functions computed
by monotone fan-in two AND/OR Boolean circuits of depth O(d(n)). Similarly, we use mSIZE[s]
to denote the class of Boolean functions computed by monotone circuits of size O(s(n)). More
generally, for a circuit class C, we let mC denote its natural monotone analogue. Finally, for a
Boolean function f : {0, 1}n → {0, 1}, we use mSIZE(f) and mDEPTH(f) to denote its monotone

4A function f : {0, 1}(
n

2
) → {0, 1} is called a graph property if f(G) = f(H) whenever G and H are isomorphic

graphs, and homomorphism-preserving if f(G) ≤ f(H) whenever there is a graph homomorphism from G to H. It is
easy to see that every homomorphism-preserving graph property is monotone.

5A function f : {0, 1}(
n

2
) → {0, 1} is a slice function if there is i ≥ 0 such that f(x) is 0 on inputs of Hamming

weight less than i and 1 on inputs of Hamming weight larger than i.
6Any non-monotone circuit can be written as an XOR (parity) of distinct monotone sub-circuits (see, e.g.,

[GMOR15, Appendix A.1]), so negations can be seen as a way of combining, or cancelling, different monotone
computations. See also a related discussion in Valiant [Val80].
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circuit size and depth complexities, respectively. We refer to Jukna [Juk12] for standard background
on circuit complexity theory.

1.1.1. Constant-depth circuits vs. monotone circuits. Recall that the Okol’nishnikova-

Ajtai-Gurevich [Oko82, AG87] theorem states that AC0 ∩Mono * mAC0. In contrast, as our main
result, we establish a separation between constant-depth Boolean circuits and monotone circuits
of much larger depth. In particular, we show that constant-depth circuits with negations can be
significantly more efficient than monotone formulas.

Theorem 1.1 (Polynomial-size constant-depth vs. larger monotone depth). For every k ≥ 1, we
have AC0 ∩ Mono 6⊆ mDEPTH[(log n)k]. Moreover, this separation holds for a monotone graph
property.

In a more constrained setting, Kuperberg [Kup21, Kup22] exhibited a monotone graph property
expressible in first-order logic that cannot be expressed in positive first-order logic. A separation
that holds for a monotone graph property was unknown even in the context of AC0 versus mAC0.

Let HomPreserving denote the class of all homomorphism-preserving graph properties, and recall
that Rossman [Ros08a, Ros17b] established that AC0 ∩ HomPreserving ⊆ mAC0. Theorem 1.1
implies that this efficient monotone simulation does not extend to the larger class of monotone
graph properties, even if super-logarithmic depth is allowed.

Our argument is completely different from those of [Oko82, AG87, BST13, COS17] and their
counterparts in first-order logic [Sto95, Kup21, Kup22]. In particular, it allows us to break the
O(logn) monotone depth barrier present in previous separations with an AC0 upper bound, which

rely on lower bounds against monotone circuits of depth d and size (at most) 2n
O(1/d)

. We defer
the discussion of our techniques to Section 1.2.

In our next result, we consider monotone circuits of unbounded depth.

Theorem 1.2 (Polynomial-size constant-depth vs. larger monotone size). For every k ≥ 1, we

have AC0[⊕] ∩Mono 6⊆ mSIZE[2(logn)
k
].

Theorem 1.1 and Theorem 1.2 are incomparable: while the monotone lower bound is stronger
in the latter, its constant-depth upper bound requires parity gates. Theorem 1.2 provides the
first separation between constant-depth circuits and monotone circuits of polynomial size, coming
remarkably close to a solution to the question considered by Grigni and Sipser [GS92].

We note that in both of our results the family of monotone functions is explicit and has a simple
description (see Section 1.2).

1.1.2. Non-trivial monotone simulations and their consequences. While Theorem 1.1

and Theorem 1.2 provide more evidence for the existence of monotone functions in AC0 which
require monotone circuits of super-polynomial size, they still leave open the intriguing possibility
that unbounded fan-in ⊕-gates might be crucial to achieve the utmost cancellations (speedups)
provided by constant-depth circuits. This further motivates the investigation of efficient monotone
simulations of constant-depth circuits without parity gates, which we consider next.

For convenience, let AC0
d[s] denote the class of Boolean functions computed by AC0 circuits of

depth ≤ d and size ≤ s(n). (We might omit s(n) and/or d when implicitly quantifying over all
families of polynomial size circuits and/or all constant depths.)
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We observe that a non-trivial monotone simulation is possible in the absence of parity gates.
Indeed, by combining existing results from circuit complexity theory, it is not hard to show that
AC0

d[s]∩Mono ⊆ mSIZE[2n(1−1/O(log s)d−1)] (see Section 4.1). Moreover, this upper bound is achieved
by monotone DNFs of the same size. This is the best upper bound we can currently show for the
class of all monotone functions when the depth d ≥ 3. (Negations offer no speedup at depths d ≤ 2
[Qui53].) In contrast, we prove that a significantly faster monotone simulation would lead to new
(non-monotone) lower bounds in complexity theory. Recall that it is a notorious open problem to

obtain explicit lower bounds against depth-d circuits of size 2ω(n
1/(d−1)), for any fixed d ≥ 3. We

denote by GraphProperties the set of all Boolean functions which are graph properties.

Theorem 1.3 (New circuit lower bounds from monotone simulations). There exists ε > 0 such
that the following holds.

1. If AC0
3 ∩Mono ⊆ mNC1, then NP 6⊆ AC0

3[2
o(n)].

2. If AC0
4 ∩Mono ⊆ mSIZE[poly], then NP 6⊆ AC0

4[2
o(
√
n/ logn)].

3. If AC0 ∩Mono ⊆ mSIZE[poly], then NC2 6⊆ NC1.

4. If NC1 ∩Mono ⊆ mSIZE[2O(nε)], then NC2 6⊆ NC1.

5. If AC0 ∩Mono ∩ GraphProperties ⊆ mSIZE[poly], then NP 6⊆ NC1.

6. If NC1 ∩Mono ∩ GraphProperties ⊆ mSIZE[poly], then L 6⊆ NC1.

Item (3) of Theorem 1.3 implies in particular that, if the upper bound of Theorem 1.2 cannot
be improved to AC0 (i.e., the question asked by [GS92] has a negative answer), then NC2 6⊆ NC1.
It also improves a result from [CHO+20] showing the weaker conclusion NP * NC1 under the same
assumption.

Even if it’s impossible to efficiently simulate AC0 circuits computing monotone functions us-
ing unbounded depth monotone circuits, it could still be the case that a simulation exists for
certain classes of monotone functions with additional structure. As explained above, Rossman’s re-
sult [Ros08a, Ros17b] achieves this for graph properties that are preserved under homomorphisms.
Items (5) and (6) of Theorem 1.3 show that a simulation that holds for all monotone graph prop-
erties is sufficient to get new separations in computational complexity.

1.1.3. Monotone complexity of constraint satisfaction problems. Recall that [GKRS19]

showed the existence of a monotone function fGKRS in NC2 that is not in mSIZE[2n
Ω(1)

]. As opposed
to classical results [Raz85b, And85, AB87, Tar88] that rely on the approximation method, their
monotone circuit lower bound employs a lifting technique from communication complexity. It is
thus natural to consider if their approach can be adapted to provide a monotone function g that is
efficiently computable by constant-depth circuits but is not in mSIZE[poly].

As remarked in [GKRS19, dRGR22], all monotone lower bounds obtained from lifting theorems
so far also hold for monotone encodings of constraint satisfaction problems (CSPs). Next, we in-
troduce a class of monotone Boolean functions CSP-SATS which capture the framework and lower
bound of [GKRS19].
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Encoding CSPs as monotone Boolean functions. Let R ⊆ {0, 1}k be a relation. We call k
the arity of R. Let V = (i1, . . . , ik) ∈ [n]k, and let fR,V : {0, 1}n → {0, 1} be the function that
accepts a string x ∈ {0, 1}n if (xi1 , . . . , xik) ∈ R. We call fR,V a constraint application of R on n
variables. (A different choice of the sequence V gives a different constraint application of R.) If
S is a finite set of Boolean relations, we call any set of constraint applications of relations from S
on a fixed set of variables an S-formula. In particular, we can describe an S-formula through a
set of pairs (V,R). We say that an S-formula F is satisfiable if there exists an assignment to the
variables of F which satisfies all the constraints of F .

Let S = {R1, . . . , Rk} be a finite set of Boolean relations. Let ℓi be the arity of the relation
Ri. Note that there are nℓi possible constraint applications of the relation Ri on n variables. Let
N :=

∑k
i=1 n

ℓi . We can identify each S-formula F on a fixed set of n variables with a corre-

sponding string wF ∈ {0, 1}N , where wF
j = 1 if and only if the j-th possible constraint application

(corresponding to one of the N pairs (V,R)) appears in F . Let CSP-SATn
S : {0, 1}N → {0, 1} be

the Boolean function which accepts a given S-formula F if F is unsatisfiable. Note that this is a
monotone function. When n is clear from the context or we view {CSP-SATn

S}n≥1 as a sequence of
functions, we simply write CSP-SATS .

The function fGKRS from [GKRS19] is simply CSP-SATS for S = {⊕0
3,⊕1

3}, where⊕b
3(x1, x2, x3) =

1 if and only if
∑

i xi = b (mod 2). More generally, for any finite set S of Boolean relations, their
framework shows how to lift a Resolution width (resp. depth) lower bound for an arbitrary unsatis-
fiable S-formula F over m variables into a corresponding monotone circuit size (resp. depth) lower
bound for CSP-SATn

S , where n = poly(m).
Despite the generality of the technique from [GKRS19] and the vast number of possibilities for S,

we prove that a direct application of their approach cannot establish Theorem 1.1 and Theorem 1.2.
This is formalised as follows. (We refer to Section 5 for much stronger forms of the result.)

Theorem 1.4 (Limits of the direct approach via lifting and CSPs). Let S be a finite set of Boolean
relations. The following holds.

1. If CSP-SATS /∈ mSIZE[poly] then CSP-SATS is ⊕L-hard under ≤AC0

m reductions.

2. If CSP-SATS /∈ mNC1 then CSP-SATS is L-hard under ≤AC0

m reductions.

In particular, since there are functions (e.g., Majority) computable in logarithmic space that are
not in AC0[⊕], Theorem 1.4 (Part 2) implies that any CSP-SATS function that is hard for poly-size
monotone formulas (mNC1) must lie outside AC0[⊕]. Observe that this can also be interpreted
as a monotone simulation: for any finite set S of Boolean relations, if CSP-SATS ∈ AC0[⊕] then
CSP-SATS ∈ mNC1.7

Theorem 1.4 is a corollary of a general result that completely classifies the monotone circuit
complexity of Boolean-valued constraint satisfaction problems based on the set Pol(S) of poly-
morphisms of S, a standard concept in the investigation of CSPs.8 We present next a simplified

7Jumping ahead, our proof of Theorem 1.2 still relies in a crucial way on the monotone lower bound obtained
by [GKRS19]. However, our argument requires an extra ingredient and does not follow from a direct application of
their template. We provide more details about it in Section 1.2 below. Interestingly, the proof of Theorem 1.1 was
discovered by trying to avoid the “barrier” posed by Theorem 1.4.

8Roughly speaking, Pol(S) captures the amount of symmetry in S, and a larger set Pol(S) implies that solving
CSP-SATS is computationally easier. We refer the reader to Section 5 for more details and for a discussion of Post’s
lattice, which is relevant in the next statement.
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version of this result, which shows a dichotomy for the monotone circuit size and depth of Boolean-
valued constraint satisfaction problems. We refer to Section 5 for a more general formulation and
additional consequences.

Theorem 1.5 (Dichotomies for the monotone complexity of Boolean-valued CSPs). Let S be a
finite set of Boolean relations. The following holds.

1. Monotone Size Dichotomy: If Pol(S) ⊆ L3 there is ε > 0 such that mSIZE(CSP-SATS) =
2Ω(nε). Otherwise, mSIZE(CSP-SATS) = nO(1).

2. Monotone Depth Dichotomy: If Pol(S) ⊆ L3 or Pol(S) ⊆ V2 or Pol(S) ⊆ E2, there is ε > 0
such that mDEPTH(CSP-SATS) = Ω(nε). Otherwise, CSP-SATS ∈ mNC2.

We note that previous papers of Schaefer [Sch78] and Allender, Bauland, Immerman, Schnoor
and Vollmer [ABI+09] provided a conditional classification of the complexity of such CSPs. The-
orem 1.5 and its extensions, which build on their results and techniques, paint a complete and
unconditional picture of their monotone complexity.9

1.2 Techniques

Our arguments combine in novel ways several previously unrelated ideas from the literature.
The exposition below follows the order in which the results appear above, except for the overview
of the proof of Theorem 1.1, which appears last. We discuss this result after explaining the proof
of Theorem 1.2 and the classification of the monotone complexity of CSPs (Theorem 1.4 and
Theorem 1.5), as this sheds light into how the proof of Theorem 1.1 was discovered and into the
nature of the argument.

A monotone circuit size lower bound for a function in AC0[⊕]. We first give an overview
of the proof of Theorem 1.2.

The lower bound of [GKRS19]. We begin by providing more details about the aforementioned
monotone circuit lower bound of [GKRS19], since their result is a key ingredient in our separa-
tion (see [dRGR22] for a more detailed overview). Recall that their function fGKRS corresponds
to CSP-SATS for S = {⊕0

3,⊕1
3}. Following their notation, this is simply the Boolean function

3-XOR-SATn : {0, 1}2n3 → {0, 1} which uses each input bit to indicate the presence of a linear
equation with exactly 3 variables. This (monotone) function accepts a given linear system over
F2 if the system is unsatisfiable. As one of their main results, [GKRS19] employed a lifting
technique from communication complexity to show the existence of a constant ε > 0 such that
mSIZE(3-XOR-SATn) = 2n

ε
. (We show in Appendix A that a weaker super-polynomial monotone

circuit size lower bound for 3-XOR-SATn can also be obtained using the approximation method and
a reduction.)

Sketch of the proof of Theorem 1.2. Since 3-XOR-SATn ∈ NC2 (see, e.g, [GKRS19]), their result

implies that NC2 ∩Mono * mSIZE[2n
Ω(1)

]. On the other hand, we are after a separation between

9We remark that only recently has Schaefer’s classification been extended to the non-Boolean case [Zhu17, Bul17].
Though the refined classification of [ABI+09] is conjectured to hold analogously in the case of non-Boolean
CSPs [LT09], this is still open (see the discussion in [Bul18, Section 7]).
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constant-depth (non-monotone) circuits and polynomial-size (unbounded depth) monotone circuits.
There are two natural ways that one might try to approach this challenge, as discussed next.

First, the lifting framework explored by [GKRS19] offers in principle the possibility that by
carefully picking a different set S of Boolean relations, one might be able to reduce the non-
monotone depth complexity of CSP-SATS while retaining super-polynomial monotone hardness.
However, Theorem 1.4 shows that this is impossible, as explained above.

A second possibility is to combine the exponential 2n
ε
monotone circuit size lower bound for

3-XOR-SATn and a padding argument, since we only need super-polynomial hardness. Indeed, this
argument can be used to define a monotone function g : {0, 1}n → {0, 1} that is computed by
polynomial-size fan-in two circuits of depth poly(log log n) but requires monotone circuit of size
nω(1). However, it is clear that no padding argument alone can reduce the non-monotone circuit
depth bound to O(1) while retaining the desired monotone hardness.

Given that both the classical widely investigated approximation method for monotone lower
bounds and the more recent lifting technique do not appear to work in their current forms, for
some time it seemed to us that, if true, a significantly new technique would be needed to establish
a separation similar to the one in Theorem 1.2.

Perhaps surprisingly, it turns out that a more clever approach that combines padding with a
non-trivial circuit upper bound can be used to obtain the result. The first key observation, already
present in [GKRS19] and other papers, is that 3-XOR-SATn can be computed not only in NC2

but actually by polynomial-size span programs over F2. On the other hand, it is known that this
model is equivalent in power to parity branching programs [KW93], which correspond to the non-
uniform version of ⊕L, i.e., counting modulo 2 the number of accepting paths of a nondeterministic
Turing machine that uses O(logn) space. A second key idea is that such a computation can be
simulated by AC0[⊕] circuits of sub-exponential size and large depth. More precisely, similarly to

an existing simulation of NL (nondeterministic logspace) by AC0 circuits of depth d and size 2n
O(1/d)

via a “guess-and-verify” approach, it is possible to achieve an analogous simulation of ⊕L using
AC0[⊕] circuits (this folklore result appears implicit in [AKR+01] and [OSS19]). Putting everything
together, it follows that for a large enough but constant depth, 3-XOR-SATn can be computed by
AC0[⊕] circuits of size 2n

ε/2
. Since this function is hard against monotone circuits of size 2n

ε
, a

padding argument can now be used to establish a separation between AC0[⊕] and mSIZE[poly]. (A
careful choice of parameters provides the slightly stronger statement in Theorem 1.2.)

Non-trivial monotone simulations and their consequences. In order to conclude that sig-
nificantly stronger monotone simulations imply new complexity separations (Theorem 1.3), we
argue contrapositively. By supposing a complexity collapse, we can exploit known monotone cir-
cuit lower bounds to conclude that a hard monotone function exists in a lower complexity class. For
instance, if NC2 ⊆ NC1, then 3-XOR-SAT ∈ NC1, and we can conclude by standard depth-reduction
for NC1 and padding, together with the exponential lower bound for 3-XOR-SAT due to [GKRS19],
that there exists a monotone function in AC0 which is hard for polynomial-size monotone circuits.
The other implications are argued in a similar fashion. In particular, we avoid the more complicated
use of hardness magnification from [CHO+20] to establish this kind of result, while also getting a
stronger consequence.

A little more work is required in the case of graph properties (Theorem 1.3 Items 5 and 6),
as padding the function computing a graph property does not yield a graph property. We give
a general lemma that allows us to pad monotone graph properties while preserving their struc-
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ture (Lemma 3.6). We then argue as in the case for general functions, using known monotone lower
bounds for graph properties. We note that Lemma 3.6 is also important in the proof of Theo-
rem 1.1, which will be discussed below. We believe that our padding technique for graph properties
might find additional applications.

Monotone complexity of CSPs. These are the most technical results of the paper. Since
explaining the corresponding proofs requires more background and case analysis, here we only
briefly describe the main ideas and references behind Theorem 1.4, Theorem 1.5, and the extensions
discussed in Section 5.

A seminal work of Schaefer [Sch78] proved that any Boolean CSP is either solvable in polynomial-
time or it is NP-complete. Later, Jeavons [Jea98] observed that the complexity of deciding if a given
set of constraint applications of S is satisfiable depends exclusively on the set Pol(S) of polymor-
phisms of S. Intuitively, the set of polymorphisms of a set of relations is a measure of its symmetry.
The more symmetric a set of relations is, the lesser is its expressive power. Jeavons formally proves
this intuition by showing that, if Pol(S) ⊆ Pol(S′), then the problem of deciding the satisfiability
of a given S′-formula can be reduced in polynomial-time to that of deciding the satisfiability of a
given S-formula. This allows Jeavons to reprove Schaefer’s result.

Existing proofs and classification results for constraint satisfaction problems do not encode the
satisfiability problem as a monotone Boolean function CSP-SATS , in the way we described above.
We reexamine Schaefer’s and Jeavons’s proofs and establish that the reduction from CSP-SATS′ to
CSP-SATS can also be done with efficient monotone circuits. Making use of and adapting parts of
the refined results and analysis of [ABI+09], which builds on the earlier dichotomy result of [Sch78]
and provides a detailed picture of the computational complexity of Boolean-valued CSPs, we prove
in fact that the underlying reductions can all be done in monotone nondeterministic logspace.

Finally, using known upper and lower bounds for monotone circuits together with a direct
analysis of some basic cases, and inspecting Post’s lattice [Pos41, BCRV03, BCRV04], we are able
to show that CSP-SATS is hard for monotone circuits only when CSP-SATS is ⊕L-complete, as in
Theorem 1.4 Part 1.

A monotone circuit depth lower bound for a function in AC0. Next, we combine insights
obtained from the monotone lower bound of [GKRS19], our proof of Theorem 1.2 via a guess-
and-verify depth reduction and padding, and the statement of Theorem 1.4 (limits of the direct
approach via CSPs) to get the separation in Theorem 1.1. As alluded to above, our approach differs
from those of [Oko82, AG87, BST13, COS17] and related results in the context of first-order logic
[Sto95, Kup21, Kup22].

Recall that the [GKRS19] framework lifts a Resolution width lower bound for an unsatisfiable
S-formula F into a corresponding monotone circuit size lower bound for CSP-SATS . On the other
hand, Theorem 1.4 rules out separating constant-depth circuits from monotone circuits of polyno-
mial size via CSP-SATS functions. In particular, we cannot directly apply the chain of reductions
from [GKRS19] to obtain the desired separation result. Instead, we extract from the specific S-
formula F that they use a structural property that will allow us to improve the AC0[⊕] upper from
Theorem 1.2 to the desired AC0 upper bound in Theorem 1.1.

In [GKRS19] the formula F is a Tseitin contradiction, a well-known class of unsatisfiable CNFs
with a number of applications in proof complexity. For an undirected graph G, the Tseitin formula
T (G) encodes a system of linear equations modulo 2 as follows: each edge e ∈ E(G) becomes a
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Boolean variable xe, and each vertex v ∈ V (G) corresponds to a constraint (linear equation) Cv

stating that
∑

u∈NG(v) x{v,u} = 1 (mod 2), where NG(v) denotes the set of neighbours of v in G.
Crucially, T (G) does not encode an arbitrary system of linear equations, i.e., the following key
structural property holds: every variable xe appears in exactly 2 equations.

On a technical level, this property is not preserved when obtaining a (total) monotone function
CSP-SATS by the gadget composition employed in the lifting framework and its reductions. How-
ever, we can still hope to explore this property in a somewhat different argument with the goal of
obtaining CSP instances that lie in a complexity class weaker than ⊕L, which is the main bottleneck
in the proof of Theorem 1.2 yielding AC0[⊕] circuits instead of AC0. At the same time, considering
this structural property immediately takes us outside the domain of Theorem 1.4, which does not
impose structural conditions over the CSP instances.

We can capture the computational problem corresponding to this type of system of linear

equations using the following Boolean function. Let OddFactorn : {0, 1}(
n
2) → {0, 1} be the function

that accepts a given graph G if the formula T (G) described above is satisfiable. (Equivalently, if G
admits a spanning subgraph in which the degree of every vertex is odd.) Note that OddFactorn is
a monotone Boolean function: adding edges to G cannot make a satisfiable system unsatisfiable,
since we can always set a new edge variable xe to 0.

While 3-XOR-SAT (the corresponding CSP-SATS function obtained from an appropriate Tseitin
formula via the framework of [GKRS19]) admits a ⊕L upper bound, we observe that OddFactorn
can be computed in L thanks to its more structured class of input instances. Indeed, one can
prove that the formula T (G) is satisfiable if and only if every connected component of G has an
even number of vertices.10 In turn, the latter condition can be checked in logarithmic space using
Reingold’s algorithm for undirected s-t-connectivity [Rei05]. (We note that related ideas appear in
an unpublished note of Johannsen [Joh03].) This is the first application of Reingold’s algorithm to
this kind of separation.

At the same time, OddFactorn retains at least part of the monotone hardness of 3-XOR-SAT.
Using a different reduction from a communication complexity lower bound, [BGW99] proved that
the monotone circuit depth of OddFactorn is nΩ(1). Altogether, we obtain a monotone Boolean
function (indeed a graph property) that lies in L but is not in mDEPTH[no(1)]. Applying a guess-
and-verify depth reduction for L and using (graph) padding (analogously to the proof sketch of
Theorem 1.2), we get a monotone graph property in AC0 that is not in mDEPTH[logk n]. This
completes the sketch of the proof of Theorem 1.1.

1.3 Directions and open problems

Constant-depth circuits and monotone circuits are possibly the two most widely investigated
models in circuit complexity theory. Although our results provide new insights about the relation
between them, there are exceptionally basic questions that remain open.

While [Qui53] showed that negations can be efficiently eliminated from circuits of depth d ≤
2 that compute monotone functions, already at depth d = 3 the situation is much less clear.
Theorem 4.3 (see Section 4.1) implies that every monotone function in depth-3 AC0 admits a

monotone circuit of size 2n−Ω(n/ log2 n). It is unclear to us if this is optimal. While [COS17]

10A simple parity argument shows that odd-sized components cannot be satisfied. On the other hand, we can
always satisfy an even-sized component by starting with an arbitrary assignment, which must satisfy an even number
of constraints by a parity argument, and flipping the values of the edges in a path between unsatisfied nodes, until
all nodes in the connected component are satisfied.
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rules out an efficient constant-depth monotone simulation, it is still possible (and consistent with
Theorem 1.1) that AC0

3 ∩Mono ⊆ mNC1. Is there a significantly better monotone circuit size upper
bound for monotone functions computed by polynomial-size depth-3 circuits?

Our results come close to solving the question posed by Grigni and Sipser [GS92]. Using
our approach, it would be sufficient to show that OddFactorn requires monotone circuits of size
exp(nΩ(1)). This is closely related to the challenge of obtaining an exponential monotone circuit
size lower bound for Matchingn, a longstanding open problem in monotone complexity (see [Juk12,
Section 9.11]).11 Indeed, it’s possible to reduce OddFactor to Matching using monotone AC0 circuits
(see [AK11, Lemma 6.18]).

Incidentally, the algebraic complexity variant of the AC0 vs. mSIZE[poly] problem has been
recently settled in a strong way through a new separation result obtained by Chattopadhyay,
Datta, and Mukhopadhyay [CDM21]. Could some of their techniques be useful to attack the more
elusive Boolean case?

Finally, it would be interesting to develop a more general theory able to explain when cancella-
tions can speedup the computation of monotone Boolean functions. Our investigation of monotone
simulations and separations for different classes of monotone functions (graph properties and con-
straint satisfaction problems) can be seen as a further step in this direction.
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versus mSIZE[poly] problem and related questions. We are also grateful to Denis Kuperberg for
explaining to us the results from [Kup21, Kup22]. The first author thanks Ninad Rajgopal for
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to generate Figures 1, 2, and 3. This work received support from the Royal Society University
Research Fellowship URF\R1\191059, the EPSRC New Horizons Grant EP/V048201/1, and the
Centre for Discrete Mathematics and its Applications (DIMAP) at the University of Warwick.

2 Preliminaries

2.1 Notation

Boolean functions. We denote by Mono the set of all monotone Boolean functions. We define

poly =
{

n 7→ nC : C ∈ N
}

. A Boolean function f : {0, 1}(
n
2) → {0, 1} is said to be a graph property

if f(G) = f(H) for any two isomorphic graphs G and H. Let F = {fn}n∈N be a sequence of graph
properties, where fn is defined over undirected graphs on n vertices. We say that F is preserved
under homomorphisms if, whenever there is a homomorphism from a graph G to a graphH, we have
F(G) ≤ F(H). We denote by HomPreserving the set of all graph properties which are preserved
under homomorphisms. Note that HomPreserving ⊆ Mono.

Boolean circuits. We denote by AC0
d[s] the family of Boolean functions computed by size-s, depth-

d Boolean circuits with unbounded fan-in {∧,∨}-gates and input literals from {x1, x1, . . . , xn, xn}.
We write AC0[s] as a shorthand for

⋃∞
d=1 AC

0
d[s], and AC0 as a shorthand of AC0[nO(1)] = AC0[poly].

We will also refer to AC0
d[poly] by AC0

d. We write DNF[s] to denote the family of Boolean functions
computed by size-s DNFs, where size is measured by number of terms. We write CNF[s] analogously.

11Note that in OddFactor we are concerned with the existence of a spanning subgraph where the degree of every
vertex is odd, while in Matching the degree should be exactly 1.
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We write SIZE[s] to denote the family of Boolean functions computed by size-s circuits. We write
DEPTH[d] to denote the family of Boolean functions computed by fan-in 2 circuits of depth d. We
denote by AC0[⊕] the family of Boolean functions computed by polynomial-size AC0 circuits with
unbounded fan-in ⊕-gates.

We denote by L the family of Boolean functions computed by logspace machines, and by NL

the family of Boolean functions computed by polynomial-time nondeterministic logspace machines.
Moreover, we denote by ⊕L the family of Boolean functions computed by polynomial-time nonde-
terministic logspace machines with a parity acceptance condition (i.e., an input is accepted if the
number of accepting paths is odd).

Circuit complexity. Given a circuit class C, we write mC to denote the monotone version of C.
Given a function f , we writemSIZE(f) to denote the size of the smallest monotone circuit computing
f and mDEPTH(f) to denote the smallest depth of a fan-in 2 monotone circuit computing f . Given

two Boolean functions f, g, we write f ≤mProj
m g if there exists a many-one reduction from f to g in

which each bit of the reduction is a monotone projection12 of the input.

Miscellanea. Let α ∈ {0, 1}n . We define |α|1 :=
∑n

i=1 αi. We call |α|1 the Hamming weight of
α. We let supp(α) = {i ∈ [n] : αi = 1}. We let THRk,n : {0, 1}n → {0, 1} be the Boolean function
such that THRk,n(x) = 1 ⇐⇒ |x|1 ≥ k.

2.2 Background results

The next lemma, which is proved via a standard “guess-and-verify” approach, shows that non-
deterministic logspace computations can be simulated by circuits of size 2n

ε
and of depth d = Oε(1).

Lemma 2.1 (Folklore; see, e.g., [AHM+08, Lemma 8.1]). For all ε > 0, we have NL ⊆ AC0[2n
ε
].

3 Constant-Depth Circuits vs. Monotone Circuits

In this section, we prove Theorems 1.1 and 1.2. For the upper bounds, we require the logspace
graph connectivity algorithm due to [Rei05] and the ⊕L algorithm for solving linear systems over F2

due to [BDHM92], as well as the depth-reduction techniques of [AKR+01, AHM+08]. On the lower
bounds side, our proofs rely on previous monotone circuit and depth lower bounds from [BGW99,
GKRS19]. In order to obtain a monotone formula lower bound for a graph property, we prove a
graph padding lemma in Section 3.2.

3.1 A monotone size lower bound for a function in AC
0[⊕]

In this section, we prove Theorem 1.2. We first recall the monotone circuit lower bound
of [GKRS19] and a depth-reduction lemma implicit in [AKR+01] and [OSS19], whose full proof
we give below for completeness. We remark that similar arguments can be employed to prove
Lemma 2.1, essentially by replacing the ⊕ gates by ∨ gates.

As explained in Section 1.2, in its strongest form the separation result from [GKRS19] can be
stated as follows.

12A monotone projection is a projection without negations.
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Theorem 3.1 ([GKRS19]). There exists ε > 0 such that ⊕L ∩Mono 6⊆ mSIZE[2o(n
ε)]. Moreover,

this separation is witnessed by 3-XOR-SAT.

Lemma 3.2 (Folklore; see, e.g., [AKR+01, OSS19]). Let f : {0, 1}n → {0, 1} be a Boolean function

computed by a ⊕L machine. For every δ > 0, there exists an AC0[⊕] circuit of size 2n
δ
that computes

f .

Proof. Let M be a ⊕L-machine computing f . Without loss of generality, we may assume that each
configuration in the configuration graphG ofM is time-stamped – in other words, each configuration
carries the information of the number of computational steps it takes to arrive at it.13 We may also
assume that every accepting computation takes exactly the same amount of time, which means that
every path from the starting configuration vstart to the accepting configuration vaccept has the same
length in the configuration graph. These assumptions imply that the configuration graph is layered
(because a configuration with time-stamp t can only point to configurations with time-stamp t+1)
and acyclic. Note that, for a fixed machine, the configuration graph can be computed from the
input string using a projection.

Let m = nO(1) be the time that an accepting computation takes. We now show how to count
(modulo 2) the number of accepting paths from vstart to vaccept with a depth-d AC0[⊕] circuit. First,
choose m1/d − 1 configurations v1, . . . , vm1/d−1 (henceforth called “checkpoints”) from V (G), such

that the configuration vi is at the level i ·m1−1/d in the configuration graph (i.e., it takes i ·m1−1/d

time steps to arrive at vi). For convenience, we let v0 = vstart and vm1/d = vaccept. We then count
the number of paths from from vstart to vaccept that go through v1, . . . , vm1/d−1, and sum over all
possible choices of the checkpoints. Since the graph is layered and each path from v0 to vm1/d has
length exactly m, there is only one choice of checkpoints that witnesses a given path from v0 to
vm1/d , so no path is counted twice in this summation. Letting #paths(s, t, ℓ) denote the number of
paths between configurations s and t with distance exactly ℓ, we obtain

#paths(v0, vm1/d ,m) =
∑

v1,...,vm1/d
−1

m1/d−1
∏

i=0

#paths(vi, vi+1,m
1−1/d).

The above calculation can be done in modulo 2 with an unbounded fan-in XOR gate (replacing the
summation) and an unbounded fan-in AND gate (replacing the product). Note that the formula
above is recursive. Repeating the same computation for calculating (modulo 2) the expression
#paths(vi, vi+1,m

1−1/d) for each i, we obtain a depth-2d AC0[⊕] circuit for calculating the number

of paths from vstart to vaccept (modulo 2). Clearly, the total size of the circuit is 2O(m1/d·logm), which

is smaller than 2n
δ
for a large enough constant d.

We now restate Theorem 1.2 and prove it by combining Theorem 3.1 and Lemma 3.2 with a
padding trick.

Theorem 1.2 (Polynomial-size constant-depth vs. larger monotone size). For every k ≥ 1, we

have AC0[⊕] ∩Mono 6⊆ mSIZE[2(logn)
k
].

13Formally, we can define a ⊕L-machine M ′ such that the configurations of M ′ are (C, t), where C is a configuration
of M , and t = 0, 1, . . . ,m = nO(1) is a number denoting the time in which the configuration was achieved. A
configuration (C, t) can only reach a configuration (C′, t+ 1) in the configuration graph of M ′.
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Proof. By Theorem 3.1, there exists ε > 0 and a monotone function f ∈ ⊕L such that any monotone
circuit computing f has size 2Ω(nε).

Let δ = ε/k and let m = 2n
δ
. Let g : {0, 1}n×{0, 1}m → {0, 1} be the Boolean function defined

as g(x, y) = f(x). Note that g is a function on N := m + n = 2Θ(nδ) bits. By Lemma 3.2, there

exists an AC0[⊕] circuit computing f of size 2n
δ
= NO(1). The same circuit computes g. On the

other hand, any monotone circuit computing g has size 2Ω(nε) = 2Ω((logN)ε/δ) = 2Ω((logN)k).

3.2 A monotone depth lower bound for a graph property in AC
0

In this section, we prove Theorem 1.1. We prove moreover that the function that separates
AC0∩Mono and mNCi can be taken to be a graph property. We state our result in its full generality
below.

Theorem 3.3. For every i ≥ 1, we have AC0 ∩Mono ∩ GraphProperties 6⊆ mDEPTH[(logn)i]. In
particular, we have AC0 ∩Mono ∩ GraphProperties 6⊆ mNCi.

First, we recall a result of [BGW99], which proves monotone lower bounds for the following

function. Let OddFactorn : {0, 1}(
n
2) → {0, 1} be the function that accepts a given graph if it

contains an odd factor – in other words, a spanning subgraph in which the degree of every vertex
is odd. Babai, Gál and Wigderson [BGW99] proved the following result:

Theorem 3.4 ([BGW99]). Any monotone formula computing OddFactorn has size 2Ω(n), and any
monotone circuit computing OddFactorn has size nΩ(logn).

The proof in [BGW99] is actually for the case of bipartite graphs, but it easily extends to general
graphs, since the bipartite case reduces to the general case by a monotone projection. The formula
lower bound stated above is slightly stronger because it makes use of asymptotically optimal lower
bounds on the randomized communication complexity of DISJn [KS92], which were not available to
[BGW99]. We remark that, with a different language, a monotone circuit lower bound for OddFactor
is also implicitly proved in Feder and Vardi [FV98, Theorem 30].

We now recall an upper bound for OddFactor, implicitly proved in an unpublished note due to
Johannsen [Joh03].

Theorem 3.5 ([Joh03]). We have OddFactor ∈ L.

Proof. We first recall the following observation about the OddFactor function, which appears in
different forms in the literature (see [Urq87, Lemma 4.1] or [Juk12, Lemma 18.16]; see also [Joh03,
Proposition 1] for a different proof.)

Claim. A graph G has an odd factor if and only if every connected component of G has an even
number of vertices.

Proof. If a graph G has an odd factor, we can conclude that every connected component of G has
an even number of vertices from the well-known observation that in every graph there is an even
number of vertices of odd degree.

Now suppose that every connected component of G has an even number of vertices. We will
iteratively construct an odd factor F of G. We begin with the empty graph. We take any two
vertices u, v in the same connected component of G which currently have even degree in F , and
consider any path P = (x1, . . . , xk) between u and v, where x1 = u and xk = v. If the edge xixi+1
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is currently in F , we remove xixi+1 from F ; otherwise, we add xixi+1 to F . It’s easy to check
that, in every iteration of this procedure, only the vertices u and v have the parity of their degree
changed in F ; the degree of every other vertex stays the same (modulo 2). Since every connected
component has an even number of vertices, this means that, eventually, every vertex in F will have
odd degree.

Now it’s easy to check in logspace if every connected component of G has an even number of
vertices using Reingold’s algorithm for undirected connectivity [Rei05]. It suffices to check if, for
every vertex v of G, the number of vertices reachable from v is odd.

Now, if we only desire to obtain a function in AC0 not computed by monotone circuits of depth
(log n)i, we can follow the same argument of Theorem 1.2, using Lemma 2.1 instead of Lemma 3.2.
In order to obtain moreover a monotone graph property witnessing this separation, we will need the
following lemma, which enables us to obtain a graph property after “padding” a graph property.
We defer the proof of this lemma to the end of this section.

Lemma 3.6. Let f : {0, 1}(
n
2) → {0, 1} be a monotone graph property on graphs of n vertices. The

following holds.

1. If f ∈ NCi for some i > 1, then there exists a monotone graph property g on graphs of
N = 2(logn)

i
vertices such that g ∈ NC1 and f ≤mProj

m g.

2. If f ∈ NL, then for all ε > 0 there exists a monotone graph property g on graphs of N = 2n
ε

vertices such that g can be computed by AC0 circuits of size N2+o(1) and f ≤mProj
m g.

3. If f ∈ ⊕L, then for all ε > 0 there exists a monotone graph property g on graphs of N = 2n
ε

vertices such that g can be computed by AC0[⊕] circuits of size N2+o(1) and f ≤mProj
m g.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Fix n ∈ N and take an ε < 1/i. Observing that L ⊆ NL, from Theorem 3.5
and item (2) of Lemma 3.6 we conclude that there exists a monotone graph property f on N = 2n

ε

vertices such that f ∈ AC0 and OddFactorn ≤mProj
m f . By Theorem 3.4, any monotone circuit

computing f has depth Ω(n) = Ω((logN)1/ε) ≫ (logN)i.

Raz and Wigderson [RW92] observed that there exists a monotone function f ∈ NC1 \ mNC.
Using Lemma 3.6, we observe moreover that it’s possible to obtain this separation with a monotone
graph property.

Proposition 3.7. We have NC1 ∩Mono ∩ GraphProperties 6⊆ mNC.

Proof. Observing that L ⊆ NC2, we conclude from Theorem 3.5 and item (1) of Lemma 3.6 that
there exists a monotone graph property f on N = 2(log n)

2
vertices such that f ∈ NC1 and

OddFactorn ≤mProj
m f . By Theorem 3.4, any monotone circuit computing f has depth Ω(n) =

Ω(2
√
logN ), which implies f 6∈ mNC.
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3.3 Efficient monotone padding for graph properties

We will now prove Lemma 3.6. We first recall some low-depth circuits for computing threshold
functions, which we will use to design a circuit for efficiently computing the adjacency matrix of
induced subgraphs.

Theorem 3.8 ([HWWY94]). Let d > 0 be a constant. The function THR(log n)d,n can be computed

by an AC0 circuit of size no(1) and depth d+O(1).

Theorem 3.9 ([AKS83]). For every k ∈ [n], the function THRk,n can be computed by a circuit of
depth O(logn) and size nO(1).

Lemma 3.10. There exists a circuit Ck
n with

(

n
2

)

+ n inputs and
(

k
2

)

outputs which, when given as
input an adjacency matrix of a graph G on n vertices and a characteristic vector of a set S ⊆ [n]
such that |S| ≤ k, outputs the adjacency matrix of the graph G[S], padded with isolated vertices
when |S| < k. The circuit has constant-depth and size n2+o(1) when k = polylog(n), and size nO(1)

and depth O(logn) otherwise.

Proof. Let {xij}i,j∈[n] encode the adjacency matrix of G. Let α ∈ {0, 1}n be the characteristic

vector of S. Let i, j ∈ [k]. Note that {i, j} ∈ E(G[S]) if and only if there exists a, b ∈ [n] such that

• αa is the i-th non-zero entry of α,

• αb is the j-th non-zero entry of α, and

• xab = 1 (i.e., a and b are connected in G).

We first consider the case k = polylog(n). In this case, the first two conditions can be checked with
circuits of size no(1) using Theorem 3.8. Therefore, we can compute if i and j are adjacent using
n2+o(1) gates and constant depth. As there are at most (log n)O(1) such pairs, we can output G[S]
with at most n2+o(1) gates.

For any k, the first two conditions can be checked with an NC1 circuit by Theorem 3.9. Since
there are at most n2 pairs i, j, the entire adjacency matrix can be computed with a O(log n)-depth
and polynomial-size circuit.

We are ready to prove Lemma 3.6.

Proof of Lemma 3.6. We first prove (1). Fix n ∈ N and let N = 2(logn)
i
. For a graph G on N

vertices such that |E(G)| ≤
(

n
2

)

, let Gclean be the graph obtained from G by removing isolated
vertices from G one-by-one, in lexicographic order, until one of the following two conditions are
satisfied: (1) there are no more isolated vertices in Gclean, or (2) Gclean has exactly n vertices. Let

g : {0, 1}(
N
2 ) → {0, 1} be the monotone graph property defined as follows:

g(G) :=

(

|E(G)| >
(

n

2

))

∨ (|V (Gclean)| > n) ∨ (f(Gclean) = 1).

Note that g accepts a graph G if and only if at least one of the following three conditions are
satisfied:

1. G has at most
(

n
2

)

edges, Gclean has exactly n vertices and f(Gclean) = 1, or
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2. G has more than
(

n
2

)

edges, or

3. Gclean has more than n vertices.

We observe that the monotonicity of g follows from the monotonicity of f . We also claim that g is a
graph property. Indeed, the graph Gclean is the same (up to isomorphism), irrespective of the order
according to which the isolated vertices are removed from G. Moreover, the function f is also a
graph property. Because of this, all the three conditions above are preserved under isomorphisms.

We first observe that f is a monotone projection of g. Indeed, given a graph G on n vertices,
we can easily construct by a monotone projection a graph G′ on N vertices and at most

(

n
2

)

edges
such that f(G) = g(G′). We just let G′ have a planted copy of G, and all other vertices are isolated.
Then G′

clean = G (up to isomorphism) and g(G′) = f(Gclean) = f(G).
We now show how to compute g in NC1. Let {xij}i,j∈[N ] be the input bits of g, corresponding

to the adjacency matrix of a graph G. The circuit computes as follows.

1. If |E(G)| >
(

n
2

)

, accept the graph G.

2. Compute the characteristic vector α ∈ {0, 1}N of the set of all non-isolated vertices of G. If
|α|1 > n, accept the graph G.

3. Compute Gclean and output f(Gclean).

Note that checking if |E(G)| >
(

n
2

)

can be done in NC1 by Theorem 3.9. Moreover, for all
i ∈ [N ], we have αi =

∨

j∈[N ] xij , and therefore αi can be computed by a circuit of depth O(logN)

and O(N) gates. In total, the vector α can be computed with O(N2) gates and O(logN) depth.
Finally, we can check if |α|1 > n in NC1 with a threshold circuit.

For the final step, we compute Gclean. If |α|1 = n, note that Gclean = G[supp(α)]. When
|α|1 < n, then Gclean is G[supp(α)] padded with isolated vertices. We can therefore compute Gclean

with the circuit Cn
N of Lemma 3.10. Moreover, since f ∈ NCi, we have that f can be computed by

a circuit of size nO(1) = No(1) and depth O((log n)i) = O(logN). Therefore, computing f(Gclean)
can be done in NC1. Overall, we get that g ∈ NC1.

In order to prove (2), it suffices to modify the proof above. The modification can be briefly
described as follows. We let N = 2n

ε
. Every time Lemma 3.10 is applied, we use the AC0 circuit

instead of the NC1 circuit, since n = polylog(N). This ammounts to N2+o(1) many gates with
unbounded fan-in. Moreover, since by assumption f ∈ NL, applying Lemma 2.1 we obtain an AC0

circuit for f of size 2n
ε/2

= No(1), so we can compute f(Gclean) in constant depth with No(1) gates.
Finally, for (3) it suffices to apply the same argument used for (2), replacing an application

of Lemma 2.1 by an application of Lemma 3.2.

4 Non-Trivial Monotone Simulations and Their Consequences

In contrast to Section 3, in this section we observe that a non-trivial simulation of AC0 circuits
by monotone circuits is possible. This follows from a refined version of the switching lemma proved
by Rossman [Ros17a]. As a proof of concept, we use this simulation result to reprove a well-known
AC0 lower bound for Majority.

In the second part of this section, we show that if much faster simulations are possible, then even
stronger non-monotone circuit lower bounds follow. We also show that this implication is true even
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if the simulation only holds for graph properties. Monotone simulations for graph properties are
motivated by a result of Rossman [Ros08a], which shows that very strong monotone simulations
are possible for homomorphism-preserving graph properties. The lower bounds from monotone
simulations are proved with the simulation result and padding argument used in the previous
section (Lemmas 2.1 and 3.6).

4.1 A non-trivial simulation for bounded-depth circuits

The earliest monotone simulation result was proved for DNFs by Quine [Qui53].

Theorem 4.1 (Quine [Qui53]). For all s : N → N, we have DNF[s] ∩Mono ⊆ mDNF[s].

Proof. If a given DNF computes a monotone Boolean function, simply removing the negative literals
continues to compute the same function.

Let DTsize(f) denote the size of a smallest decision-tree computing f . We will need a result
obtained by Rossman [Ros17a].

Theorem 4.2 ([Ros17a]). If f : {0, 1}n → {0, 1} is computable by an AC0 circuit of depth d and

size s, then DTsize(f) = 2(1−1/O(log s)d−1)n.

Theorem 4.3. Let s : N → N and d ≥ 1. We have AC0
d[s] ∩ Mono ⊆ mSIZE[t], where t =

n · 2n(1−1/O(log s)d−1). Moreover, this upper bound is achieved by monotone DNFs of size t/n.

Proof. Let f be a monotone function computable by an AC0 circuit of depth d and size s. By
Theorem 4.2, there exists a decision tree of size 2(1−1/O(log s)d−1)n computing f . Therefore, there
exists a DNF of the same size computing f , which can be taken to be monotone by by Theorem 4.1.
This can be converted into a monotone circuit of size n · 2(1−1/O(log s)d−1)n.

We observe that it is possible to immediately deduce an AC0 lower bound for Majority using
this simulation theorem. Even though near-optimal lower bounds for Majority have been known
for a long time [H̊as86] and the proof of the main technical tool (Theorem 4.2) behind our simula-
tion result is similar to the one used by [H̊as86], the argument below illustrates how a monotone
simulation can lead to non-monotone circuit lower bounds.

Corollary 4.4. Any depth-d AC0 circuit computing Majority has size 2Ω((n/ logn)1/(d−1)).

Proof. Note that Majority has
(

n
n/2

)

= Ω(2n/
√
n) minterms. Therefore, any monotone DNF com-

puting Majority has size at least Ω(2n/
√
n). By Theorem 4.3, it follows that the size s of a depth-d

AC0 computing Majority satisfies the following inequality:

2n(1−1/O(log s)d−1) = Ω(2n−
1
2
logn).

From this equation we obtain s = 2Ω((n/ logn)1/(d−1)).
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4.2 Non-monotone lower bounds from monotone simulations

We now show that if monotone circuits are able to efficiently simulate non-monotone circuits
computing monotone Boolean functions, then striking complexity separations follow. We also show
a result of this kind for simulations of graph properties. We first prove a lemma connecting the
simulation of AC0 circuits with the simulation of NL machines.

Lemma 4.5. For all constants ε > 0 and C ≥ 1, if AC0 ∩ Mono ⊆ mSIZE[2O((logn)C)], then
NL ∩Mono ⊆ mSIZE[2o(n

ε)].

Proof. We prove the contrapositive. Suppose that there exists ε > 0 such that NL ∩ Mono 6⊆
mSIZE[2o(n

ε)]. This means that there exists a monotone function f such that f ∈ NL and any
monotone circuit computing f has size 2Ω(nε).

Let δ = ε/(2C) and let m = 2n
δ
. Let g : {0, 1}n × {0, 1}m → {0, 1} be the Boolean function

defined as g(x, y) = f(x). Note that g is a function on N := m+ n = 2Θ(nδ) bits. By Lemma 2.1,

there exists an AC0 circuit computing f of size 2n
δ
= NO(1). Moreover, any monotone circuit

computing g has size 2Ω(nε) = 2Ω((logN)ε/δ) = 2Ω((logN)2C).

Next, we recall the strongest known monotone circuit and formula lower bounds for a monotone
function in NP.

Theorem 4.6 ([PR17]). NP ∩Mono 6⊆ mDEPTH[o(n)].

Theorem 4.7 ([CKR20]). NP ∩Mono 6⊆ mSIZE[2o(
√
n/ logn)].

We are now ready to state and prove our first result regarding new complexity separations from
monotone simulations. Recall that obtaining explicit lower bounds against depth-3 AC0 circuits of
size 2ω(n

1/2) is a major challenge in circuit complexity theory, while the best lower bound on the
size of depth-4 AC0 circuits computing a function in NP is currently 2Ω(n1/3) [H̊as86]. Moreover,
no strict separation is known in the following sequence of inclusions of complexity classes: ACC ⊆
TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ ⊕L ⊆ NC2. We show that efficient monotone simulations would bring new
results in both of these fronts. (We stress that all lower bound consequences appearing below refer
to separations against non-uniform circuits.)14

Theorem 4.8. Let C be a class of circuits. There exists ε > 0 such that the following holds:

1. If AC0
3 ∩Mono ⊆ mNC1, then NP 6⊆ AC0

3[2
o(n)].

2. If AC0
4 ∩Mono ⊆ mSIZE[poly], then NP 6⊆ AC0

4[2
o(
√
n/ logn)].

3. If C ∩Mono ⊆ mSIZE[2O(nε)], then NC2 6⊆ C.

4. If AC0 ∩Mono ⊆ mSIZE[poly], then NC2 6⊆ NC1.

Proof. We will prove each item separately.

14In other words, all upper bounds are uniform, but the lower bounds hold even for non-uniform circuits. Note
that this is stronger than lower bounds for uniform circuits.
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Proof of (1). Let us assume that AC0
3 ∩Mono ⊆ mNC1. Let f be the function of Theorem 4.6. For

a contradiction, suppose that f ∈ AC0
3[2

o(n)]. Let α : N → N be such that α(n) →n ∞
and f has a depth-3 AC0 circuit of size 2n/α. Let m = 2n/(10·α) and let g : {0, 1}n ×
{0, 1}m → {0, 1} be the function g(x, y) = f(x). Let N = n+m = (1+o(1))2n/(10·α).
Clearly, the function g has a depth-3 AC0 circuit of size 2n/α = NO(1). Since g is
monotone, we conclude from the assumption that g is computed by a polynomial-size
monotone formula. Now, since f(x) = g(x, 1m), we obtain a monotone formula of size
NO(1) = 2o(n) for computing f , which contradicts the lower bound of Theorem 4.6.

Proof of (2). Similar to the proof of item (1), but using Theorem 4.7 instead.

Proof of (3). Suppose that NC2 ⊆ C. By Theorem 3.1, there exists a monotone function f ∈ NC2 on
n bits and a number ε > 0 such that f /∈ mSIZE[2o(n

ε)]. Therefore, for any δ > 0 such

that δ < ε, we have f /∈ mSIZE[2O(nδ)]. Since, by assumption, we have f ∈ NC2 ⊆ C,
we obtain C ∩Mono 6⊆ mSIZE[2O(nδ)].

Proof of (4). If NC2 ⊆ NC1, then, by item (3), we get NC1 ∩ Mono 6⊆ mSIZE[2o(n
ε)]. From

Lemma 4.5, we obtain AC0 ∩Mono 6⊆ mSIZE[poly].

As a motivation to the ensuing discussion, we recall a result of Rossman [Ros08a], who showed
that any homomorphism-preserving graph property computed by AC0 circuits is also computed by
monotone AC0 circuits.

Theorem 4.9 ([Ros08a]). AC0 ∩ HomPreserving ⊆ mDNF[poly].

This inspires the question of whether general graph properties can also be efficiently simulated
by monotone circuits. We show that, if true, such simulations would imply strong complexity
separations. Let us first recall an exponential monotone circuit lower bound for monotone graph
properties, and we will be ready to state and prove our main result.

Theorem 4.10 ([AB87]). There exists ε > 0 such that NP∩Mono∩GraphProperties 6⊆ mSIZE[2o(n
ε)].

Theorem 4.11. Let C be a class of circuits. The following holds:

1. If C ∩Mono ∩ GraphProperties ⊆ mSIZE[poly], then L 6⊆ C.

2. If C ∩Mono∩GraphProperties ⊆ mDEPTH[o(
√
n)], where n denotes the number of input bits,

then L 6⊆ C.

3. If AC0 ∩Mono ∩ GraphProperties ⊆ mSIZE[poly], then NP 6⊆ NC1.

Proof. We will prove each item separately.

Proof of (1). Suppose that L ⊆ C. By Theorem 3.4, the monotone graph property OddFactor

satisfies OddFactor /∈ mSIZE[poly]. Moreover, we have the upper bound OddFactor ∈ L

by Theorem 3.5. Since, by assumption, we have OddFactor ∈ L ⊆ C, we obtain
C ∩Mono ∩ GraphProperties 6⊆ mSIZE[poly].

Proof of (2). Suppose that L ⊆ C. By Theorems 3.4 and 3.5, there exists a monotone graph property
f ∈ L such that f /∈ mDEPTH[o(

√
n)]. Since, by assumption, we have f ∈ L ⊆ C, we

obtain C ∩Mono ∩ GraphProperties 6⊆ mDEPTH[o(
√
n)].
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Proof of (3). Suppose that NP ⊆ NC1. By Theorem 4.10, there exists a monotone graph property
f ∈ NC1 such that mSIZE(f) = 2Ω(nε) for some ε > 0. Let δ = ε/2. By Lemma 3.6

(Item 2), there exists a monotone graph property g on N = 2n
δ
vertices computed by

an AC0 circuit of size N2+o(1) such that f is a monotone projection of g. Theorem 4.10
implies that any monotone circuit computing f has size 2Ω(nε) = 2Ω((logN)2) = Nω(1).

5 Monotone Complexity of Constraint Satisfaction Problems

In this section, we study the monotone complexity of Boolean-valued CSPs. Our goal is to
classify which types of Boolean CSPs are hard for monotone circuit size and monotone circuit
depth, eventually proving Theorems 1.4 and 1.5.

We will first spend some time recalling standard definitions and concepts in the theory of CSPs
(Section 5.1), as well as a few results about CSPs that were proved in previous works [Sch78, Jea98,
BCRV03, BCRV04, ABI+09] (Section 5.2). We will then prove Theorem 1.5 in Section 5.3, and we
will finally prove Theorem 1.4 in Section 5.5 after proving some auxiliary results in Section 5.4.

5.1 Definitions

For a good introduction to the concepts defined below, we refer the reader to [BCRV03,
BCRV04]. We also refer the reader to Section 1.1.3 for the definition of the family of functions
CSP-SATS , as well as the terms constraint application, S-formula and satisfiable formula.

We denote by pni : {0, 1}n → {0, 1} the i-th projection function on n variables, whose operation
is defined as pni (x) = xi. For a set of Boolean functions B, we denote by [B] the closure of B,
defined as follows: a Boolean function f is in [B] if and only if f ∈ B ∪ {Identity} or if there exists
g ∈ B and h1, . . . , hk such that f = g(h1, . . . , hk), where each hi is either a projection function or
a function from [B]. We can equivalently define [B] as the set of all Boolean functions that can be
computed by circuits using the functions of B as gates. Note that [B] necessarily contains an infinite
number of Boolean functions, since pn1 ∈ [B] for every n ∈ N; moreover, the constant functions are
not necessarily in [B]. We say that B is a clone if B = [B]. A few prominent examples of clones
are the set of all Boolean functions (equal to [{∧,¬}]), monotone functions (equal to [{∧,∨, 0, 1}]),
and linear functions (equal to [{⊕, 1}]).

Remark 5.1. The set of all clones forms a lattice, known as Post’s lattice, under the operations
[A] ⊓ [B] := [A] ∩ [B] and [A] ⊔ [B] := [A ∪B]. From the next section onwards, we will refer to the
clones defined in [BCRV03] (such as I0, I1, etc.), assuming the reader is familiar with them. For
the unfamiliar reader, we refer to Appendix C and Figures 1 and 4, which contain all the definitions
of the clones we will need, as well as the entire Post’s lattice in graphical representation.

To avoid confusion, we will always refer to clones with normal-Roman font (e.g., S1, I0, etc).

Let S be a finite set of Boolean relations. We denote by CNF(S) the set of all S-formulas. We
denote by COQ(S) the set of all relations which can be expressed with the following type of formula
ϕ:

ϕ(x1, . . . , xk) = ∃y1, . . . , yℓ ψ(x1, . . . , xk, y1, . . . , yℓ),
where ψ ∈ CNF(S). The relations in COQ(S) will also be referred as conjunctive queries over S.
We denote by 〈S〉 the set of relations defined as 〈S〉 := COQ(S ∪ {=}). If S = 〈S〉, we say that S
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is a co-clone. We define

CSP = {CSP-SATS : S is a finite set of relations} .

We say that CSP-SATS is trivial if CSP-SATS is a constant function.
Let R be a k-ary Boolean relation and let f : {0, 1}ℓ → {0, 1} be a Boolean function. For x ∈ R

and i ∈ [k], we denote by x[i] the i-th bit of x.

Definition 5.2. We say that f is a polymorphism of R, and R is an invariant of f , if, for all
x1, . . . , xℓ ∈ R, we have

(f(x1[1], . . . , xℓ[1]), f(x2[2], . . . , xℓ[2]), . . . , f(xk[k], . . . , xℓ[k])) ∈ R.

We denote the set of all polymorphisms of R by Pol(R). For a set of relations S, we denote by
Pol(S) the set of Boolean functions which are polymorphisms of all the relations of S. For a set of
Boolean functions, we denote by Inv(B) the set of all Boolean relations which are invariant under
all functions of B (i.e., Inv(B) = {R : B ⊆ Pol(R)}).

The following summarises the important facts about clones, co-clones and polymorphisms that
are relevant to the study of CSPs [JCG97].

Lemma 5.3. Let S and S′ be sets of Boolean relations and let B and B′ be sets of Boolean functions.
We have

(i) Pol(S) is a clone and Inv(B) is a co-clone;

(ii) If S ⊆ S′, then Pol(S′) ⊆ Pol(S);

(iii) If B ⊆ B′, then Inv(B′) ⊆ Inv(B);

(iv) COQ(COQ(S)) = COQ(S);

(v) If S ⊆ S′, then COQ(S) ⊆ COQ(S′);

(vi) Inv(Pol(S)) = 〈S〉;

(vii) Pol(Inv(B)) = [B].

We now define different types of reductions. We say that a reduction is amonotone OR-reduction
if every bit of the reduction is either constant or can be computed by a monotone disjunction on
the input variables. We write f ≤mOR

m g if there exists a many-one monotone OR-reduction from f

to g. We also write f ≤AC0

m g if there exists a many-one AC0 reduction from f to g, and f ≤mNL
m g if

there exists a many-one mNL reduction from f to g15. Unless otherwise specified, every reduction
we consider will generate an instance of polynomial size on the length of the input.

Finally, we denote by ORk and NANDk the k-ary OR and NAND relations, respectively.

15A many-one AC0 (resp. mNL) reduction is one in which each bit of the reduction is either constant or can be
computed with a polynomial-size AC0 circuit (resp. monotone nondeterministic branching program). Recall that a
monotone nondeterministic branching program is a directed acyclic graph G with two distinguished vertices s and t,
in which each edge e is labelled with an input function ρe ∈ {1, x1, . . . , xn}. Given an input x, the program accepts
if there exists a path from s to t in the subgraph Gx of G in which an edge e appears if ρe(x) = 1.
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5.2 Basic facts about CSP-SAT

We state here basic facts about the CSP-SAT function. These facts are proved in the original
paper of Schaefer [Sch78], as well as in later papers [Jea98, BCRV03, BCRV04, ABI+09].

Lemma 5.4 below is one of the most important lemmas of this section and will be used many
times. It states that Pol(S) characterises the monotone complexity of CSP-SATS , in the sense
that the sets of relations with few polymorphisms give rise to the hardest instances of CSPs. A
non-monotone version of this result was proved in [Jea98, BCRV04, Theorem 2.4], and we check in
Appendix B.2 that their proofs also hold in the monotone case.

Lemma 5.4 (Polymorphisms characterise the complexity of CSPs [Jea98, BCRV04, Theorem 2.4]).

If Pol(S2) ⊆ Pol(S1), then CSP-SATn
S1

≤mNL
m CSP-SAT

poly(n)
S2

.

Theorem 5.5 gives monotone circuit upper bounds for some instances of CSP-SATS . Non-
monotone variants of this upper bound were originally obtained in the seminal paper of Schae-
fer [Sch78], and we again check that the monotone variants work in Appendix B.3.

Theorem 5.5 (Monotone version of the upper bounds for CSP-SAT [Sch78, ABI+09]). Let S be a
finite set of relations. The following holds.

1. If E2 ⊆ Pol(S) or V2 ⊆ Pol(S), then CSP-SATS ∈ mSIZE[poly].

2. If D2 ⊆ Pol(S), or S00 ⊆ Pol(S), or S10 ⊆ Pol(S), then CSP-SATS ∈ mNL.

Finally, we state here a result of [ABI+09], which classifies the non-monotone complexity of

CSP-SATS under ≤AC0

m reductions. The classification of the complexity of CSP-SATS is based solely
on Pol(S). See Figure 1 for a graphical representation.

Theorem 5.6 (Refined classification of CSP problems [ABI+09, Theorem 3.1]). Let S be a finite
set of Boolean relations. The following holds.

• If I0 ⊆ Pol(S) or I1 ⊆ Pol(S), then CSP-SATS is trivial.

• If Pol(S) ∈ {I2,N2}, then CSP-SATS is ≤AC0

m -complete for NP.

• If Pol(S) ∈ {V2,E2}, then CSP-SATS is ≤AC0

m -complete for P.

• If Pol(S) ∈ {L2,L3}, then CSP-SATS is ≤AC0

m -complete for ⊕L.

• If S00 ⊆ Pol(S) ⊆ S00
2 or S10 ⊆ Pol(S) ⊆ S10

2 or Pol(S) ∈ {D2,M2}, then CSP-SATS is

≤AC0

m -complete for NL.

• If Pol(S) ∈ {D1,D}, then CSP-SATS is ≤AC0

m -complete for L.

• If S02 ⊆ Pol(S) ⊆ R2 or S12 ⊆ Pol(S) ⊆ R2, then either CSP-SATS ∈ AC0 or CSP-SATS is

≤AC0

m -complete for L.

5.3 A monotone dichotomy for CSP-SAT

In this section, we prove Theorem 1.5. We first prove Part (1) of the theorem (the dichotomy
for circuit size), and then we prove Part (2) of the theorem (the dichotomy for circuit depth).
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Figure 1: Graph of all closed classes of Boolean functions. The vertices are colored with the
complexity of deciding CSPs whose set of polymorphisms corresponds to the label of the vertex.
Trivial CSPs are those that correspond to constant functions. Every hardness result is proved under
≤AC0

m reductions. See Theorem 5.6 for details. A similar figure appears in [ABI+09, Figure 1].
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Dichotomy for circuits. To prove the dichotomy for circuits, we first show that, for any set of
relations S whose set of polymorphisms is contained in L3, we can monotonically reduce 3-XOR-SAT
to CSP-SATS .

Lemma 5.7. Let S be a finite set of relations. If Pol(S) ⊆ L3, then 3-XOR-SAT ≤mNL
m CSP-SATS.

Proof. Inspecting Post’s lattice (Figure 1), note that the only clones strictly contained in L3 are
L2,N2 and I2. We will first show that the reduction holds for the case Pol(S) = L2 and then
prove that the reduction also holds for the case Pol(S) = L3. Lemma 5.4 will then imply the cases
Pol(S) ∈ {N2, I2}, since I2 ⊆ N2 ⊆ L3.

It’s not hard to check that, if Pol(S) = L2, then Pol(S) ⊆ Pol(3-XOR-SAT) (it suffices to observe
that bitwise XORing three satisfying assignments to a linear equation gives rise to a new satisfying
assignment to the same equation). Therefore, from Lemma 5.4 we deduce that 3-XOR-SAT admits
a reduction to CSP-SATS in mNL. In order to prove the case Pol(S) = L3, we first prove the
following claim.

Claim ([ABI+09, Lemma 3.11]). Let S be a finite set of relations such that Pol(S) = L2. There

exists a finite set of relations S′ such that Pol(S′) = L3 and CSP-SATn
S ≤mProj

m CSP-SATn+1
S′ .

Proof. We describe the proof of Lemma 3.11 in [ABI+09] and observe that it gives a monotone
reduction.

For a relation R ∈ S, let R′ = {(¬x1, . . . ,¬xk) : (x1, . . . , xk) ∈ R}. Let also S′ = {R′ : R ∈ S}.
It’s not hard to check that Pol(S′) = L3, since S

′ is an invariant of L2 and N2, and L3 is the smallest
clone containing both L2 and N2; moreover, if ρ ∈ Pol(S′) and ρ is a Boolean function on at least
two bits, then ρ ∈ Pol(S) = L2.

Now let F be a instance of CSP-SATn
S . For every constraint C = R(x1, . . . , xk) in F , we add

the constraint C ′ = R′(α, x1, . . . , xk) to the S′-formula F ′, where α is a new variable. Note that
F ′ is a S′-formula, defined on n + 1 variables, which is satisfiable if and only if F is satisfiable.
Moreover, the construction of F ′ from F can be done with a monotone projection.

Since the case Pol(S) = L2 holds, the case Pol(S) = L3 now follows from Lemma 5.4 and the
Claim. Finally, from Lemma 5.4 we conclude that the reduction also holds for the case Pol(S) ∈
{N2, I2}, since I2 ⊆ N2 ⊆ L3.

Theorem 5.8 (Dichotomy for monotone circuits). Let S be a finite set of relations. If Pol(S) ⊆ L3

then there exists a constant ε > 0 such that mSIZE(CSP-SATS) = 2Ω(nε). Otherwise, we have
mSIZE(CSP-SATS) = nO(1).

Proof. If Pol(S) ⊆ L3, the lower bound follows from the ’moreover’ part of Theorem 3.1, and
Lemma 5.7. For the upper bound, we inspect Post’s lattice (Figure 1). Observe that, if Pol(S) 6⊆ L3,
the following are the only possible cases:

1. I0 ⊆ Pol(S) or I1 ⊆ Pol(S). In both cases, any CNF(S) is trivially satisfiable.

2. E2 ⊆ Pol(S) or V2 ⊆ Pol(S). In this case, CSP-SATS ∈ mSIZE[poly] by Theorem 5.5.

3. D2 ⊆ Pol(S). In this case, CSP-SATS ∈ mNL ⊆ mSIZE[poly] by Theorem 5.5.
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Figure 2: Illustration of Theorem 5.8. The vertices are colored with the monotone circuit size
complexity of deciding CSPs whose set of polymorphisms corresponds to the label of the vertex.
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Remark 5.9. We remark that the lifting theorem of [GKRS19] (which is an ingredient in the proof
of Theorem 3.1) is only used to prove that the monotone complexity of CSP-SATS is exponential
when Pol(S) ⊆ L3. If we only care to show a superpolynomial separation, then it suffices to apply
the superpolynomial lower bound for CSPs with counting proved in [FV98, BGW99] using the
approximation method. Indeed, we give an explicit proof in Appendix A. The same holds for the
consequences of this theorem (see Theorem 5.19).

Dichotomy for formulas. Define 3-Horn-SATn : {0, 1}2n3+n → {0, 1} as 3-Horn-SATn = CSP-SATn
H3 ,

where
H3 = {(¬x1 ∨ ¬x2 ∨ x3), (¬x1 ∨ ¬x2 ∨ ¬x3), (x)} .

The following is proved in [RM99, GKRS19].

Theorem 5.10 ([RM99, GKRS19]). There exists ε > 0 such that 3-Horn-SAT ∈ mSIZE[poly] \
mDEPTH[o(nε)].

Proof sketch. Since E2 ⊆ Pol(H3) (see, e.g., [CKS01, Lemma 4.8]), the upper bound follows
from Theorem 5.5. The lower bound follows from a lifting theorem of [RM99, GKRS19]. They show
that the monotone circuit-depth of 3-Horn-SAT is at least the depth of the smallest Resolution-tree
refuting a so-called pebbling formula. Since this formula requires Resolution-trees of depth nε, the
lower bound follows.

Analogously to the previous section, we show that 3-Horn-SAT reduces to CSP-SATS whenever
Pol(S) is small enough, in a precise sense stated below. We then deduce the dichotomy for formulas
with a similar argument.

Lemma 5.11. Let S be a finite set of relations. If Pol(S) ⊆ E2 or Pol(S) ⊆ V2, then 3-Horn-SAT ≤mNL
m

CSP-SATS.

Proof. We first consider the case Pol(S) ⊆ E2. Note that E2 ⊆ Pol(3-Horn-SAT) (see, e.g., [CKS01,
Lemma 4.8]). Therefore, from Lemma 5.4 we deduce that 3-Horn-SAT admits a reduction to
CSP-SATS in mNL.

Now let 3-AntiHorn-SAT = CSP-SATA3 , where A3 = {(x1 ∨ x2 ∨ ¬x3), (x1 ∨ x2 ∨ x3), (¬x)}.
Observe that a H3-formula ϕ is satisfiable if and only if the A3-formula ϕ(¬x1, . . . ,¬xn) is sat-

isfiable. Therefore, we have 3-Horn-SAT ≤mProj
m 3-AntiHorn-SAT. Observing that V2 ⊆ Pol(A3)

(again, see e.g. [CKS01, Lemma 4.8]), the result now follows from Lemma 5.4 and the previous
paragraph.

Theorem 5.12 (Dichotomy for monotone formulas). Let S be a finite set of relations. If Pol(S) ⊆
L3, or Pol(S) ⊆ V2, or Pol(S) ⊆ E2, then there is a constant ε > 0 such that mDEPTH(CSP-SATS) =
Ω(nε). Otherwise, we have CSP-SATS ∈ mNL ⊆ mNC2 ⊆ mDEPTH[log2 n].

Proof. We will first prove the lower bound. If Pol(S) ⊆ L3, the lower bound follows from Theo-
rem 5.8. If Pol(S) ⊆ V2 or Pol(S) ⊆ E2, the lower bound follows from Theorem 5.10 and Lemma 5.11.

By inspecting Post’s lattice (Remark 5.1), we see that the remaning cases are:

1. I0 ⊆ Pol(S) or I1 ⊆ Pol(S). In both cases, any CNF(S) is trivially satisfiable.

2. S00 ⊆ Pol(S), or S10 ⊆ Pol(S), or D2 ⊆ Pol(S). In all of those three cases, we have
CSP-SATS ∈ mNL by Theorem 5.5.
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Figure 3: Illustration of Theorem 5.12. The vertices are colored with the monotone circuit depth
complexity of deciding CSPs whose set of polymorphisms corresponds to the label of the vertex.
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5.4 Some auxiliary results

In this section, we prove auxiliary results needed in the proof of a more general form of The-
orem 1.4. In particular, we will prove that all CSP-SATS which are in AC0 are also contained in
mAC0 ⊆ mNC1. Moreover, we show that, if CSP-SATS /∈ mNC1, then CSP-SATS is L-hard under
≤AC0

m reductions.
We first observe that, when COQ(S1) ⊆ COQ(S2), there exists an efficient low-depth reduction

from CSP-SATS1 to CSP-SATS2 . This reduction, which will be useful in this section, is more refined
than the one given by Lemma 5.4. A proof of the non-monotone version of this statement is found
in [BCRV04, Proposition 2.3], and we give a monotone version of this proof in Appendix B.2.

Lemma 5.13 ([BCRV04, Proposition 2.3]). If COQ(S1) ⊆ COQ(S2), then there exists a constant
C ∈ N such that CSP-SATn

S1
≤mOR

m CSP-SATCn
S2

.

Proof. We defer the proof to Appendix B.2.

We now recall some lemmas from [ABI+09], and prove a few consequences from them. We say
that a set S of relations can express equality if {=} ⊆ COQ(S).

Lemma 5.14 ([ABI+09]). Let S be a finite set of relations. Suppose S02 ⊆ Pol(S) (S12 ⊆
Pol(S), resp.) and that S cannot express equality. Then there exists k ≥ 2 such that S ⊆
COQ(

{

ORk, x,¬x
}

) (S ⊆ COQ(
{

NANDk, x,¬x
}

), resp.).

Proof. Follows from the proof of Lemma 3.8 of [ABI+09].

Lemma 5.15. Let S be a finite set of relations such that Pol(S) ⊆ R2. If S02 ⊆ Pol(S) or
S12 ⊆ Pol(S), and S cannot express equality, then CSP-SATS ∈ mAC0

3.

Proof. We write the proof in the case S02 ⊆ Pol(S). The other case is analogous.
From Lemmas 5.13 and 5.14 and Items (iv) and (v) of Lemma 5.3, we get that there is a mono-

tone OR-reduction from CSP-SATS to CSP-SAT{ORk,x,¬x} for some k. However, an
{

ORk, x,¬x
}

-

formula is unsatisfiable iff there exists a literal and its negation as a constraint in the formula, or if
there exists a disjunction in the formula such that every one of its literals appears negatively as a
constraint. This condition can be easily checked by a polynomial-size monotone DNF. Composing
the monotone DNF with the monotone OR-reduction, we obtain a depth-3 AC0 circuit computing
CSP-SATS .

Lemma 5.16 ([ABI+09, Lemma 3.8]). Let S be a finite set of relations such that Pol(S) ⊆ R2. If

S02 ⊆ Pol(S) or S12 ⊆ Pol(S), and S can express equality, then CSP-SATS is L-hard under ≤AC0

m

reductions.

Lemma 5.17. Let S be a finite set of relations. If S02 6⊆ Pol(S) and S12 6⊆ Pol(S), then CSP-SATS

is L-hard or trivial.

Proof. This follows by inspecting Post’s lattice (Figure 1) and the classification theorem (Theo-
rem 5.6).

We may now prove the main result of this subsection.

Theorem 5.18. We have CSP ∩ AC0 ⊆ mAC0
3. Moreover, if CSP-SATS /∈ mAC0

3, then CSP-SATS

is L-hard under ≤AC0

m reductions.
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Proof. Let S be a finite set of relations. If CSP-SATS 6∈ mAC0
3, then, by Lemma 5.15, at least one

of the following cases hold:

1. S02 ⊆ Pol(S) ⊆ R2 or S12 ⊆ Pol(S) ⊆ R2, and S can express the equality relation;

2. S02 6⊆ Pol(S) ⊆ R2 and S12 6⊆ Pol(S) ⊆ R2.

3. Pol(S) 6⊆ R2.

Since CSP-SATS is not trivial, we obtain that CSP-SATS is L-hard in the first two cases by Lem-
mas 5.16 and 5.17, and it’s easy to check that CSP-SATS is also L-hard in the third case by inspecting
Post’s lattice (Figure 1) and the classification theorem (Theorem 5.6). Since L 6⊆ AC0, this also
implies that, if CSP-SATS ∈ AC0, then S02 ⊆ Pol(S) ⊆ R2 or S12 ⊆ Pol(S) ⊆ R2, and S cannot
express the equality relation. Lemma 5.15 again gives CSP-SATS ∈ mAC0

3.

5.5 Consequences for monotone circuit lower bounds via lifting

We now prove a stronger form of Theorem 1.4. In the previous section, we showed that CSP ∩
AC0 ⊆ mAC0. In particular, this means that there does not exist a finite set of relations S such
that CSP-SATS separates AC0 and mNC1, a separation which we proved in Theorem 1.1. We will
also observe that, if CSP-SATS /∈ mNC2, then CSP-SATS is ⊕L-hard.

Theorem 5.19. Let S be a finite set of Boolean relations.

1. If CSP-SATS /∈ mAC0
3 then CSP-SATS is L-hard under ≤AC0

m reductions.

2. If CSP-SATS /∈ mNC2, then CSP-SATS is ⊕L-hard under ≤AC0

m reductions.

Proof. Item (1) follows from Theorem 5.18. To prove item (2), suppose thatmDEPTH(CSP-SATS) =
ω(log2 n). Then, by Theorem 5.12, we conclude that Pol(S) ⊆ L3, or Pol(S) ⊆ V2, or Pol(S) ⊆ E2.
Theorem 5.6 implies that CSP-SATS is ⊕L-hard.

Further Discussion. We recall the discussion of Section 1.1.3. We introduced and defined the
functions CSP-SATS in that section, as a way to capture monotone circuit lower bounds proved
via lifting. This in particular captures the monotone function 3-XOR-SAT, which was proved
in [GKRS19] to require monotone circuit lower bounds of size 2n

Ω(1)
to compute, even though ⊕L-

machines running in polynomial-time can compute it. Theorem 5.19 proves that this separation
between monotone and non-monotone circuit lower bounds cannot be improved by varying the set
of relations S, as we argue below.

There are two ways one could try to find a function in AC0 with large monotone complexity using
a CSP-SAT function. First, one could try to define a set of relations S such that CSP-SATS ∈ AC0,
but the monotone complexity of CSP-SATS is large. However, Item (1) of Theorem 5.19 proves
that this is impossible, as any CSP-SAT function outside of mAC0 is L-hard under simple reductions
and, therefore, cannot be computed in AC0.

Secondly, one could try to be apply the arguments of Section 3, consisting of a padding trick
and a simulation theorem. When S is the set of 3XOR relations, then indeed we obtain a function
in AC0[⊕] with superpolynomial monotone circuit complexity, as proved in Theorem 3.1. However,
Item (2) of Theorem 5.19 proves that this is best possible, as any CSP-SAT function which admits
a superpolynomial monotone circuit lower bound must be ⊕L-hard and, therefore, at least as hard

31



as 3-XOR-SAT for non-monotone circuits. Item (2) also shows that even CSP-SAT functions with
a ω(log2 n) monotone depth lower bound must be ⊕L-hard, which suggests that the arguments of
Section 3 applied to a CSP-SAT function are not able to prove the separation of Theorem 3.3.

A caveat to these impossibility results is in order. First, we only study Boolean-valued CSPs
here, though the framework of lifting can also be applied in the context of non-Boolean CSPs. It’s
not clear if non-Boolean CSPs exhibit the same dichotomies for monotone computation we proved
in this section. We remark that Schaefer’s dichotomy for Boolean-valued CSPs [Sch78] has been
extended to non-Boolean CSPs [Zhu17, Bul17].

Secondly, the instances of CSP-SAT generated by lifting do not cover the entirety of the minterms
and maxterms of CSP-SAT. In particular, our results do not rule out the possibility that a clever
interpolation of the instances generated by lifting may give rise to a function that is easier to
compute by non-monotone circuits, and therefore bypasses the hardness results of Theorem 5.19.
One example is the Tardós function [Tar88]. A lifting theorem applied to a Pigeonhole Principle
formula can be used to prove a lower bound on the size of monotone circuits that accept cliques
of size k and reject graphs that are (k − 1)-colorable, for some k = nε [RM99, Rez23]. A natural
interpolation for these instances would be the k-Clique function, which, being NP-complete, would
be related to an NP-complete CSP-SAT. However, as proved by [Tar88], there is a monotone
function in P which has the same output behaviour over these instances.
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[Tar88] É. Tardos. The gap between monotone and nonmonotone circuit complexity is expo-
nential. Combinatorica, 8(1):141–142, 1988. 3, 6, 32

[Urq87] Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987. 15

[Val80] Leslie G. Valiant. Negation can be exponentially powerful. Theor. Comput. Sci.,
12:303–314, 1980. 4

[Zhu17] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, pages 331–342. IEEE Computer Society, 2017. 8, 32

A A Lower Bound for 3-XOR-SAT Using the Approximation Method

As discussed in Section 1.1.3, [GKRS19] obtained an exponential lower bound on the monotone
circuit size of the function 3-XOR-SAT using techniques from communication complexity and lifting.
Here we observe that a weaker but still super-polynomial lower bound can be proved using the
approximation method.

First, we recall the function OddFactorn : {0, 1}(
n
2) → {0, 1} of Section 3.2, which accepts a

given graph if the graph contains an odd factor, which is a spanning subgraph in which the degree
of every vertex is odd. For convenience, in this section we consider a weaker version of OddFactor,
which takes as an input a bipartite graph with n vertices on each part, and accepts if the graph

contains an odd factor. Let Bipartite-OddFactorn : {0, 1}n2 → {0, 1} be this function. We remark
that the lower bounds of Babai, Gál and Wigderson [BGW99] for OddFactor (Theorem 3.4) also hold
for Bipartite-OddFactor. The proof of the monotone circuit lower bound in particular is essentially
Razborov’s lower bound for Matching via the approximation method [Raz85b].

Theorem A.1 ([BGW99]). We have

mSIZE(Bipartite-OddFactorn) = nΩ(logn) and mDEPTH(Bipartite-OddFactorn) = Ω(n).
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We can reduce Bipartite-OddFactor to 3-XOR-SAT by noting that computing Bipartite-OddFactorn(M)

on a given matrix M ∈ {0, 1}n2

is computationally equivalent to deciding the satisfiability of the
following F2 linear system over variables {xij}:

• For all i ∈ [n]:
⊕n

k=1 xik = 1;

• For all j ∈ [n]:
⊕n

k=1 xkj = 1;

• For all i, j ∈ [n] such that Mij = 0: xij = 0.

We can then use a circuit for 3-XOR-SAT to solve this system by using a standard trick of
introducing new variables to reduce the number of variables that appear in each equation, as done
in the textbook reduction from SAT to 3-SAT. As the corresponding reductions turn out to be
monotone, this implies monotone circuit and formula lower bounds for 3-XOR-SAT. We note that
a somewhat similar argument (in the non-monotone setting) appears in Feder and Vardi [FV98,
Theorem 30] regarding constraint satisfaction problems with the ability to count.

In order to formalise this argument, we will need the following definition and results.

Definition A.2. Let f be a Boolean function. We define dual(f) : x 7→ ¬f(¬x) as the dual of f .

Lemma A.3. Let f be a monotone Boolean function. We have mSIZE(f) = mSIZE(dual(f)) and
mDEPTH(f) = mDEPTH(dual(f)).

Proof. The idea is to push negations to the bottom and eliminate double negations at the input
layer. In other words, applying De Morgan rules, we can convert any {∧,∨}-circuit computing f
into a circuit computing dual(f) by swapping ∧-gates for ∨-gates, and vice-versa. Moreover, this
transformation preserves the depth of the circuit.

We are ready to describe a monotone reduction from the function Bipartite-OddFactorn to
3-XOR-SAT, which implies the desired lower bounds.

Theorem A.4. There exists ε > 0 such that

mSIZE(3-XOR-SAT) = nΩ(logn) and mDEPTH(3-XOR-SAT) = Ω(nε).

Proof. Recall that the value of the function Bipartite-OddFactorn(M) on a given matrixM ∈ {0, 1}n2

is equal to 1 if the following system is satisfiable:

• For all i ∈ [n]:
⊕n

k=1 xik = 1;

• For all j ∈ [n]:
⊕n

k=1 xkj = 1;

• For all i, j ∈ [n] such that Mij = 0: xij = 0.

We introduce some extra variables to reduce the number of variables in each equation in the
following way. For every i ∈ [n], introduce variables zi1, . . . , zi(n−1) and the equations

zi1 = xi1 ⊕ xi2,

zi2 = zi1 ⊕ xi3,

. . .

zi,(n−1) = zi,(n−2) ⊕ xi,n,

zi,(n−1) = 1.
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Now note that these equations imply zi,(n−2) =
⊕n

k=1 xik = 1. For each “column” equation
⊕n

k=1 xkj = 1, we also add variables wj1, . . . , wj(n−1) as above. In total, we add at most 2n2 vari-
ables and 2n2 equations. Therefore, there is a system of linear equations on O(n2) variables, where
each constraint contains at most 3 variables, which is satisfiable if and only if Bipartite-OddFactorn(M) =
1. Moreover, it is easy to see that the characteristic vector α of the set of equations of this system
can be computed fromM by an anti-monotone projection, as we activate a constraint that depends
on the input when Mij = 0.

Now let f = dual(3-XOR-SAT) and β = ¬α. Since, by definition, 3-XOR-SAT accepts unsatisfi-
able systems, we get Bipartite-OddFactorn(M) = ¬3-XOR-SAT(α) = f(β) and that β is a monotone
projection of M . Therefore, by Lemma A.3, we obtain

mSIZE(Bipartite-OddFactorn) ≤ mSIZE(3-XOR-SAT)

and
mDEPTH(Bipartite-OddFactorn) ≤ mDEPTH(3-XOR-SAT).

B Schaefer’s Theorem in Monotone Complexity

B.1 Connectivity and generation functions

We recall the definitions of two prominent monotone Boolean functions that have efficient

monotone circuits. Let ST-CONN : {0, 1}n2 → {0, 1} be the function that outputs 1 on a given

directed graph G if there exists a path from 1 to n in G. Let GEN : {0, 1}n3 → {0, 1} be the Boolean
function which receives a set T of triples (i, j, k) ∈ [n3], and outputs 1 if n ∈ S, where S ⊆ [n] is
the set generated with the following rules:

• Axiom: 1 ∈ S,

• Generation: If i, j ∈ S and (i, j, k) ∈ T , then k ∈ S.

The following upper bounds are well-known and easy to prove.

Theorem B.1 ([Juk12, Exercise 7.3], [RM99]). We have ST-CONN ∈ mNL and GEN ∈ mSIZE[poly].

B.2 Proof of reduction lemmas

Here we present monotonised versions of the proofs of [BCRV04, Propositions 2.2 - 2.4], which
give a simplified presentation of the results of [Sch78].

Lemma 5.13 ([BCRV04, Proposition 2.3]). If COQ(S1) ⊆ COQ(S2), then there exists a constant
C ∈ N such that CSP-SATn

S1
≤mOR

m CSP-SATCn
S2

.

Proof. If COQ(S1) ⊆ COQ(S2), then each relation of S1 can be represented as a conjunctive query
over S2. Let F1 be a S1-formula. For each constraint C1 of F1, there exists a formula ϕ(C1) in
CNF(S2) such that C1 is a projection of ϕ(C1) (i.e., C1 is a conjunctive query of ϕ(C1)). However,
note that C1 is satisfiable if and only if ϕ(C1) is satisfiable. So we can replace the constraint C1 by
the set of constraints in ϕ(C1). Doing this for every constraint in F1, we obtain an S2-formula F2

which is satisfiable iff F1 is satisfiable.
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Now note that, to decide if a given constraint application C of S2 is in the reduction, it suffices
to check if there exists a S1-constraint C1 in F1 such that C is in ϕ(C1). Using non-uniformity, this
can be easily done by an OR over the relevant input bits.

Finally, we observe that, since the arities of each relation in S1 and S2 are constant, we only
add a constant number of variables for each constraint to represent S1-formulas with conjunctive
queries over S2-formulas.

Lemma B.2. Let S be a set of Boolean relations. We have CSP-SATS∪{=} ≤mNL
m CSP-SATS.

Proof. Let F be a (S ∪ {=})-formula on n variables given as an input. Remember that F is given
as a Boolean vector α, where each bit of α represents the presence of a constraint application on
n variables from S ∪ {=}. We first build an undirected graph G with the variables x1, . . . , xn as
vertices, and we put an edge between xi and xj if the constraint xi = xj appears in F . Note that
G can be constructed by a monotone projection from F .

Let R ∈ S and let C = R(x1, . . . , xn) be a constraint application of R. If C appears in F ,
we add to the system every constraint of the form C ′ = R(y1, . . . , yn) such that, for every i ∈ [n],
there exists a path from xi to yi in the graph G. In this case, we say that C generates C ′. Let F2

be the formula that contains all non-equality constraints of F , and all the non-equality constraints
generated by a constraint in F . It’s not hard to see that F is satisfiable if and only if F2 is satisfiable,
and therefore the reduction is correct.

Moreover, the reduction can be done in monotone NL using the monotone NL algorithm for
ST-CONN (Theorem B.1). Indeed, there are at most nk constraint applications of a given relation
R of arity k. Therefore, to decide if a constraint C ′ = R(y1, . . . , yn) appears in F2, it suffices to
check if there exists a constraint application of R in F which generates C ′. This can be checked
with nk calls to ST-CONN.

Lemma 5.4 (Polymorphisms characterise the complexity of CSPs [Jea98, BCRV04, Theorem 2.4]).

If Pol(S2) ⊆ Pol(S1), then CSP-SATn
S1

≤mNL
m CSP-SAT

poly(n)
S2

.

Proof. If Pol(S2) ⊆ Pol(S1), then from Lemma 5.3 (Items (iii), (v) and (vi)) we obtain COQ(S1) ⊆
〈S1〉 ⊆ 〈S2〉 = COQ(S2 ∪ {=}). Therefore, by Lemmas 5.13 and B.2 we can do the following chain
of reductions in monotone NL:

CSP-SATS1 ≤mOR
m CSP-SATS2∪{=} ≤mNL

m CSP-SATS2 .

B.3 Monotone circuit upper bounds

We restate and prove the theorem.

Theorem 5.5 (Monotone version of the upper bounds for CSP-SAT [Sch78, ABI+09]). Let S be a
finite set of relations. The following holds.

1. If E2 ⊆ Pol(S) or V2 ⊆ Pol(S), then CSP-SATS ∈ mSIZE[poly].

2. If D2 ⊆ Pol(S), or S00 ⊆ Pol(S), or S10 ⊆ Pol(S), then CSP-SATS ∈ mNL.

Proof. We prove each case separately.
Proof of (1). We first observe that 3-Horn-SAT (see definition in Section 5.3, Dichotomy for

formulas) can be solved by a reduction to GEN ∈ mSIZE[poly]. Indeed, we interpret each constraint
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of the form (¬xi ∨ ¬xj ∨ xk) (which is equivalent to xi ∧ xj =⇒ xk) as a triple (i, j, k), and
constraints of the form xi as a triple (0, 0, i). Let S ⊆ {0, 1, 2 . . . , n} be the set generated by these
triples, applying the generation rules of GEN, using 0 ∈ S as the axiom. It suffices to check that
there exists some constraint of the form ¬xi ∨ ¬xj ∨ ¬xk, such that {i, j, k} ⊆ S. This process
can be done with polynomial-size monotone circuits, invoking GEN. Therefore, it follows from
Theorem B.1 that 3-Horn-SAT ∈ mSIZE[poly].

Moreover, we recall that, if E2 ⊆ Pol(S), then S ⊆ COQ(H3) (in other words, every S-formula
can be written as a set of 3-Horn equations) – see, e.g, [CKS01, Lemma 4.8]. Therefore, from
Items (iv) and (v) of Lemma 5.3 and Lemma 5.13, we conclude that CSP-SATS ≤mOR

m 3-Horn-SAT ∈
mSIZE[poly].

Now recall that, if V2 ⊆ Pol(S), then S ⊆ COQ(A3), where A3 is the set of width-3 Anti-Horn
relations (i.e., A3 = {(x1 ∨ x2 ∨ ¬x3), (x1 ∨ x2 ∨ x3), (¬x)}; see [CKS01, Lemma 4.8] for a proof
of this observation). But note that an A3-formula ϕ is satisfiable if and only if the H3-formula
ϕ(¬x1, . . . ,¬xn) is satisfiable. Therefore by Lemma 5.13 and Items (iv) and (v) of Lemma 5.3, we

have CSP-SATS ≤mOR
m CSP-SATA3 ≤mProj

m 3-Horn-SAT ∈ mSIZE[poly].
Proof of (2). We first prove the case D2 ⊆ Pol(S). Let 2-SAT = CSP-SATΓ, where Γ =

{(x1 ∨ x2), (x1 ∨ ¬x2), (¬x1 ∨ ¬x2)}. It’s easy to check that the standard reduction from 2-SAT
to ST-CONN can be done in monotone NL (see [JLL76, Theorem 4]). Therefore, it follows from
Theorem B.1 that 2-SAT ∈ mNL. Now, recall that, if D2 ⊆ Pol(S), then S ⊆ COQ(Γ) (see, e.g.,
[CKS01, Lemma 4.9]). Therefore, from Lemma 5.13 and Items (iv) and (v) of Lemma 5.3, we
conclude CSP-SATS ∈ mNL.

We now suppose that S00 ⊆ Pol(S). We check that the proof of [ABI+09, Lemma 3.4] gives a
monotone circuit. If S00 ⊆ Pol(S), then there exists k ≥ 2 such that S00

k ⊆ Pol(S) (that’s because
there does not exist a finite set of relations S such that Pol(S) = S00). Note that S00

k = Pol(Γ),
where Γ =

{

ORk, x,¬x,→,=
}

. We show below how to decide if a Γ-formula is unsatisfiable in
monotone NL. The result then follows from Lemma 5.4.

Let F be a given Γ-formula with n variables. We first construct a directed graph G, with vertex
set {x1, . . . , xn}, and with arcs (xi, xj) if xi → xj is a constraint of F , and arcs (xi, xj) and (xj , xi)
if xi = xj is a constraint of F . This can be done with a monotone projection. Observe that a
Γ-formula F is unsatisfiable if, and only if, there exists a constraint of the form xi1 ∨ · · · ∨ xik in
F , such that there exists a path from some xij to a constraint ¬y in F . This can be checked in
monotone NL by Theorem B.1.

The case S10 ⊆ Pol(S) is analogous.

C Background on Post’s Lattice and Clones

In this section, we include the definitions of the various clones that are used in the paper, as
well as a figure of Post’s lattice, which can be helpful when checking the proofs of Section 5.

Let →: (x, y) 7→ (¬x∨y). Let also ↔: (x, y) 7→ ¬(x⊕y) and id : x 7→ x. Let f : {0, 1}k → {0, 1}
be a Boolean function. We say that f is linear if there exists c ∈ {0, 1}k and b ∈ {0, 1} such that
f(x) = 〈c, x〉 + b (mod 2). We say that f is self-dual if f = dual(f). Let a ∈ {0, 1}. We say that
f is a-reproducing if f(a, . . . , a) = a. We say that a set T ⊆ {0, 1}k is a-separating if there exists
i ∈ [k] such that xi = a for all x ∈ T . We say that f is a-separating if f−1(a) is a-separating. We
say that f is a-separating of degree k if every T ⊆ f−1(a) such that |T | = k is a-separating. The
basis of a clone B is a set of Boolean functions F such that B = [F ].
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Name Definition Base

BF All Boolean functions {∨,∧,¬}
R0 {f ∈ BF : f is 0-reproducing} {∧,⊕}
R1 {f ∈ BF : f is 1-reproducing} {∨,↔}
R2 R1 ∩ R0 {∨, x ∧ (y ↔ z)}
M {f ∈ BF : f is monotonic} {∨,∧, 0, 1}
M1 M ∩ R1 {∨,∧, 1}
M0 M ∩ R0 {∨,∧, 0}
M2 M ∩ R2 {∨,∧}
Sn0 {f ∈ BF : f is 0-separating of degree n} {→, dual(hn)}
S0 {f ∈ BF : f is 0-separating} {→}
Sn1 {f ∈ BF : f is 1-separating of degree n} {x ∧ y, hn}
S1 {f ∈ BF : f is 1-separating} {x ∧ y}
Sn02 Sn0 ∩ R2 {x ∨ (y ∧ z), dual(hn)}
S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn01 Sn0 ∩M {dual(hn), 1}
S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn00 Sn0 ∩ R2 ∩M {x ∨ (y ∧ z), dual(hn)}
S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn12 Sn1 ∩ R2 {x ∧ (y ∨ z), hn}
S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn11 Sn1 ∩M {hn, 0}
S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn10 Sn1 ∩ R2 ∩M {x ∧ (y ∨ z), hn}
S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D {f ∈ BF : f is self-dual} {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D1 D ∩ R2 {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D2 D ∩M {(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z)}
L {f ∈ BF : f is linear} {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {↔}
L2 L ∩ R {x⊕ y ⊕ z}
L3 L ∩D {x⊕ y ⊕ z ⊕ 1}
V {f ∈ BF : f is constant or an n-ary OR function} {∨, 0, 1}
V0 [{∨}] ∪ [{0}] {∨, 0}
V1 [{∨}] ∪ [{1}] {∨, 1}
V2 [{∨}] {∨}
E {f ∈ BF : f is constant or an n-ary AND function} {∧, 0, 1}
E0 [{∧}] ∪ [{0}] {∧, 0}
E1 [{∧}] ∪ [{1}] {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ [{0}] ∪ [{1}] {¬, 1}
N2 [{¬}] {¬}
I [{id}] ∪ [{0}] ∪ [{1}] {id, 0, 1}
I0 [{id}] ∪ [{0}] {id, 0}
I1 [{id}] ∪ [{1}] {id, 1}
I2 [{id}] {id}

Figure 4: Table of all closed classes of Boolean functions, and their bases. Here, hn denotes the
function hn(x1, . . . , xn+1) =

∨n+1
i=1

∧n+1
j=1,j 6=i xj . See Definition A.2 for the definition of dual(·). The

same table appears in [ABI+09, Table 1]. 42
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