
Near-optimal small-depth lower bounds

for small distance connectivity

Xi Chen∗

Columbia University
Igor C. Oliveira†

Columbia University
Rocco A. Servedio‡

Columbia University

Li-Yang Tan§

Toyota Technological Institute

September 25, 2015

Abstract

We show that any depth-d circuit for determining whether an n-node graph has an s-to-t path

of length at most k must have size nΩ(k1/d/d). The previous best circuit size lower bounds for

this problem were nk
exp(−O(d))

(due to Beame, Impagliazzo, and Pitassi [BIP98]) and nΩ((log k)/d)

(following from a recent formula size lower bound of Rossman [Ros14]). Our lower bound is

quite close to optimal, since a simple construction gives depth-d circuits of size nO(k2/d) for this

problem (and strengthening our bound even to nk
Ω(1/d)

would require proving that undirected
connectivity is not in NC1.)

Our proof is by reduction to a new lower bound on the size of small-depth circuits computing
a skewed variant of the “Sipser functions” that have played an important role in classical circuit
lower bounds [Sip83, Yao85, H̊as86]. A key ingredient in our proof of the required lower bound for
these Sipser-like functions is the use of random projections, an extension of random restrictions
which were recently employed in [RST15]. Random projections allow us to obtain sharper
quantitative bounds while employing simpler arguments, both conceptually and technically,
than in the previous works [Ajt89, BPU92, BIP98, Ros14].

∗xichen@cs.columbia.edu. Supported in part by NSF grants CCF-1149257 and CCF-1423100.
†oliveira@cs.columbia.edu.
‡rocco@cs.columbia.edu. Supported in part by NSF grants CCF-1319788 and CCF-1420349.
§liyang@cs.columbia.edu. Part of this research was done while visiting Columbia University.

ar
X

iv
:1

50
9.

07
47

6v
1

 [
cs

.C
C

]
 2

4
Se

p
20

15

1 Introduction

Graph connectivity problems are of great interest in theoretical computer science, both from an
algorithmic and a computational complexity perspective. The “st-connectivity,” or STCONN ,
problem — given an n-node graph G with two distinguished vertices s and t, is there a path of
edges from s to t? — plays a particularly central role. One longstanding question is whether
any improvement is possible on Savitch’s O((log n)2)-space algorithm [Sav70], based on “repeated
squaring,” for the directed STCONN problem; since this problem is complete for NL, any such
improvement would show that NL ⊆ SPACE(o(log2 n)), and hence would have a profound impact
on our understanding of non-deterministic space complexity. Wigderson’s survey [Wig92] provides
a now somewhat old, but still very useful, overview of early results on connectivity problems.

In this paper we consider the “small distance connectivity” problem STCONN (k(n)) which is
defined as follows. The input is the adjacency matrix of an undirected n-vertex graph G which has
two distinguished vertices s and t, and the problem is to determine whether G contains a path of
length at most k(n) from s to t. We study this problem from the perspective of small-depth circuit
complexity; for a given depth d (which may depend on k), we are interested in the size of unbounded
fan-in depth-d circuits of AND, OR, and NOT gates that compute STCONN (k(n)). (As several
authors [BIP98, Ros14] have observed, the directed and undirected versions of the STCONN (k(n))
problems are essentially equivalent via a simple reduction that converts a directed graph into a
layered undirected graph; for simplicity we focus on the undirected problem in this paper.)

An impetus for this study comes from the above-mentioned question about Savitch’s algorithm.
As noted by Wigderson [Wig92], a simple reduction shows that if Savitch’s algorithm is optimal,
then for all k polynomial-size unbounded fan-in circuits for STCONN (k(n)) must have depth
Ω(log k). By giving lower bounds on the size of small-depth circuits for STCONN (k(n)), Beame,
Impagliazzo, and Pitassi [BIP98] have shown that depth Ω(log log k) is required for k(n) ≤ log n,
and more recently Rossman [Ros14] has shown that depth Ω(log k) is required for k(n) ≤ log log n.
These bounds for restricted ranges of k motivate further study of the circuit complexity of small-
depth circuits for STCONN (k(n)). Below we give a more thorough discussion of both upper and
lower bounds for this problem, before presenting our new results.

1.1 Prior results

Upper bounds (folklore). A natural approach to obtain efficient circuits for STCONN (k(n)) is
by repeated squaring of the input adjacency matrix. If xi,j is the input variable that takes value
1 if edge {i, j} is present in the input graph, then the graph contains a path of length at most 2
from i to j if and only if the depth-2 circuit

∨n
k=1(xi,k ∧xk,j) is satisfied (assuming that xi,i = 1 for

every i). Iterating this construction yields a circuit of size poly(n) and depth 2 log k that computes
STCONN (k(n)), whenever k is a power of two.

For smaller depths, a natural extension of this approach leads to the following construction.
Let G0 be the input graph. For every pair of nodes u, v in G0, check by exhaustive search for paths
of length at most t = k1/d connecting these nodes. (We assume that k1/d is an integer in order
to avoid unnecessary technical details.) Note that this can be done simultaneously for every pair
of nodes by a (multi-output) depth-2 OR-of-ANDs circuit of size nt+O(1). Let G1 be a new graph
that has an edge between u and v if and only if a path of length at most t connects these nodes.
In general, if we start with G0 and repeat this procedure d times, we obtain a sequence of graphs
G0, G1, . . . , Gd for which the following holds: Gi has an edge between nodes u and v if and only

1

if they are connected by a path of length at most ti in the initial graph G0. In particular, this
construction provides a circuit of depth 2d and size nk

1/d+O(1) that computes STCONN (k(n)).
Summarizing this discussion, it follows that for all k ≤ n and d ≤ log k, STCONN (k(n)) can be

computed by depth-2d circuits of size nO(k1/d), or equivalently by depth-d circuits of size nO(k2/d).

Lower bounds. Furst, Saxe, and Sipser [FSS84] were the first to show that STCONN
def
=

STCONN (n) /∈ AC0 via a reduction from their lower bound against small-depth circuits computing
the parity function. By the same reduction, H̊astad’s subsequent optimal lower bound against
parity [H̊as86] implies that depth-d circuits computing STCONN (k(n)) must have size 2Ω(k1/(d+1));
in particular, for k(n) = (log n)ω(1) polynomial-size circuits computing STCONN (k(n)) must have
depth d = Ω(log k/ log log n). Note, however, that this is not a useful bound for small distance
connectivity, since when k(n) = o(log n) the 2Ω(k1/(d+1)) lower bound is less than n and hence trivial.

Ajtai [Ajt89] was the first to show that STCONN (k(n)) /∈ AC0 for all k(n) = ωn(1); however, his
proof did not yield an explicit circuit size lower bound. His approach was further analyzed and sim-
plified by Bellantoni, Pitassi, and Urquhart [BPU92], who showed that this technique gives a (barely

super-polynomial) nΩ(log(d+3) k) lower bound on the size of depth-d circuits for STCONN (k(n)),
where log(i) denotes the i-times iterated logarithm. This implies that polynomial-size circuits com-
puting STCONN (k(n)) must have depth Ω(log∗ k).

Beame, Impagliazzo, and Pitassi [BIP98] gave a significant quantitative strengthening of Ajtai’s
result in the regime where k(n) is not too large. For k(n) ≤ log n, they showed that any depth-d

circuit for STCONN (k(n)) must have size nΩ(kφ
−2d/3), where φ = (

√
5 + 1)/2 is the golden ratio.

Their arguments are based on a special-purpose “connectivity switching lemma” that they develop,
which combines elements of both the Ajtai [Ajt83] “independent set style” switching lemma and
the later approach to switching lemmas given by Yao [Yao85], Hastad [H̊as86] and Cai [Cai86].

Observe that the [BIP98] lower bound shows that polynomial-size circuits for STCONN (k(n))
require depth Ω(log log k) (and as noted above, the [BIP98] lower bound only holds for k(n) ≤ log n).
Beame et al. asked whether this Ω(log log k) could be improved to Ω(log k), which is optimal by the
upper bound sketched above. This was achieved recently by Rossman [Ros14], who showed that
for k(n) ≤ log log n, polynomial-size circuits for STCONN (k(n)) require depth Ω(log k). In more
detail, he showed that for k(n) ≤ log log n and d(n) ≤ log n/(log log n)O(1), depth-d formulas for
STCONN (k(n)) require size nΩ(log k). By the trivial relation between formulas and circuits (every
circuit of size S and depth d is computed by a formula of size Sd and depth d), this implies that
for such k(n) and d(n), depth-d circuits for STCONN (k(n)) require size nΩ((log k)/d). While this
answers the question of Beame et al., the nΩ((log k)/d) circuit size bound that follows from Rossman’s

formula size bound is significantly smaller than the nΩ(kφ
−2d/3) circuit size bound of [BIP98] when

d is small. Furthermore, Rossman’s result only holds for k(n) ≤ log logn whereas [BIP98]’s holds
for k(n) ≤ log n (and ideally we would like a lower bound for all distances k(n) ≤ n).

1.2 Our results

Our main result is a near-optimal lower bound for the small-depth circuit size of STCONN (k(n))
for all distances k(n) ≤ n. We prove the following:

Theorem 1. For any k(n) ≤ n1/5 and any d = d(n), any depth-d circuit computing STCONN (k(n))

must have size nΩ(k1/d/d). Furthermore, for any k(n) ≤ n and any d = d(n), any depth-d circuit

computing STCONN (k(n)) must have size nΩ(k1/5d/d).

2

Circuit size Depth of poly-size circuits Range of k’s

Implicit in [H̊as86] 2Ω(k1/(d+1)) Ω(log k/ log log n) All k

[Ajt89, BPU92] nΩ(log(d+3) k) Ω(log∗ k) All k

[BIP98] nΩ(kφ
−2d/3) Ω(log log k) k ≤ log n

[Ros14] nΩ((log k)/d) Ω(log k) k ≤ log logn

Folklore upper bound nO(k2/d) 2 log k All k

This work
nΩ(k1/d/d)

Ω(log k/ log log k)
k ≤ n1/5

nΩ(k1/5d/d) All k

Table 1: Previous work and our results on the size of depth-d circuits for STCONN (k(n)). The
column “Range of k’s” indicates the values of k for which the lower bound is proved to hold.

Our lower bound is very close to the best possible, given the nO(k2/d) upper bound. Indeed,
strengthening our theorem to nk

Ω(1/d)
for all values of k and d would imply a breakthrough in circuit

complexity, showing that unbounded fan-in circuits of depth o(log n) computing STCONN must
have super-polynomial size. Since every function in NC1 can be computed by unbounded fan-in
circuits of polynomial size and depth O(log n/ log log n) (see e.g. [KPPY84]), such a strengthening
would yield an unconditional proof that STCONN /∈ NC1.

Comparing to previous work, our nΩ(k1/d/d) lower bound subsumes the main nΩ(kφ
−2d/3) lower

bound result of Beame et al. [BIP98] for all depths d, and improves the nΩ((log k)/d) circuit size lower
bound that follows from Rossman’s formula size lower bound [Ros14] except when d is quite close
to log k (specifically, except when Ω(log k/ log log k) ≤ d ≤ O(log k)). For large distances k(n) for
which the results of [BIP98, Ros14] do not apply (i.e. k(n) = ω(log n)), our lower bound subsumes

the 2Ω(k1/(d+1)) lower bound that is implied by [H̊as86] for all distances k(n) ≤ n1/5 and depths d,

and it subsumes the subsequent nΩ(log(d+3) k) lower bound of [Ajt89, BPU92] for all distances k and
depths d.

Another perspective on Theorem 1 is that it implies that polynomial-size circuits require depth
Ω(log k/ log log k) to compute STCONN (k(n)) for all distances k(n) ≤ n. While Rossman’s results
give Ω(log k), they hold only for the significantly restricted range k(n) ≤ log logn. (And indeed, as
noted above a lower bound of Ω(log k) for all k(n) would imply that STCONN /∈ NC1.)

1.3 Our approach

Previous state-of-the-art results on this problem employed rather sophisticated arguments and
involved machinery. Beame et al. [BIP98] (as well as the earlier works of [Ajt89, BPU92]) obtained
their lower bounds by considering the STCONN (k(n)) problem on layered graphs of permutations,
i.e., graphs with k + 1 layers of n vertices per layer in which the induced graph between adjacent
layers is a perfect bipartite matching. They developed a special-purpose “connectivity switching
lemma” that bounds the depth of specialized decision trees for randomly-restricted layered graphs.
Rossman [Ros14] considered random subgraphs of the “complete k-layered graph” (with k+1 layers

3

of n vertices and kn2 edges) where each edge is independently present with probability 1/n. At the
heart of his proof is an intricate notion of “pathset complexity,” which roughly speaking measures
the minimum cost of constructing a set of paths via the operations of union and relational join,
subject to certain “density constraints.”

In contrast, we feel that our approach is both conceptually and technically simple. Instead of
working with layered permutation graphs or random subgraphs of the complete layered graph, we
consider a class of series-parallel graphs that are obtained in a straightforward way (see Section 3)
from a skewed variant of the “Sipser functions” that have played an important role in the classical
circuit lower bounds of Sipser [Sip83], Yao [Yao85], and H̊astad [H̊as86]. Briefly, for every d ∈ N,
the d-th Sipser function Sipserd is a read-once monotone formula with d alternating layers of AND
and OR gates of fan-in w, where w ∈ N is an asymptotic parameter that tends to∞ (and so Sipserd
computes an n = wd variable function). Building on the work of Sipser and Yao, H̊astad used the
Sipser functions1 to prove an optimal depth-hierarchy theorem for circuits, showing that for every
d ∈ N, any depth-d circuit computing Sipserd+1 must have size exp(nΩ(1/d)).

The skewed variant of the Sipser functions that we use to prove our near-optimal lower bounds
for STCONN (k(n)) is as follows. For every d ∈ N and 2 ≤ u ≤ w, the d-th u-skewed Sipser
function, denoted SkewedSipseru,d, is essentially Sipser2d+1 but with the AND gates having fan-in
u rather than w (see Section 3 for a precise definition; as we will see, the number of levels of AND
gates is the key parameter for SkewedSipser, which is why we write SkewedSipseru,d to denote the
n-variable formula that has d levels of AND gates and d + 1 levels of OR gates.) Via a simple
reduction given in Section 3, we show that to get lower bounds for depth-d circuits computing
STCONN (ud) on n-node graphs, it suffices to prove that depth-d circuits for SkewedSipseru,d must
have large size. Under this reduction the fan-in of the AND gates is directly related to the length of
(potential) paths between s and t. This is why we must use a skewed variant of the Sipser function
in order to obtain lower bounds for small distance connectivity. We remark that even the case
u = 2 is interesting and can be used to get the nΩ(k1/d/d) lower bound of Theorem 1 for k up to
roughly 2

√
logn. Allowing a range of values for u enables us to get the lower bound for k up to n1/5

(as stated in Theorem 1).
Our main technical result of the paper is a lower bound for SkewedSipseru,d, a formula of depth

2d+ 1 over n = n(u,w, d) = udwd+33/100 variables (for technical reasons we use a smaller fan-in for
the first layer of OR gates next to the inputs).

Theorem 2. Let d(w) ≥ 1 and 2 ≤ u(w) ≤ w33/100, where w → ∞. Then any depth-d circuit
computing SkewedSipseru,d has size at least wΩ(u) = nΩ(u/d).

Observe that setting u = k1/d this size lower bound is nΩ(k1/d/d), and therefore we indeed obtain
the lower bound for STCONN (k(n)) stated in Theorem 1 as a corollary. As we point out in Section
6 (Remark 18), the lower bound given in Theorem 2 for SkewedSipser is essentially optimal.

Though they are superficially similar, Theorem 2 and H̊astad’s depth hierarchy theorem differ
in two important respects. Both result from our goal of using Theorem 2 to get lower bounds for
small distance connectivity, and both pose significant challenges in extending H̊astad’s proof:

1. H̊astad showed that depth-d unbounded fan-in circuits require large size to compute a single
highly symmetric “hard function,” namely Sipserd+1. In contrast, toward our goal of under-
standing the depth-d circuit size of STCONN (k(n)) for all values of k = k(n) and d = d(n),

1The exact definition of the function used in [H̊as86] differs slightly from our description for some technical reasons
which are not important here.

4

we seek lower bounds on the size of depth-d unbounded fan-in circuits computing any one
of a spectrum of asymmetric hard functions, namely SkewedSipseru,d for all u := k1/d (with
stronger quantitative bounds as k and u get larger).

2. To get the strongest possible result in his depth hierarchy theorem, H̊astad (like Yao and
Sipser) was primarily focused on lower bounding the size of circuits of depth exactly one less
than Sipserd+1. In contrast, since in our framework our goal is to lower bound the size of
depth-d circuits computing SkewedSipseru,d (corresponding to STCONN (k(n)) with k = ud)
which has depth 2d+ 1, we are interested in the size of circuits of depth (roughly) half that
of our hard function SkewedSipseru,d.

In Section 2 we recall the high-level structure of H̊astad’s proof of his depth hierarchy theorem
(based on the method of random restrictions), highlight the issues that arise due to each of the two
differences above, and describe how our techniques — specifically, the method of random projections
— allow us to prove Theorem 2 in a clean and simple manner.

2 H̊astad’s depth hierarchy theorem, random projections, and
proof outline of Theorem 2

H̊astad’s depth hierarchy theorem and its proof. Recall that H̊astad’s depth hierarchy
theorem shows that Sipserd+1 cannot be computed by any circuit C of depth d and size exp(nO(1/d)).
The main idea is to design a sequence of random restrictions {R`}2≤`≤d satisfying two competing
requirements:

• Circuit C collapses. The randomly restricted circuit C � ρ(d) · · ·ρ(2), where ρ(`) ← R` for
2 ≤ ` ≤ d, collapses to a “simple function” with high probability. This is shown via iterative
applications of a switching lemma for the R`’s, where each application shows that with high
probability a random restriction ρ(`) decreases the depth of the circuit C � ρ(d) · · ·ρ(`+1) by
at least one. The upshot is that while C is a size-S depth-d circuit, C � ρ(d) · · ·ρ(2) collapses
to a small-depth decision tree (i.e. a “simple function”) with high probability.

• Hard function Sipserd+1 retains structure. In contrast with the circuit C, the hard
function Sipserd+1 is “resilient” against the random restrictions ρ(`) ← R`. In particular,
each random restriction ρ(`) simplifies Sipser only by one layer, and so Sipserd+1 � ρ(d) · · ·ρ(`)

contains Sipser` as a subfunction with high probability. Therefore, with high probability.
Sipserd+1 � ρ(d) · · ·ρ(2) still contains Sipser2 as a subfunction, and hence is a “well-structured
function” which cannot be computed by a small-depth decision tree.

We remind the reader that to satisfy these competing demands, the random restrictions {R`} de-
vised by H̊astad specifically for his depth hierarchy theorem are not the “usual” random restrictions
where each coordinate is independently kept alive with probability p ∈ (0, 1), and set to a uniform
bit otherwise (it is not hard to see that Sipser does not retain structure under these random re-
strictions). Likewise, the switching lemma for the R`’s is not the “standard” switching lemma
(which H̊astad used to obtain his optimal lower bounds against the parity function). Instead, at
the heart of H̊astad’s proof are new random restrictions {R`}2≤`≤d designed to satisfy both require-
ments above: the coordinates of R` are carefully correlated so that Sipser`+1 retains structure, and

5

H̊astad proved a special-purpose switching lemma showing that C collapses under these carefully
tailored new random restrictions.

Issues that arise in our setting. At a technical level (related to point (1) described at
the end of Section 1), H̊astad’s special-purpose switching lemma is not useful for analyzing our
SkewedSipseru,d formulas for most values of u = k1/d of interest, since they have a “fine structure”
that is destroyed by his too-powerful random restrictions. His switching lemma establishes that any
DNF of width nO(1/d) collapses to a small-depth decision tree with high probability when it is hit by
a random restriction ρ(`) ← R`. Observe that his hard function Sipserd+1 has DNF-width Ω(

√
n), so

his switching lemma does not apply to it (and indeed as discussed above, hitting Sipserd+1 with his
random restriction results in a well-structured function that still contains Sipserd as a subfunction
with high probability). In contrast, in our setting the hard function SkewedSipseru,d has d levels

of AND gates of fan-in u, and in particular, can be written as a DNF of width ud = k. So for all
k = k(n) and d = d(n) such that k � nO(1/d) (indeed, this holds for most values of k and d of
interest), the relevant hard function SkewedSipseru,d collapses to a small-depth decision tree after
a single application of H̊astad’s random restriction.

Next (related to point (2)), recall that the formula computing H̊astad’s hard function Sipserd+1

has a highly regular structure where the fan-ins of all gates — both AND’s and OR’s — are the same.
As discussed above, H̊astad employs a random restriction which (with high probability) “peels off”
a single layer of Sipserd+1 and results in a function that contains Sipserd as a subfunction. Due
to their regular structures, Sipserd is dual to Sipserd+1 (more precisely, the bottom-layer depth-2
subcircuits of Sipserd are dual to those of Sipserd+1), and this allows H̊astad to repeat the same
procedure d − 1 times. In contrast, in our setting we are dealing with the highly asymmetric
SkewedSipseru,d formulas where the fan-ins of the AND gates are much less than those of the
OR gates. Therefore, in order to reduce to a smaller instance of the same problem, our setup
requires that we peel off two layers of SkewedSipseru,d at a time rather than just one as in H̊astad’s
argument. To put it another way, while H̊astad’s switching lemma uses a single layer of his hard
function Sipserd+1 (i.e. disjoint copies of OR’s/AND’s of fan-in w) to “trade for” one layer of
depth reduction in C, our switching lemma will use two layers of our hard function SkewedSipseru,d
(i.e. disjoint copies of read-once CNF’s with u = k1/d clauses of width w) to trade for one layer of
depth reduction in C.

Our approach: random projections. A key technical ingredient in H̊astad’s proof of his
depth hierarchy theorem — and indeed, in the works of [BIP98, Ros14] on STCONN (k(n)) as well
— is the method of random restrictions. In particular, they all employ switching lemmas which
show that a randomly-restricted small-width DNF collapses to a small-depth decision tree with
high probability: as mentioned above, H̊astad proved a special-purpose switching lemma for random
restrictions tailored for the Sipser functions, while Beame et al. developed a “connectivity switching
lemma” for random restrictions of layered permutation graphs, and Rossman used H̊astad’s “usual”
switching lemma in conjunction with his pathset complexity machinery.

In this paper we work with random projections, a generalization of random restrictions. Given a
set of formal variables X = {x1, ..., xn}, a restriction ρ either fixes a variable xi (i.e. ρ(xi) ∈ {0, 1})
or keeps it alive (i.e. ρ(xi) = xi, often denoted by ∗). A projection, on the other hand, either fixes
xi or maps it to a variable yj from a possibly different space of formal variables Y = {y1, ..., ym}.
Restrictions are therefore a special case of projections where Y ≡ X , and each xi can only be
fixed or mapped to itself. (See Section 4 for precise definitions.) Our arguments crucially employ
projections in which Y is smaller than X , and where moreover each xi is only mapped to a specific

6

element yj where j depends on i in a carefully designed way that depends on the structure of the
formula computing the SkewedSipser function. Such “collisions”, where multiple formal variables
in X are mapped to the same new formal variable yj ∈ Y, play an important role in our approach.

Random projections were used in the recent work of Rossman, Servedio, and Tan [RST15], where
they are the key ingredient enabling that paper’s average-case extension of H̊astad’s worst-case
depth hierarchy theorem. In earlier work, Impagliazzo, Paturi, and Saks [IPS97] used random pro-
jections to obtain size-depth tradeoffs for threshold circuits, and Impagliazzo and Segerlind [IS01]
used them to establish lower bounds against constant-depth Frege systems in proof complexity.
Our work provides further evidence for the usefulness of random projections in obtaining strong
lower bounds: random projections allow us to obtain sharper quantitative bounds while employing
simpler arguments, both conceptually and technically, than in the previous works [Ajt89, BPU92,
BIP98, Ros14] on the small-depth complexity of STCONN (k(n)).

We remark that although [RST15] and this work both employ random projections to reason
about the Sipser function (and its skewed variants), the main advantage offered by projections over
restrictions are different in the two proofs. In [RST15] the overarching challenge was to establish
average-case hardness, and the identification of variables was key to obtaining uniform-distribution
correlation bounds from the composition of highly-correlated random projections. As outlined
above, in this work a significant challenge stems from our goal of understanding the depth-d circuit
size of STCONN (k(n)) for all values of k = k(n) and d = d(n). The added expressiveness of random
projections over random restrictions is exploited both in the proof of our projection switching lemma
(see Section 2.1 below) and in the arguments establishing that our SkewedSipseru,d functions “retain
structure” under our random projections.

2.1 Proof outline of Theorem 2

Our approach shares the same high-level structure as H̊astad’s depth hierarchy theorem, and is
based on a sequence Ψ of d − 1 random projections satisfying two competing requirements (it
will be more natural for us to present them in the opposite order from our discussion of H̊astad’s
theorem in the previous section):

• Hard function SkewedSipser retains structure. Our random projections are defined with
the hard function SkewedSipser in mind, and are carefully designed so as to ensure that
SkewedSipseru,d “retains structure” with high probability under their composition Ψ.

In more detail, each of the d − 1 individual random projections comprising Ψ peels off two
layers of SkewedSipser, and a randomly projected SkewedSipseru,` contains SkewedSipseru,`−1

as a subfunction with high probability. These individual random projections are simple to
describe: each bottom-layer depth-2 subcircuit of SkewedSipseru,` (a read-once CNF with
u = k1/d clauses of width w) independently “survives” with probability q ∈ (0, 1) and is
“killed” with probability 1− q (where q is a parameter of the restrictions), and

– if it survives, all uw variables in the CNF are projected to the same fresh formal
variable (with different CNFs mapped to different formal variables);

– if it is killed, all its variables are fixed according to a random 0-assignment of the CNF
chosen uniformly from a particular set of 2u many 0-assignments.

In other words, each bottom-layer depth-2 subcircuit independently simplifies to a fresh formal
variable (with probability q) or the constant 0 (with probability 1− q). With the appropriate

7

definition of SkewedSipser and choice of q, it is easy to verify that indeed a randomly projected
SkewedSipseru,` contains SkewedSipseru,`−1 as a subfunction with high probability. (For this
to happen, the fanin of the bottom OR gates of SkewedSipser is chosen to be moderately
smaller than w, the fanin of all other OR gates in SkewedSipser; see Definition 3 for details.)

• Circuit C collapses. In contrast with SkewedSipseru,d, any depth-d circuit C of size nO(u/d)

collapses to a small-depth decision tree under Ψ with high probability. Following the standard
“bottom-up” approach to proving lower bounds against small-depth circuits, we establish this
by arguing that each of the individual random projections comprising Ψ “contributes to the
simplification” of C by reducing its depth by (at least) one.

More precisely, in Section 5 we prove a projection switching lemma, showing that a small-
width DNF or CNF “switches” to a small-depth decision tree with high probability under
our random projections. (The depth reduction of C follows by applying this lemma to every
one of its bottom-level depth-2 subcircuits.) Recall that the random projection of a depth-2
circuit over a set of formal variables X yields a function over a new set of formal variables Y,
and in our case Y is significantly smaller than X . In addition to the structural simplification
that results from setting variables to constants (as in the switching lemmas of [H̊as86, BIP98,
Ros14] for random restrictions), the proof of our projection switching lemma also exploits the
additional structural simplification that results from distinct variables in X being mapped to
the same variable in Y.

2.2 Preliminaries

A restriction over a finite set of variables A is an element of {0, 1, ∗}A. We define the composition
ρρ′ of two restrictions ρ, ρ′ ∈ {0, 1, ∗}A over a set of variables A to be the restriction

(ρρ′)α
def
=

{
ρα if ρα 6= ∗
ρ′α otherwise

, for all α ∈ A.

A DNF is an OR of ANDs (terms) and a CNF is an AND of ORs (clauses). The width of a
DNF (respectively, CNF) is the maximum number of variables that occur in any one of its terms
(respectively, clauses).

The size of a circuit is its number of gates, and the depth of a circuit is the length of its longest
root-to-leaf path. We count input variables as gates of a circuit (so any circuit for a function that
depends on all n input variables trivially has size at least n). We will assume throughout the paper
that circuits are alternating, meaning that every root-to-leaf path alternates between AND gates
and OR gates. We also assume that circuits are layered, meaning that for every gate G, every root-
to-G path has the same length. These assumptions are without loss of generality as by a standard
conversion (see e.g. the discussion at [Sta]), every depth-d size-S circuit is equivalent to a depth-d
alternating layered circuit of size at most poly(S) (this polynomial increase is offset by the “Ω(·)”
notation in the exponent of all of our theorem statements.)

8

3 Lower bounds against SkewedSipser yield lower bounds for small
distance connectivity

In this section we define SkewedSipseru,d and show that computing this formula on a particular input
z is equivalent to solving small-distance connectivity on a certain undirected (multi)graph G(z).
In a bit more detail, every input z corresponds to a subgraph G(z) of a fixed ground graph G that
depends only on SkewedSipseru,d. (Jumping ahead, we associate each input bit of SkewedSipseru,d
with an edge of its corresponding ground graph G.) Roughly speaking, AND gates translate into
sequential paths, while OR gates correspond to parallel paths. After defining SkewedSipseru,d and
describing this reduction, we give the proof of Theorem 1, assuming Theorem 2.

The SkewedSipser formula is defined in terms of an integer parameter w; in all our results this
is an asymptotic parameter that approaches +∞, and so w should be thought of as “sufficiently
large” throughout the paper.

Definition 3. For 2 ≤ u ≤ w and d ≥ 0, SkewedSipseru,d is the Boolean function computed by the
following monotone read-once formula:

• There are 2d + 1 alternating layers of OR and AND gates, where the top and bottom-layer
gates are OR gates. (So there are d+ 1 layers of OR gates and d layers of AND gates.)

• AND gates all have fan-in u.

• OR gates all have fan-in w, except bottom-layer OR gates which have fan-in w33/100; we
assume that w1/100 is an integer throughout the paper. (The most important thing about the
constant 33/100 in the above definition is that it is less than 1; the particular value 33/100
was chosen for technical reasons so that we could get the constant 5 in Theorem 1.)

Consequently, SkewedSipseru,d is a Boolean function over n = (uw)dw33/100 variables in total.

From SkewedSipseru,d to small-distance connectivity. There is a natural correspondence be-
tween read-once monotone Boolean formulas and series-parallel multigraphs in which each graph
has a special designated “start” node s and a special designated “end” node t. We now describe
this correspondence via the inductive structure of read-once monotone Boolean formulas. As we
shall see, under this correspondence there is a bijection between the variables of a formula f and
the edges of the graph G(f).

• If f(x) = x is a single variable, then the graph G(f) has vertex set V (f) = {s, t} and edge
set E(f) consisting of a single edge {s, t}.

• Let f1, . . . , fm be read-once monotone Boolean formulas over disjoint sets of variables, where
G(fi) is the (multi)graph associated with fi and si, ti are the start and end nodes of G(fi).

– If f = AND(f1, . . . , fm): The graph G(f) is obtained by identifying t1 with s2, t2 with
s3, . . . , and tm−1 with sm. The start node of G(f) is s1 and the end node is tm. Thus
the vertex set V (f) is V (f1) ∪ · · · ∪ V (fm) \ {t1, . . . , tm−1} and the edge set E(f) is the
multiset E′(f1) ∪ · · · ∪ E′(fm), where each E′(fi) is obtained from E(fi) by renaming
the appropriate vertices.

9

∨

∧ ∧ ∧ ∧

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧ ∧

x1 · x48

s t

Figure 1: A read-once formula f (on the left), which is a fan-in 4 OR of fan-in 3 ANDs of fan-in 2 ORs of
fan-in 2 ANDs, and the corresponding graph G(f) (on the right).

– If f = OR(f1, . . . , fm): The graph G(f) is obtained by identifying s1, . . . , sm all to a
new start vertex s and t1, . . . , tm all to a new end vertex t. Thus the vertex set V (f) is
V (f1)∪· · ·∪V (fm)∪{s, t}\{s1, . . . , sm, t1, . . . , tm} and the edge set E(f) is the multiset
E′(f1) ∪ · · · ∪ E′(fm), where again each E′(fi) is obtained from the corresponding edge
set E(fi) by renaming vertices accordingly.

Since f is read-once, the number of edges of G(f) is precisely the number of variables of f , and there
is a natural correspondence between edges and variables. Figure 1 provides a concrete example of
this construction.

Remark 4. We note that if f is a read-once monotone Boolean formula in which the bottom-level
gates are AND gates and have fan-in at least two, then G(f) is a simple graph and not a multigraph.

A simple inductive argument gives the following:

Observation 5. If f is a read-once monotone alternating formula with r layers of AND gates of
fan-ins α1, . . . , αr, respectively, then every shortest path from s to t in the graph G(f) has length
exactly α1 · · ·αr. Furthermore, if H is a subgraph of G(f) that contains some s-to-t path, then it
contains a path of length α1 · · ·αr.

As a corollary, we have:

Observation 6. Every shortest path from s to t in G(SkewedSipseru,d) has length exactly ud.

Given a read-once monotone formula f over variables x1, . . . , xn and an assignment z ∈ {0, 1}n
to the variables x1, . . . , xn, we define the graph G(f, z) to be the (spanning) subgraph of G(f)
which has vertex set V (f, z) = V (f) and edge set E(f, z) defined as follows: each edge in E(f) is
present in E(f, z) if and only if the corresponding coordinate of z is set to 1. A simple inductive
argument gives the following:

Observation 7. Given a read-once monotone alternating formula with r layers of AND gates of
fan-ins α1, . . . , αr, respectively, and an assignment z ∈ {0, 1}n, the graph G(f, z) contains a path
from s to t of length α1 · · ·αr if and only if f(z) = 1.

From these observations we obtain the following connection between SkewedSipseru,d and small-
distance connectivity, which is key to our lower bound:

Corollary 3.1. The multigraph G(SkewedSipseru,d, z) contains an s-to-t path of length at most ud

if and only if SkewedSipseru,d(z) = 1.

10

Note that Corollary 3.1 and Theorem 2 together can be used to prove lower bounds for small-
distance connectivity on multigraphs. One way to obtain lower bounds for simple graphs instead
of multigraphs is by extending SkewedSipseru,d with an extra layer of fan-in two AND gates next
to the input variables, then relying on Remark 4. We use this simple observation and Theorem 2
to establish Theorem 1.

Theorem 1. For any k(n) ≤ n1/5 and any d = d(n), any depth-d circuit computing STCONN (k(n))

must have size nΩ(k1/d/d). Furthermore, for any k(n) ≤ n and any d = d(n), any depth-d circuit

computing STCONN (k(n)) must have size nΩ(k1/5d/d).

Proof. We assume that d < 2 log k/ log log k and (k/2)1/d ≥ 2 (observe that the claimed bound is
trivial if d ≥ 2 log k/ log log k or (k/2)1/d < 2). Let

u0 =
⌊
(k/2)1/d

⌋
.

Then we have u0 ≥ 2 and u0 = Ω(k1/d). For convenience, let

k0
def
= ud0 ≤ k/2 and n′

def
=
⌊n

2

⌋
. (1)

Further, let w0 be the largest positive integer such that

(u0w0)dw
33/100
0 ≤ n′. (2)

Observe that, since k ≤ n1/5 and d < 2 log k/ log log k, as n → +∞ we have similarly w0 → +∞.
Our choice of w0 also implies that w0 satisfies

ud0(w0 + 1)d+33/100 > n′.

Let n0
def
= (u0w0)dw

33/100
0 . Then from d < 2 log k/ log log k and w0 → +∞ we have

n0 ≥ ud0
(
w0 + 1

2

)d+ 33
100

= Ω(n/2d) = ω(n0.99).

Combining this with k ≤ n1/5 and k0 ≤ k/2 we have that k0 = o(n
20/99
0) and n0 ≥ k4.9

0 when n is
sufficiently large.

We define a variant of our SkewedSipseru,d formula so we can rely on Remark 4 and work directly
with simple graphs instead of multigraphs. More precisely, let SkewedSipser†u0,w0,d

be analogous to
SkewedSipseru,d with parameters u0 (AND gate fan-in), w0 (OR gate fan-in), and d but containing
an extra layer of fan-in 2 AND gates at the bottom connected to a new set of input variables. In
other words, this is a depth 2d + 2 read-once alternating formula with twice the number of input
variables of our original SkewedSipser formula (each input variable of SkewedSipser becomes an AND
gate connected to two new fresh variables). Since SkewedSipseru0,d can be obtained by restricting
SkewedSipser†u0,w0,d

appropriately (i.e. by setting to 1 a single variable in every new pair of variables)
a lower bound on the circuit complexity of SkewedSipser immediately implies the same lower bound
for SkewedSipser†.

11

In order to obtain a lower bound via Theorem 2, we need that w
33/100
0 ≥ u0. This is equivalent

to having n0 ≥ u133d/33+1
0 , which follows from d ≥ 2 (we may assume d ≥ 2 since no depth-1 circuit,

i.e. single AND or OR gate, can compute STCONN (k(n))) and n0 ≥ k4.9
0 since

n0 ≥ k4.9
0 > k

133/33+1/2.
0

Consequently, we can apply Theorem 2 to SkewedSipseru0,d, and it follows from our discussion above
that any depth-d circuit computing SkewedSipser†u0,w0,d

must have size at least

n
Ω(u0/d)
0 = nΩ(k1/d/d). (3)

In the rest of the proof we translate (3) into a lower bound for STCONN (k(n)). Following the
explanation given above, we consider the simple graph G(SkewedSipser†) with appropriate param-
eters. Since ud0 ≤ k/2, it follows from the same argument used to establish Corollary 3.1 that the
graph G(SkewedSipser†u0,w0,d

, z) contains an s-to-t path of length at most 2ud0 ≤ k if and only if we
have SkewedSipser†u0,w0,d

(z) = 1. Because G(SkewedSipser†u0,w0,d
) has no isolated vertices and has n0

edges, it contains at most 2n0 ≤ 2n′ ≤ n vertices by (1) and (2). Thus, a circuit C that computes
STCONN (k(n)) on undirected simple graphs on n vertices can also be used to compute the formula

SkewedSipser†u0,w0,d
, and (3) yields that C must have size nΩ(k1/d/d). This completes the first part of

Theorem 1.
It remains to prove the lower bound for STCONN (k′(n)) with n1/5 < k′(n) ≤ n. For this,

let k(n)
def
= n1/5. We have established above that computing STCONN (k(n)) on subgraphs of

G(SkewedSipser†u0,w0,d
) using depth-d circuits requires size nΩ(k1/d/d). However, a subgraph of

G(SkewedSipser†u0,w0,d
) contains an s-to-t path of length at most k(n) if and only if it contains

a path from s to t of length at most k′(n) (Observation 5). Consequently, any circuit C that
computes STCONN (k′(n)) on general n-vertex graphs can be used to compute STCONN (k(n)) on

subgraphs of G(SkewedSipser†u0,w0,d
) (by setting some input edges to 0). In particular, C must have

size
nΩ(k1/d/d) = nΩ(n1/5d/d) = nΩ(k′1/5d/d).

This completes the second part of Theorem 1.

Remark 8. It is not hard to see that our reduction in fact also captures other natural graph
problems such as directed k-path (“Is there a directed path of length k(n) in G?”) and directed
k-cycle (“Is there a directed cycle of length k(n) in G?”), and hence the lower bounds of Theorem 1
apply to these problems as well. This suggests the possibility of similarly obtaining other lower
bounds from (variants of) depth hierarchy theorems for Boolean circuits, and we leave this as an
avenue for further investigation.

4 The Random Projection

In this section we define our random projections, which will be crucial in the proof of Theorem 2.
First, we introduce notation to manipulate the first two layers of SkewedSipseru,d.

Definition 9. For 2 ≤ u ≤ w, we define CNFSipseru to be the Boolean function computed by the
following monotone read-once formula:

12

• The top gate is an AND gate and the bottom-layer gates are OR gates.

• The top AND gate has fanin u.

• The bottom-layer OR gates all have fan-in w33/100.

For SkewedSipseru,d and each ` ∈ [d+1], we write OR(`) to denote an OR gate that is in the `-th
level of OR gates away from the input variables and similarly write AND(`) to denote an AND gate
that is in the `-th level of AND gates away from the input variables. So the root of SkewedSipseru,d
is the only OR(d+1) gate; each AND(`) gate has u many OR(`) gates as its inputs; each AND(1) gate
of SkewedSipseru,d computes a disjoint copy of CNFSipseru.

Next we introduce an addressing scheme for gates and variables of SkewedSipseru,d.

Addressing scheme. Viewing SkewedSipseru,d as a tree (with its leaves being variables and the
rest being AND,OR gates), we index its nodes (gates or variables) by addresses as follows. The
root (gate) is indexed by ε, the empty string. The j-th child of a node is indexed by the address of
its parent concatenated with j. Thus, the variables of SkewedSipseru,d are indexed by addresses

A(d) :=
{

(b0, a1, b1, . . . , ad, bd) : ai ∈ [u], b0, . . . , bd−1 ∈ [w], bd ∈ [w33/100]
}
.

Block and section decompositions. We will refer to the set of uw33/100 addresses of variables
below an AND(1) gate as a block, and the set of w33/100 addresses of variables below an OR(1) gate
as a section.

It will be convenient for us to view the set of all variable addresses A(d) as

A(d) = B(d)×A′, where

B(d) =
{

(b0, a1, b1 . . . , ad−1, bd−1) : ai ∈ [u], bi ∈ [w]
}

and A′ = [u]× [w33/100].

Here B(d) can be viewed as the set of addresses of the AND(1) gates of SkewedSipseru,d, and A′ can
be viewed as the set of variable addresses of CNFSipseru computed by each such gate (following the
same addressing scheme).

More formally, for a fixed β ∈ B(d) we call the set of addresses

A(d, β)
def
=
{

(β, τ) : τ ∈ A′
}

a block of A(d); these are the addresses of variables below the AND(1) gate specified by β. Thus,
A(d) is the disjoint union of w(uw)d−1 many blocks, each of cardinality |A′| = uw33/100.

For a fixed β ∈ B(d) and a ∈ [u], we call the set of addresses

A(d, β, a)
def
=
{

(β, a, b) : b ∈ [w33/100]
}

a section of A(d); these are the addresses of variables below the OR(1) gate specified by (β, a).
Each block A(d, β) is the disjoint union of u many sections, each of cardinality w33/100.

To summarize, the set of addresses of variables A(d) can be decomposed into w(uw)d−1 many
blocks A(d, β) (corresponding to the AND(1) gates), β ∈ B(d), and each such block can be further
decomposed into u many sections A(d, β, a) (corresponding to its u input OR(1) gates), a ∈ [u].

13

Accordingly we also decompose A′, the set of variable addresses of CNFSipseru, into sections

A′(a)
def
=
{

(a, b) : b ∈ [w33/100]
}
, for a ∈ [u].

The following fact is trivial given the definition of CNFSipseru. (Below and subsequently, we
use “%” to denote a restriction to the variables of CNFSipser and “ρ” to denote a restriction to the
variables of SkewedSipser.)

Fact 4.1. For any a ∈ [u] and restriction % ∈ {0, 1, ∗}A′ that sets all variables in the a-th section
A′(a) to 0, i.e., %τ = 0 for all τ ∈ A′(a), we have that CNFSipseru � % ≡ 0.

Now we define our random projection operator projρ(·).

Definition 10 (Projection operators). Given a restriction ρ ∈ {0, 1, ∗}A(d), the projection operator
projρ maps a function f : {0, 1}A(d) → {0, 1} to a function projρ(f) : {0, 1}B(d) → {0, 1}, where

(
projρ(f)

)
(y) = f(x), where xβ,τ

def
=

{
yβ if ρβ,τ = ∗
ρβ,τ if ρβ,τ ∈ {0, 1}.

For convenience, we sometimes write proj(f � ρ) instead of projρ(f).

Remark 11. The following interpretation of the projection operator will come in handy. Given a
restriction ρ ∈ {0, 1, ∗}A(d), if f is computed by a circuit C, then projρ(f) is computed by a circuit
C ′ obtained from C by replacing every occurrence of xβ,τ by yβ if ρβ,τ = ∗, or by ρβ,τ if ρβ,τ ∈ {0, 1}.

The crux of our random projection operator projρ(·) is then a distribution D(d)
u over restrictions

{0, 1, ∗}A(d) to the variables {xβ,τ : (β, τ) ∈ A(d)}, from which ρ is drawn. To this end, we consider
the block decomposition B(d)×A′ of A(d), and ρ← D(d)

u is obtained by drawing independently, for
each block β ∈ B(d), a restriction ρβ from a distribution Du over {0, 1, ∗}A′ to be defined below.

Definition 12 (Distributions Du and D(d)
u). The distribution Du = Du(q) over {0, 1, ∗}A′ is para-

meterized by a probability q ∈ (0, 1). A draw of a restriction % from Du is generated as follows:

• With probability q, output % = {∗}A′ (i.e. the restriction fixes no variables).

• Otherwise (with probability 1− q), we draw a← [u] (a random section) and z ← {0, 1} (a
random bit) independently and uniformly at random, and output % where for each τ ∈ A′,

%τ =

{
z if τ ∈ A′(a)

1− z otherwise.

Note that in this case % is distributed uniformly among 2u many binary strings in {0, 1}A′ .
These strings are “section-monochromatic”, with u− 1 of the sections taking on entirely the
same value 1− z and the one remaining section a taking entirely the other “rare” value z.

As described above, a draw of ρ ∈ {0, 1, ∗}B(d)×A′ from D(d)
u = D(d)

u (q) is obtained by indepen-
dently drawing ρβ ← Du = Du(q) for each block β ∈ B(d).

The following observation about supp(D(d)
u) will be useful for us:

14

Remark 13. A restriction ρ ∈ {0, 1, ∗}B(d)×A′ is in the support of D(d)
u iff for every block β ∈ B(d),

ρβ is either {∗}A′ , or there exists exactly one section a ∈ [u] such that ρβ,τ = 0 if τ ∈ A′(a) and 1
otherwise, or there exists exactly one section a ∈ [u] such that ρβ,τ = 1 if τ ∈ A′(a) and 0 otherwise.

Therefore, if T is a term of width at most u− 1 such that for all blocks β ∈ B(d), the variables
from block β that occur in T all occur with the same sign, then T can be satisfied by a restriction
in the support of D(d)

u (i.e., T � ρ ≡ 1 for some ρ ∈ supp(D(d)
u)). (Note that this crucially uses the

fact that T has width at most u−1, and in particular does not contain variables from all u sections
of any block β. Also note that the inverse of this is not true, e.g., consider T = xβ,τ ∧ ¬xβ,τ ′ with
τ and τ ′ from two different sections.)

5 Projection Switching Lemma

Our goal now is to prove the following projection switching lemma for (very) small width DNFs:

Theorem 14 (Projection Switching Lemma). For 2 ≤ u ≤ w, let F be an r-DNF over the variables
{xβ,τ}, (β, τ) ∈ A(d), where r ≤ u− 1. Then for all s ≥ 1 and q ∈ (0, 1), we have

Pr
ρ←D(d)

u (q)

[
projρ(F) has decision tree depth ≥ s

]
≤
(

8qru

1− q

)s
.

Notice that while F is an r-DNF over formal variables {xβ,τ : (β, τ) ∈ A(d)}, we will bound the
decision tree depth of projρ(F), a function over the new formal variables {yβ : β ∈ B(d)}.

Remark 15. Projections will play a key role in the proof. Consider a term of the form T =

xβ,τ ∧¬xβ,τ ′ for some τ 6= τ ′, and suppose our ρ from D(d)
u is such that ρβ,τ = ρβ,τ ′ = ∗. In this case

we have T � ρ = xβ,τ ∧¬xβ,τ ′ , i.e., the term survives the restriction ρ, but projρ(T) = yβ∧¬ yβ ≡ 0,
i.e., the term is killed by projρ. Our proof will crucially leverage simplifications of this sort.

Remark 16. The parameters of Theorem 14 are quite delicate in the sense that the statement
fails to hold for DNFs of width u. To see this, consider SkewedSipseru,d with d = 1, a depth-3
formula that can also be written as a u-DNF. Then by Corollary 6.2 (to be introduced in Section
6), we have that for ρ← D(1)

u (q) with q = w−669/1000, the function projρ(SkewedSipseru,1) contains
a w33/100-way OR as a subfunction — and hence has decision tree depth at least w33/100 — with
probability 1 − o(1). So while the statement of Theorem 14 holds for (u − 1)-DNFs, it does not
hold for u-DNFs when u = o(w669/2000) and w →∞.

Remark 17. We observe that the conclusion of Theorem 14 still holds if the condition “F is an
r-CNF” replaces “F is an r-DNF.” This can be shown either by a straightforward adaptation of
our proof, or via a reduction to the DNF case using duality, the invariance of our distribution of
random projections under the operation of flipping each bit, and the fact that decision tree depth
does not change when input variables and output value are negated.

5.1 Canonical decision tree

Given an r-DNF F over variables {xβ,τ : (β, τ) ∈ A(d)} and a restriction ρ ∈ {0, 1, ∗}A(d), projρ(F)
is a function over the new variables {yβ : β ∈ B(d)}. We assume a fixed but arbitrary ordering on
the terms in F , and the variables within terms. The canonical decision tree CanonicalDT(F, ρ) that
computes projρ(F) is defined inductively as follows.

15

CanonicalDT(F, ρ) :

0. If projρ(F) ≡ 0 or 1, output 0 or 1, respectively.

1. Otherwise, let T be the first term in F such that T � ρ is non-constant and T � ρρ′ ≡ 1 for
some ρ′ ∈ supp(D(d)

u). We observe that such a term must exist, or the procedure would have
halted at step 0 above and not reached the current step 1.

To see this, first note that certainly there must exist a term T ′ such that T ′ � ρ is non-constant
since otherwise F � ρ is constant (and likewise projρ(F)). We furthermore claim that among
these terms T ′, there must exist one such that T ′ � ρ is satisfiable by some ρ′ ∈ supp(D(d)

u), i.e.
T ′ � ρρ′ ≡ 1. To prove this, suppose that each of these terms T ′ satisfies that T ′ � ρ is non-
constant and there exists no restriction ρ′ ∈ supp(D(d)

u) such that T ′ � ρρ′ ≡ 1. By Remark 13
(and our assumption that r ≤ u − 1), T ′ � ρ must contain two literals from the same block
occurring with opposite signs, i.e., xβ,τ and ¬xβ,τ ′ , for some β ∈ B(d). In this case, we have
that projρ(T

′) contains both yβ and ¬ yβ and hence projρ(T
′) ≡ 0. But if each such term T ′

has projρ(T
′) ≡ 0, then projρ(F) ≡ 0 and the procedure would have halted at step (0).

2. Define
η =

{
β ∈ B(d) : xβ,τ or ¬xβ,τ occurs in T � ρ for some τ

}
Our canonical decision tree will then query variables yβ, β ∈ η exhaustively, i.e., we grow a
complete binary tree of depth |η|; we will refer to T as the term of this tree.

3. For every assignment π ∈ {0, 1}η to variables yβ, β ∈ η (equivalently, every path through the
complete binary tree of depth |η|), we recurse on CanonicalDT(F, ρ(η 7→ π)), where we use
(η 7→ π) ∈ {0, 1, ∗}A(d) to denote the following restriction:

(η 7→ π)β,τ =

{
πβ if β ∈ η
∗ otherwise,

for all β ∈ B(d) and τ ∈ A′. (4)

Proposition 5.1. For every ρ ∈ {0, 1, ∗}A(d), we have that CanonicalDT(F, ρ) computes projρ(F).

While CanonicalDT is well defined for all ρ, we shall mostly be interested in ρ ∈ supp(D(d)
u).

5.2 Proof of Theorem 14

Let
B def

=
{
ρ ∈ supp(D(d)

u) : decision tree depth of CanonicalDT(F, ρ) ≥ s
}

be the set of bad restrictions, To prove Theorem 14, it suffices to bound Pr
ρ←D(d)

u (q)
[ρ ∈ B], the

total weight of B under D(d)
u (q). Following Razborov’s strategy (see [Bea95] for more details), we

will construct a map
θ : B → {0, 1, ∗}A(d) × {0, 1}s × {0, 1}s(log r+1),

with the following two key properties:

1. (injection) θ(ρ) 6= θ(ρ′) for any two distinct restrictions ρ, ρ′ ∈ B;

16

2. (weight increase) Let θ1(ρ) ∈ {0, 1, ∗}A(d) denote the first component of θ(ρ). Then

Pr[ρ = θ1(ρ)]

Pr[ρ = ρ]
≥ Γ, for all ρ ∈ B, (5)

where Γ = ((1− q)/2qu)s is “large”.

Assuming such a map θ exists (below we describe its construction and prove the two properties
stated above), Theorem 14 follows from a simple combinatorial argument.

Proof of Theorem 14. Fix a pair O ∈ {0, 1}s × {0, 1}s(1+log r) and let

BO =
{
ρ ∈ B :

(
θ2(ρ), θ3(ρ)

)
= O

}
⊆ B,

where we use θ2(ρ) and θ3(ρ) to denote the second and third components of θ(ρ), respectively.
Then we have that

Pr[ρ ∈ BO] =
∑
ρ∈BO

Pr[ρ = ρ] ≤ (1/Γ) ·
∑
ρ∈BO

Pr[ρ = θ1(ρ)] ≤ 1/Γ.

Here the first inequality uses (5) and the second inequality uses the property of θ being an injection:
we have that θ1(ρ) 6= θ1(ρ′) for any two distinct ρ, ρ′ ∈ BO (recall that θ2(ρ) = θ2(ρ′) and θ3(ρ) =
θ3(ρ′)), and therefore

∑
ρ∈BO Pr[ρ = θ(ρ)1] ≤ 1. Summing up over all possible O’s, we have

Pr[ρ ∈ B] =
∑
O

Pr[ρ ∈ BO] ≤ 2s · (2r)s ·
(
2qu/(1− q)

)s
=
(
8qru/(1− q)

)s
,

and this concludes the proof of Theorem 14.

The rest of the section is organized as follows. We construct the map θ in Section 5.3. Then we
show that it is an injection in Section 5.4, by showing that one can decode ρ from θ(ρ) uniquely for
any ρ ∈ B. Finally we prove the weight increase, i.e., (5) in Section 5.5.

5.3 Encoding

Let ρ ∈ B be a bad restriction. Let π∗ be the lexicographically first path of length at least s in the
decision tree CanonicalDT(F, ρ) (witnessing the badness of ρ), and π be its truncation at length s.
Then θ2(ρ) is defined to be binary(π) ∈ {0, 1}s, the binary representation of π, i.e., πi ∈ {0, 1} is
the evaluation of the ith y-variable along π.

Recall that CanonicalDT(F, ρ) is composed of a collection of complete binary trees, one for each
recursive call of CanonicalDT. Let R1, . . . , Rs′ for some 1 ≤ s′ ≤ s denote the sequence of complete
binary trees that π visits, with R1 sharing the same root as CanonicalDT(F, ρ) and π ending in Rs′ .
(Here s′ ≥ 1 because s ≥ 1.) We also use Ti to denote the term of tree Ri, for each i ∈ [s′].

For each i ∈ [s′ − 1], we let

ηi =
{
β ∈ B(d) : yβ is queried in tree Ri

}
,

and for the special case of i = s′, we let

ηs′ =
{
β ∈ B(d) : yβ is queried in tree Rs′ before the end of π

}
. (6)

17

For each i ∈ [s′], π induces a binary string π(i) ∈ {0, 1}ηi , where π
(i)
β for each β ∈ ηi is set to be the

evaluation of yβ along π (in tree Ri). Note that Ti is the i-th term processed by CanonicalDT(F, ρ)
along the bad path π and equivalently, Ti is the first term processed by

CanonicalDT
(
F, ρ(η1 7→ π(1)) · · · (ηi−1 7→ π(i−1))

)
,

where (ηj 7→ π(j)) is a restriction defined as in (4). So Ti is the first term in F such that

Ti � ρ(η1 7→ π(1)) · · · (ηi−1 7→ π(i−1))

is non-constant and

Ti � ρ(η1 7→ π(1)) · · · (ηi−1 7→ π(i−1))ρ′ ≡ 1, for some ρ′ ∈ supp(D(d)
u).

At a high level, θ1(ρ) and θ3(ρ) are defined as follows. The third component

θ3(ρ) = encode(η1) ◦ · · · ◦ encode(ηs′) ∈ {0, 1}s(1+log r)

is the concatenation of s′ binary strings, where each encode(ηi) is a concise representation of ηi.
In particular, we are able to recover ηi given both encode(ηi) and Ti. We describe the encoding of
ηi in Section 5.3.1. For the first component we have

θ1(ρ) = ρσ(1) · · ·σ(s′) ∈ {0, 1, ∗}A(d),

where each σ(i) ∈ {0, 1, ∗}A(d) is a restriction and ρσ(1) · · ·σ(s′) is their composition (note that each
of these s′+1 restrictions, like the overall composition, belongs to {0, 1, ∗}A(d)). We define the σ(i)’s
in Section 5.3.2.

5.3.1 Encoding ηi

Fix an i ∈ [s′]. Let ηi = {β1, . . . , βt} for some t ≥ 1, with βj ’s ordered lexicographically. It follows
from the definition of ηi that every βj appears in Ti, meaning that either xβ,τ or ¬xβ,τ appears in
Ti for some τ ∈ A′.

Instead of encoding each βj directly using its binary representation, we use log r bits to encode
the index of the first xβ,· or ¬xβ,· variable that occurs in Ti. Here log r bits suffice because Ti has
at most r variables. Also recall that we fixed an ordering on the variables of each term, so indices of
variables in Ti are well defined. We let location(βj) denote the log r bits for βj . We also append it
with one additional bit to indicate whether βj is the last element in ηi. More formally, we write

encode(ηi) = location(β1) ◦ 0 ◦ location(β2) ◦ 0 ◦ · · · ◦ location(βt) ◦ 1 ∈ {0, 1}|ηi|(1+log r).

We summarize properties of θ3(ρ) below:

Proposition 5.2. Given θ3(ρ), one can recover uniquely s′ and encode(η1), . . . , encode(ηs′). Fur-
thermore, given encode(ηi) and Ti for some i ∈ [s′], one can recover uniquely ηi.

18

5.3.2 The σ(i) restriction

We now define σ(i) for a general i ∈ [s′]. For ease of notation we define the restriction

ρ(i−1) def
= ρ(η1 7→ π(1)) · · · (ηi−1 7→ π(i−1)) ∈ {0, 1, ∗}A(d).

Note that ρ(0) = ρ. Recalling our CanonicalDT algorithm and the definition of Ti as the i-th term
processed by CanonicalDT(F, ρ), we have that Ti is the first term in F such that Ti � ρ(i−1) is non-
constant and Ti � ρ(i−1)ρ′ ≡ 1 for some ρ′ ∈ supp(D(d)

u). Therefore, we have

ηi =
{
β ∈ B(d) : xβ,τ or ¬xβ,τ occurs in Ti � ρ

(i−1) for some τ ∈ A′
}
.

We define σ(i) ∈ {0, 1, ∗}B(d)×A′ to be an arbitrary restriction (say the lexicographic first under
the ordering 0 ≺ 1 ≺ ∗) satisfying the following three properties:

1. Ti � ρ(i−1)σ(i) 6≡ 0, and

2. σ(i) ∈ supp(D(d)
u), and

3. σ
(i)
β ∈ {0, 1}

A′ for all β ∈ ηi, and σ
(i)
β = {∗}A′ for all β /∈ ηi.

In words, σ(i) is the lexicographic first restriction in supp(D(d)
u) that completely fixes blocks β ∈ ηi,

leaves all other blocks β /∈ ηi free, and fixes the blocks in ηi in a way that does not falsify Ti � ρ(i−1).
For 1 ≤ i < s′, we recall that ηi contains all blocks with variables occurring in Ti � ρ(i−1), and so
property (1) above can in fact be stated as Ti � ρ(i−1)σ(i) ≡ 1. (This is not necessarily true for the
special case of i = s′ since ηs′ may only contain a subset of the blocks with variables occurring in
Ts′ � ρ(s′−1); c.f. (6).)

We observe that such a restriction σ(i) (one satisfying all three properties above) must exist.
As remarked at the start of this subsection, by the definition of Ti there exists a restriction ρ′ ∈
supp(D(d)

u) such that Ti � ρ(i−1)ρ′ ≡ 1. This along with the fact that D(d)
u is independent across

blocks implies the existence of a restriction in supp(D(d)
u) that fixes exactly the blocks in ηi in a

way that does not falsify Ti � ρ(i−1).
This finishes the definition of σ(i). We record the following key properties of σ(i):

Proposition 5.3. Ti � ρ(i−1)σ(i) ≡ 1 for 1 ≤ i < s′, and Ts′ � ρ(s′−1)σ(s′) 6≡ 0.

Proposition 5.4. For every β ∈ ηi, we have ρ
(i−1)
β = {∗}A′ whereas σ

(i)
β ∈ {0, 1}

A′, and

Pr
%←Du(q)

[% = ρ
(i−1)
β] = q whereas Pr

%←Du(q)
[% = σ

(i)
β] =

1− q
2u

.

5.4 Decodability

Lemma 5.5. The map θ : B → {0, 1, ∗}A(d) × {0, 1}s × {0, 1}s(log r+1), where

θ(ρ) =
(
ρσ(1) · · ·σ(s′), binary(π), encode(η1) ◦ · · · ◦ encode(ηs′)

)
, (7)

is an injection.

19

We will prove Lemma 5.5 by describing a decoder that can recover ρ ∈ B given θ(ρ) as in (7).
Let σ = σ(1) · · ·σ(s′). Note that s′ can be derived from θ3(ρ). To obtain ρ, it suffices to recover the
sets ηi, by simply replacing (ρσ)β,τ with ∗ for all β ∈ η1 ∪ · · · ∪ ηs′ and all τ ∈ A′.

To recover ηi’s, we assume inductively that the decoder has recovered the “hybrid” restriction

ρ(i−1)σ(i) · · ·σ(s′) = ρ(η1 7→ π(1)) · · · (ηi−1 7→ π(i−1))σ(i) · · ·σ(s′) and the sets η1, . . . , ηi−1, (8)

with the base case i = 1 being ρσ(1) · · ·σ(s′) = θ1(ρ), which is trivially true by assumption. We will
show below how to decode Ti and ηi, and then obtain the next “hybrid” restriction

ρ(i)σ(i+1) · · ·σ(s′) = ρ(η1 7→ π(1)) · · · (ηi 7→ π(i))σ(i+1) · · ·σ(s′)

We can recover all s′ sets η1, . . . , ηs′ after repeating this for s′ times.
The following lemma shows how to recover Ti, given the “hybrid” restriction in (8).

Proposition 5.6. For 1 ≤ i < s′, we have that Ti is the first term in F such that

Ti � ρ
(i−1)σ(i) · · ·σ(s′) ≡ 1.

For the special case of i = s′, we have that Ts′ is the first term in F such that

Ts′ � ρ
(s′−1)σ(s′)ρ′′ ≡ 1

for some ρ′′ ∈ supp(D(d)
u).

Proof. We first justify the claim for 1 ≤ i < s′. Recall that Ti is the first term in F such that
Ti � ρ(i−1) is non-constant and Ti � ρ(i−1)ρ′ ≡ 1 for some restriction ρ′ ∈ supp(D(d)

u). This to-
gether with Proposition 5.3 implies that Ti is the first term in F such that Ti � ρ(i−1)σ(i) ≡ 1: as
σ(i) ∈ supp(D(u)

d), it follows that ρ(i−1)σ(i) cannot satisfy any term that occurs before Ti in F .
For the same reason, Ti remains the first term in F such that Ti � ρ(i−1)σ(i) · · ·σ(s′) ≡ 1 (since
σ(i+1), · · · , σ(s′) ∈ supp(D(d)

u) and so is their composition).
The argument for i = s′ is similar. We again recall that Ts′ is the first term in F such that

Ts′ � ρ(s′−1) is non-constant and Ts′ � ρ(s′−1)ρ′ ≡ 1 for some restriction ρ′ ∈ supp(D(d)
u). Since every

term in T that occurs before Ts′ in F is such that T � ρ(s′−1)ρ′ 6≡ 1 for all ρ′ ∈ supp(D(d)
u), certainly

T � ρ(s′−1)σ(s′)ρ′′ 6≡ 1 for all ρ′′ ∈ supp(D(d)
u) as well. On the other hand, by Proposition 5.3 we

have that σ(s′) does not falsify Ts′ � ρ(s′−1), and so there must exist ρ′′ ∈ supp(D(d)
u) such that

Ts′ � ρ(s′−1)σ(s′)ρ′′ ≡ 1. This completes the proof.

With Ti in hand we use encode(ηi) to reconstruct ηi by Proposition 5.2. We modify the current
“hybrid” restriction ρ(η1 7→ π(1)) · · · (ηi−1 7→ π(i−1))σ(i) · · ·σ(s′) as follows: for each β ∈ ηi, set(

ρ(η1 7→ π(1)) · · · (ηi−1 7→ π(i−1))σ(i) · · ·σ(s′)
)
β,τ

= π
(i)
β , for all τ ∈ A′.

The resulting restriction is ρ(η1 7→ π(1)) · · · (ηi 7→ π(i))σ(i+1) · · ·σ(s′) as desired.
Starting with ρσ and repeating this procedure for s′ times, we recover all ηi’s and then ρ. This

completes the proof that θ is an injection.

20

5.5 Weight increase

Recall that ρ and ρσ differ in exactly s many blocks, and furthermore, ρ is {∗}A′ on all these blocks
whereas ρσ belongs to {0, 1}A′ ∩ supp(Du) on these blocks.

Lemma 5.7. For any ρ ∈ B and ρσ = θ1(ρ), we have

Pr[ρ = ρσ]

Pr[ρ = ρ]
=

∏
blocks β on

which they differ

Pr[% = (ρσ)β]

Pr[% = ρβ]
=

(
1− q
2qu

)s
.

Proof. This follows from independence across blocks and Proposition 5.4.

6 Proof of Theorem 2

In this section we prove our main technical result, Theorem 2, restated below:

Theorem 2. There is an absolute constant c > 0 such that the following holds. Let d = d(w)
and u = u(w) satisfy d ≥ 1 and 2 ≤ u ≤ w33/100. Then for w sufficiently large, any depth-d
circuit computing the SkewedSipseru,d function (recall that this is a formula of depth 2d + 1 over

n = (uw)dw33/100 variables) must have size at least nc·(u/d).

We begin by first observing that the claimed nΩ(u/d) circuit size lower bound is o(n), and hence
vacuous, if d > u; thus it suffices to prove the claimed bound under the assumption that d ≤ u. We
make this assumption in the rest of the proof below (see specifically Corollary 6.2). Of course we
can also assume that d ≥ 2, since depth-1 circuits of any size cannot compute SkewedSipseru,1. In
the proof we set the parameter q to be q = w−669/1000.

In Section 6.1 we establish that our target function SkewedSipseru,d retains structure with high
probability under a suitable random projection. In Section 6.2 we repeatedly apply both this result
and our projection switching lemma to prove Theorem 2.

6.1 Target preservation

We start with an easy proposition about what happens to CNFSipseru under a random restriction
from Du(q). The following is an immediate consequence of Definition 12 and Fact 4.1:

Proposition 6.1. For %← Du(q), we have that

(
CNFSipseru � %

)
≡

{
CNFSipseru with probability q

0 with probability 1− q.

We obtain the following corollary.

Corollary 6.2. For every 1 ≤ ` ≤ d, we have that projρ(SkewedSipseru,`) contains SkewedSipseru,`−1

as a subfunction with probability at least 0.9 over a random restriction ρ← D(`)
u (q).

21

Proof. Recall that ρ← D(`)
u (q) is drawn by independently drawing ρβ ← Du(q) for each block β ∈

B(`). We have that projρ(SkewedSipseru,`) contains SkewedSipseru,`−1 as a subfunction if the fol-
lowing holds: for each of the OR(2) gates in SkewedSipseru,`, at least w33/100 of the w AND(1) gates
(each one corresponding to an independent CNFSipseru function) that are its children (say at ad-
dresses β1, . . . , βw) have ρβi ∈ {∗}

A′ .

By Proposition 6.1, for a given OR(2) gate, the expected number of βi’s beneath it that have
ρβi ∈ {∗}

A′ is qw = w331/1000. So a multiplicative Chernoff bound shows that at least w33/100

of the βi’s beneath it have ρβi ∈ {∗}
A′ except with failure probability at most e−w

331/1000/8. By a

union bound over the (at most n) OR(2) gates in SkewedSipseru,`, we have that the overall failure

probability is at most n · e−w331/1000/8. Since

n = udwd+ 33
100 ≤ w

133
100

d+ 33
100 ≤ w

133
100

u+ 33
100 ≤ w

133
100

w33/100+ 33
100 � 0.1 · ew331/1000/8,

the proof is complete. (In the above we used u ≤ w33/100 for the first inequality, d ≤ u for the
second, u ≤ w33/100 again for the third, and w being sufficiently large for the last.)

6.2 Completing the Proof of Theorem 2

Most of the proof is devoted to showing that the required size for a depth-d circuit that computes
SkewedSipseru,d is at least

S
def
=

0.1

(16u2q)u−1 . (9)

We prove (9) by contradiction; so assume there is a depth-d circuit C of size at most S that
computes SkewedSipseru,d. As noted in Section 2.2 we assume that C is alternating and leveled.

We “get the argument off the ground” by first hitting both SkewedSipseru,d and C with projρ(·)
for ρ← D(d)

u (q), where q = w−669/1000. (By Remark 17, we can apply our projection switching
lemma, Theorem 14, both to r-DNFs and r-CNFs.) Applying Theorem 14 (with r = 1 and
s = u − 1) to each of the gates at distance 1 from the inputs in C,2 we have that the resulting
circuit projρ(C) has depth d, bottom fan-in u− 1, and at most S gates at distance at least 2 from
the inputs 3 with failure probability at most S · (16qu)u−1 < 0.1. On the other hand, taking ` = d
in Corollary 6.2 we have that projρ(SkewedSipseru,d) contains SkewedSipseru,d−1 as a subfunction
with failure probability at most 0.1. By a union bound, with probability at least 0.8, a draw of

ρ← D(d)
u (q) satisfies both of the above, and we fix any such restriction κ(d) ∈ supp(D(d)

u (q)). A
further deterministic “trimming” restriction (by only setting certain variables to 0; note that this
can only simplify projρ(d)(C) further) causes the target projρ(d)(SkewedSipseru,d) to become exactly
SkewedSipseru,d−1. Let us write Cd to denote the resulting simplified version of the original circuit
C after the combined “project-and-trim”. As C is supposed to compute SkewedSipseru,d, Cd must
compute SkewedSipseru,d−1.

Next, we consider what happens to SkewedSipseru,d−1 and Cd if we hit them both with projρ(·)
for ρ← D(d−1)

u (q). Applying Theorem 14 (with r = s = u − 1) to each of the gates at distance 2
from the inputs and taking a union bound, the resulting circuit projρ(Cd) has depth (d−1), bottom

2In this initial application we view C as having an extra layer of gates of fan-in 1 next to the input variables, so
we have a valid application of Theorem 14 with r = u− 1 ≥ 1.

3Note that projρ(C) may have a large number of gates at distance 1 from the inputs but it suffices for our purpose
to bound the number of gates at distance at least 2 from the inputs.

22

fan-in u − 1, and at most S gates at distance at least 2 from the inputs with failure probability
at most S · (16ruq)u−1 < S · (16qu2)u−1 ≤ 0.1. On the other hand, taking ` = d − 1 we can
again apply Corollary 6.2 to SkewedSipseru,d−1 and we have that projρ(SkewedSipseru,d−1) contains
SkewedSipseru,d−2 as a subfunction with failure probability at most 0.1. Once again by a union
bound, with probability at least 0.8 a draw of ρ← D(d−1)

u (q) satisfies both of the above, and we
fix any such restriction κ(d−1) ∈ supp(Dd−1

u (q)). As before we perform a deterministic trimming
restriction that causes the target projκ(d−1)(SkewedSipseru,d−1) to become exactly SkewedSipseru,d−2

and we let Cd−1 be the resulting simplified version of Cd after the combined project-and-trim. As
Cd computes SkewedSipseru,d−1 we have that Cd−1 must compute SkewedSipseru,d−2.

Repeating the argument above, each time taking r = s = u− 1 in Theorem 14, there exist a se-
quence of restrictions κ(d−2) ∈ supp(D(d−2)

u (q)), . . . , κ(1) ∈ supp(D(1)
u (q)) and their resulting circuits

Cd−2, . . . , C1 such that

• Hard function retains structure. For 1 ≤ ` ≤ d − 2, projκ(`)(SkewedSipseru,`) contains
SkewedSipseru,`−1 as a subfunction, and hence there exists a deterministic trimming restriction
that results in projκ(`)(SkewedSipseru,`) becoming exactly SkewedSipseru,`−1.

• Circuit collapses. For 2 ≤ ` ≤ d− 2, the circuit projκ(`)(C`+1) has depth `, bottom fan-in
u − 1, and has at most S gates at distance at least 2 from the inputs. Furthermore, C` is
the simplified version of projκ(`)(C`+1) after the deterministic trimming restriction associated
with projκ(`)(SkewedSipseru,`). Finally, the circuit projκ(1)(C2) can be expressed as a depth-
(u − 1) decision tree, and C1 is the simplified version of projκ(1)(C2) after the deterministic
trimming restriction associated with projκ(1)(SkewedSipseru,1).

The above implies that C` computes SkewedSipseru,`−1 for all 1 ≤ ` ≤ d− 2. This yields the de-
sired contradiction since C1, a decision tree of depth at most u−1, cannot compute SkewedSipseru,0,

the OR of w33/100 ≥ u many variables. Hence any depth-d circuit computing SkewedSipseru,d must
have size at least S, where S is the quantity defined in (9). The following calculation showing that
S = nΩ(u/d) completes the proof of Theorem 2:

Claim 6.3. S = nΩ(u/d).

Proof. We first observe that

n = udwd+ 33
100 ≤ w

133
100

d+ 33
100 ≤ w(133

100
+ 33

200
)d < w

3d
2 , and hence n

2
3d < w,

where we used u ≤ w33/100 for the first inequality and d ≥ 2 for the second. As a result we have

S = 0.1

(
w669/1000

16u2

)u−1

≥ 0.1

(
w9/1000

16

)u/2
≥ 0.1

(
n

2
3d
· 9
1000

16

)u/2
= nΩ(u/d),

where we used q = w−669/1000 for the first equality, 2 ≤ u ≤ w33/100 for the first inequality, and
w > n

2
3d for the final equality.

Remark 18. We remark that a straightforward construction yields small-depth circuits computing
SkewedSipseru,d that nearly match the lower bound given by Theorem 2. This construction simply
applies de Morgan’s law to convert a u-way AND of w-way ORs into a wu-way OR of u-way ANDs.
This is done for all of the AND(d),AND(d−2),AND(d−4), . . . gates in SkewedSipseru,d. Collapsing
adjacent layers of gates after this conversion, we obtain a depth-(d+ 1) circuit of size nO(u/d) that
computes the SkewedSipseru,d function.

23

References

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic,

24(1):1–48, 1983. 2

[Ajt89] Miklós Ajtai. First-order definability on finite structures. Annals of Pure and Applied
Logic, 45:211–225, 1989. 1, 2, 3, 7

[Bea95] Paul Beame. A switching lemma primer. University of Washington, Dept. of Computer
Science and Engineering, Technical Report UW-CSE-95-07-01, 1995. 16

[BIP98] Paul Beame, Russell Impagliazzo, and Toniann Pitassi. Improved depth lower bounds
for small distance connectivity. Computational Complexity, 7:325 –345, 1998. 1, 2, 3, 6,
7, 8

[BPU92] Stephen Bellantoni, Toniann Pitassi, and Alasdair Urquhart. Approximation and small
depth Frege proofs. SIAM Journal on Computing, 21(6):1161–1179, 1992. 1, 2, 3, 7

[Cai86] Jin-Yi Cai. With probability one, a random oracle separates PSPACE from the
polynomial-time hierarchy. In Proceedings of the 18th Annual ACM Symposium on
Theory of Computing (STOC), pages 21–29, 1986. 2

[FSS84] Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984. 2

[H̊as86] Johan H̊astad. Computational Limitations for Small Depth Circuits. MIT Press, Cam-
bridge, MA, 1986. 1, 2, 3, 4, 8

[IPS97] Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. Size–depth tradeoffs for
threshold circuits. SIAM Journal on Computing, 26(3):693–707, 1997. 7

[IS01] Russell Impagliazzo and Nathan Segerlind. Counting axioms do not polynomially simu-
late counting gates. In Proceedings of the 42nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 200–209, 2001. 7

[KPPY84] Maria Klawe, Wolfgang Paul, Nicholas Pippenger, and Mihalis Yannakakis. On mono-
tone formulae with restricted depth. In Proceedings of the 16th Annual ACM Symposium
on Theory of Computing (STOC), pages 480–487, 1984. 3

[Ros14] Benjamin Rossman. Formulas vs. circuits for small distance connectivity. In Proceedings
of the 46th Annual ACM Symposium on Theory of Computing (STOC), pages 203–212.
ACM, 2014. 1, 2, 3, 6, 7, 8

[RST15] Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case depth hier-
archy theorem for Boolean circuits. In Proceedings of the 56th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2015. to appear. 1, 7

[Sav70] Walter Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4:177–192, 1970. 1

24

[Sip83] Michael Sipser. Borel sets and circuit complexity. In Proceedings of the 15th Annual
ACM Symposium on Theory of Computing (STOC), pages 61–69, 1983. 1, 4

[Sta] Theoretical Computer Science StackExchange. Available at
http://cstheory.stackexchange.com/questions/7672/

most-efficient-way-to-convert-an-textac0-circuit-to-a-circuit-of-any-dep.
8

[Wig92] Avi Wigderson. The complexity of graph connectivity. In Proceedings of the 17th
Symposium on Mathematical Foundations of Computer Science (MFCS), pages 112–
132. Springer-Verlag, 1992. 1

[Yao85] Andrew Yao. Separating the polynomial time hierarchy by oracles. In Proceedings of
the 26th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
1–10, 1985. 1, 2, 4

25

http://cstheory.stackexchange.com/questions/7672/most-efficient-way-to-convert-an-textac0-circuit-to-a-circuit-of-any-dep
http://cstheory.stackexchange.com/questions/7672/most-efficient-way-to-convert-an-textac0-circuit-to-a-circuit-of-any-dep

	1 Introduction
	1.1 Prior results
	1.2 Our results
	1.3 Our approach

	2 Håstad's depth hierarchy theorem, random projections, and proof outline of Theorem ??
	2.1 Proof outline of Theorem ??
	2.2 Preliminaries

	3 Lower bounds against SkewedSipser yield lower bounds for small distance connectivity
	4 The Random Projection
	5 Projection Switching Lemma
	5.1 Canonical decision tree
	5.2 Proof of Theorem ??
	5.3 Encoding
	5.3.1 Encoding i
	5.3.2 The (i) restriction

	5.4 Decodability
	5.5 Weight increase

	6 Proof of Theorem ??
	6.1 Target preservation
	6.2 Completing the Proof of Theorem ??

