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Abstract

Understanding the relationship between the worst-case and average-case complexities of
NP and of other subclasses of PH is a long-standing problem in complexity theory. Over
the last few years, much progress has been achieved in this front through the investigation
of meta-complexity : the complexity of problems that refer to the complexity of the input
string x (e.g., given a string x, estimate its time-bounded Kolmogorov complexity). In partic-
ular, [Hir21a] employed techniques from meta-complexity to show that if DistNP ⊆ AvgP then
UP ⊆ DTIME[2O(n/ logn)]. While this and related results [HN21; CHV22] offer exciting progress
after a long gap, they do not survive in the setting of randomized computations: roughly speak-
ing, “randomness” is the opposite of “structure”, and upper bounding the amount of structure
(time-bounded Kolmogorov complexity) of different objects is crucial in recent applications of
meta-complexity. This limitation is significant, since randomized computations are ubiquitous
in algorithm design and give rise to a more robust theory of average-case complexity [IL90].

In this work, we develop a probabilistic theory of meta-complexity, by incorporating random-
ness into the notion of complexity of a string x. This is achieved through a new probabilistic
variant of time-bounded Kolmogorov complexity that we call pKt complexity. Informally, pKt(x)
measures the complexity of x when shared randomness is available to all parties involved in a
computation. By porting key results from meta-complexity to the probabilistic domain of pKt

complexity and its variants, we are able to establish new connections between worst-case and
average-case complexity in the important setting of probabilistic computations:

• If DistNP ⊆ AvgBPP, then UP ⊆ RTIME
[
2O(n/ logn)

]
.

• If DistΣP
2 ⊆ AvgBPP, then AM ⊆ BPTIME

[
2O(n/ logn)

]
.

• In the fine-grained setting [CHV22], we get UTIME[2O(
√
n logn)] ⊆ RTIME[2O(

√
n logn)] and

AMTIME[2O(
√
n logn)] ⊆ BPTIME[2O(

√
n logn)] from stronger average-case assumptions.

• If DistPH ⊆ AvgBPP, then PH ⊆ BPTIME
[
2O(n/ logn)

]
. Specifically, for any ℓ ≥ 0, if

DistΣP
ℓ+2 ⊆ AvgBPP then ΣP

ℓ ⊆ BPTIME
[
2O(n/ logn)

]
.

• Strengthening a result from [HN21], we show that if DistNP ⊆ AvgBPP then polyno-
mial size Boolean circuits can be agnostically PAC learned under any unknown P/poly-
samplable distribution in polynomial time.

In some cases, our framework allows us to significantly simplify existing proofs, or to extend
results to the more challenging probabilistic setting with little to no extra effort.
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1 Introduction

1.1 Context and background

Basing the average-case hardness of NP on its worst-case hardness is one of the central questions
in computational complexity theory. In the terminology of Impagliazzo’s five possible complexity
worlds [Imp95], this corresponds to excluding Heuristica, a world where P ̸= NP but NP problems
can be efficiently solved on average with respect to every samplable distribution. Eliminating this
possibility can be seen as a first step toward basing the security of cryptography on the assumption
that P ̸= NP.

Despite the long history of this problem (see, e.g., [Lev86]), we still have limited understand-
ing of the relationships between the worst-case and average-case complexities of problems in NP
and in other subclasses of the polynomial hierarchy. In order to understand the difficulty of mak-
ing progress, a number of works have investigated limitations of known proof techniques (see,
e.g., [Vio05; BT06b; Imp11]). These results suggest that fundamentally new ideas are needed to
show that if NP problems are easy to solve on average, then NP is easy to solve in the worst case.
For a detailed discussion on this matter, see [Hir21a, Section 1.2] and references therein.

To formally discuss the problem, we briefly review standard definitions from average-case com-
plexity theory [BT06a]. Recall that a pair (L,D) is a distributional problem if L ⊆ {0, 1}∗ and
D = {Dn}n≥1 is an ensemble of probability distributions, where each Dn is supported over {0, 1}∗.
Let D = {Dn}n≥1 be an ensemble of this form. We say that D ∈ PSamp if there is a randomized
polynomial time algorithm A such that, for every n ≥ 1, A(1n) is distributed according to Dn. For
a complexity class C (e.g., C = NP), we let DistC denote the set of distributional problems (L,D)
with L ∈ C and D ∈ PSamp.

We say that a distributional problem (L,D) is solvable in polynomial time on average if there
is a (deterministic) algorithm B such that, for every n and for every x in the support of Dn,
B(x;n) = L(x), and there is a constant ε > 0 such that Ex∼Dn [tB,n(x)

ε] ≤ O(n), where tB,n(x)
denotes the running time of B on input (x;n).1 If this is the case, we write (L,D) ∈ AvgP.

In a recent breakthrough, [Hir21a] established new connections between worst-case and average-
complexity theory for subclasses of the polynomial hierarchy. Among other results, [Hir21a] proved
that (i) if DistNP ⊆ AvgP, then UP ⊆ DTIME[2O(n/ logn)];2 and (ii) if DistΣP

2 ⊆ AvgP, then
NP ⊆ DTIME[2O(n/ logn)]. While these results constitute significant progress after a long gap, they
come with an important caveat: the new connections do not hold in the setting of randomized
computations. In other words, under the assumption that NP (or DistΣP

2 ) is easy on average for
probabilistic algorithms (i.e., DistNP ⊆ AvgBPP), we can no longer conclude probabilistic worst-case
upper bounds.3

This is an important issue for at least two reasons. On the one hand, the theory of average-case
complexity is more robust when defined with respect to randomized algorithms. For instance, [IL90]
proved that the average-case hardness of NP with respect to the uniform distribution is equivalent
to its hardness with respect to the class of samplable distributions (see Section 2.2). On the other
hand, randomized algorithms and computations are ubiquitous in both theory and practice. In

1It is possible to show that this is equivalent to saying that there is a constant c > 0 such that the probability (over
Dn) that the algorithm runs for more than T steps is at most poly(n)/T c. We refer to [BT06a] for more information
about this definition and its motivation.

2Recall that UP is the class of languages in NP whose positive instances admit unique witnesses.
3We informally discuss AvgBPP in Section 1.2.2. For a formal treatment, see Section 2.2.
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particular, randomness is crucial for cryptography, which is only possible if there exist problems
that are hard on average for probabilistic polynomial time algorithms (see, e.g., [Gol01]).

To explain why [Hir21a] and related works do not extend to randomized computations, we need
to elaborate on their approach. These papers explore, in a crucial way, techniques from meta-
complexity. Meta-complexity investigates the complexity of problems that refer to the complexity
of the input string (e.g., given a string x, estimate its time-bounded Kolmogorov complexity). Such
meta-computational problems have been at the core of other exciting recent results in complexity
theory, such as a new characterization of the existence of one-way functions given in [LP20] and its
subsequent developments (e.g., [RS21; LP21b]).

A central topic in meta-complexity is the study of time-bounded Kolmogorov complexity. Here
we consider the minimum description length of a string x with respect to time-bounded machines.
We informally review this notion, referring the reader to Section 2.5 for details. For a Turing
machine M, we let |M| denote its description length. Then, for a function t : N → N and a string
x ∈ {0, 1}∗, we let

Kt(x) = min
TMM

{|M| | M(ε) outputs x in t(|x|) steps} .

where ε denotes the empty string. Conditional Kt complexity Kt(x | z) is defined similarly, where
now the machine M receives z as input instead of the empty string.

Following the simplified presentation from [GK22], the approach of [Hir21a] consists of showing,
under the assumption that DistΣP

2 ⊆ AvgP, that for every L ∈ NP and every NP-verifier V for L,
if x ∈ L then some witness yx of x ∈ L satisfies Kt(yx | x) = O(n/ log n), where t(n) = 2O(n/ logn).
Consequently, in order to solve L in the worst case, it is enough to exhaustively search for a
witness of complexity at most O(n/ log n), which can be done deterministically in time 2O(n/ logn).
This strategy is inherently non-black-box, in the sense that the code of the average-case algorithm
obtained from the initial assumption is used in a crucial way to upper bound Kt(yx | x): it is part
of the description of a machine M that outputs yx.

Intuitively, if we start with the initial assumption that DistΣP
2 ⊆ AvgBPP, i.e., with a probabilis-

tic average-case algorithm, the high-level approach described above simply does not work: a typical
random string employed in the computation has nearly maximum Kolmogorov complexity and does
not allow us to bound Kt complexity.4 More generally, as mentioned in the abstract, “randomness”
is the opposite of “structure”, and upper bounding the amount of structure (time-bounded Kol-
mogorov complexity) of different objects is crucial in recent applications of meta-complexity.

To address this fundamental issue, we develop a suitable probabilistic theory of meta-complexity.
In other words, we consider probabilistic notions of Kolmogorov complexity and their corresponding
meta-computational problems. We are inspired in part by recent extensions of Kt complexity
to the randomized setting, such as rKt complexity [Oli19; LO21] and its variant rKt [LOS21].
Unfortunately, as explained in Section 1.3, these notions turn out to be insufficient to study relations
between worst-case and average-case complexities in the setting of probabilistic computations, and
a more delicate approach is necessary. To achieve this, we introduce and systematically investigate
a new notion of probabilistic time-bounded Kolmogorov complexity: pKt complexity.

4For the reader familiar with the arguments from [Hir21a], we mention that while it is possible to construct
a pseudorandom generator under the assumption that DistNP ⊆ AvgP via [BFP05], this is not clear under the
assumption that DistΣP

2 ⊆ AvgBPP. See Section 1.3 for a discussion.
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1.2 Results

As alluded to above, while previous works have employed various techniques to remove ran-
domness from their arguments in order to analyze Kt complexity, we incorporate randomness in
our framework. This has several advantages compared with previous works:

• We establish connections that hold in the more natural and robust setting of probabilistic
computations. Previous results for deterministic computations, such as the aforementioned
connections from [Hir21a], can be easily derived from our statements.

• In some contexts, we obtain significantly simpler proofs, as in the case of fine-grained connec-
tions between worst-case and average-case complexity [CHV22]. In particular, our approach
does not require the design of new pseudorandom generators.

• Our probabilistic framework can improve some existing results with little to no extra effort.
As a concrete example, we show how to derive agnostic learning algorithms from a weaker
assumption about the average-case easiness of NP, strengthening a result from [HN21].

Next, we explain our contributions in detail. In Section 1.2.1 below, we describe the new notion
of time-bounded Kolmogorov complexity that is key to our theory of probabilistic meta-complexity.
Then, in Section 1.2.2, we discuss its applications to average-case complexity.

1.2.1 A new notion of probabilistic Kolmogorov complexity

Fix a function t : N → N. For a string x ∈ {0, 1}∗, the probabilistic t-bounded Kolmogorov
complexity of x is defined as

pKt(x) = min

{
k

∣∣∣∣∣ Pr
w∼{0,1}t(|x|)

[
∃M ∈ {0, 1}k, M(w) outputs x within t(|x|) steps

]
≥ 2

3

}
.

In other words, if pKt(x) ≤ k, then for a typical random string w, there is a (deterministic) machine
M of length k that runs in at most t(|x|) steps and prints x when given w.

Note that pKt is conceptually different from rKt [Oli19] and rKt [LOS21], where there is a fixed
randomized machine M that outputs x with probability ≥ 2/3 over its internal randomness. The
definition of pKt is more subtle, and its benefits are less evident. Our main conceptual discovery is
that pKt is a surprisingly useful measure of time-bounded Kolmogorov complexity.

In order to gain more intuition about this definition, consider a 2-party communication setting
where a player A that knows x would like to communicate this string to a computationally bounded
player B. If A and B share a typical random string w, then A can simply send to B the description
of a machine M as above, and B will be able to run M(w) to recover x in at most t(|x|) steps. In
other words, pKt(x) can be seen as Kt(x) in a setting where a public random string is available to
all parties involved in a computation.

We elaborate now on some properties of pKt that make it robust and particularly attractive in
meta-complexity and its applications:

� Short descriptions from bounded pKt complexity and the complexity of a random string. It is not
immediately clear from the definition of pKt that, in the absence of a shared random string, bounded
pKt complexity yields short descriptions (as in the case of Kt and rKt). However, if pKt(x) ≤ k,
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notice that we can sample x as follows: randomly generate a string w of length t(|x|), randomly
generate a program M of length k, then output whatever M(w) outputs after running for t(|x|)
steps. It is easy to see that this sampler outputs x with probability at least ≥ 2/3 · 2−k. By the
coding theorem for Kolmogorov complexity, it follows that x has a description of length about k.
This also implies that a random string x of length n has pKt(x) close to n, as one would expect of
any reasonable and useful notion of resource-bounded Kolmogorov complexity.

� Connection to the worst-case complexity of NP. As mentioned in Section 1.1, previous results
were obtained by showing, under an average-case easiness assumption, that every positive instance
x admits a witness yx such that Kt(yx | x) = O(n/ log n), where t(n) = 2O(n/ logn). An important
observation explored in our results is that a bound of the form pKt(yx | x) ≤ k is also sufficient
to show worst-case upper bounds. Roughly speaking, with probability ≥ 2/3 over the choice of a
random string, we can “pretend” that Kt(yx | x) ≤ k, which allows us to exhaustively search for a
witness in non-trivial time.

� pKt complexity, pseudorandom generators, and reconstruction procedures. In a typical construc-
tion of a pseudorandom generator G based on a string x of high complexity, the correctness of G
against a class of adversaries is established using a reconstruction procedure. The latter extracts
from any candidate distinguisher for G an upper bound on the complexity of x. Typical reconstruc-
tion procedures are randomized, and for this reason do not yield bounds on deterministic notions of
time-bounded Kolmogorov. Moreover, it is often important to fool randomized algorithms in addi-
tion to deterministic ones. As one of our key lemmas, we show that pKt is an excellent complexity
measure under these circumstances, in the sense that pKt bounds can be obtained in a natural way
from randomized distinguishers and reconstruction procedures. 5

� Symmetry of information for pKt and average-case complexity. We show, under the assumption
DistNP ⊆ AvgBPP, that pKt satisfies the symmetry of information condition, one of the pillars of
Kolmogorov complexity (see, e.g., [Lee06]). In other words, we prove under this hypothesis that
for every pair of strings (x, y), pKt(x, y) ≥ pKpoly(t)(x) + pKpoly(t)(y | x) − O(log t). Consequently,
symmetry of information is available in the probabilistic setting when investigating connections
between worst-case and average-case complexity.

� Optimal source coding theorem for pKt. As noticed by [LOZ22], pKt admits an unconditional
coding theorem with optimal parameters, the first result of this form in the time-bounded setting
(see Section 3.3). This implies that if we can efficiently sample an n-bit string x with probability
≥ δ, then pKpoly(x) ≤ log(1/δ) +O(log n).

� The relationship between pKt, rKt, and Kt. Finally, under standard derandomization assumptions,
for every string x ∈ {0, 1}n and constructive time bound t(n) ≥ n, Kpoly(t)(x) = pKpoly(t)(x) =
rKpoly(t)(x), up to an additive O(log t) term (see Section A.2 for details). In particular, results and
insights about the probabilistic measure pKt can often be translated to other previously investi-
gated measures of time-bounded Kolmogorov complexity.

5Trevisan and Vadhan [TV07] observed that such reconstruction procedures are often randomized algorithms that
take nonuniform advice dependent on the randomness used by the algorithm (and introduced the notation //). Our
pKt measure is a Kolmogorov complexity interpretation of the same phenomenon, with the randomness-dependent
advice of [TV07] to reconstruct a string x becoming the probabilistic Kolmogorov description of x.
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As a consequence of these and other desirable properties established in Section 3 (e.g., language
compression for any L ∈ AM under randomized average-case easiness), pKt is particularly well-
suited for applications of meta-complexity in settings that involve probabilistic computations. In
the next section, we discuss some applications of pKt to average-case complexity.

1.2.2 Applications of pKt to average-case complexity

A distributional problem (L,D) is in AvgBPP if it admits a randomized errorless heuristic
scheme. Since the definition of a randomized heuristic scheme is somewhat technical, we refer to
Section 2.2 for details, and remark that in our results the following weaker assumption suffices:
there is a randomized polynomial-time algorithm B such that, for every n ≥ 1,

(i) For every x ∈ supp(Dn), if x ∈ L, then PrrB [B(x;n) = 1] ≥ 1− 1
n ; and

(ii) Prx∼Dn
rB

[B(x;n) = L(x)] ≥ 1− 1
n ,

where rB denotes the randomness of B. In other words, our results also hold under the existence
of one-sided error randomized algorithms that can make mistakes on negative instances.

First, we relate the worst-case and average-case complexities of subclasses of PH with respect
to probabilistic computations.

Theorem 1 (Probabilistic Worst-Case to Average-Case Reductions). The following results hold.

1. If DistNP ⊆ AvgBPP, then UP ⊆ RTIME
[
2O(n/ logn)

]
.

2. If DistΣP
2 ⊆ AvgBPP, then AM ⊆ BPTIME[2O(n/ logn)].

3. If DistPH ⊆ AvgBPP, then PH ⊆ BPTIME[2O(n/ logn)]. More specifically, for any ℓ ≥ 0, if
DistΣP

ℓ+2 ⊆ AvgBPP, then ΣP
ℓ ⊆ BPTIME[2O(n/ logn)].

In contrast, [Hir21a] established worst-case upper bounds in DTIME[2O(n/ logn)] assuming a
corresponding inclusion in AvgP. Theorem 1 provides the first connections of this form that hold
with respect to probabilistic computations.6

In a recent work, [CHV22] established fine-grained connections between worst-case and average-
case complexity. For instance, they showed that if NTIME[n] can be (deterministically) solved
in quasilinear time on average, then UTIME[2O(

√
n logn)] ⊆ DTIME[2O(

√
n logn)]. Next, we discuss

implications of fine-grained average-case easiness assumptions in the probabilistic setting. Recall the
quasilinear-time complexity classes QL = DTIME[Õ(n)], NQL = NTIME[Õ(n)], and the quasilinear-
time analog QLH = ∪ℓ≥0Σ

QL
ℓ of the polynomial-time hierarchy PH; see, e.g., [NRS95] for more

details.7 Define BPQL = BPTIME[Õ(n)], the quasilinear-time version of BPP. Also, define QLSamp
to be the class of distribution families that are quasilinear-time samplable.

Theorem 2 (Probabilistic Fine-Grained Reductions). The following results hold.

1. If NQL× QLSamp ⊆ AvgBPQL, then UTIME
[
2O(

√
n logn)

]
⊆ RTIME

[
2O(

√
n logn)

]
.

6As in [Hir21a], we can obtain a stronger worst-case consequence under the additional assumption that the running
time of the (randomized) average-case algorithm on a given instance can be efficiently estimated (without running
the algorithm). We refer to Section 4.6 for this result.

7As usual, we use Õ(T (n)) to denote a running time of the form O(T (n) · poly(log T (n))).
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2. If ΣQL
2 × QLSamp ⊆ AvgBPQL, then AMTIME

[
2O(

√
n logn)

]
⊆ BPTIME

[
2O(

√
n logn)

]
.

In contrast with the approach of [CHV22], which requires the construction of highly efficient
complexity-theoretic pseudorandom generators, our proofs are significantly simpler and do not
require derandomization.

Theorem 1 and Theorem 2 are formally stronger than the corresponding results from [Hir21a;
CHV22], which are restricted to deterministic algorithms. For instance, consider the implication
from [Hir21a] that if DistNP ⊆ AvgP then UP ⊆ DTIME[2O(n/ logn)]. It immediately follows from
DistNP ⊆ AvgP that DistNP ⊆ AvgBPP, and therefore UP ⊆ RTIME[2O(n/ logn)] by Theorem 1. On
the other hand, the assumption DistNP ⊆ AvgP yields BPP = P [BFP05]. By padding, we get that
RTIME[2O(n/ logn)] = DTIME[2O(n/ logn)]. (For a similar example in the fine-grained case, see the
short proof of Theorem 51 in Section 4.5.)

We also remark that, similarly to previous works, we are not aware of alternate proofs of the
results stated above that do not rely on (probabilistic) meta-complexity.

Next, we establish a connection between learning algorithms and randomized average-case com-
plexity. Recall that in the PAC learning model, a learner has access to examples (x, f(x)) labelled
according to an unknown function f ∈ C, where C is a fixed class of Boolean functions. The examples
x are drawn according to an unknown probability distributionDn, which we assume to be supported
over {0, 1}n. The goal of the learning algorithm is to produce, with high probability over its internal
randomness and draw of labelled examples, a hypothesis h such that Prx∼Dn [h(x) ̸= f(x)] ≤ ε.

For a distribution Dn supported over {0, 1}n, we say that Dn ∈ Samp[T (n)]/a(n) if it can be
sampled by an algorithm that runs in time T (n) and has advice complexity a(n). We consider the
learnability of the class C = SIZE[s] of Boolean circuits of size at most s(n), with respect to an
unknown distribution Dn from Samp[T (n)]/a(n). Our result holds in the more challenging setting
of agnostic learning (see Section 2.6 for a review of this learning model).

Theorem 3 (Agnostic Learning from Probabilistic Average-Case Easiness of NP).
If DistNP ⊆ AvgBPP, then for any time constructible functions s, T, a : N → N, and ε ∈ [0, 1],
SIZE[s(n)] is agnostic learnable on Samp[T (n)]/a(n) in time poly

(
n, ε−1, s(n), T (n), a(n)

)
.

Theorem 3 strictly improves a result from [HN21], which established the same conclusion under
the stronger assumption that DistNP ⊆ AvgP.

We finish this section with a technical remark about relativization. The fact that pKt allows us
to avoid the use of a PRG implies that our proofs relativize, i.e., the results stated above hold in
the presence of any oracle. In particular, we can show that for any oracle A,

DistNPA ⊆ AvgBPPA ⇒ UPA ⊆ RTIMEA
[
2O(n/ logn)

]
.

It is not known whether the previous (deterministic) worst-case to average-case reduction for UP,
which assumes DistNP ⊆ AvgP, holds with respect to an arbitrary oracle. More precisely, its
proof depends on a PRG from [BFP05], whose proof relies on non-relativizing techniques. (In
contrast, it was observed in [HN21] that one can obtain an alternate (relativized) PRG under
the assumption that DistPNP ⊆ AvgP, so the worst-case to average-case reduction for NP, which
assumes DistΣP

2 ⊆ AvgP, relativizes.) The above implication is the best possible statement of such
a theorem, as it matches the relativization barrier shown by [HN21], which says that there is an
oracle O such that DistPHO ⊆ AvgPO but UPO ∩ coUPO ̸⊆ BPTIMEO[2n/ω(logn)].
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1.3 Techniques

1.3.1 Hirahara’s worst-case to average-case reduction

We first recall Hirahara’s worst-case to average-case reduction from [Hir21a], following a pre-
sentation in [GK22]. For simplicity, we consider the case of NP only. Suppose we want an efficient
worst-case algorithm for a given NP language L. The idea is to argue (under appropriate average-
case easiness assumptions) that every x ∈ L has an L-witness yx of small conditional Kolmogorov
complexity Kt(yx | x), for a not too large time bound t, and then simply search for a good witness
y by enumerating all possible short candidate Kolmogorov descriptions of yx, decoding each in
time t, and checking if it is a valid L-witness for x ∈ L. The overall time complexity of such a
procedure is quasi-linear in t and exponential in Kt(yx | x), and so we would like to minimize these
two parameters.

Compression via Hadamard codes. How does one argue that a given binary string w has
small Kt complexity under average-case easiness assumptions? The idea is to “encode” w into a
distribution D(w) so that any algorithm distinguishing D(w) from the uniform distribution can be
used to “reconstruct” w, possibly using some randomness and a few bits of advice. Several encoding
methods with such properties are known in the literature on pseudorandomness. The one used by
[Hir21a] is (the direct product of) the binary Hadamard error-correcting code encoding, which has
an efficient list-decoding algorithm due to Goldreich and Levin [GL89]. This decoding algorithm
is randomized, and it needs extra information (advice) about the string w in order to recover w
from a distinguisher algorithm for D(w); moreover, the advice string a depends on the randomness
r used by the decoding algorithm. To get a deterministic Kt complexity bound, Hirahara [Hir21a]
fixes the random string r to be G(α), where G is an efficient PRG fooling polynomial-size Boolean
circuits, and α is a short seed.8 The seed α becomes part of the Kolmogorov description of w, with
the other part being the advice string a corresponding to the random string r = G(α). Such a PRG
G is known to exist under the average-case assumption that DistNP ⊆ AvgP [BFP05]. So one gets
to upper-bound Kt(w), assuming DistNP ⊆ AvgP and that one has an efficient distinguisher for
the distribution D(w), where the time bound t is polynomial in the run time of the distinguisher
and the length of w.

Getting a distinguisher. How does one argue the existence of an efficient distinguisher for
D(w)? Consider the case of w = (x, yx), for an n-bit string x ∈ L (where L ∈ NP) and yx the
lexicographically first L-witness for x. In the presence of the SAT oracle, one can easily compute yx
given x by a well-known search-to-decision reduction, which implies that K2t,SAT(x, yx) ≤ Kt(x) +
O(log t), for any sufficiently large time bound t. On the other hand, for completely random pairs of
strings (x, y), the Kolmogorov complexity of (x, y) (even with the SAT oracle) is typically larger than
Kt(x)+O(log t) (since y is unrelated to x). By carefully choosing the parameters of the Hadamard-
based encoding of w, one gets a distinguisher for D(x, yx) from uniform, where a distinguisher is
a ΣP

2 algorithm. Since we just need a distinguisher that works well on average, the assumption
DistΣP

2 ⊆ AvgP implies the existence of a sufficiently good deterministic polytime distinguisher for
D(x, yx). The latter implies that Kpoly(t)(x, yx) ≤ Kt(x) +O(log t).

8The fact that a PRG G fools the Hadamard code decoding algorithm relies on the observation that the advice
string a happens to be efficiently computable from w and randomness r.
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Chain rule for Kt. But we are still not done. Recall that our goal is to upperbound the condi-
tional Kolmogorov complexity Kt(yx | x), and so far we only have an upper bound on Kpoly(t)(x, yx).
Intuitively, one might hope to have a “chain rule” for Kt, saying that Kt(x, y) ≈ Kt′(x)+Kt′(y | x),
for polynomially related time bounds t and t′ (such a chain rule is known for the original, time-
unbounded Kolmogorov complexity, and is often called “Symmetry of Information”). It is not
known if such a chain rule holds in time-bounded settings (in fact, there is some negative evidence
[LW95]), but it does hold under the average-case easiness assumption that DistNP ⊆ AvgP [Hir21b;
GK22]. Using this chain rule and the upper bound Kpoly(t)(x, yx) ≤ Kt(x) + O(log t), we get that
Kpoly(t)(yx | x) ≤ Kt(x)− Kpoly(t)(x) +O(log t).

Computational depth. Unfortunately, the two Kolmogorov complexity measures of x on the
right-hand side are for different (polynomially related) time bounds, and so do not cancel out. It
is still possible to get a nontrivial upper bound on such a difference (known as the computational
depth of x) by making t large enough. In particular, a simple averaging argument implies that every
x ∈ {0, 1}n has the computational depth at most O(n/ log n) for a time bound t ≤ 2O(n/ logn). This
concludes the argument bounding the conditional Kolmogorov complexity of the witness yx.

1.3.2 Extending Hirahara’s reduction to the randomized case

If Hirahara’s worst-case to average-case reduction described above were black-box, then we could
simply replace the assumed AvgP algorithm for DistΣP

2 with an AvgBPP algorithm and obtain a
randomized algorithm for solving every language in NP with the same running time. However,
the reduction in Hirahara’s argument is highly non-black-box: It crucially relies on the assumed
average-case algorithm being efficient and deterministic. So we need to look inside each of the
steps in the reduction and try to adapt it, using randomized average-case easiness assumptions.

For the Hadamard decoding step, we cannot derandomize the Goldreich-Levin algorithm as we
no longer have a PRG (which is only known to exist under the deterministic average-case assumption
that DistNP ⊆ AvgP). Leaving randomness in, we now get an upper bound on pKt(w) from any
(randomized) distinguisher forD(w). The fact that the advice in the Goldreich-Levin reconstruction
algorithm depends on randomness forces us to use the stronger notion of randomized Kolmogorov
complexity pKt rather than rKt. On the positive side, no average-case easiness assumptions are
now needed for this step.9

Using a more complicated notion of pKt creates new challenges in the next step, where we need
to argue the existence of efficient distinguishers for distributions D(x, yx), where yx is the lexico-
graphically smallest witness for x ∈ L, for some L ∈ NP. Note that the pKt definition resembles
the definition of AM, where Merlin provides a Kolmogorov description of a given string, based
on Arthur’s randomness.10 A naive algorithm to distinguish D(x, yx) from uniform (mimicking
the algorithm for the deterministic case discussed above) would be in (the promise version of)
AMNP ⊆ ΠP

3 (see Section A.1 for a related result), which would force us to use a stronger average-
case assumption like DistΣP

3 ⊆ AvgBPP. We manage to get a good randomized distinguisher for

9Formally, the randomized reconstruction procedure only allows us to obtain a bound on pKt
δ(w) for δ =

1/poly(|w|), where pKt
δ is the natural generalization of pKt with a relaxed success probability parameter δ instead of

2/3. However, as another useful feature of pKt complexity, we show that its success probability can be boosted with
a small complexity overhead.

10Analogously, rKt is similar to MA, and Kt to NP.
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D(x, yx) under the assumption that DistΣP
2 ⊆ AvgBPP, which is a generalization of the determinis-

tic case from [Hir21a] discussed above. Roughly speaking, our idea is to give a random string used
in the pKt definition as an additional input to the distinguisher, reducing its complexity to ΣP

2 .
11

The proof of Symmetry of Information for Kt under the assumption DistNP ⊆ AvgP from [GK22]
is fortunately robust enough to generalize to the case of pKt assuming DistNP ⊆ AvgBPP. We
extend it further by conditioning on random strings r, and using families of strings {yr}r, indexed
by randomness r, instead of a single string y. This allows us to get a very simple proof of a natural
generalization of the worst-case to average-case reduction above to the case of AM. Namely, we
show that AM ⊆ BPTIME[2O(n/ logn)], assuming that DistΣP

2 ⊆ AvgBPP. Intuitively, for L ∈ AM,
witnesses y depend on both an input x ∈ L and the randomness r used by Arthur. So it’s natural
to try to upperbound pKt(yx,r | x, r). However, just using (x, r) as a new input x in the original
Symmetry of Information statement would result in pKt(yx,r | x, r) being upperbounded by the pKt

version of the computational depth of (x, r), which is a string of length poly(n), for |x| = n. The
averaging argument for the computational depth (which works for any natural notion of Kolmogorov
complexity) would give us the bound O(n′/ log n′) for n′ = |(x, r)| = poly(n), which is useless.
On the other hand, with the new conditional Symmetry of Information statement, we get that
pKt(yx,r | x, r) is at most the conditional computational depth pKt(x | r)−pKpoly(t)(x | r)+O(log t).
Now the input length for the averaging argument for the conditional computational depth is still
|x| = n, yielding the upper bound O(n/ log n), which allows us to prove Item 2 of Theorem 1.

While pKt complexity is instrumental in the proof of Items 1 and 2 of Theorem 1, we show
that one can use the simpler rKt notion, if one assumes that DistPΣP

2 ⊆ AvgBPP. This then
allows us to get a worst-case to average-case reduction for the polytime hierarchy PH, assuming
DistPH ⊆ AvgBPP, thereby proving Item 3 of Theorem 1. Another important ingredient in our PH
proof is an idea of randomized witness compression, which allows us to perform a delicate induction
on the level ℓ of PH; the randomized witness compression necessary for our inductive argument is
achieved by using the rKt complexity.

1.3.3 Fine-grained case

The use of pKt also allows us to extend our results to the fine-grained case (Theorem 2) more
easily. First of all, as observed in [CHV22], an improved worst-case running time 2O(

√
n logn) follows

if one can refine the above-mentioned computational depth expression from Kt(x) − Kpoly(t)(x) +

O(log t) to Kt(x)−KÕ(t)(x)+O(log t) (note that the “blow-up” of the time bound in Kt is quasilinear
in the latter as opposed to polynomial in the former). A key to such a refinement is to optimize the
running time of the reconstruction procedure for the Hadamard-based encoding described above
(see [CHV22, Section 2]). In particular, this running time depends on both the running time of
the distinghuisher and the overhead incurred by running the PRG. It turns out that the running
time of the distinghuisher, which can be obtained from a ΣQL

2 algorithm (in the NP case), can
be optimized if one assumes that ΣQL

2 admits quasilinear-time average-case algorithms, which is
exactly the fine-grained average-case easiness assumption. Then to minimize the overhead of the
PRG, the authors of [CHV22] construct a particular efficient PRG under the fine-grained average-
case easiness assumption, which incurs just a quasilinear overhead in the running time (note that
this overhead would be polynomial using the PRG from [BFP05]).

11In the case of Theorem 1 Item 1 (i.e., for UP), we further reduce the complexity of the distinguisher so we can
rely on the weaker assumption that DistNP ⊆ AvgBPP.
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Thanks to the use of pKt, we do not need any PRG in our proof! Therefore we achieve a refined

probabilistic computational depth expression of pKt(x) − pKÕ(t)(x) + O(log t) directly from the
fine-grained probabilistic average-case easiness assumption.

1.3.4 Learning under randomized average-case assumptions

Our improvement of the learning result from [HN21] under a weaker probabilistic average-case
easiness assumption, Theorem 3, follows the high-level approach from [HN21] but also crucially
relies on the use of pKt. The key idea is to design something called random-right-hand-side-refuter
(RRHS-refuter). Roughly speaking, this is an efficient algorithm that distinguishes the distribution(
x(1), . . . , x(m), f(x(1)), . . . f(x(m))

)
where each x(i) is picked from a distribution D and f is from the

concept class C, from the distribution
(
x(1), . . . , x(m), b(1), . . . b(m)

)
where each b(i) is uniform. It is

known that such an algorithm implies a learner for C under the distribution D [Vad17; KL18]. The
authors of [HN21] construct a deterministic RRHS-refuter, using an algorithm that estimates the Kt

complexity of a given string for a given t, which exists under the assumption that DistNP ⊆ AvgP
[Hir21a]. More specifically, [HN21] shows that if a string is picked from the former case, where
D is samplable by a small circuit and f is also computable by a small circuit, then it is likely to
have “small” Kt complexity (for carefully chosen m and t). On the other hand, using results such
as symmetry of information and optimal coding for Kt under an average-case easiness assumption
[Hir21a], it can be shown that a random string from the latter case is likely to have “large” Kt

complexity.
In our case, we will use a randomized algorithm that estimates the more complicated pKt

complexity of a given string, which we show to exist under the weaker assumption that DistNP ⊆
AvgBPP. Combining such an algorithm with the new symmetry of information for pKt (which holds
under the same probabilistic average-case easiness assumption) and an optimal coding result for
pKt from [LOZ22], we are able to construct a randomized RRHS-refuter, which suffices to yield the
same learning result.

1.4 Directions and open problems

We have shown that several recent results proved under assumptions of the form C ⊆ AvgP
survive in the setting of randomized errorless heuristic schemes, i.e., under the weaker assumption
that C ⊆ AvgBPP. Moreover, as in previous results, it is enough for us to assume the existence
of one-sided error (randomized) algorithms that can be incorrect on negative inputs.12 The next
natural step would be to obtain results under an even weaker average-case easiness assumption
such as C ⊆ HeurBPP (i.e., under the existence of two-sided error randomized heuristic schemes).
It would be interesting to investigate if our framework can be combined with recent results from
[HS22a; HS22b] to achieve progress on this front.

We are also interested in understanding the potential of pKt complexity. We have seen how
to employ it to design agnostic learning algorithms, obtain new relations between worst-case and
average-case complexity, and simplify previous proofs. Additionally, in [LOZ22] this complexity
measure is used to establish an unconditional version of the main result of [AF09]. Are there more
applications of pKt to algorithms and complexity theory?

12Note that we also allow the average-case probabilistic algorithm to err on each fixed positive input with small
probability over its internal randomness.
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Finally, is it possible to extend our techniques to quantum computations, and to show that if
DistΣP

2 ⊆ AvgBQP then QMA ⊆ BQTIME[2O(n/ logn)]? Exploring this and related questions is likely
to lead to interesting developments in quantum time-bounded Kolmogorov complexity.
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average-case complexity classes. We are also grateful to the CCC reviewers for their comments and
suggestions. This work received support from the Royal Society University Research Fellowship
URF\R1\191059 and from the EPSRC New Horizons Grant EP/V048201/1. This research was
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2 Preliminaries

2.1 Notation

We say that a function p : N → N is non-decreasing if p(ℓ) ≥ ℓ for every integer ℓ ≥ 0. Through-
out the paper, we will rely on constructions whose associated complexity parameters (e.g., running
time) can be bounded by some polynomial p. We will implicitly assume that the polynomials
provided in these results are non decreasing in order to avoid including this condition in every
statement. This can be done without loss of generality by the monotonicity of our bounds.

For a probability distribution Dn, we use supp(Dn) to denote its support. Given an element x,
we let Dn(x) denote the probability of x under Dn. We denote by Un the uniform distribution over
n-bit strings.

Let D1 and D2 be probability distributions supported over a set X, A : X → {0, 1}, and ε ≥ 0.
We say that A ε-distinguishes D1 and D2 if∣∣∣ Pr

x∼D1

[A(x) = 1]− Pr
x∼D2

[A(x) = 1]
∣∣∣ ≥ ε.

If A is a randomized algorithm, each probability in the expression above also takes into account
the internal randomness of A, which will be denoted by rA.

2.2 Average-case complexity

Recall that a pair (L,D) is a distributional problem if L ⊆ {0, 1}∗ and D = {Dn}n≥1 is an
ensemble of probability distributions, where each Dn is supported over {0, 1}∗.

Let D = {Dn}n≥1 be an ensemble of distributions. We say that D ∈ PSamp if there is a
randomized polytime algorithm A such that, for every n ≥ 1, A(1n) is distributed according to Dn.
More generally, we use Dn ∈ Samp[T (n)]/a(n) to denote that Dn can be sampled by an algorithm
that runs in time T (n) and has advice complexity a(n).

We let DistNP denote the set of distributional problems (L,D) with L ∈ NP and D ∈ PSamp.

Definition 4 (AvgδBPP [BT06a]). Let (L,D) be a distributional problem, and δ : N → [0, 1]. We
say that (L,D) ∈ AvgδBPP if there is randomized polytime algorithm A such that

1. for every n > 0, and every x ∈ supp(Dn),

Pr
rA

[A(x;n) /∈ {L(x),⊥}] ≤ 1

4
,
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2. for every n > 0,

Pr
x∼Dn

[
Pr
rA

[A(x;n) = ⊥] ≥ 1/4

]
≤ δ(n),

where rA denotes the internal randomness of A. Such an algorithm A is called an randomized
errorless heuristic for (L,D) with failure probability at most δ.

Definition 5 (AvgBPP [BT06a]13). We say that (L,D) is in AvgBPP if there exist a randomized
algorithm A and a polynomial p such that

1. for every n, δ > 0, and every x ∈ supp(Dn),

Pr
rA

[A(x;n, δ) /∈ {L(x),⊥}] ≤ 1

4
,

2. for every n, δ > 0,

Pr
x∼Dn

[
Pr
rA

[A(x;n, δ) = ⊥] ≥ 1/4

]
≤ δ(n),

3. for every n, δ > 0, and every x ∈ supp(Dn), A(x;n, δ) runs in time at most p(n/δ).

Such an algorithm A is called a randomized errorless heuristic scheme for (L,D).

Lemma 6. Let (L,D) be a distributional problem in Avgn−1BPP. There exists a randomized
polynomial-time algorithm B such that

1. for every n > 0, and every x ∈ supp(Dn), B(x;n) ∈ {0, 1},

2. for every n > 0, and every x ∈ supp(Dn), if x ∈ L, then PrrB [B(x;n) = 1] ≥ 1− 1
n , and

3. for every n > 0, Prx∼Dn
rB

[B(x;n) = L(x)] ≥ 1− 3
n .

Proof. Let A be an Avgn−1BPP algorithm for (L,D) as in Definition 4. Let A′ be the algorithm
obtained, using standard amplification techniques,14 such that for all x ∈ supp(Dn),

Pr
rA′

[A′(x;n) /∈ {L(x),⊥}] ≤ 1

n
(1)

and

Pr
x∼Dn

[
Pr
rA′

[A′(x;n) = ⊥] ≥ 1/n

]
≤ 1

n
. (2)

Let B be the randomized algorithm which, on input x ∈ supp(Dn), simulates A′(x;n) and outputs
1 if A′(x;n) ∈ {1,⊥} or 0 if A′(x;n) = 0. By Equation (1), if x ∈ L, then

Pr
rB

[B(x;n) = 0] = Pr
rA′

[A′(x;n) /∈ {L(x),⊥}] ≤ 1

n
.

13Some authors define AvgBPP as ∩c>0Avgn−cBPP. All our results also hold with respect to that definition.
14In more detail, A′ can be obtained from A by running it O(n) times and selecting the most common output.
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Let bad := {x ∈ supp(Dn) | PrrA′ [A
′(x;n) = ⊥] ≥ 1/n}. By Equation (2), at most a (1/n)-measure

of x ∈ supp(Dn) are in bad. Thus,

Pr
x∼Dn
rB

[B(x;n) ̸= L(x)] ≤ Pr
x,rA′

[A′(x;n) = ⊥] + Pr
x,rA′

[A′(x;n) /∈ {L(x),⊥}]

≤ Pr
x
[x ∈ bad] + Pr

x,rA′
[A′(x;n) = ⊥ | x /∈ bad] + Pr

x,rA′
[A′(x;n) /∈ {L(x),⊥}]

≤ 1

n
+

1

n
+

1

n
=

3

n
.

This completes the proof.

The following result of Impagliazzo and Levin [IL90] shows that, for every ℓ ≥ 1, the easiness of
DistΣP

ℓ is equivalent to that of (ΣP
ℓ ,U). This implies that the average-case easiness under uniform

distribution is sufficient for all our main results.

Theorem 7 ([IL90]; see also [BT06a, Theorem 31]15). For every ℓ ≥ 1,(
ΣP
ℓ ,PSamp

)
⊆ AvgBPP ⇐⇒

(
ΣP
ℓ ,U

)
⊆ AvgBPP.

2.3 Pseudodeterministic PRGs

Definition 8 (Pseudodeterministic PRG [OS17; LOS21]). Fix an error function ε : N → R. A
function family Gn : {0, 1}ℓ → {0, 1}n is an ε-error Pseudorandom Generator (PRG) if, for all
sufficiently large n ∈ N, the distribution G(Uℓ(n)) ε(n)-fools circuits of size n, using the seed length
ℓ = ℓ(n), i.e., for all circuits C of size n on n inputs,∣∣∣∣∣ Pr

r∼{0,1}n
[C(r) = 1]− Pr

α∼{0,1}ℓ(n)
[C(G(α)) = 1]

∣∣∣∣∣ ≤ ε.

Such a PRG G is called a pseudodeterministic PRG if there is a randomized algorithm MG such
that, for every n and α ∈ {0, 1}ℓ(n), MG(1

n, α) outputs the string Gn(α) ∈ {0, 1}n with probability
at least 1− 2−n over its internal randomness, and MG runs in time 2O(ℓ(n)).

Lemma 9 ([IW97; OS17]). If BPE contains a language L of circuit complexity 2Ω(n) for almost all
input lengths n, then there is an ε-error pseudodeterministic PRG of seed length O(log n/ε).

Lemma 10 ([MVW99, Lemma 2]). EΣP
2 contains a language of maximum circuit complexity (at

least 2n/n) for almost all input lengths n.

Using padding as in [Ben+92], we get the following.

Lemma 11. If DistPΣP
2 ⊆ AvgBPP, then EΣP

2 = BPE.

15The published paper by Impagliazzo and Levin [IL90] contains a proof applicable only to the case of heuristics
with errors (such as HeurBPP). The case of errorless heuristics (such as AvgBPP) requires a different argument, which
is given in Section 5.2 of [BT06a], based on Impagliazzo’s unpublished notes.
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Proof. The inclusion BPE ⊆ EΣP
2 follows from the inclusion BPP ⊆ ΣP

2 [Lau83] by padding. For

the other direction, let L ∈ EΣP
2 be arbitrary. Define its padded version Lpad = {(x, 122|x|) | x ∈ L}.

Note that Lpad ∈ PΣP
2 . Define a family of distributions Dn = (Un, 1

22n), for the uniform distribution
over n-bit strings Un. By assumption, (Lpad, Dn) ∈ AvgBPP, and so, by Lemma 6, Item 3, there

is a randomized polytime algorithm B such that B(x, 12
2|x|

) ̸= L(x) with probability less than
3 · 2−2n < 1/(3 · 2n), where the probability is over a uniformly random x ∈ {0, 1}n and the internal

randomness of B. It follows that, for every x ∈ {0, 1}n, B(x, 12
2|x|

) ̸= L(x) with probability less

than 1/3 over its internal randomness. Hence, the randomized algorithm B′(x) := B(x, 12
2|x|

)
decides if x ∈ L with probability at least 2/3, for all sufficiently large inputs x ∈ {0, 1}n, yielding
L ∈ BPE.

Corollary 12. If DistPΣP
2 ⊆ AvgBPP, then there is an ε-error pseudodeterministic PRG of seed

length O(log n/ε).

Proof. Immediate by combining Lemmas 9 to 11.

2.4 Direct Product Generator

For x, z ∈ {0, 1}n, we let x · z :=
∑n

i=1 xizi (mod 2) denote their inner product modulo 2.

Definition 13 (Direct Product Generator (DPG) [Hir21a, Definiton 3.10]). For k, n ∈ N, we define
the k-wise direct product generator to be the function

DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k

such that
DPk(x; z

1, . . . , zn) := (z1, . . . , zk, x · z1, . . . , x · zk).

Lemma 14 (DPG Reconstruction [Hir21a, Lemma 3.14]). For any n, k ∈ N with k ≤ 2n, and
ε > 0, there exists a pair of algorithms A and Recon(−) such that

• ReconD takes oracle access to an oracle D : {0, 1}nk+k → {0, 1}.

• A : {0, 1}n×{0, 1}r → {0, 1}k is called the advice function and is computable in time poly(n/ε).

• Recon(−) : {0, 1}k × {0, 1}r → {0, 1}n is called a reconstruction procedure and is computable
in time poly(n/ε).16

• The randomness complexity r is at most poly(n/ε).

• For any string x ∈ {0, 1}n and any function D that ε-distinguishes DPk(x;Unk) from Unk+k,
it holds that

Pr
w∼{0,1}r

[
ReconD(A(x,w), w) = x

]
≥ 1/poly(n/ε).

16We note that if the oracle is a uniform algorithm that runs in time t(m) on inputs of length m, the reconstruction
procedure can be computed in time t(nk + k) · poly(n/ε).
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2.5 Kolmogorov complexity measures

For a string w ∈ {0, 1}∗, we use |w| ∈ N to denote its length. We let ϵ represent the empty
string. Let U be a Turing machine. For a function t : N → N and a string x ∈ {0, 1}∗, we let

Kt
U (x)

def
= min

p∈{0,1}∗

{
|p| | U(p, ϵ) outputs x in at most t(|x|) steps

}
be the t-time-bounded Kolmogorov complexity of x. The machine U is said to be time-optimal if for
every machine M there exists a constant cM such that for all x ∈ {0, 1}n and t : N → N satisfying
t(n) ≥ n,

KcM ·t log t
U (x) ≤ Kt

M (x) + cM ,

where for simplicity we write t = t(n). It is well known that there exist time-optimal machines
(see, e.g., [LV19a, Chapter 7]). We fix such a machine, and drop the index U when referring to
time-bounded Kolmogorov complexity measures.

We remind the reader that the (time-unbounded) Kolmogorov complexity of a string x, denoted
K(x), is defined in the same way but does not impose a fixed upper bound t(|x|) on the running
time of U(p, ε).

Given strings x, y ∈ {0, 1}∗, we can also consider the conditional t-time-bounded Kolmogorov
complexity of x given y, defined as

Kt(x | y) def
= min

p∈{0,1}∗

{
|p| | U(p, y) outputs x in at most t(|x|) steps

}
.

From now on, we will not distinguish between a Turing machine M and its encoding pM ac-
cording to U . While the running time t of M on an input y and the running time of the universal
machine U on (pM , y) might differ by a multiplicative factor of O(log t), this will be inessential in
all our results.17 For simplicity, we will assume the encoded machines to U are paddable so that
M and M ◦ 0a denote the same machine for every natural number a.

We denote by rKt
δ(x) the minimum length of a randomized machine M that outputs x with

probability at least δ when running for at most t steps (see [Oli19; LOS21]). We simply write rKt(x)
when δ = 2/3.

We formally introduce pKt
δ(x) and discuss its properties in Section 3.

2.6 Agnostic learning model

This section reviews standard notions from computational learning theory (see, e.g., [SB14]).
Consider the problem of learning an unknown concept f : X → {0, 1} over a finite domain X. We
will always let X = {0, 1}n, for some n ≥ 1. A concept class C is a collection of concepts of this
form. For a fixed n, we let Cn denote C ∩ {f : {0, 1}n → {0, 1}}. For a size function s : N → N, we
let

SIZE[s] = {f : {0, 1}n → {0, 1} | n ∈ N and f admits a size-s(n) circuit}

denote the concept class of Boolean circuits of size (number of gates) at most s(n) over n input
variables. For definiteness, we consider circuits over AND and OR gates of fan-in 2 and NOT gates.

17It is also possible to consider prefix-free notions of Kolmogorov complexity. Since our results hold up to additive
O(log |x|) terms, we will not make an explicit distinction.
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A randomized Boolean function f maps an input x to a distribution D supported over {0, 1}.
Given a distribution Dn supported over {0, 1}n, a function h : {0, 1}n → {0, 1}, and a (possibly
randomized) Boolean function f : {0, 1}n → {0, 1}, we let

errDn(h, f) = Pr
f, x∼Dn

[h(x) ̸= f(x)].

We will consider the (agnostic) learnability of a concept class C with respect to a class D of
ensembles D = {Dn}n≥1 of distributions Dn. We use Dn to denote {Dn | D ∈ D}. For simplicity,
we refer to D as a class of distributions.

Given a randomized function f : {0, 1}n → {0, 1} and a distribution Dn, the learning algorithm
has access to an example oracle EX(f,Dn) that behaves as follows: each query to EX(f,Dn) returns
an independent and identically distributed pair (x, b), where x is sampled according to Dn and
b = f(x). The sample complexity of the learning algorithm is the number of queries made to
EX(f,Dn).

Before formalising the agnostic learning model, we provide an informal overview. The learning
algorithm knows the class D of distributions and the concept class C. It is given access to EX(f,Dn)
for some unknown D ∈ Dn and an arbitrary (possibly randomized) function f : {0, 1}n → {0, 1}.
The goal of the learning algorithm is to produce, with high probability over its internal randomness
and queries to EX(f,D), a hypothesis h such that errD(h, f) ≤ optCn,D,f + ε, where

optCn,D,f = min
c∈Cn

errD(c, f).

In other words, the learning algorithm is required to output an efficient representation of a hypoth-
esis h : {0, 1}n → {0, 1} that is almost as accurate as the best concept in Cn with respect to the
pair (D, f). (Note that h is not required to be a function in C.)

Definition 15 (Agnostic PAC learning [KSS94]). Let C be a concept class, and let D be a class
of distributions. We say that a randomized algorithm A agnostically learns C on D if the following
holds. For every n ≥ 1, distribution D ∈ Dn, and randomized function f : {0, 1}n → {0, 1}, when
A is given oracle access to EX(f,D) and receives as input n, ε > 0, and δ > 0,

Pr
A,EX(f,D)

[
AEX(f,D) outputs a hypothesis h such that errD(h, f) ≤ optCn,D,f + ε

]
≥ 1− δ.

We remark that an equivalent way of formulating the agnostic learning model is by considering
distributions D supported over {0, 1}n+1. In this case, there is no need to refer to randomized
functions, and one measures the error of a hypothesis h via errD(h) = Pr(x,b)∼D[h(x) ̸= b], where
x ∈ {0, 1}n and b ∈ {0, 1}.

2.7 Input encodings

In some situations, it will be useful to refer to collections of probability distributions that are
indexed by a constant number of parameters. It is not hard to reduce this to the case of a single
parameter 1n. Moreover, it is possible to assume without loss of generality that distribution Dn is
supported over {0, 1}n instead of {0, 1}≤poly(n). This can be done using standard techniques, and
will be implicitly assumed in our arguments. In any case, for completeness, we include more details
about input encodings in this section.
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For j ∈ N, we use bin(j) ∈ {0, 1}⌊log j⌋+1 to denote its binary representation. We will often
consider languages that view their inputs as a tuple of parameters. We describe how to encode
such an input into a single binary string. For a tuple (a1, a2, . . . , ak) where k ∈ N, we encode it as

ℓ1 ◦ 01 ◦ ℓ2 ◦ 01 ◦ ℓk−1 ◦ 01 ◦ a1 ◦ a2 ◦ · · · ◦ ak,

where for each i ∈ [k], ℓi is obtained from bin(|ai|) with every bit doubled. Note that in this case,
(a1, a2, . . . , ak) has an encoding length of

|ak|+
k−1∑
i=1

(2 · (⌊log |ai|⌋+ 2) + |ai|) . (3)

We will also need to consider distributions that generate input instances that are tuples, while
the only known information to the distributions is the length of the instances. To do this, we will
encode the format as the length of the instances. More specifically, we use the following way to
encode tuples [BT06a].

Proposition 16 ([BT06a]; see also [CHV22, Proposition 3.1]). There is a pair of polytime encoding-
decoding algorithms Enc : N∗ → N and Dec : N → N∗ ∪ {⊥} such that

1. For k ∈ N and k integers n1, n2, . . . , nk, we write ⟨n1, n2, . . . , nk⟩ := Enc(n1, n2, . . . , nk), and
we have

(a)
∑k

i=1 (2 · (⌊log ni⌋+ 2) + ni) ≤ ⟨n1, n2, . . . , nk⟩ ≤ Ok

(
Πk

i=1(ni · log2 ni)
)
.

(b) Dec(⟨n1, n2, . . . , nk⟩) = n1, . . . , nk. Here, Dec takes the binary representation of an
integer and outputs k integers which are also represented in binary.

2. Dec(u) = ⊥ if u ̸= ⟨n⃗⟩ for any n⃗ ∈ N∗.

Proof. Given k integers n1, n2, . . . , nk, the encoding algorithm Enc first obtains the binary string

z := α1 ◦ 01 ◦ α2 ◦ 01 ◦ αk ◦ 01 ◦ bin(n1) ◦ bin(n2) ◦ · · · ◦ bin(nk),

where for each i ∈ [k], αi is obtained from bin(|bin(ni)|) with every bit doubled. Then Enc outputs
the integer n whose binary representation is z. It is easy to see that given the binary representation
of n, which is simply the string z, one can recover the n1, n2, . . . , nk in time polynomial in |z|. Also,
item (a) can be verified by a simple calculation.

We give an example of how we will typically use Proposition 16. Suppose we have some language
L that takes k = 3 parameters, then we may define a family of distributions {Dn}n, where each
Dn does the following.

1. On input 1n, if Dec(n) ̸= n1, n2, n3 for any n1, n2, n3 ∈ N, then output 0n.

2. Otherwise, sample x ∼ {0, 1}n1 , y ∼ {0, 1}n2 , and let z := 1n3 .

3. Output
(
x, y, z, 0n−

∑3
i=1(2·(⌊logni⌋+2)+ni)

)
.
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Note that Dn runs in time poly(n), and the output length (using Equation (3)) is(
n−

3∑
i=1

(2 · (⌊log ni⌋+ 2) + ni)

)
+

3∑
i=1

(2 · (⌊log ni⌋+ 2) + ni) = n.

Also, note that the above distribution Dn outputs instances with k+ 1 parameters, where the last
parameter is just some padding so that the output is of length n. To cope with this, instead of
the language L, we will then work with a padded language L′ which takes k + 1 parameters and
L′ simulates L by ignoring the last parameter. In particular, for some ℓ1, ℓ2, ℓ3 ∈ N of interest, we
can use D⟨ℓ1,ℓ2,ℓ3⟩ to generate instances of the form (x, y, z, g) where x ∈ {0, 1}ℓ1 , y ∈ {0, 1}ℓ1 , z ∈
{0, 1}ℓ3 , and the length of such instances is O

(
Π3

i=1ℓi · polylog(ℓi)
)
= Õ(ℓ1 · ℓ2 · ℓ3).

3 Probabilistic Time-Bounded Kolmogorov Complexity

In this section, we formally define probabilistic Kolmogorov complexity and prove some useful
properties of this notion, which will be used later in proving our main results.

Definition 17 (pKt). For strings x, y ∈ {0, 1}∗, a time bound t ∈ N, an oracle A, and δ ∈ [0, 1],
the δ-probabilistic A-oracle t-bounded Kolmogorov complexity of x given y is defined as

pKt,A
δ (x | y) := min

{
k

∣∣∣∣∣ Pr
w∼{0,1}t

[
∃M ∈ {0, 1}k s.t. MA(w, y) outputs x within t steps

]
≥ δ

}
,

where M is a RAM-machine.18 We omit the subscript δ if δ = 2/3, omit the superscript A if
A = ∅, omit “| y” if y is the empty string, and omit the superscript t if t = ∞.

For simplicity, in the rest of this section we only consider pKt without oracles. It is easy to see
that all the results also hold with any oracle.

3.1 Basic properties of pKt complexity

Lemma 18. There is a universal constant c > 0 such that the following holds. For every time
bound t ∈ N and x ∈ {0, 1}n,

K(x | t) ≤ pKt(x) + c log n.

Proof. Let ℓ := pKt(x). Since x is of length n, we can represent ℓ using O(log n) bits. Given t, ℓ
and n, it is possible to sample x with probability µ ≥ 2/3 · 2−ℓ by randomly guessing w ∼ {0, 1}t
and M ∼ {0, 1}ℓ then simulating M(w) for t steps. Consequently, by the coding theorem for
(time-unbounded) Kolmogorov complexity [Lev74], we get that K(x | t) ≤ log(1/µ) + O(log n) ≤
pKt(x) +O(log n).

18We use the RAM model in this definition for convenience: it simplifies the time bound estimates for a machine
M that takes as input both randomness w and an “auxiliary” string y, and allows both w and y to be as long as the
running time of the RAM-machine M; cf. [LP21a] for a similar definition in the case of deterministic time-bounded
conditional Kolmogorov complexity. Alternatively, we could use a TM model, with inputs w and y presented on two
different tapes. However, we prefer the RAM model as it’s also useful in the context of fine-grained worst-case to
average-case reductions [CHV22].
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Proposition 19. For any string x ∈ {0, 1}∗, time bound t ∈ N, and δ ∈ [0, 1], we have

pKt
δ(x) ≤ rKt

δ(x) ≤ Kt(x).

Proof. Immediate from the definition of the involved Kolmogorov complexity measures.

Lemma 20 (Probabilistic Incompressibility). For any string y ∈ {0, 1}∗, time bound t ∈ N (in-
cluding t = ∞), δ ∈ (0, 1], and positive integer α, we have

Pr
x∼{0,1}n

[
pKt

δ(x | y) ≤ n− α
]
≤ 1

2α−1 · δ
.

Proof. For the sake of contradiction, suppose the statement of the lemma does not hold. Then by
the definition of pKt

δ, we have

E
x∼{0,1}n

w∼{0,1}t

[
∃M(x,w) ∈ {0, 1}≤n−α such that M(x,w)(w, y) outputs x within t steps

]
>

1

2α−1
.

By averaging, there is a way to fix w ∈ {0, 1}t that at least preserves this expectation, yielding

Pr
x∼{0,1}n

[
∃M(x,w) ∈ {0, 1}≤n−α such that M(x,w)(w, y) outputs x within t steps

]
>

1

2α−1
.

However, by counting, the above probability is at most 2n−α+1/2n = 1/2α−1. A contradiction.

Lemma 21 (Success Amplification). For any string x ∈ {0, 1}n, time bound t ∈ N, and 0 ≤ α <
β ≤ 1, we have

pK
O(qt/α)
β (x) ≤ pKt

α +O(log(q/α)) ,

where q = ln(1/(1− β)).

Proof. Suppose pKt
α(x) = k. Then by definition, we have

Pr
w∼{0,1}t

[
∃Mw ∈ {0, 1}k such that Mw(w) outputs x within t steps

]
≥ α.

Call such a w good. After sampling ℓ independent w(1), w(2), . . . , w(ℓ) ∈ {0, 1}t, the probability
that no w(i) is good is at most (1 − α)ℓ ≤ e−αℓ, which can be made at most 1 − β by choosing
ℓ = q/α. It follows that, with probability at least β over a random w =

(
w(1), w(2), . . . , w(q/α)

)
∈

{0, 1}qt/α, there exists an index 1 ≤ i ≤ q/α (described with at most ⌈log(q/α)⌉ bits) and a program

Mw(i) ∈ {0, 1}k such that Mw(i)

(
w(i)

)
outputs x within O(qt/α) steps. Hence, pK

O(qt/α)
β (x) ≤

k +O(log(q/α)).

Note that the parameter α affects the time complexity in the resulting pK
O(qt/α)
β bound. Lemma

21 is sufficient in applications where α ≥ 1/poly(n).

21



3.2 Bounding pKt and rKt via DPG reconstruction

The following is a key lemma for pKt that we will use in proving our main results related to
randomized average-case complexity.

Lemma 22 (pKt Reconstruction Lemma). For ε > 0, x ∈ {0, 1}n, s ∈ N, and k ∈ N satisfying
k ≤ 2n, let D be a randomized algorithm that takes an advice string β and runs in time tD such
that D ε-distinguishes DPk(x;Unk) from Unk+k. Then there is a polynomial pDP such that

pKÕ(tD)·pDP(n/ε)(x | β) ≤ k + log pDP(ntD/ε).

Proof. We will view the distinguisher D as a deterministic algorithm that takes a string of tD bits,
denoted by rD, as its internal randomness. By our assumption (and dropping the absolute value
sign without loss of generality), we have

E
y∼{0,1}nk

rD∼{0,1}tD

[D(DPk(x, y); rD)]− E
z∼{0,1}nk+k

rD∼{0,1}tD

[D(z; rD)] ≥ ε.

Then by an averaging argument, we have

Pr
rD

[
E
y
[D(DPk(x, y); rD)]−E

z
[D(z; rD)] ≥ ε/2

]
≥ ε/2. (4)

In other words, with probability at least ε/2 over the internal randomness rD, D(−, rD) is an
(ε/2)-distinguisher for DPk(x;Unk) and Unk+k. Let us say that rD is good if this is true.

Let Recon(−) : {0, 1}k × {0, 1}r → {0, 1}n be the reconstruction procedure in Lemma 14 that
works for distinguishing parameter ε/2, where the randomness complexity r is poly(n/ε). We have

Pr
w∼{0,1}r

rD∼{0,1}tD

[
∃α ∈ {0, 1}k such that ReconD(−,rD)(α,w) = x

]
≥ Pr

w,rD

[
∃α ∈ {0, 1}k such that ReconD(−,rD)(α,w) = x

∣∣∣ rD is good
]
·Pr
rD

[rD is good]

≥ 1

poly(n/ε)
· (ε/2). (Lemma 14 and Equation (4))

The above implies that for at least 1/poly(n/ε) fraction of the randomness (w, rD), there exists a
program M, which takes k bits for some α (that can depend on the randomness) and the advice of
β used by D, such that M simulates ReconD(−,rD) on (α,w) and outputs x. Note that since ReconD

runs in time tD · poly(n/ε), our program M can be made to run in time T := Õ(tD) · poly(n/ε).
Therefore, we have

pKT
1/poly(n/ε)(x | β) ≤ k +O(log(ntD/ε)).

Then the lemma follows easily from Lemma 21.

The following is an analog of Lemma 22 for the case of rKt. In this case, we additionally assume
the existence of a pseudodeterministic PRG (see Definition 8); later we will use Corollary 12 to

argue the existence of a pseudodeterministic PRG from the assumption that DistPΣP
2 ⊆ AvgBPP.

22



Lemma 23 (rKt Reconstruction Lemma). Assume the existence of a pseudodeterministic PRG.
For ε > 0, x ∈ {0, 1}n, s ∈ N, and k ∈ N satisfying k ≤ 2n, let D be a randomized algorithm that
takes an advice β and runs in time tD such that D ε-distinguishes DPk(x;Unk) from Unk+k. Then
there is a polynomial p′DP such that

rKp′DP(ntD/ε)(x | β) ≤ k + log p′DP(ntD/ε).

Proof. By averaging, arguing as in Lemma 22 up to Equation (4),

Pr
rD∼{0,1}s

[
E
y
[D(DPk(x, y), rD)]−E

z
[D(z, rD)] ≥ ε/2

]
≥ ε/2. (5)

That is, with probability at least ε/2 over its internal randomness rD, D(−, rD) is an (ε/2)-
distinguisher for DPk(x;Unk) and Unk+k. Let us say that rD is good if this is true.

Let Recon(−) : {0, 1}k ×{0, 1}r → {0, 1}n be the reconstruction procedure from Lemma 14 that
works for distinguishing parameter ε/2. By definition of Recon, if rD is good, then

Pr
w∼{0,1}r

[
ReconD(−,rD)(A(x,w), w) = x

]
≥ 1/poly(n/ε),

and so

Pr
w,rD

[
ReconD(−,rD)(A(x,w), w) = x

]
≥ ε

2
· 1

poly(n/ε)
def
= ε′.

Observe that by Lemma 14, the condition ReconD(−,rD)(A(x,w), w) = x can be checked by a circuit
of size s = poly(ntD/ε) given (rD, w) as input. Consider an assumed pseudodeterministic PRG

G : {0, 1}ℓ → {0, 1}|rD|+|w|

that (ε′/2)-fools all circuits of size s, where ℓ ∈ O(log(s/ε′)) ⊆ O(log(ns/ε)). Let MG be an
algorithm as described in Definition 8, running in time poly(s/ε′) ≤ poly(ntD/ε), such that for all
σ ∈ {0, 1}ℓ,

Pr
rM∼{0,1}poly(ntD/ε)

[MG(σ, rM ) = G(σ)] ≥ 1− 2−s,

where rM denotes the internal randomness of MG. By definition of G,

Pr
σ

[
ReconD(−,G0(σ))(A(x,G1(σ)), G1(σ)) = x

]
≥ ε′/2,

where G0(σ) = G(σ)1...|rD| (the |rD|-length prefix) and G1(σ) = G(σ)|rD|+1...|rD|+|w| (the remaining

suffix). So there must exist a seed σ ∈ {0, 1}ℓ such that

ReconD(−,G0(σ))(A(x,G1(σ)), G1(σ)) = x.

Let σ be a seed with this property, and let α = A(x,G1(σ)) ∈ {0, 1}k. The definition of MG implies
that α and σ are such that

Pr
rM

[
ReconD(−,MG0

(σ,rM ))(α,MG1(σ, rM )) = x
]
≥ 1− 2−s

> 2/3,
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whereMG0(σ, rM ) denotes the |rD|-length prefix ofMG(σ, rM ), andMG1(σ, rM ) the remaining suffix
ofMG(σ, rM ). It is easy to verify that the reconstruction procedure ReconD(−,MG0

(σ,rM ))(α,MG(σ,−))
runs in time poly(ntD/ε) overall. By definition of rKt, for some polynomial p′DP, we get

rKp′DP(ntD/ε)(x | β) ≤ |α|+ |σ|+O(log(ns/ε))

≤ k + log p′DP(ntD/ε),

as required.

3.3 Optimal source coding for pKt

We will need the following result, which is an easy extension of an unconditional source coding
theorem for pKt described in [LOZ22].

Lemma 24 (Unconditional Source Coding for pKt [LOZ22]). There exists a polynomial p such that
for any T, a : N → N, n ∈ N, Dn ∈ Samp[T (n)]/a(n), and x ∈ Supp(Dn),

pKp(T (n))(x) ≤ log(1/Dn(x)) +O(log(T (n))) + a(n).

For a distribution Dn supported over X and an integer m ≥ 1, we let Dm
n := Dn × . . .×Dn be

the probability distribution supported over Xm obtained by taking the product of m independent
copies of Dn.

As a consequence of Lemma 24, we obtain the following result.

Lemma 25 (Source Coding for m copies of Dn). There exists a polynomial p such that for any
T, a : N → N, n,m ∈ N, Dn ∈ Samp[T (n)]/a(n), and x ∈ Supp(Dm

n ),

pKp(T (n),m)(x) ≤ log(1/Dm
n (x)) +O(log(T (n))) + a(n) +O(log(m)).

Proof. Since Dn can be sampled in time T (n) using a(n) bits of advice, it is possible to sample
from Dm

n in time poly(T (n),m) using a(n)+O(logm) bits of advice, where the extra advice is used
to encode m. The result now immediately follows from Lemma 24.

3.4 Symmetry of information under randomized average-case easiness

Recently, [GK22], extending a technique from [Hir21a], have proved a symmetry of informa-
tion result for the deterministic version of time-bounded Kolmogorov complexity Kt under the
average-case easiness assumption that DistNP ⊆ AvgP. We adapt and generalize their argument to
prove an analogous result for conditional pKt (and rKt) under the randomized average-case easiness

assumption that DistNP ⊆ AvgBPP (respectively, DistPΣP
2 ⊆ AvgBPP).

Lemma 26 (Symmetry of information for pKt and rKt under the average-case easiness of NP).

1. If DistNP ⊆ AvgBPP, then there exist polynomials p and p0 such that for all sufficiently large
n,m ∈ N, all t ≥ p0(n,m), and all 0 ≤ τ ≤ t the following holds: for every x ∈ {0, 1}n and
every family {yr ∈ {0, 1}m | r ∈ {0, 1}τ}, with probability at least 9/10 over r ∈ {0, 1}τ ,

pKt(x, yr | r) > pKp(t)(x | r) + pKp(t)(yr | x, r)− log p(t).
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2. If DistPΣP
2 ⊆ AvgBPP, then there exist polynomials p′ and p′0 such that for all sufficiently

large n,m ∈ N, all t ≥ p′0(n,m), and all 0 ≤ τ ≤ t the following holds: for every x ∈ {0, 1}n
and every family {yr ∈ {0, 1}m | r ∈ {0, 1}τ}, with probability at least 9/10 over r ∈ {0, 1}τ ,

rKt(x, yr | r) > rKp′(t)(x | r) + rKp′(t)(yr | x, r)− log p′(t).

Moreover, the special case without conditioning on r also holds for both items above, i.e., when r
is the empty string (for τ = 0) and y is an arbitrary single string.

Proof of Item 1. Define a language

L :=
{
(u, v, w,w′, 1s) | ∃M ∈ {0, 1}s,M(w,w′) prints uv in |w| steps, and s = |u|+ |v| − 10

}
.

Note that L ∈ NP. Define a distribution family D = {D⟨nk+k,mk′+k′,2t,τ,s⟩} as follows: sample
u ∼ Unk+k, v ∼ Umk′+k′ , w ∼ U2t, and w′ ∼ Uτ , and then output (u, v, w,w′, 1s). Note that the
ensemble D is in PSamp under an appropriate encoding of its defining tuple (for simplicity, we omit
the padding in the output of D; see Section 2.1). Using the assumption that DistNP ⊆ AvgBPP, it
follows that (L,D) ∈ AvgBPP. Let B be a randomized algorithm for (L,D) as in Lemma 6.

Let x ∈ {0, 1}n and {yr}r ⊆ {0, 1}m be given (for sufficiently large n and m). Let k, k′ ∈ N be
arbitrary parameters such that k ≤ n and k′ ≤ m. Observe that there exists a polynomial p0 such
that for any t ≥ p0(n,m), some constant d, and all z ∈ {0, 1}nk, z′ ∈ {0, 1}mk′ , and r ∈ {0, 1}τ ,

pK2t(DPk(x; z),DPk′(yr; z
′) | r) ≤ pKt(x, yr | r) + |z|+ |z′|+ d log t. (6)

Here p0(n,m) reflects the time required to deterministically compute (DPk(x; z),DPk′(yr; z
′)) given

x, yr, z, z
′, and d log t bits of information to delineate x from yr.

Let t ≥ p0(n,m). By a counting argument, for independently random u, v, w, and w′,

Pr
u,v,w,w′

[
(u, v, w,w′, 1s) ∈ L

]
≤ 2s · 2|w|+|w′|

2|u|+|v|+|w|+|w′| = 2s−|u|−|v| = 2−10,

where the last equality is by the definition of L requiring that s = |u|+ |v| − 10. Then

Pr
u,v,w,w′,rB

[
B(u, v, w,w′, 1s) = 1

]
≤ Pr

u,v,w,w′

[
(u, v, w,w′, 1s) ∈ L

]
+ Pr

u,v,w,w′,rB

[
B(u, v, w,w′, 1s) ̸= L(u, v, w,w′, 1s)

]
≤ 2−10 + (3/n). (7)

By Markov’s inequality, for at least 9/10 fraction of random strings r ∈ {0, 1}τ , we get

Pr
u,v,w,rB

[B(u, v, w, r, 1s) = 1] ≤ 10 ·
(
2−10 + (3/n)

)
≤ 1/10. (8)

Fix any such r so that Equation (8) holds. This also fixes the string yr.
Next we show, using a hybrid argument, that B(−,U2t, r, 1

s) cannot distinguish between the
uniform distribution and the distribution (DPk(x; z),DPk′(yr; z

′)), for random independent z, z′,
where k ≈ pKpDP(t)(x | r) and k′ ≈ pKpDP(t)(yr | x, r). This will imply that

Pr
w

[
(DPk(x; z),DPk′(yr; z

′), w, r, 1s) ∈ L
]
< 2/3
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for some z, z′, yielding the desired lower bound on pK2t(DPk(x; z),DPk′(yr; z
′) | r) via our choice

of s and the definition of L. We give the details of the hybrid argument next.
First, toward a contradiction, suppose

Pr
z,v,w,rB

[B(DPk(x; z), v, w, r, 1
s) = 1] > 1/2.

In this case, comparing with Equation (8), we get a randomized distinguisher (with advice) for
DPk(x;Unk), defined by sampling v ∼ Umk′+k′ and w ∼ U2t, and outputting B(−, v, w, r, 1s). By
Lemma 22,

pKq(t)(x | r) ≤ k + log q(t) (9)

for some polynomial q such that q(t) ≥ pDP(tB · 3 · n) whenever t ≥ n+m and s ≤ n3, where pDP

is the polynomial from Lemma 22 and tB denotes the time required to compute B(−, v, w, r, 1s).
Define k := pKq(t)(x | r)− log q(t)− 1 so that Equation (9) does not hold. Assume for now that

k > 0. Hence,
Pr

z,v,w,rB
[B(DPk(x; z), v, w, r, 1

s) = 1] ≤ 1/2. (10)

Again, toward a contradiction, suppose that for all z, z′,

Pr
w

[
(DPk(x; z),DPk′(yr; z

′), w, r, 1s) ∈ L
]
≥ 2/3.

By definition of B, this implies that

Pr
z,z′,w,rB

[
B(DPk(x; z),DPk′(yr; z

′), w, r, 1s) = 1
]
≥ (2/3)(1− 1/n) > 5/8.

In this case, comparing with Equation (10), we get a randomized distinguisher (with advice) B′

for DPk′(yr;Umk′), defined by sampling z ∼ Unk, w ∼ U2t, and outputting B(DPk(x; z),−, w, r, 1s).
By Lemma 22,

pKq′(t)(yr | x, r) ≤ k′ + log q′(t) (11)

for some polynomial q′ with q′(t) ≥ pDP(tB′ · 8 · m) whenever t ≥ n + m and s ≤ n3, where tB′

denotes the time required to compute B′.
We now choose k′ := pKq′(t)(yr | x, r)−log q′(t)−1 so that Equation (11) does not hold. Assume

for now that k′ > 0. Hence, there exist z and z′ such that

Pr
w

[
(DPk(x; z),DPk′(yr; z

′), w, r, 1s) ∈ L
]

= Pr
w

[
∃M ∈ {0, 1}s,M(w, r) outputs (DPk(x; z),DPk′(yr; z

′)) within |w| steps
]
< 2/3,

which implies that
pK2t(DPk(x; z),DPk′(yr; z

′) | r) > s.

For this choice of z, z′, by definition of s we get that s = |u|+ |v| − 10 = |z|+ k+ |z′|+ k′ − 10,
and so

pK2t(DPk(x; z),DPk′(yr; z
′) | r) > |z|+ k + |z′|+ k′ − 10.

Combining this inequality with Equation (6), we get

pKt(x, yr | r) ≥ pK2t(DPk(x; z),DPk′(yr; z
′) | r)− |z| − |z′| − d log t

> k + k′ − d log t− 10. (12)
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The definitions of k and k′ then imply that

pKt(x, yr | r) > pKq(t)(x | r) + pKq′(t)(yr | x, r)− log q(t)− log q′(t)− d log t− 12.

For the polynomial p(t) := (td+1) · q(t) · q′(t) and for every t ≥ p0(|x|, |y|), we get

pKt(x, yr | r) > pKp(t)(x | r) + pKp(t)(yr | x, r)− log p(t),

as desired.
Finally, consider the case that k ≤ 0 or k′ ≤ 0. If k ≤ 0, then pKq(t)(x | r) ≤ log q(t) + 1,

implying that pKp(t)(x | r) < log p(t). But then the lemma simply follows from the fact that
pKt(x, yr | r) ≥ pKp(t)(yr | x, r). Similarly, if k′ ≤ 0, then pKp(t)(yr | x, r) < log p(t), and the lemma
follows from the fact that pKt(x, yr | r) ≥ pKp(t)(x | r).

Proof of Item 2. Argue as in the proof of Item 1, but at Equation (9), apply Lemma 23 instead of
Lemma 22 to get

rKq(t)(x | r) ≤ k + log q(t)

for some polynomial q such that q(t) ≥ p′DP(tB · 3 · n), where p′DP is the polynomial from Lemma

23 and tB denotes the time required to compute B(−, v, w, r, 1s). We then define k := rKq(t)(x |
r)− log q(t)− 1 so the above equation does not hold. Similarly, at Equation (11), apply Lemma 23
to get

rKq′(t)(yr | x, r) ≤ k′ + log q′(t)

for some polynomial q′ with q′(t) ≥ p′DP(tB′ ·8 ·m), where tB′ denotes the time required to compute

the distinguisher B′ defined as above. Then define k′ := rKq′(t)(yr | x, r)− log q′(t)− 1.
Following the proof of Item 1 up to Equation (12), we get that

pKt(x, yr | r) > k + k′ − d log t− log n.

The definitions of k, k′, and rKt then imply that

rKt(x, yr | r) > rKq(t)(x | r) + rKq′(t)(yr | x, r)− log q(t)− log q′(t)− d log t− 12,

and so
rKt(x, yr | r) > rKp(t)(x | r) + rKp(t)(yr | x, r)− log p(t)

for the polynomial p(t) := (td+1) · q(t) · q′(t).

3.5 Approximating pKt under randomized average-case easiness

Lemma 27. If DistNP ⊆ AvgBPP, then there exists a polynomial τ such that the following promise
problem is in promiseBPP:

ΠYES :=
{(

x, 1s, 1t
)
| pKt(x) ≤ s

}
,

ΠNO :=
{(

x, 1s, 1t
)
| pKτ(t)(x) > s+ log τ(t)

}
.
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Proof. Let k = s+ log n. Consider the language

L := {(DPk(x; z), w, 1
s, 1n) | ∃M ∈ {0, 1}s, M(w) outputs x ∈ {0, 1}n within |w| steps}.

Note that L ∈ NP. Define a distribution family D = {D⟨nk+k,t,s,n⟩}, each member of which does
the following: sample u ∼ Unk+k and w ∼ Ut, and then output (u,w, 1s, 1n). By assumption,
(L,D) ∈ AvgBPP. Let B be a randomized heuristic algorithm for (L,D) as described in Lemma 6.

Now, define an algorithm B′:

On input (x, 1s, 1t) with x ∈ {0, 1}n, sample z ∼ Unk and w ∼ Ut, and then output
B(DPk(x; z), w, 1

s, 1n).

Below, we show that B′ solves (ΠYES,ΠNO) correctly with high probability in the worst case.
First, consider the case that (x, 1s, 1t) ∈ ΠYES. By the definitions of L and pK, for any choice

of z ∈ {0, 1}nk,
Pr
w

[(DPk(x; z), w, 1
s, 1n) ∈ L] ≥ 2/3.

The definition of B then implies that

Pr
w,z,rB

[B(DPk(x; z), w, 1
s, 1n) = 1] > 1/2,

and so

Pr
rB′

[
B′(x, 1s, 1t) = 1

]
> 1/2, (13)

where rB denotes the internal randomness of B, and rB′ = (w, z, rB) that of B
′.

Now consider the case that (x, 1s, 1t) ∈ ΠNO. For a contradiction, suppose that

Pr
w,z,rB

[B(DPk(x; z), w, 1
s, 1n) = 1] > 1/3. (14)

By a counting argument, for randomly selected u and w,

Pr
u,w

[(u,w, 1s, 1n) ∈ L] ≤ 2s · 2nk · 2|w|

2nk+k+|w| =
1

n
,

where the last line follows from the definition of k = s+ log n. Then by definition of B,

Pr
u,w,rB

[B(u,w, 1s, 1n) = 1] ≤ 4/n = o(1). (15)

Comparing Equations (14) and (15), it is clear that B(−,Ut, 1
s, 1n) (1/4)-distinguishes DPk(x;Unk)

from Unk+k. Lemma 22 implies that

pKp′(t)(x) ≤ k + log p′(t)

= s+ log n+ log p′(t),

for some polynomial p′ with p′(t) ≥ pDP(tB · 4 · n), where pDP is the polynomial from Lemma 22
and tB denotes the time required to compute B(−,Ut, 1

s, 1n). For the polynomial τ(t) = t · p′(t),
this means that (x, 1s, 1t) is not in ΠNO, which gives the desired contradiction. By definition of B′,
we have that

Pr
rB′

[
B′(x, 1s, 1t) = 1

]
≤ 1/3. (16)

By Equations (13) and (16), B′ yields a promiseBPP algorithm for (ΠYES,ΠNO) via standard success
amplification techniques.
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Lemma 28 (Approximating pKt). If DistNP ⊆ AvgBPP, then there exist a polynomial τ , a constant
C ≥ 1, and a randomized algorithm Approxτ -pK that, on input (x, 1t) where x ∈ {0, 1}n and t ≥ Cn,
runs in time poly(n, t) and with probability at least 1− o(1) outputs an integer s̃ such that

pKτ(t)(x)− log τ(t) ≤ s̃ ≤ pKt(x).

Proof. Consider a polynomial-time randomized algorithm A that solves the promise problem from
Lemma 27. Assume without loss of generality that on the inputs satisfying the promise its error is
at most 1/n2, where n = |x|. Algorithm Approxτ -pK runs A on (x, 1s, 1t) for s = 1, 2, . . . , n+ log n,
and outputs the first s̃ such that A(x, 1s̃, 1t) = 1.

The correctness of Approxτ -pK follows by a union bound. Indeed, if s < pKτ(t)(x) − log τ(t),
i.e., pKτ(t)(x) > s + log τ(t), using the promise we get that PrA[A(x, 1s, 1t) = 1] ≤ 1/n2. On the
other hand, if s = pKt(x), which implies that pKt(x) ≤ s and the promise is satisfied, we have
PrA[A(x, 1s, 1t) = 1)] ≥ 1−1/n2. Since pKt(x) ≤ n+log n if t ≥ Cn, where C is a sufficiently large
constant, with high probability over the internal randomness of Approxτ -pK, it outputs a value s̃
such that pKτ(t)(x)− log τ(t) ≤ s̃ ≤ pKt(x).

3.6 Language compression under randomized average-case easiness

In some results that rely on language compression, it is useful to consider languages and promise
problems that consist of strings of the form (x, 1ℓ), where |x| = α(ℓ) for some function α. More
specifically, we need the following definition.

Definition 29 (Ensembles of Promise Problems19). Let α : N → N. We say that a promise problem
Π = (ΠYES,ΠNO) is an ensemble of promise problems with input size α if

ΠYES ∪ΠNO ⊆
{
(x, 1ℓ) | ℓ ∈ N and |x| = α(ℓ)

}
.

In this case, we let

ΠYES,ℓ :=
{
x ∈ {0, 1}α(ℓ) | (x, 1ℓ) ∈ ΠYES

}
,

and similarly

ΠNO,ℓ :=
{
x ∈ {0, 1}α(ℓ) | (x, 1ℓ) ∈ ΠNO

}
.

Below we show a language compression result for problems in promiseAM. Before stating and
proving this result, note that it is not immediately clear what it means to have language compression
for such a promise class. A reasonable definition may be that for every (ΠYES,ΠNO) ∈ promiseAM
and every x ∈ ΠYES ∩ {0, 1}n, we have pKpoly(n)(x) ≲ log |ΠYES ∩ {0, 1}n|. However, it is unclear
how to show such a strong theorem. On the other hand, we manage to show a weaker version which
instead says pKpoly(n)(x) ≲ log

∣∣ΠNO ∩ {0, 1}n
∣∣ for every x ∈ ΠYES ∩ {0, 1}n, and it turns out that

such a language compression for promiseAM suffices in some applications (see Section 4.6).

Theorem 30 (Language compression for pKt under average-case easiness of NP). Let (ΠYES,ΠNO) ∈
promiseAM be an ensemble of promise problems with input size α : N → N. Assume that DistNP ⊆
AvgBPP. Then there is a polynomial p such that for every ℓ ∈ N and every x ∈ ΠYES,ℓ,

pKp(α(ℓ)+ℓ)(x) ≤ log
∣∣∣{0, 1}α(ℓ) −ΠNO,ℓ

∣∣∣+ log p(α(ℓ) + ℓ).

19In the original definition of ensemble languages from [Hir21a], then length of x is not fixed and is required to be
less than ℓO(1). For simplicity, here we require that this length is fixed according to ℓ.
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Proof. Let c > 0 be a constant and V be a (deterministic) polynomial-time algorithm such that

(x, 1ℓ) ∈ ΠYES ⇒ Pr
r∼{0,1}(α(ℓ)+ℓ)c

[
∃ y ∈ {0, 1}(α(ℓ)+ℓ)c , V

(
x, 1ℓ, y, r

)
= 1
]
≥ 1− 1/2α(ℓ),

(x, 1ℓ) ∈ ΠNO ⇒ Pr
r∼{0,1}(α(ℓ)+ℓ)c

[
∀ y ∈ {0, 1}(α(ℓ)+ℓ)c , V

(
x, 1ℓ, y, r

)
= 0
]
≥ 1− 1/2α(ℓ),

Define the language

L′ :=

{(
DPk(x; z), r, 1

ℓ, 1α(ℓ)
) ∣∣∣∣ |x| = α(ℓ), |z| = α(ℓ)k, |r| = (α(ℓ) + ℓ)c and ∃ y ∈ {0, 1}(α(ℓ)+ℓ)c

such that V
(
x, 1ℓ, y, r

)
= 1

}
.

Note that L′ ∈ NP. Define a distribution family D =
{
D⟨α(ℓ)k+k,(α(ℓ)+ℓ)c,ℓ,α(ℓ)⟩

}
, each of which

does the following: sample u ∼ Uα(ℓ)k+k, r ∼ U(α(ℓ)+ℓ)c , and output
(
u, r, 1ℓ, 1α(ℓ)

)
. By assumption,

(L′, D) ∈ AvgBPP. Let B be a randomized heuristic algorithm for (L′, D) as described in Lemma 6.
Consider any ℓ ∈ N and any x ∈ ΠYES,ℓ. Note that for any z ∈ {0, 1}α(ℓ)k,

Pr
r

[(
DPk(x; z), r, 1

ℓ, 1α(ℓ)
)
∈ L′

]
≥ 2/3.

Then by property of B,

Pr
z,r,rB

[
B
(
DPk(x; z), r, 1

ℓ, 1α(ℓ)
)
= 1
]
≥ 1/2. (17)

On the other hand, for u and r selected uniformly at random, by a counting argument,

Pr
u,r

[(
u, r, 1ℓ, 1α(ℓ)

)
∈ L′

]
≤

2α(ℓ)k · 2(α(ℓ)+ℓ)c ·
(∣∣∣{0, 1}α(ℓ) −ΠNO,ℓ

∣∣∣+ |ΠNO,ℓ| /2α(ℓ)
)

2α(ℓ)k+k · 2(α(ℓ)+ℓ)c

≤ 2−3,

where the last equality holds if we set k := log
∣∣∣{0, 1}α(ℓ) −ΠNO,ℓ

∣∣∣+ 4. Then again by property of

B,

Pr
u,r,rB

[
B
(
u, r, 1ℓ, 1α(ℓ)

)
= 1
]
≤ 1/10.

Comparing with Equation (17), it is clear that B
(
−,U(α(ℓ)+ℓ)c , 1

ℓ, 1α(ℓ)
)
is a randomized distin-

guisher for DPk

(
x;Uα(ℓ)k

)
. Lemma 22 implies that

pKpoly(α(ℓ)+ℓ)(x) ≤ k +O(log(α(ℓ) + ℓ))

≤ log
∣∣∣{0, 1}α(ℓ) −ΠNO,ℓ

∣∣∣+O(log(α(ℓ) + ℓ)) ,

as desired.
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3.7 Probabilistic computational depth

The next lemma is a straightforward adaptation of an argument from [Hir21a]. We provide a
proof for completeness.

Lemma 31 (Computational Depth Upper Bound). For all x ∈ {0, 1}n and r ∈ {0, 1}∗, and for all
non-decreasing polynomials p0 and p, if n is large enough then

1. there exists a time bound t1 such that p0(n) ≤ t1 ≤ 2n/ logn and

pKt1(x | r)− pKp(t1)(x | r) ≤ O(n/ log n);

2. there exists a time bound t2 such that p0(n) ≤ t2 ≤ 2n/ logn and

rKt2(x | r)− rKp(t2)(x | r) ≤ O(n/ log n).

Proof. We will start by proving Item 1. Given x ∈ {0, 1}n and polynomials p0 and p, define the
polynomial τ := p ◦ p0. For an integer I ≥ 1, consider the following telescoping sum:

pKτ(n)(x | r)−pKτI+1(n)(x | r) =
(
pKτ(n)(x | r)− pKτ2(n)(x | r)

)
+
(
pKτ2(n)(x | r)− pKτ3(n)(x | r)

)
+ · · ·+

(
pKτI(n)(x | r)− pKτI+1(n)(x | r)

)
,

where τ i(−) denotes the composition of τ with itself i times. For any choice of x, p0, and p as in
the statement of the lemma, pKτ(n)(x | r) ≤ n + d, for some universal constant d ≥ 0; hence, the
above sum is at most n+ d. By averaging, there is some index i0 ∈ [I] such that

pKτ i0 (n)(x | r)− pKτ i0+1(n)(x | r) ≤ n+ d

I
.

For this i0, define t1 := τ i0(n). Note that t1 ≥ τ(n) ≥ p0(n), since i0 ≥ 1 and p(ℓ) ≥ ℓ for every
input ℓ. Letting c ∈ N be such that τ(n) ≤ nc for sufficiently large n, define I := logc(n/(log2 n)

2).

Then t1 ≤ ncI = 2n/ logn. Moreover,

pKt1(x | r)− pKp(t1)(x | r) ≤ pKt1(x | r)− pKτ(t1)(x | r)
≤ O(n/ log n),

as desired.
The proof of Item 2 is similar.

4 Probabilistic Worst-Case to Average-Case Reductions

4.1 Auxiliary lemmas

Given a language L ∈ NP with a corresponding verifier V , and x ∈ L, let yx be the lexicograph-
ically first witness that x ∈ L. It is not hard to compute yx from x if an NP oracle is available,
by performing a standard search-to-decision reduction. For this reason, the time-bounded Kol-
mogorov complexity of the pair (x, yx) is essentially that of x, in the presence of an NP oracle.
We will show, more generally, that the oracle can be eliminated under an appropriate average-case
easiness assumption, even for the following randomized versions of ΣP

ℓ , denoted BPδ ◦ ΣP
ℓ .
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Definition 32 (BPδ ◦ΣP
ℓ ). A language L is in the class BPδ ◦ΣP

ℓ if there is a BP ◦Σℓ ◦ P formula

ϕ(x) = BPr ∃y1 ∀y2 . . . Qyℓ R(x, y1, y2, . . . , yℓ, r)

for a polytime predicate R and all string variables y1, . . . , yℓ, r of length poly(|x|), such that, for all
x ∈ {0, 1}n,

x ∈ L =⇒ Pr
r
[∃ y1 ∀ y2 . . . Q yℓ R(x, y1, y2, . . . , yℓ, r)] ≥ δ, and

x ̸∈ L =⇒ Pr
r

[
∀ y1 ∃ y2 . . . Q̄ yℓ ¬R(x, y1, y2, . . . , yℓ, r)

]
≥ δ.

Lemma 33 (Oracle Elimination). For any ℓ ≥ 1, suppose DistΣP
ℓ+1 ⊆ AvgBPP. For an arbitrary

L ∈ BPδ ◦ ΣP
ℓ , let x ∈ Ln be sufficiently large, let r ∈ {0, 1}n

c

be any random string under the BP
quantifier such that there exists a witness for the left-most ∃ quantifier in the definition of L, and
let yx,r ∈ {0, 1}nc

be the lexicographically first such L-witness for x and randomness r, for some
constant c > 0.

1. There exist polynomials q and q0 such that, for all sufficiently large n ∈ N, all x ∈ Ln, and
all t ≥ q0(n), we have with probability at least δ − 1/10 over r ∈ {0, 1}n

c

that an L-witness
yx,r exists, and

pKq(t)(x, yx,r | r) ≤ pKt(x | r) + log q(t).

2. Assume in addition that DistPΣP
2 ⊆ AvgBPP (which holds in particular for ℓ ≥ 2). Then there

exist polynomials q′ and q′0 such that, for all sufficiently large n ∈ N, all x ∈ Ln, and all
t ≥ q′0(n), we have with probability at least δ − 1/10 over r ∈ {0, 1}n

c

that an L-witness yx,r
exists, and

rKq′(t)(x, yx,r | r) ≤ rKt(x | r) + log q′(t).

Moreover, for the case of no BP quantifier, i.e., for L ∈ ΣP
ℓ , we get the same conclusions (with

probability 1) without conditioning on r.

Proof of Item 1. Define

L′ :=

{(
DPk(x, y; z), w, w

′, 1k, 1s, 1n
) ∣∣∣∣ ∃M ∈ {0, 1}s,MΣP

ℓ (w,w′) prints (x, y) ∈ {0, 1}n+nc

within |w| steps, where |w′| = nc, and s = k − 10

}
.

More formally, in this and subsequent proofs, the above notation should be interpreted as follows:
a string (u,w,w′, 1k, 1s, 1n) belongs to L′ iff there exist some (x, y) ∈ {0, 1}n+nc

and M ∈ {0, 1}s

such that DPk(x, y; z) = u, where u = (z, α) for some z ∈ {0, 1}(n+nc)k and α ∈ {0, 1}k, and

MΣP
ℓ (w,w′) outputs (x, y) within |w| steps, for |w′| = nc.

Note that L′ ∈ NPΣP
ℓ . Define a distribution family D = {D⟨(n+nc)k+k,2t,nc,k,s,n⟩} as follows:

sample u ∼ U(n+nc)k+k, w ∼ U2t, w
′ ∼ Unc , and output (u,w,w′, 1k, 1s, 1n), for s = k − 10. By

assumption, (L′, D) ∈ AvgBPP. Let B be a randomized algorithm for (L′, D) as in Lemma 6.
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For all (sufficiently large) n, k, and s, and for independent uniformly random u, w, and w′,

Pr
u,w,w′

[
(u,w,w′, 1k, 1s, 1n) ∈ L′

]
= Pr

u,w,w′

[
∃ (x, y) ∈ {0, 1}n+nc

,∃ z ∈ {0, 1}(n+nc)k,∃M ∈ {0, 1}s,

MΣP
ℓ (w,w′) = (x, y) ∧ u = DPk(x, y; z)

]
≤ 2s+|w|+|w′|+|z|

2k+|w|+|w′|+|z| = 2s−k = 2−10,

where the inequality is by a union bound and a counting argument, and the last equality by the
condition that s = k − 10 in the definition of L′. Hence,

Pr
u,w,w′,rB

[
B(u,w,w′, 1k, 1s, 1n) = 1

]
≤ Pr

u,w,w′

[
(u,w,w′, 1k, 1s, 1n) ∈ L′

]
+ Pr

u,w,w′,rB

[
B(u,w,w′, 1k, 1s, 1n) ̸= L′(u,w,w′, 1k, 1s, 1n)

]
≤ 2−10 + (3/n).

By Markov’s inequality, for at least 9/10 fraction of strings r,

Pr
u,w,rB

[
B(u,w, r, 1k, 1s, 1n) = 1

]
≤ 10 · (2−10 + (3/n)) ≤ 1/10. (18)

Let x ∈ Ln be arbitrary. By definition of the BPδ quantifier, for at least δ fraction of random
strings r ∈ {0, 1}n

c

, there exists an L-witness, and hence, the lexicographically first L-witness
yx,r. By the above, for at least δ − 1/10 of random r, we have that both a witness yx,r exists and
Equation (18) holds. Fix any such r.

Observe that for some polynomial q0 (dependent on L) and some constant d, for any t ≥ q0(n),

pK2t,ΣP
ℓ (x, yx,r | r) ≤ pKt(x | r) + d log n =: s(x, r). (19)

In particular, q0(n) reflects the time required to deterministically compute yx,r, given x and r, by
a search-to-decision procedure for L using a ΣP

ℓ -oracle.
Define s := s(x, r) (which determines k = s + 10), and let t ≥ q0(n). By the definitions of

pK2t,ΣP
ℓ and L′, for every z ∈ {0, 1}(n+nc)k,

Pr
w

[
(DPk(x, yx,r; z), w, r, 1

k, 1s, 1n) ∈ L′
]
≥ 2/3.

Then by the definition of B,

Pr
z,w,rB

[
B(DPk(x, yx,r; z), w, r, 1

k, 1s, 1n) = 1
]

≥ Pr
z,w

[
(DPk(x, yx,r; z), w, r, 1

k, 1s, 1n) ∈ L′
]
·Pr
rB

[
B(ω) = L′(ω) | ω ∈ L′]

≥ 2

3
· (1− (1/n))

≥ 2/3− o(1). (20)
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Comparing Equation (18) with Equation (20), it is clear that B(−,U2t, r, 1
k, 1s, 1n) is a random-

ized algorithm (with advice) that (1/2)-distinguishes DPk(x, yx,r;U(n+nc)k) from uniform. Lemma 22
implies that

pKp′(t)(x, yx,r | r, s, n, t) ≤ k + log p′(t) (21)

= s+ 10 + log p′(t)

= pKt(x | r) + d log n+ log p′(t) + 10,

for some polynomial p′ with p′(t) ≥ pDP(tB · 3 · (n + nc)), where pDP is the polynomial from
Lemma 22 and tB denotes the time required to compute B(−,U2t, r, 1

k, 1s, 1n). As the advice
(s, n, t) can be encoded with log s + log n + log t + O(log log n) ≤ (3.1) · log t bits, it follows that
pKq(t)(x, yx,r | r) ≤ pKt(x | r) + log q(t) for the polynomial q(t) := t(d+4) · p′(t).

The “Moreover” statement follows the same argument, dropping any mention of w′ (and r).

Proof of Item 2. The proof is similar to that of Item 1, except at Equation (19), we observe that
for all t ≥ q0(n),

pK2t,ΣP
ℓ (x, yx,r | r) ≤ pKt(x | r) + d log n

≤ rKt(x | r) + d log n,

and then define s(x, r) := rKt(x | r)+d log n. We then follow the proof of Item 1 up to Equation (21),
where we apply Lemma 23 instead of Lemma 22 to obtain

rKp′′(t)(x, yx,r | r, s, n, t) ≤ rKt(x | r) + d log n+ log p′′(t) + 10

for some polynomial p′′ with p′′(t) ≥ p′DP(tB · 3 · (n + nc)), where p′DP is the polynomial from
Lemma 23 and tB denotes the time required to compute B(−,U2t, r, 1

k, 1s, 1n). It follows that
rKq′(t)(x, yx,r | r) ≤ rKt(x | r) + log q′(t) for the polynomial q′(t) := t(d+4) · p′′(t).

Lemma 34 (Witness Compression). For any ℓ ≥ 1, suppose DistΣP
ℓ+1 ⊆ AvgBPP. For an arbitrary

L ∈ BPδ ◦ ΣP
ℓ , let x ∈ Ln be sufficiently large, r ∈ {0, 1}n

c

be any good random string, and let
yx,r ∈ {0, 1}nc

be the lexicographically first L-witness for x with respect to randomness r, for some
constant c > 0.

1. Let p0, p and q0, q be the polynomials from Items 1 of Lemmas 26 and 33 respectively. Then
for every t ≥ max{p0(n), q0(n + nc)}, with probability at least δ − 1/5 over r, an L-witness
yx,r exists, and

pKp(q(t))(yx,r | x, r) ≤
(
pKt(x | r)− pKp(q(t))(x | r)

)
+ 2 log p(q(t)).

2. Assume in addition that DistPΣP
2 ⊆ AvgBPP (which holds in particular when ℓ ≥ 2). Let p′0, p

′

and q′0, q
′ be the polynomials from Items 2 of Lemmas 26 and 33 respectively. Then for every

t ≥ max{p′0(n), q′0(n+ nc)}, with probability at least δ − 1/5 over r, an L-witness yx,r exists,
and

rKp′(q′(t))(yx,r | x, r) ≤
(
rKt(x | r)− rKp′(q′(t))(x | r)

)
+ 2 log p′(q′(t)).

Moreover, for L ∈ ΣP
ℓ , we get the same conclusions without conditioning on r.

34



Proof. We start by proving Item 1. By Item 1 of Lemma 33 and Lemma 26, we get by a union
bound that, with probability at least δ − 2/10 over r,

pKq(t)(x, yx,r | r) ≤ pKt(x | r) + log q(t),

and
pKq(t)(x, yx,r | r) > pKp(q(t))(x | r) + pKp(q(t))(yx,r | x, r)− log p(q(t)).

Combining the previous two inequalities,

pKp(q(t))(yx,r | x, r) < pKq(t)(x, yx,r | r)− pKp(q(t))(x | r) + log p(q(t))

≤
(
pKt(x | r)− pKp(q(t))(x | r)

)
+ 2 log p(q(t)).

The “Moreover” part follows by applying the “no random r” versions of Lemma 33 and Lemma 26.
The proof of Item 2 is the same, except we apply Items 2 of Lemmas 33 and 26 respectively.

We will also need the following analogue of Lemma 33 for the case of unique witnesses.

Lemma 35 (Oracle Elimination for UP). Suppose DistNP ⊆ AvgBPP, and let L ∈ UP. Let x ∈ Ln

be sufficiently large, and let yx ∈ {0, 1}nc
be the unique L-witness for x, for some constant c > 0.

There exists a polynomial q such that for all t ≥ n+ nc,

pKq(t)(x, yx) ≤ pKt(x) + log q(t).

Proof. Let L ∈ UP with deterministic verifier V running in time nc on inputs x ∈ {0, 1}n and
y ∈ {0, 1}nc

. Let

L′ :=

{
(DPk(x, y; z), w, 1

s, 1n) | ∃M ∈ {0, 1}s,M(w) outputs x ∈ {0, 1}n within |w| steps,

where k = s+ 10, and V (x, y) = 1

}
.

Note that L′ ∈ NP. Define a distribution family D = {D⟨(n+nc)k+k,t,s,n⟩} as follows: sample
u ∼ U(n+nc)k+k, w ∼ Ut, and output (u,w, 1s, 1n). By assumption, (L′, D) ∈ AvgBPP. Let B be a
randomized heuristic algorithm for (L′, D) as described in Lemma 6.

Let x ∈ Ln be sufficiently large, and let yx ∈ {0, 1}nc
be the unique L-witness for x. Define

s := pKt(x), and let t ≥ n+ nc. By definition of pKt and L′, for any z ∈ {0, 1}(n+nc)k,

Pr
w

[
(DPk(x, yx; z), w, 1

s, 1n) ∈ L′] ≥ 2/3.

Then by definition of B,

Pr
z,w,rB

[B(DPk(x, yx; z), w, 1
s, 1n) = 1]

≥ Pr
z,w

[
(DPk(x, yx; z), w, 1

s, 1n) ∈ L′] ·Pr
rB

[
B(ω) = L′(ω) | ω ∈ L′]

≥ 2

3
· (1− (1/n)) ≥ 1/2. (22)

35



On the other hand, for u and w selected uniformly at random,

Pr
u,w

[
(u,w, 1s, 1n) ∈ L′] = Pr

u,w

[
∃ (x, y) ∈ {0, 1}n+nc

,∃ z ∈ {0, 1}(n+nc)k,∃M ∈ {0, 1}s,

M(w) = x ∧ V (x, y) = 1 ∧ u = DPk(x, y; z)

]
≤ 2s+|w|+|z|

2k+|w|+|z| = 2−10,

where the inequality is by a union bound and a counting argument, and the last equality by
definition of k = s+ 10 = pKt(x) + 10. Then

Pr
u,w,rB

[B(u,w, 1s, 1n) = 1] ≤ Pr
u,w

[
(u,w, 1s, 1n) ∈ L′]+ Pr

u,w,rB

[
B(u,w, 1s, 1n) ̸= L′(u,w, 1s, 1n)

]
≤ 2−10 + (3/n) ≤ 1/10.

Comparing with Equation (22), it is clear that B(−,Ut, 1
s, 1n) is a randomized distinguisher for

DPk

(
x, yx;U(n+nc)k

)
. Lemma 22 implies that

pKp′(t)(x, yx) ≤ k + log p′(t)

= pKt(x) + 10 + log p′(t)

for some polynomial p′ with p′(t) ≥ pDP(tb ·3·(n+nc)), where pDP is the polynomial from Lemma 22
and tB denotes the time required to compute B(−,Ut, 1

s, 1n). It follows that pKq(t)(x, yx) ≤
pKt(x) + log q(t) for the polynomial q(t) := t · p′(t).

4.2 Case of AM

Theorem 36. If DistΣP
2 ⊆ AvgBPP, then AM ⊆ BPTIME

[
2O(n/ logn)

]
.

Proof. Consider an arbitrary L ∈ AM given by a BP ◦ΣP
1 formula such that, for every x ∈ {0, 1}n,

x ∈ L =⇒ BP(1−2−n)r ∃y V (x, y, r),

x ̸∈ L =⇒ BP(1−2−n)r ∀y ¬V (x, y, r),

for a polytime verifier V (x, y, r), where |r|, |y| ≤ nc for some constant c > 0, and the notation
BP(δ)r ϕ(−, r), for a formula ϕ, means Prr[ϕ(−, r)] ≥ δ.

For a given (sufficiently large) x ∈ Ln, and a good random string r, let yx,r be the lexicographi-
cally first L-witness for x, r. By Lemma 34, for some constant a > 0, and for all large enough time
bounds t, we have, with probability at least 1− 2−n − 1/5 over random strings r, that

pKta(yx,r | x, r) ≤
(
pKt(x | r)− pKta(x | r)

)
+ (2a) log t.

By Lemma 31, there exists a time bound t ≤ 2O(n/ logn) such that pKt(x | r)−pKta(x | r) ≤ bn/ log n,
for some universal constant b > 0. Hence, for some universal constant d > 0 (independent of x, r),

pK2dn/ logn
(yx,r | x, r) ≤ dn/ log n.

A randomized algorithm for L is now obvious:
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Given x ∈ {0, 1}n, sample uniformly random strings r ∈ {0, 1}|x|
c

and w ∈ {0, 1}2
dn/ logn

,
and then exhaustively search over all dn/ log n-bit machinesM, running eachM(w, x, r)
for 2dn/ logn steps to produce a candidate witness y, accepting if V (x, y, r) accepts.

The runtime 2O(n/ logn) is clear. For correctness, for every x ∈ Ln, we know there is at least a
(4/5−2−n) fraction of good random strings r for which a witness yx,r will be found by our algorithm,
with probability at least 2/3 over random w’s (by the definition of pK). So our algorithm accepts
x ∈ L with probability at least (2/3)(4/5) − o(1) > 1/2. On the other hand, for any x ̸∈ L, our
algorithm may find a witness y and accept x for at most 2−n fraction of r’s.

4.3 Case of UP

Theorem 37. If DistNP ⊆ AvgBPP, then UP ⊆ RTIME
[
2O(n/ logn)

]
.

Proof. Let L ∈ UP, x ∈ Ln for n sufficiently large, and yx ∈ {0, 1}nc
the unique L-witness for x,

for some constant c > 0. Let V be a deterministic verifier for L running in time nc. Let p0, p, and
q be the polynomials from Lemmas 26 (Item 1) and 35 respectively.

By Lemma 31, there exists p0(n+ nc) ≤ t ≤ 2n/ logn such that

pKt(x)− pKp(q(t))(x) ≤ O(n/ log n).

For such a t, combining Lemma 26 and Lemma 35 as in the proof of Lemma 34, we obtain

pKp(q(t))(yx | x) ≤
(
pKt(x)− pKp(q(t))(x)

)
+ 2 log p(q(t)).

The above inequalities imply that for some constant d ∈ N,

pK2dn/ logn
(yx | x) ≤ dn/ log n.

We are now ready to define a probabilistic algorithm A deciding L.

On input x ∈ {0, 1}n, A samples w ∼ {0, 1}2dn/ logn
. It then exhaustively searches over

all machines M ∈ {0, 1}dn/ logn, running M(w, x) for 2dn/ logn steps to produce some
output y. A accepts iff a y is obtained such that V (x, y) = 1.

If x ∈ L, then A accepts with probability at least 2/3 over w; if x /∈ L, then A never accepts.

4.4 Case of PH

As a warm-up, we consider a special case of PH languages L, where a ΣP
ℓ verifier for L ∈ ΣP

ℓ

has all its ∃/∀ quantifiers over binary strings of length O(|x|) for a given input x. Denote the class
of such ΣP

ℓ languages by linΣP
ℓ .

Theorem 38. For an arbitrary ℓ ≥ 1, suppose that DistΣP
ℓ+1 ⊆ AvgBPP. Then

linΣP
ℓ ⊆ BPTIME

[
2O(n/ logn)

]
.
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Proof. The proof is by induction on ℓ. The base case of ℓ = 1 follows from Theorem 36. We
will argue the case of ℓ ≥ 2. Consider an arbitrary language L ∈ linΣP

ℓ . By definition, there is a
polytime predicate R and a constant a > 0 such that, for every x ∈ {0, 1}n,

x ∈ L ⇐⇒ ∃ y1 ∀ y2 . . . Q yℓ R(x, y1, y2, . . . , yℓ),

where |yi| ≤ an for all 1 ≤ i ≤ ℓ. Define the language

L′ = {(x, y) | ∀ y2 . . . Q yℓ R(x, y, y2, . . . , yℓ)} .

Note that L′ ∈ linΠP
ℓ−1, and so, by the Inductive Hypothesis, L′ ∈ BPTIME[2O(n/ logn)], since

|(x, y)| ≤ O(|x|) by assumption. By standard success amplification, we may assume that this
probabilistic algorithm for L′ has error probability at most 2−n.

On the other hand, by Items 1 of Lemmas 34 and 31, we have that, for some universal constant
d > 0, for every sufficiently large input x ∈ Ln,

pK2dn/ logn
(yx | x) ≤ dn/ log n,

where yx is the lexicographically first L-witness for x ∈ L.
We are now ready to define a probabilistic algorithm A deciding L.

On input x ∈ {0, 1}n, A samples w ∼ {0, 1}2dn/ logn
. It then exhaustively searches over

all machines M ∈ {0, 1}dn/ logn, running M(w, x) for 2dn/ logn steps to produce some
output y. A accepts iff a y is obtained such that (x, y) ∈ L′, where the latter is checked
using a BPTIME[2O(n/ logn)] algorithm for L′ shown to exist earlier.

The overall runtime 2O(n/ logn) of the described algorithm A is clear. For correctness, consider an
arbitrary x ∈ Ln. With probability at least 2/3 over w’s, A will check if (x, yx) ∈ L′. The latter
check will succeed with probability at least 1 − 2−n, by assumption. Therefore, A will correctly
accept x with probability at least (2/3)(1 − 2−n) ≥ 6/10. Next consider an arbitrary x ∈ {0, 1}n
such that x /∈ L. For this x, no witnesses exist, and hence every string y tried by A is such that
(x, y) ̸∈ L′. The probability that at least one such y is incorrectly accepted by A is, by the union
bound, at most 2dn/ logn · 2−n ≤ 2−n/2, for all sufficiently large n.

It is observed in [GK22, Corollary 17] that, for every ℓ ≥ 1, ΣP
ℓ = linΣP

ℓ , under the assumption
that DistΣP

ℓ+1 ⊆ AvgP. We will show a similar result for the class promise-ΣBP
ℓ defined below.

Definition 39 (promise-ΣBP
ℓ and promise-linΣBP

ℓ ). A promise problem Π = (ΠY ,ΠN ) ∈ promise-ΣBP
ℓ

for ℓ ≥ 0, if there is a Σℓ ◦ BP ◦ P formula

ϕ(x) = ∃ y1 ∀ y2 . . . Q yℓ BPr R(x, y1, y2, . . . , yℓ, r),

for a polytime predicate R and all string variables y1, . . . , yℓ, r of length polynomial in |x|, such
that, for all x ∈ {0, 1}n,

x ∈ ΠY =⇒ ∃ y1 ∀ y2 . . . Q yℓ BP(2/3)r R(x, y1, y2, . . . , yℓ, r), and

x ∈ ΠN =⇒ ∀ y1 ∃ y2 . . . Q̄ yℓ BP(2/3)r ¬R(x, y1, y2, . . . , yℓ, r),

where BP(δ)r R(−, r) means that Prr [R(−, r)] ≥ δ. The constant 2/3 in the definition above can

be changed to 1− 2−poly(n) by standard success amplification techniques (even if we start with any
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pair δY > 1 − δN + ε of thresholds, for some ε ≥ 1/poly(n), where δY is the probability R(−, r)
accepts, and δN the probability ¬R(−, r) accepts).

The promise class promise-linΣBP
ℓ is defined the same way as above, with an extra condition

that, for some constant a > 0, |yi| ≤ an for all 1 ≤ i ≤ ℓ (but the randomness r may still be of any
poly(n) length).

Theorem 40 (Witness Compression for PH). For any ℓ ≥ 0, suppose DistΣP
ℓ+2 ⊆ AvgBPP. Then

promise-ΣBP
ℓ = promise-linΣBP

ℓ .

Proof. The proof is by induction on ℓ. The base case of ℓ = 0 is trivially true.
For any ℓ > 0, suppose the claim is true for ℓ − 1. Consider an arbitrary promise problem

Π = (ΠY ,ΠN ) ∈ promise-ΣBP
ℓ . That is, for every x ∈ {0, 1}n,

x ∈ ΠY =⇒ ∃ y Πℓ−1z BP(1−2−n)r R(x, y, z, r),

x ∈ ΠN =⇒ ∀ y Σℓ−1z BP(1−2−n)r ¬R(x, y, z, r),

for some polytime predicate R, where z is a sequence of ℓ− 1 strings z1, . . . , zℓ−1 under the corre-
sponding ℓ − 1 quantifiers of the Πℓ−1 pattern, and |y|, |r|, |zi| ≤ q(n), for some polynomial q, for
all 1 ≤ i ≤ ℓ− 1.

As in the proof of the inclusion BPP ⊆ ΣP
2 ∩ΠP

2 [Lau83], we replace the BP quantifier by the ∃∀
pattern if ℓ is odd, or by the ∀∃ pattern if ℓ is even. We get that there exists a polytime predicate
R′ such that, for every x ∈ {0, 1}n,

x ∈ ΠY =⇒ ∃ y Πℓ−1z Q0z
′Q1z

′′ R′(x, y, z, z′, z′′),

x ∈ ΠN =⇒ ∀ y Σℓ−1z Q1z
′Q0z

′′ ¬R′(x, y, z, z′, z′′),

where z′, z′′ have the lengths polynomial in n and Q0Q1 = ∃∀ if ℓ is odd, and Q0Q1 = ∀∃ if ℓ is
even.

Note that the above transformation shows that our promise problem Π ∈ promise-ΣP
ℓ+1. For

any given x ∈ ΠY , let yx be the lexicographically first string y such that

Πℓ−1z Q0z
′ Q1z

′′ R′(x, y, z, z′, z′′). (23)

Claim 41. For x and yx as above,

Πℓ−1z BP(1/poly(n))r R(x, yx, z, r).

Proof. Immediate from the properties of Lautemann’s proof of BPP ⊆ ΣP
2 [Lau83]. Recall that in

that proof, the subformula BPr R(−, r) is replaced by

∃u1 . . . uk ∀r ∨k
i=1 R(−, r ⊕ ui),

for some k ≤ poly(|r|), where |ui| = |r|, for all 1 ≤ i ≤ k, and ⊕ is the bit-wise XOR. If
Prr [R(−, r)] < 1/k, then such a collection of u1, . . . , uk cannot exist. Indeed, each “shifted” pred-

icate R(−, r ⊕ ui), for 1 ≤ i ≤ k, accepts less than 1/k fraction of r ∈ {0, 1}|r|, and hence, by the

union bound, the OR of any k such shifts accepts less than k · (1/k) = 1 fraction of r ∈ {0, 1}|r|.
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On the other hand, for every x ∈ ΠN and every y, we have

Σℓ−1z BP(1−2−n)r ¬R(x, y, z, r).

Using Claim 41, by standard success amplification, for a random string r′ of length q′(n), for some
polynomial q′, and a polytime predicate Rboost , we get for every x ∈ {0, 1}n and yx as defined
above,

x ∈ ΠY =⇒ Πℓ−1z BP(1−2−n)r
′ Rboost(x, yx, z, r

′), (24)

x ∈ ΠN =⇒ ∀ y Σℓ−1z BP(1−2−n)r
′ ¬Rboost(x, y, z, r′). (25)

Claim 42. For some universal constant a > 0 and some polynomial p′, for every n-bit x ∈ ΠY

with a witness yx as defined above, we have

rKp′(n)(yx | x) ≤ an.

Proof. Using Equation (23), we get by Item 2 of Lemma 34 (since DistΣP
3 ⊆ AvgBPP), that, for

some polynomial p and all large enough t,

rKp(t)(yx | x) ≤ rKt(x)− rKp(t)(x) + 2 log p(t).

Since, for any t, rKt(x) ≤ O(n), the claim follows.

Consider the formula

ϕ(x) = ∃ y′(|y′| ≤ an) Πℓ−1z BPw R′′(x, y′, z, w), (26)

where the predicate R′′ is computed by the following polytime algorithm A:

On input x, y′, z, and a string w = w′r′, where w′ is of length p′(n), and r′ is of length
q′(n), first run the universal machine U(y′, x, w′) for p′(n) steps, getting an output y.
Then run Rboost(x, y, z, r′), accepting iff Rboost accepts.

We claim that Equation (26) is a correct ΣBP
ℓ formula for the promise problem Π. Indeed, for

any x ∈ ΠY , by Claim 42, there is a string y′ that is decompressed to yx with high probability over
random strings w′ (say, with probability at least 3/4). By Equation (24), Rboost(x, U(y′, x, w′), z, r′)
accepts with probability at least (3/4)(1 − 2−n) > 2/3 over strings w = w′r′. On the other hand,
for any x ∈ ΠN , Equation (25) implies that

∀ y′ Σℓ−1z BP(1−2−n)w ¬R′′(x, y′, z, w).

Next, using Equation (26), define a new promise problem Π′ = (Π′
Y ,Π

′
N ) ∈ promise-ΠBP

ℓ−1:

Π′
Y =

{
(x, y′) | |y′| ≤ a|x|, Πℓ−1z BPw R′′(x, y′, z, w)

}
,

Π′
N =

{
(x, y′) | |y′| ≤ a|x|, Σℓ−1z BPw ¬R′′(x, y′, z, w)

}
.

By the Inductive Hypothesis, Π′ ∈ promise-linΠBP
ℓ−1, with all quantified binary strings of length

O(|x|+ |y′|) ≤ O(n). It follows that Π ∈ promise-linΣBP
ℓ .
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Theorem 43. For any ℓ ≥ 0,

DistΣP
ℓ+2 ⊆ AvgBPP =⇒ promise-ΣP

ℓ ⊆ promise-BPTIME[2O(n/ logn)].

Proof. The proof is by induction on ℓ. The base case of ℓ = 0 is trivially true. Consider any ℓ ≥ 1,
and assume the claim for ℓ − 1. Let Π = (ΠY ,ΠN ) ∈ promise-ΣP

ℓ be arbitrary. By Theorem 40,
Π ∈ promise-linΣBP

ℓ via some formula

ϕ(x) = ∃ y Πℓ−1z BPr R(x, y, z, r),

with a polytime R, linearly-bounded y and z = (z1, . . . , zℓ−1) (under the Πℓ−1 quantifiers), and a
poly-bounded r.

Arguing as in the proof of Theorem 40 (see the proof of Claim 42), but using Lemma 31 (for
the case of pK) to bound the computational depth of an input x by O(n/ log n) with a time bound
t ≤ 2O(n/ logn), we get that, for some universal constant a > 0, every x ∈ ΠY has a witness yx with

pK2an/ logn
(yx | x) ≤ an/ log n. (27)

Applying success amplification to R, we get a new polytime predicate Rboost with poly-bounded
randomness r′ such that we get for every x ∈ {0, 1}n and yx as defined above,

x ∈ ΠY =⇒ Πℓ−1z BP(1−2−n)r
′ Rboost(x, yx, z, r

′), (28)

x ∈ ΠN =⇒ ∀ y Σℓ−1z BP(1−2−n)r
′ ¬Rboost(x, y, z, r′). (29)

Define a promise problem Π′ = (Π′
Y ,Π

′
N ) ∈ promise-ΠBP

ℓ−1:

Π′
Y =

{
(x, y) | Πℓ−1z BPr′ Rboost(x, y, z, r′)

}
,

Π′
N =

{
(x, y) | Σℓ−1z BPr′ ¬Rboost(x, y, z, r′)

}
.

By the Inductive Hypothesis, Π′ ∈ promise-BPTIME[2O(n/ logn)], where |x| = n, via some random-
ized algorithm A, with error probability at most 2−n.

We now solve Π with the following randomized algorithm B:

Given x ∈ {0, 1}n, choose a random string w of length 2an/ logn, and then enumerate

over all machines M ∈ {0, 1}an/ logn, and run M(w, x) for 2an/ logn steps, getting a
candidate witness y of length O(n). Run A(x, y), accepting iff A accepts.

The time complexity of the described algorithm B is clearly 2O(n/ logn). For correctness, for
every x ∈ ΠY , with probability at least 3/4 over w, our algorithm will consider a short description
of a TM M such that M(w, x) = yx. Since (x, yx) ∈ Π′

Y , we get that A(x, yx) will accept with
probability at least 1 − 2−n over its internal randomness. Hence, the algorithm B accepts x with
probability at least (3/4)(1 − 2−n) > 2/3. On the other hand, for every x ∈ ΠN , for every w and
all M, the string y = M(w, x) is such that (x, y) ∈ Π′

N , and so A(x, y) accepts with probability at
most 2−n. It follows that the probability that B(x) accepts in this case is

E
w,A

[
∃ v ∈ {0, 1}an/ logn : A(x, U(v, x, w))

]
≤ 2an/ logn ·E

w

[
2−n

]
≤ 2−n/2,

for all sufficiently large n.
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Corollary 44. If DistPH ⊆ AvgBPP, then PH ⊆ BPTIME[2O(n/ logn)]. More precisely, for any
ℓ ≥ 0,

DistΣP
ℓ+2 ⊆ AvgBPP =⇒ ΣP

ℓ ⊆ BPTIME
[
2O(n/ logn)

]
.

Proof. Immediate from Theorem 43.

4.5 Fine-grained case

Recall the quasilinear-time complexity classes QL = DTIME[Õ(n)], NQL = NTIME[Õ(n)], and
the quasilinear-time analog QLH = ∪ℓ≥0Σ

QL
ℓ of the polynomial-time hierarchy PH; see, e.g., [NRS95]

for more details. Define BPQL = BPTIME[Õ(n)], the quasilinear-time version of BPP. We show
better probabilistic worst-case to average-case reductions under fine-grained average-case easiness
assumptions.

Theorem 45. ΣQL
2 × QLSamp ⊆ AvgBPQL =⇒ AMTIME

[
2O(

√
n logn)

]
= BPTIME

[
2O(

√
n logn)

]
.

It suffices to prove the inclusion AMTIME[2O(
√
n logn)] ⊆ BPTIME[2O(

√
n logn)] (as the other

inclusion is obvious). We will need the following analog of Lemma 31. The difference is that
the “blow-up” of the time bound in pKt here is linear in t, while in Lemma 31, this blow-up is
polynomial in t.

Lemma 46 (Fine-Grained Computational Depth). Let x ∈ {0, 1}n and r ∈ {0, 1}∗ be arbitrary
strings, f any function, and τn(t) := t · poly(n). There exists a constant a > 0 and a time bound t
such that f(n) ≤ t ≤ f(n) · 2a

√
n logn and

pKt(x | r)− pKτn(t)(x | r) ≤ O
(√

n log n
)
.

Proof. Fix x ∈ {0, 1}n. Let τn(t) := t ·nc. Define t0 := f(n), and for i ≥ 1, ti := τn(ti−1). Consider
the following telescoping sum:

pKt0(x | r)− pKtI (x | r) =
(
pKt0(x | r)− pKt1(x | r)

)
+
(
pKt1(x | r)− pKt2(x | r)

)
+ · · ·+

(
pKtI−1(x | r)− pKtI (x | r)

)
.

Note that pKf(n)(x | r) ≤ n+d, for some universal constant d ≥ 0; hence, the above sum is at most
n+ d. By averaging, there is some index 1 ≤ i∗ ≤ I such that

pKti∗−1(x | r)− pKti∗ (n)(x | r) ≤ n+ d

I
,

which is at most O
(√

n log n
)
for I :=

√
n/ log n. Finally, by induction, for every i ≥ 0, ti ≤

f(n) · 2c·i·logn. The bound ti∗−1 ≤ f(n) · 2O(
√
n·logn) follows.

We will also need the following fine-grained version of Lemma 26.

Lemma 47 (Fine-Grained Symmetry of Information for pKt). If NQL × QLSamp ⊆ AvgBPQL,
then there exists a polynomial p such that for all sufficiently large n,m ∈ N, all t ∈ N such that
t ≥ 2(n·m)ε for some ε > 0, and all time-constructible 0 ≤ τ(n,m) ≤ t, the following holds: for

every x ∈ {0, 1}n and every family
{
yr ∈ {0, 1}m | r ∈ {0, 1}τ(n,m)

}
, with probability at least 9/10

over r ∈ {0, 1}τ(n,m),

pKt(x, yr | r) > pKÕ(t)(x | r) + pKÕ(t)(yr | x, r)− log p(t).
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Proof Sketch. The proof is adapted from that of Lemma 26. Define

L :=

{(
u, v, w,w′, 1t, 1s, 1n, 1m

) ∣∣∣∣ ∃M ∈ {0, 1}s, M(w,w′) prints uv within 2t steps,

where |w′| = τ(n,m) ≤ t, |w| = 2t, and s = |u|+ |v| − 10

}
.

A distribution D will be given parameters ⟨nk + k,mk′ + k′, 4t, s, n,m⟩ =: N . It will be defined
to randomly sample u ∼ Unk+k, v ∼ Umk′+k′ , w ∼ U2t, and w′ ∼ Uτ(n,m), and then output
(u, v, w,w′, 1t, 1s, 1n, 1m).

The key observation is that L can be solved in NQL, so using our fine-grained average-case
easiness assumption, we obtain a randomized heuristic algorithm B that solves the distributional
problem (L,D) in quasilinear time. In particular, since t ≥ 2(n·m)ε for some ε > 0, N ≤ Õ(t). This
ensures that B runs in time Õ(t) (see Proposition 16 and Definition 5).

The rest of the proof follows that of Lemma 26, except when B is used later on as a distinguisher,
where we invoke the reconstruction lemma (Lemma 22), we get time bounds of Õ(t) instead of
poly(t).

Using similar ideas, we can get an analog of Lemma 33 for a special case of ℓ = 1. We will use
the following definitions, similar to Definition 32, which respectively allow for larger time-bounds
and impose a separate length restriction on witnesses.

Definition 48 (BPδ◦NTIME and BPδ◦NTIMEGUESS). A language L is in the class BPδ◦NTIME[τ ]
for a time bound τ if there is a formula

ϕ(x) = BPr ∃ y R(x, y, r)

for a predicate R running in time τ and variables y, r of length at most τ , such that, for all
x ∈ {0, 1}n,

x ∈ L =⇒ Pr
r
[∃ y R(x, y, r)] ≥ δ, and

x ̸∈ L =⇒ Pr
r
[∀ y ¬R(x, y, r)] ≥ δ.

The class BPδ ◦ NTIMEGUESS[τ, ℓ] is defined the same way as above, with an extra condition
that |y| ≤ ℓ (but the randomness r may still be of length at most τ).

Lemma 49 (Fine-Grained Oracle Elimination). Suppose NQL×QLSamp ⊆ AvgBPQL. Let τ(n) =
2O(

√
n logn) be some time-constructible function and c > 0 a constant. For an arbitrary L ∈ BPδ ◦

NTIMEGUESS[τ(n), nc], let x ∈ Ln be sufficiently large, let r ∈ {0, 1}τ(n) be any random string
under the BP quantifier such that there exists a witness for x ∈ L, and let yx,r ∈ {0, 1}nc

be the
lexicographically first such L-witness for x and randomness r.

There exist polynomials q and q0 such that, for all sufficiently large n ∈ N, all x ∈ Ln, and all
t ≥ q0(τ(n)), we have with probability at least δ − 1/10 over r ∈ {0, 1}τ(n) that an L-witness yx,r
exists, and

pKÕ(t)(x, yx,r | r) ≤ pKt(x | r) + log q(t).
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Proof Sketch. The proof is adapted from that of Lemma 33. Define

L′ :=

{(
DPk(x, y; z), w, w

′, 1t, 1k, 1s, 1n
) ∣∣∣∣ ∃M ∈ {0, 1}s,MSAT(w,w′) prints (x, y) ∈ {0, 1}n+nc

within 2t steps,

where |w′| = τ(n) ≤ t, |w| = 2t, and s = k − 10

}
.

Since SAT is NQL-complete under many-one QL reduction, we have, for x ∈ {0, 1}n, y ∈ {0, 1}n
c

,

w ∈ {0, 1}2t, and w′ ∈ {0, 1}τ(n) that L′ ∈ ΣQL
2 .

Again, using our fine-grained average-case easiness assumption, we get a randomized heuristic
algorithm B that solves L′ in time Õ(t). Also note that given x and good randomness r ∈ {0, 1}τ(n),
we can compute yx,r via search-to-decision reduction using a SAT oracle, which takes time poly(τ) =:

q0(τ). Therefore, similar to Equation (19) in the original proof, we get

pK2t,SAT(x, yx,r | r) ≤ pKt(x | r) + d log t (30)

for some constant d > 0, provided t ≥ q0(τ). The rest of the proof is the same as that of Lemma 33,
except when B is used later in the proof as a distinguisher, where we invoke the reconstruction
lemma (Lemma 22), we get a time bound of Õ(t) instead of poly(t).

We will also use the following simple generalization of (non-fine-grained) oracle elimination,
Lemma 33, to higher time bounds.

Lemma 50. Suppose DistΣP
2 ⊆ AvgBPP. For an arbitrary L ∈ NTIME[τ(n)], for some τ(n) =

2O(
√
n logn), let x ∈ Ln be sufficiently large, and let yx ∈ {0, 1}τ(n) be the lexicographically first

L-witness for x. There exist polynomials q and q0 such that, for all t ≥ q0(τ(n)), we have

pKq(t)(x, yx) ≤ pKt(x) + log q(t).

Proof Sketch. The proof follows that of the “Moreover” statement of Lemma 33, except the search-
to-decision computation of yx, where |yx| = τ(n), now takes time at least q0(τ(n)) for some poly-
nomial q0, yielding

pK2t,NP(x, yx,r | r) ≤ pKt(x | r) + d log n

for t ≥ q0(τ(n)) in Equation (19).

We are now ready to show Theorem 45.

Proof of Theorem 45. Assume ΣQL
2 × QLSamp ⊆ AvgBPQL. Let τ = 2a

√
n logn for some constant

a > 0, and let L ∈ AMTIME[τ ] be arbitrary. That is, for every x ∈ {0, 1}n,

x ∈ L =⇒ BP(1−2−n)r ∃y V (x, y, r),

x ̸∈ L =⇒ BP(1−2−n)r ∀y ¬V (x, y, r),

for a polytime verifier V (x, y, r), where |r|, |y| = τ . Let x ∈ Ln and good randomness r ∈ {0, 1}τ
be given, with lexicographically first witness yx,r ∈ {0, 1}τ .
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Note that ΣQL
2 ×QLSamp ⊆ AvgBPQL implies DistΣP

2 ⊆ AvgBPP by a simple padding argument.
Combining Lemma 50 and Lemma 26 as in the proof of Lemma 34, for some constant b > 0, with
probability at least 1− 2−n − 1/5 over r ∈ {0, 1}τ ,

pKτb(yx | x, r) ≤
(
pKτ (x | r)− pKτb(x | r)

)
+O(log τ), (31)

from which it follows that pKτb(yx | x, r) ≤ 2n by the trivial upper bound on pKτ (x|r). In other
words, by definition of pK,

Pr
r′∼{0,1}τb

[
∃M ∈ {0, 1}2n , M(x, r, r′) outputs yx within time τ b

]
≥ 2/3. (32)

Define a verifier V ′(x, z, r, r′), which does the following:

Simulate the machine described by z on input (x, r, r′) for τ b steps to produce some
output yz, and then return the output of V (x, yz, r).

Note that V ′ runs in time τ c for some constant c > 0. For x ∈ L, there exists z ∈ {0, 1}2n such that
V ′(x, z, r, r′) so long as Equation (31) and Equation (32) both hold, which occurs with probability
at least (2/3)(1 − 2−n − 1/5) =: δ > 1/2 over r, r′. For x /∈ L, V ′(x, z, r, r′) rejects unless there is
an L-witness yx,r under the original verifier V , which occurs with probability at most 2−n. This
leads to the following characterization of L:

x ∈ L =⇒ BP(δ)r, r
′ ∃z V ′(x, z, r.r′),

x ̸∈ L =⇒ BP(1−2−n)r, r
′ ∀z ¬V ′(x, z, r, r′),

where |r| = τ , |r′| = τ b, and |z| = 2n, which implies that L ∈ BPδ ◦ NTIMEGUESS[τ c, 2n].
Combining Lemma 47 and Lemma 49 as in the proof of Lemma 34, we have that with probability

at least δ − 1/5 > 1/4 over (r, r′) ∈ {0, 1}τ+τb that for all t ≥ p′0(τ
c), for some polynomials p′ and

p′0,

pKt·p′(n)(zx,r,r′ | x, r, r′) ≤
(
pKt(x | r, r′)− pKt·p′(n)(x | r, r′)

)
+O(log t) (33)

where zx,r,r′ is such that V ′(x, zx,r,r′ , r, r
′) accepts. Lemma 46 then implies the existence of some

t ∈ N such that p′0(τ
c) ≤ t ≤ 2O(

√
n logn) and pKt(x | r, r′)− pKt·p′(n)(x | r, r′) ≤ O(

√
n log n). So by

Equation (33), for some constant d > 0,

pKτd(zx,r | x, r, r′) ≤ d
√
n log n.

This suggests the following algorithm to decide L:

Given x ∈ {0, 1}n, sample uniformly random strings r ∼ {0, 1}τ , r′ ∈ {0, 1}τ
b

, and

w ∈ {0, 1}τ
d

. Then exhaustively search over all d
√
n log n-bit machinesM, running each

M(x, r, r′, w) for τd steps to produce a candidate witness z, accepting if V ′(x, z, r, r′)
accepts.
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The runtime poly(τ) = 2O(
√
n logn) is clear. For correctness, for every x ∈ Ln, there is at least a 1/4

fraction of good random strings r, r′ such that Equation (33) holds, in which case a witness zx,r,r′

will be found by our algorithm with probability at least 2/3 over w (by definition of pK). So, our
algorithm accepts x ∈ Ln with probability at least (1/4)(2/3) = 1/6. On the other hand, for x /∈ L,
our algorithm will accept with probability at most 2−n, as this upper-bounds the probability of r
being good for the original verifier V . Thus, we have L ∈ BPTIME[2O

√
n logn] via standard success

amplification.

A proof of the analogous statement for the class UTIME[2O(
√
n logn)], Item 1 of Theorem 2,

NQL× QLSamp ⊆ AvgBPQL =⇒ UTIME
[
2O(

√
n logn)

]
⊆ RTIME

[
2O(

√
n logn)

]
,

is presented in Appendix B. Though its proof requires some additional ideas, it does not need to
use an extremely efficient PRG as the one developed in [CHV22].

Finally, we note that one immediately obtains the main results of [CHV22], under deterministic
average-case easiness assumptions, as corollaries of the theorems above via a simpler proof. For
example, we will prove the following.

Theorem 51 ([CHV22]). ΣQL
2 ×QLSamp ⊆ AvgQL =⇒ AMTIME

[
2O(

√
n logn)

]
= DTIME

[
2O(

√
n logn)

]
.

Proof. If ΣQL
2 ×QLSamp ⊆ AvgQL, then trivially ΣQL

2 ×QLSamp ⊆ AvgBPQL, and by Theorem 45,

we get that AMTIME[2O(
√
n logn)] = BPTIME[2O(

√
n logn)]. On the other hand, DistNP ⊆ AvgP

(implied by the assumption of the theorem) yields BPP = P [BFP05], which implies by padding
that BPTIME[2O(

√
n logn)] = DTIME[2O(

√
n logn)].

Remark 52. The main technical work in [CHV22] was to construct a particular efficient PRG to
argue that the DPG reconstruction yields a quasilinear -time deterministic Kolmogorov complexity.
Instead, by using the probabilistic time-bounded Kolmogorov complexity measure pK, we forgo the
need for a PRG within the DPG reconstruction lemma. This yields a randomized algorithm for any
given language in NTIME[2O(

√
n logn)]. Finally, at the very end, we derandomize this randomized

algorithm, with polynomial overhead, using a standard hardness-based PRG [NW94; IW97], which
is shown to exist by [BFP05] assuming DistNP ⊆ AvgP.

4.6 Time-computable heuristic schemes

One drawback of the worst-case to average-case reductions in Theorem 1 is that assuming
average-case easiness for a class such as NP, we only get non-trivial worst-case algorithms for a
smaller class, such as UP. A natural question then is whether we can get non-trivial worst-case
algorithms for NP assuming only average-case easiness for NP. While this remains an interesting
open problem, Hirahara [Hir21a] showed that such a worst-case to average-case reduction exists
for NP if one considers a stronger notion of average-case easiness called P-computable average-case
polynomial time (denoted as AvgPP), where, given an input x, the running time of the average-case
algorithm on x can be efficiently estimated.

The proof of Hirahara’s result built on ideas developed by [AF09], who showed that under
a strong derandomization assumption, a language L is average-case easy if and only if it can

be solved in time 2O(K
poly(n)(x)−K(x)+logn) for every input x ∈ {0, 1}n. The proof of this result in

[AF09] makes use of a fundamental theorem in Kolmogorov complexity called language compression,
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which states that for every (computable) language L, K(x) ≲ log |L ∩ {0, 1}n| for all x ∈ L∩{0, 1}n.
The intuition is that for an average-case easy language, the set of “hard” instances that requires
large running time must be small, and by the language compression theorem has low Kolmogorov
complexity. This indicates that an instance with high (time-unbounded) Kolmogorov complexity
has small running time.

Under the assumption DistNP ⊆ AvgP, Hirahara proved a Kt version of the language compres-
sion theorem for languages in NP. By further assuming that one can efficiently estimate the running
times of the average-case algorithms for NP, which is required to apply the ideas of [AF09] in the

time-bounded case, he showed that NP can be solved in worst-case time 2O(K
t(x)−Kpoly(t)(x)+log t) for

every input x and large enough t. As explained above, for every x ∈ {0, 1}n there exists some
t ≤ 2O(n/ logn) such that Kt(x)− Kpoly(t)(x) ≤ O(n/ log n) so this yields non-trivial worst-case run-
ning times for NP. We remark that the reason why a language compression theorem only for NP
is sufficient in the above argument is linked to the fact that Kt complexity can be checked in NP.

Here, we consider an analogy of AvgPP in the randomized setting, called AvgBPPBPP, and we
show that DistNP ⊆ AvgBPPBPP implies NP ⊆ BPTIME[2O(n/ logn)]. While it is not surprising
that our proof will require to show a pKt version of the language compression theorem (under
probabilistic average-case easiness of NP), there are also subtleties in terms of which language class
that we need to compress. First of all, using ideas from previous sections, we can show that for
every L ∈ NP, we have pKpoly(n)(x) ≲ log |L ∩ {0, 1}n| for all x ∈ L∩{0, 1}n. However, it turns out
that such a language compression theorem for NP is not sufficient, and we actually need language
compression for promiseAM (Section 3.6), again, due to the fact that pKt is a more complicated
notion and can only be estimated in promiseAM.

Definition 53 (AvgBPPBPP). For a language L and a family D = {Dn}n∈N of distributions, we say
that (L,D) ∈ AvgBPPBPP if there exist a randomized algorithm A, a function t : {0, 1}∗×{1}∗ → N
and constants ε, b > 0 such that for every n ∈ N,

1. PrA [A(x, 1n) = L(x)] ≥ 2/3, for every x ∈ Supp(Dn),

2. A(x, 1n) halts within time t(x, 1n) (on each of its computational path), for every x ∈ Supp(Dn),

3. Ex∼Dn

[
t(x,1n)ε

n

]
≤ b, and

4. there is a polynomial-time randomized algorithm such that given x, 1n and θ, decides whether
t(x, 1n) ≤ θ.

Theorem 54. If DistNP ⊆ AvgBPPBPP, then AM ⊆ BPTIME
[
2O(n/ logn)

]
.

For the proof of this result, we will also need the following weak symmetry of information, which
follows as a simple corollary from Lemma 47 and Lemma 20.

Lemma 55 (Weak Symmetry of Information for pKt). If DistNP ⊆ AvgBPP, then there exist
polynomials p0 and pw such that for every sufficiently large x ∈ {0, 1}n, m ∈ N and p0(n,m) ≤ t ≤
2n+m,

Pr
u∼{0,1}m

[
pKt(x, u) > pKt·pw(nm)(x) +m− log pw(t)

]
≥ 0.99.

We are now ready to prove Theorem 54.
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Proof of Theorem 54. A “universal” distribution. We first define a distribution family D =
{D⟨m,t0⟩}, each of which does the following. On input 1⟨m,t0⟩,

1. Sample s ∈ [2m],

2. Sample w ∈ {0, 1}t0 ,

3. Sample M ∈ {0, 1}s,

4. Run M(w) for t0 steps, if it outputs a string y of length m, then output x; otherwise output
1m.

Note that D is polynomial-time samplable. Moreover, it dominates the “universal distribution” for
pKt0 , which assigns each y the probability mass 2−pKt0 (y). In particular, it is easy to see that for
every y ∈ {0, 1}m,

D⟨m,t0⟩(y) ≥
2−pKt0 (y)

O(m)
. (34)

Worst-case running times for NP. Let L ∈ AM be the language that we want to solve in the
worst case. Let L′ ∈ NP and c > 0 be a constant such that for every input x ∈ {0, 1}n to L,

Pr
r∈{0,1}nc

[
L′(x, r) = L(x)

]
≥ 1− 1/n.

Therefore, to decide L(x) (probabilisticaly), it suffices to decide L′(x, r) for a typical r. For the
rest of the proof, we will use x to denote an input to L and y := (x, r) to L′.

By assumption, (L′, D) ∈ AvgBPPBPP. Let A be an algorithm that solves L′ on average with
respect to D. Let tA

(
y, 1⟨m,t0⟩

)
denote the running time of A on input y ∈ Supp(D⟨m,t0⟩). We

will also write tA(y) instead of tA
(
y, 1⟨m,t0⟩

)
when the input size to the distribution is clear in the

context.
Let B be a promiseBPP algorithm that solves the promise problem from Lemma 27 and let τ

be the polynomial there. Now, consider the following ensemble of promise problems:

ΠYES :=

{(
y, 1⟨m,i,s,t⟩

) ∣∣∣∣ |y| = m, tA

(
y, 1⟨m,τ(t)⟩

)
∈
[
2i, 2i+1

]
and B

(
y, 1s, 1t

)
= 1 w.p. ≥ 2/3

}
,

ΠNO :=

{(
y, 1⟨m,i,s,t⟩

) ∣∣∣∣ |y| = m, tA

(
y, 1⟨m,τ(t)⟩

)
̸∈
[
2i, 2i+1

]
or B

(
y, 1s, 1t

)
= 0 w.p. ≥ 2/3

}
.

Note that the above problem is in PromiseBPP, since B is a promiseBPP algorithm and tA is
probabilistically polynomial-time checkable. Let

H⟨m,i,s,t⟩ := {0, 1}m −ΠNO,⟨m,i,s,t⟩.

Note that by property of B (recall Lemma 27), for every y ∈ H⟨m,i,s,t⟩, we have

pKτ(t)(y) < s+ log τ(t). (35)
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Now consider any m, i, s, t ∈ N. Since A runs in time polynomial on average with respect to D,
there are constants b and ε such that

b ≥
∑

y∈H⟨m,i,s,t⟩

tA(y)
ε

⟨m, τ(t)⟩
·D⟨m,τ(t)⟩(y)

≥
∑

y∈H⟨m,i,s,t⟩

tA(y)
ε

⟨m, τ(t)⟩
· 2

−pKτ(t)(y)

O(m)
(Equation (34))

≥ |H⟨m,i,s,t⟩| ·
2ε·i

τ(t)3
· 2−s−log τ(t) (Equation (35))

= 2ε·i+log(|H⟨m,i,s,t⟩|)−s−4 log τ(t).

By rearranging, we get that for every x ∈ H⟨m,i,s,t⟩,

ε · i ≤ s− log |H⟨m,i,s,t⟩|+O(log t). (36)

Also, applying language compression (Theorem 30) to (ΠYES,ΠNO), we have that for every y ∈
ΠYES,⟨n,i,s,t⟩ ⊆ H⟨m,i,s,t⟩,

pKpLC(⟨m,i,s,t⟩)(y) ≤ log |H⟨m,i,s,t⟩|+ log pLC(⟨m, i, s, t⟩), (37)

where pLC is some polynomial. Combining Equations (36) and (37), and using the fact that
tA
(
y, 1⟨m,τ(t)⟩) ≤ 2i+1 for every y ∈ ΠYES,⟨m,i,s,t⟩, we have for every such y,

tA

(
y, 1⟨m,τ(t)⟩

)
≤ 2ε

−1·(s−pKp1(⟨m,i,s,t⟩)(y)+log p1(⟨m,i,s,t⟩)),

where p1 is some polynomial.

Worst-case running times for AM. Now fix any input x ∈ {0, 1}n to L, and let m := |(x, r)|
for r ∈ {0, 1}n

c

. Consider any r ∈ {0, 1}n
c

. Let s := pKt(x, r) ≤ m2 and let i be an integer such
that

2i ≤ tA

(
(x, r), 1⟨m,τ(t)⟩

)
≤ 2i+1.

By definition, (x, r) ∈ ΠYES,⟨m,i,s,t⟩. Note that i ≤ m2, since A runs in polynomial time on average
and every string y of length m in the support of the distribution has probability mass at least
2−O(m). Consequently, from the above, we have for every t ≥ m2,

tA

(
(x, r), 1⟨m,τ(t)⟩

)
≤ 2O(pK

t(x,r)−pKp2(t)(x,r)+log p2(t)), (38)

where p2 is some polynomial. Now observe that by weak symmetry of information (Lemma 55), as
long as t is greater than q(m) for some polynomial q, with probability at least 0.99 over r (which
we consider good), we have

pKt(x, r)− pKp2(t)(x, r)

≤
(
pKt/2(x) + |r|+O(log n)

)
−
(
pKpw(p2(t))(x) + |r|+ log pw(p2(t))

)
≤ pKt/2(x)− pKp3(t/2)(x) + log p3(t/2), (39)
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where p3 is some polynomial. Then by Equation (38), Equation (39), and Lemma 31, there exist a
constant d > 0 and t∗ ≤ 2dn/ logn such that for every good r,

tA

(
(x, r), 1⟨m,τ(t∗)⟩

)
≤ 2dn/ logn.

This suggests the following randomized algorithm for solving L.

Given x ∈ {0, 1}n, randomly pick r ∼ {0, 1}n
c

and letm := |(x, r)|. For t = q(m), . . . , 2dn/ logn,
check if tA

(
(x, r), 1⟨m,τ(t)⟩) ≤ 2dn/ logn. If so, run A

(
(x, r), 1⟨n,τ(t

∗)⟩) for at most 2dn/ logn

steps and output whatever it outputs.

It is easy to verify that the above probabilistic algorithm runs in time 2O(n/ logn) and decides L.

5 Learning in Randomized Heuristica

The main result of this section is the following.

Theorem 56. If DistNP ⊆ AvgBPP, then for any time constructible functions s, T, a : N → N, and
ε ∈ [0, 1], SIZE[s(n)] is agnostic learnable on Samp[T (n)]/a(n) in time poly

(
n, ε−1, s(n), T (n), a(n)

)
with sample complexity (

(n+ s(n) + a(n) + log T (n))3

ε8

)1+o(1)

.

5.1 Ingredients

In this section, we will use D to denote a family of distributions (one for each n) and D to denote
a class of family of distributions (e.g., those that are efficiently samplable). For a distribution D
and m ∈ N, let Dm denote the distribution x1 ◦ x2 ◦ · · · ◦ xm where x1, x2, . . . , xm ∼ D.

5.1.1 Learning from RRHS Refutation

Definition 57 (Correlative RRHS-Refutation [KL18, Definition 3]). Let C be a concept class, and
let D be a class of example distributions. A randomized algorithm A is a correlatively random-right-
hand-side-refuter (correlative RRHS-refuter) for C on D with sample complexity m if A satisfies
the following. A takes as input n ∈ N, ε ∈ (0, 1) and a set S =

(〈
x(1), b(1)

〉
, . . . ,

〈
x(m), b(m)

〉)
of

samples, where x(i) ∈ {0, 1}n and b(i) ∈ {0, 1} for every i ∈ [m], and

• Soundness: if the samples S are i.i.d. from a distribution D′ on {0, 1}n × {0, 1} such that
the marginal on {0, 1}n equals Dn for some Dn ∈ Dn and there exists f ∈ Cn with

Pr
⟨x(i), b(i)⟩∼D′

[
b(i) = f(x(i))

]
≥ 1

2
+

ε

2
,

then
Pr
S,A

[A(n, ε, S) = correlative ] ≥ 2/3.
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• Completeness: if the samples S are selected i.i.d. so that x(1), . . . , x(m) ∼ Dn for some
Dn ∈ Dn and b(1), . . . , b(m) ∼ U , then

Pr
S,A

[A(n, ε, S) = random ] ≥ 2/3.

Theorem 58 (Agnostic Learning from RRHS-Refutation [KL18]; see also [HN21, Theorem 5]).
Let C be a concept class, and let D be a class of example distributions. If there exists a correlative
RRHS-refuter for C on D with sample complexity m(n, ε) and running time T (n, ε), then C is
agnostic learnable with

sample complexity = O

(
m(n, ε/2)3

ε2

)
and running time = O

(
T (n, ε/2) · m(n, ε/2)2

ε2

)
.

5.1.2 Probabilistic sampling depth

Definition 59 (Probabilistic Sampling Depth). Let t, t′ ∈ N, where t′ > t. For a family D =

{Dn}n≥1 of distributions, we introduce the (t, t′)-probabilistic-sampling-depth functions psdt,t
′

D :={
psdt,t

′

D,n

}
n≥1

, where

psdt,t
′

D,n(m) = E
X∼Dm

n

[
pKt(X)− pKt′(X)

]
.

For a collection D of families of distributions, we define psdt,t
′

D :=
{
psdt,t

′

D,n

}
n≥1

, where

psdt,t
′

D,n(m) = max
D∈D

psdt,t
′

D,n(m).

Lemma 60 (Small Probabilistic Sampling Depth for Samplable Distributions). There exists a
polynomial p1 : N × N → N such that for any T, a : N → N and n,m ∈ N, the following holds. For
every t ≥ p1(T (n),m), and every t′ > t,

psdt,t
′

Samp[T (n)]/a(n),n(m) ≤ O
(
logm+ log T (n) + a(n) + log t′

)
.

Proof. The proof is essentially the same as that of [HN21, Lemma 6], but uses the unconditional
coding theorem for probabilistic Kolmogorov complexity (Lemma 25).

Fix any Dn ∈ Samp[T (n)]/a(n). Let p1 be the polynomial p in Lemma 25. We have for every
t ≥ p1(T (n),m),

E
x∼Dm

n

[
pKt(x)

]
≤ E

x∼Dm
n

[
pKp1(T (n),m)(x)

]
≤ E

x∼Dm
n

[log(1/Dm
n (x))] +O(log(m) + log T (n) + a(n)) (Lemma 25)

= H(Dm
n ) +O(log(m) + log T (n) + a(n))

≤ E
x∼Dm

n

[K(x)] +O(log(m) + log T (n)) + a(n)

≤ E
x∼Dm

n

[
pKt′(x)

]
+O

(
log(m) + log T (n) + a(n) + log t′

)
, (Lemma 18)
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where the second last inequality uses the fact that for any distribution D, its Shannon entropy
H(D) ≤ Ey∼D [K(y)] (see [LV19b, Theorem 8.1.1] and [HN21, Lemma 5]). Rearranging the above,
we get

E
x∼Dm

n

[
pKt(x)− pKt′(x)

]
≤ O

(
log(m) + log T (n) + a(n) + log t′

)
,

as desired.

5.2 RRHS refuters from probabilistic average-case easiness

We first prove the following technical theorem.

Theorem 61. If DistNP ⊆ AvgBPP, then for any time constructible functions s, T, a : N → N and
for any constant ζ > 0, there is a correlative RRHS-refuter for SIZE[s(n)] under Samp[T (n)]/a(n)
with sample complexity

m :=

(
n+ s(n) + a(n) + log T (n)

ε2

)1+ζ

and running time poly(n,m, T (n)) = poly(n, 1/ε, T (n), a(n), s(n)).

Proof. The proof closely follows that of [HN21, Theorem 8].

The (correlative) RRHS-refuter R. Let τ be the polynomial from Lemma 28. Let ℓs(n) ≤
O(s(n) log s(n)) denote the number of bits needed to encode a function f ∈ SIZE[s(n)]. On input
n ∈ N, ε > 0, and a set S =

(〈
x(1), b(1)

〉
, . . . ,

〈
x(m), b(m)

〉)
of samples, R operates as follows.

1. Compute t := max{p0
(
n ·m2

)
, p1(T (n),m)}, where p0 is the polynomial from Lemma 26 and

p1 is the polynomial from Lemma 60. Also compute t′ := t′(t), where t′ is some polynomial
specified later (in Claim 62).

2. Compute

β := Approxτ -pK
(
X, 1t

)
, and

β′ := Approxτ -pK
(
X ◦ b, 1t′

)
,

where X := x(1) ◦ · · · ◦x(m), b := b(1) ◦ · · · ◦ b(m), and Approxτ -pK is the randomized algorithm
from Lemma 28.

3. Output “correlative” if β′ − β ≤ θ, where θ := m(1− ε2/8) + ℓs(n) + n+ log τ(t), and output
“random” otherwise.

It is easy to verify that the running time of R is poly(n,m, T (n)). Next, we argue its correctness.

Soundness. Suppose we are in the “correlative” case. That is, the labelled examples in S are
sampled i.i.d from some distribution D′ on {0, 1}n × {0, 1}, whose marginal on {0, 1}n is given by
some D ∈ Samp[T (n)]/a(n), and there exists f ∈ SIZE[s(n)] such that

Pr
⟨x(i), b(i)⟩∼D′

[
b(i) = f(x(i))

]
≥ 1

2
+

ε

2
.
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In this case, by a standard concentration bound, the probability over S∼(D′)m that∣∣∣{i ∈ [m] | bi = f(x(i))}
∣∣∣ < (1/2 + ε/4) ·m

is at most exp(−2m(ε/4)2) ≤ o(1), where the last inequality relies on our choice of m. Now observe
the following.

Claim 62. There exists a polynomial t′ such that for any b ∈ {0, 1}m satisfying∣∣∣{i ∈ [m] | bi = f(x(i))}
∣∣∣ ≥ (1/2 + ε/4) ·m,

we have
pKt′(t) (X ◦ b) ≤ pKτ(t)(X) + ℓs(n) +

(
1− ε2/8

)
·m.

Proof of Claim 62. Note that given X, we can compute f(x(1)), . . . , f(x(m)) in time poly(m · ℓs(n))
using the encoding of f , which is of ℓs(n) bits. Note that b and f(x(1)), . . . , f(x(m)) disagree on
at most (1/2 − ε/4) · m coordinates. Then to recover b, we can define a string e ∈ {0, 1}m such
that ei = 1 iff f(x(i)) ̸= bi. Note that e has hamming weight at most (1/2 − ε/4) ·m. Using the
inequality

k∑
i=0

(
m

i

)
≤ 2H2(k/m)·m,

where H2 is the binary entropy function, e can be encoded with H2(1/2 + ε/4) ·m bits, by lexico-
graphic indexing among binary strings of bounded hamming weight. Using the Taylor series of H2

in the neighborhood of 1/2, for δ := ε/4, we have

H2(1/2 + δ) = 1− 1

2 ln 2

∞∑
i=1

(2δ)2i

i(2i− 1)
≤ 1− 2

ln 2
δ2 ≤ 1− 2δ2.

Moreover, using such an encoding, it is not hard to see that e can be reconstructed in time
poly(n,m). Therefore, given X, we can compute b in time poly(n,m) using strings of length ℓs(n)
(which encodes f) and (1 − ε2/8) · m (which encodes e). In other words, if X has probabilistic
τ(t)-time-bounded Kolmogorov complexity k, then

pKt′(t) (X ◦ b) ≤ k + ℓs(n) +
(
1− ε2/8

)
·m,

for some t′(t) := poly(τ(t)). This completes the proof of the claim.

Now, suppose in Step 2 of R, β and β′ output by the algorithm Approxτ -pK are good approx-
imations as given in Lemma 28. Note that this happen with high probability. Then by a union
bound, with probability at least 2/3, over the samples S∼ (D′)m and the internal randomness of
R, we have

β′ ≤ pKt′ (X ◦ b) (β′ is a good approximation)

≤ pKτ(t)(X) + ℓs(n) +
(
1− ε2/8

)
·m (Claim 62)

≤ β + log τ(t) + ℓs(n) +
(
1− ε2/8

)
·m, (β is a good approximation)
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which implies
β′ − β ≤

(
1− ε2/8

)
·m+ ℓs(n) + n+ log τ(t) = θ,

and R will output “correlative”.

Completeness. Suppose we are in the “random” case. That is, b is sampled from Um. As-
suming DistNP ⊆ AvgBPP, by combining symmetry of information (Lemma 26) and probabilistic
incompressibility (Lemma 20), for any X ∈ {0, 1}nm and some polynomial pw, we have

Pr
b∼Um

[
pKτ(t′)(X ◦ b) ≥ pKpw(τ(t′))(X) + (m− 10)− log pw

(
τ(t′)

)]
≥ 1− 1/8. (40)

Let us define
pτ (t) := pw(τ(t

′(t))).

By Markov, we have

Pr
X∼Dm

[
pKt(X)− pKpτ (t)(X) > 8 · psdt,pτ (t)D,n (m)

]
≤

EX∼Dm

[
pKt(X)− pKpτ (t)(X)

]
8 · psdt,pτ (t)D,n (m)

=
1

8
. (41)

Again, let us assume that in Step 2 of R, β and β′ output by the algorithm Approxτ -pK are good
approximations. Then with with probability at least 1 − (1/8 + 1/8 + o(1)) ≥ 2/3 over b∼ Um,
X∼Dm and the internal randomness of R, we have

β′ ≥ pKτ(t′)(X ◦ b)− log τ(t′) (β′ is a good approximation)

≥ pKpw(τ(t′))(X) +m− log
(
pw
(
τ(t′)

)
· τ(t′)

)
(Equation (40))

= pKt(X)−
(
pKt(X)− pKpτ (t)(X)

)
+m− 10− log

(
pτ (t) · τ(t′)

)
≥ β − 8 · psdt,pτ (t)D,n (m) +m− 10− log

(
pτ (t) · τ(t′)

)
, (Equation (41))

which implies

β′ − β ≥ m− 8 · psdt,pτ (t)D,n (m)− log
(
pτ (t) · τ(t′)

)
− 10.

Now we want the above to be greater than θ. We have

(β′ − β)− θ

≥
(
m− 8 · psdt,pτ (t)D,n (m)− log

(
pτ (t) · τ(t′)

)
− 10

)
−
(
m+ ℓs(n) + n+ log τ(t)−mε2/8

)
= mε2/8−

(
n+ ℓs(n) + 8 · psdt,pτ (t)D,n (m) + log

(
pτ (t) · τ(t′) · τ(t)

)
+ 10

)
≥ mε2/8− [n+ ℓs(n) + c · (logm+ log T (n) + a(n)) + log p2(n,m, T (n)) + 10] , (Lemma 60)

where c > 0 is some constant and p2 is some polynomial (that depends on τ , p0, p1 and pw). From
here, it can be easily seen that the above is greater than 0 by our choice of m, provided that n is
sufficiently large. Hence R will output “random”. This completes the proof of the theorem.
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5.3 Concluding the proof

We are now ready to prove Theorem 56.

Theorem 63 (Reminder of Theorem 56). If DistNP ⊆ AvgBPP, then for any time constructible
functions s, T, a : N → N, and ε ∈ [0, 1], SIZE[s(n)] is agnostic learnable on Samp[T (n)]/a(n) in
time poly

(
n, ε−1, s(n), T (n), a(n)

)
with sample complexity(

(n+ s(n) + a(n) + log T (n))3

ε8

)1+ζ

,

where ζ > 0 is any arbitrary small constant.

Proof. The theorem follows by combining Theorem 61 and Theorem 58.
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A Additional Properties of pKt Complexity

A.1 Upper bound on the complexity of estimating pKt

The following says that the problem of estimating the pKt complexity of a given string for a
given t is in promise AM.

Definition 64 (Gap-MINpKT). For a function τ : N → N, let Gapτ -MINpKT be the following
promise problem (ΠYES,ΠNO):

ΠYES :=
{(

x, 1s, 1t
)
| pKt(x) ≤ s

}
,

ΠNO :=
{(

x, 1s, 1t
)
| pKτ(t)(x) > s+ log τ(t)

}
.

Proposition 65. There is a constant c ≥ 1 for which the following holds. For any function τ such
that τ(t) ≥ c · t, Gapτ -MINpKT ∈ promiseAM.

Proof. We first observe that the following problem (Π′
YES,Π

′
NO) is in promiseAM.

Π′
YES =

{(
x, 1s, 1t

)
| pKt

2/3(x) ≤ s
}
,

Π′
NO =

{(
x, 1s, 1t

)
| pKt

1/3(x) > s
}
.

To solve the above problem, on input x, the verifier first sends a random w ∈ {0, 1}t to the prover,
who then sends back a program Mw. Finally, the verifier accepts if and only if |Mw| ≤ s and
Mw(w) outputs x within t steps. It is easy to see that if x ∈ Π′

YES, then the above protocol
accepts with probability at least 2/3. If x ∈ Π′

NO, then the fraction of w ∈ {0, 1}t such that x can
be generated by some size-s program in time t is less than 1/3 (otherwise pKt

1/3(x) would be at
most s), so the protocol accepts with probability less than 1/3. Now the proposition follows from
Lemma 21, which implies that the set ΠNO of NO instances in Gapτ -MINpKT satisfies ΠNO ⊆ Π′

NO,
provided that c is a large enough constant.

A.2 Relations between time-bounded Kolmogorov complexity notions

In this section, we present the tight relations between Kt, rKt, and pKt (see Section 2.5) that
hold under derandomization assumptions.

Proposition 66. The following results hold.

• If E ̸⊆ i.o.SIZE
[
2Ω(n)

]
, then there is a polynomial p such that Kp(t)(x) ≤ rKt(x) + log p(t), for

every t and x.

• If E ̸⊆ i.o.NSIZE
[
2Ω(n)

]
, then there is a polynomial p such that Kp(t)(x) ≤ pKt(x) + log p(t),

for every t and x.
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• If BPE ̸⊆ i.o.NSIZE
[
2Ω(n)

]
, then there is a polynomial p such that rKp(t)(x) ≤ pKt(x)+log p(t),

for every t and x.

Proof. Let x be any string {0, 1}n and t be any integer such that t ≥ n.
For the first item, note that the assumption E ̸⊆ i.o.SIZE

[
2Ω(n)

]
implies that there is a PRG

G : {0, 1}O(log s) → {0, 1}s that (1/s)-fools size-s circuits and has running time poly(s) [IW97].
Suppose rKt(x) ≤ k. Let M ∈ {0, 1}k be a randomized program with running time t that outputs
x with probability at least 2/3. Consider the following function C on inputs of length t:

C(w) = 1 ⇐⇒ M(w) = x.

It is clear that C can be implemented as a poly(t)-size circuit, and by definition the acceptance

probability of C is at least 2/3. Then there exists some seed z ∈ {0, 1}O(log t) such that C(G(z)) = 1,
which implies M(G(z)) = x. This means given M and z, we can deterministically compute x in
time poly(t). In other words, Kpoly(t) ≤ k +O(log t).

Next, we show the second item. The assumption E ̸⊆ i.o.NSIZE
[
2Ω(n)

]
implies that there is a

PRG G′ : {0, 1}O(log s) → {0, 1}s that (1/s)-fools size-s nondeterministic circuits and has running
time poly(s) [SU05]. Now suppose pKt(x) ≤ k. Consider the following function C ′ on t bits.

C ′(w) = 1 ⇐⇒ ∃M ∈ {0, 1}k such that M(w) outputs x within t steps.

It is easy to see that C ′ can be implemented as a size-poly(t) nondeterministic circuit. Then there

exists some seed z ∈ {0, 1}O(log t) such that C ′(G′(z)) = 1. This means for such z, there exists some
program M′ ∈ {0, 1}k (which can depend on z) such that M′(G′(z)) runs t steps and outputs x.
Then given such z and M′, we can computes x in time poly(t), by first computing w := G′(z) and
executing M(w). This yields pKpoly(t)(x) ≤ k +O(log t).

The proof of the third item is essentially the same as that of the second item. The only difference
here is that the assumption BPE ̸⊆ i.o.NSIZE

[
2Ω(n)

]
implies a pseudodeterministic PRG that fools

size-s nondeterministic circuits with seed length O(log s), which follows from the construction of the
PRG in [SU05]. Therefore, at the end of the proof for the second item above, we can successfully
compute w := G′(z) with high probability (over the internal randomness of the algorithm computing
G′), and hence we get rKpoly(t)(x) ≤ k +O(log t).

B Probabilistic Fine-Grained Reduction for UTIME
[
2O(

√
n log n)

]
Theorem 67. NQL× QLSamp ⊆ AvgBPQL =⇒ UTIME

[
2O(

√
n logn)

]
⊆ RTIME

[
2O(

√
n logn)

]
.

We will need the following fine-grained version of Lemma 27.

Lemma 68. If NQL×QLSamp ⊆ AvgBPQL, then there exists a polynomial τ such that the following
promise problem is in promiseBPP:

ΠYES :=
{(

x, 1s, 1t
)
| pKt(x) ≤ s

}
,

ΠNO :=
{(

x, 1s, 1t
)
| pKÕ(t)·τ(|x|)(x) > s+ log τ(t)

}
.
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Proof. Define

L :=

{
(DPk(x; z), w, 1

s, 1n)

∣∣∣∣∃M ∈ {0, 1}s, M(w) outputs x ∈ {0, 1}n within |w| steps
}
,

where c > 0 is some large constant so that L ∈ NQL. Define a distribution family

D :=
{
D⟨nk+k,t,s,n⟩

}
,

each member of which does the following: sample u ∼ Unk+k and w ∼ Ut and then output
(u,w, 1s, 1n). (Again, for the simplicity of presentation, we omit the padding, which is of length
at most Õ(t) · poly(nk).) By assumption, (L,D) ∈ AvgBPQL. Let B be a randomized heuristic
algorithm for (L,D) as described in Lemma 6. Now, define an algorithm B′:

On input (x, 1s, 1t) with x ∈ {0, 1}n, set k = s + 10, sample z ∼ Unk and w ∼ Ut, and
then output B(DPk(x; z), w, 1

s, 1n).

Note that B′ runs in time
tD := Õ(t) · p(n)

for some polynomial p. Below, we show that B′ solves the mentioned promise problem correctly
with high probability in the worst case.

First, consider the case that (x, 1s, 1t) ∈ ΠYES. By the definitions of L and pK, for any choice
of z ∈ {0, 1}nk,

Pr
w

[(DPk(x; z), w, 1
s, 1n) ∈ L] ≥ 2/3.

The definition of B then implies that

Pr
w,z,rB

[B(DPk(x; z), w, 1
s, 1n) = 1] > 1/2,

and so

Pr
rB′

[
B′(x, 1s, 1t) = 1

]
> 1/2, (42)

where rB denotes the internal randomness of B, and rB′ = (w, z, rB) that of B
′.

Now consider the case that (x, 1s, 1t) ∈ ΠNO. For a contradiction, suppose that

Pr
w,z,rB

[B(DPk(x; z), w, 1
s, 1n) = 1] > 1/3. (43)

Recall k = s+ 10. By a counting argument, for randomly selected u and w,

Pr
u,w

[(u,w, 1s, 1n) ∈ L] ≤ 2s · 2nk · 2t

2nk+k+t
=

1

10
.

Then by definition of B,

Pr
u,w,rB

[B(u,w, 1s, 1n) = 1] ≤ 1/9. (44)
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Comparing Equations (43) and (44), we see that B(−,Ut, 1
s, 1n) (2/9)-distinguishes the distribution

DPk(x;Unk) from uniform. Lemma 22 implies that

pKÕ(t)·τ0(n)(x) ≤ k + log τ0(t)

= s+ 10 + log τ0(t),

for some polynomial τ0 that depends on the polynomials p and pDP from Lemma 22. This means
that (x, 1s, 1t) is not in ΠNO, by setting τ properly. This gives the desired contradiction. By
definition of B′, we have that

Pr
rB′

[
B′(x, 1s, 1t) = 1

]
≤ 1/3. (45)

By Equations (13) and (16), B′ yields a promiseBPP algorithm for (ΠYES,ΠNO) via standard error
reduction techniques.

The following is a simple corollary of Lemma 47 and Lemma 20.

Lemma 69 (Fine-Grained Weak Symmetry of Information for pKt). If NQL×QLSamp ⊆ AvgBPQL,
then there exist polynomials p0 and p such that for every sufficiently large x ∈ {0, 1}n, m ∈ N and
p0(n,m) ≤ t ≤ 2n+m,

Pr
u∼{0,1}m

[
pKt(x ◦ u) > pKt·p(nm)(x) +m− log p(t)

]
≥ 0.99.

We will use the following black-box hitting set generator whose outputs can be small relative
to the “hard string” used in its construction.

Lemma 70 ([Hir20, Theorem 4.3]). For any T,m ∈ N with m ≤ 2T , there exists a function
HT,m : {0, 1}T × {0, 1}d → {0, 1}m and a deterministic procedure Recon(−) : {0, 1}a → {0, 1}T ,
where d = O

(
log T + log3m

)
and a = 2m + O

(
log T + log3m

)
such that, for any x ∈ {0, 1}T

and any function D : {0, 1}m → {0, 1} that 0.1-avoids HT,m(x,−), there exists advice α ∈ {0, 1}a
such that ReconD(α) = x. Moreover, HT,m can be computed in time poly(T ) and ReconD can be
computed in time poly(T ) with oracle access to D.

We are now ready to show Theorem 67.

Proof of Theorem 67. Let L ∈ UTIME [T (n)] with verifier V , where T (n) = 2O(
√
n logn). Fix an

input x ∈ {0, 1}n. Let yx ∈ {0, 1}T (n) be the unique L-witness for x. Let B be a promiseBPP
algorithm that solves the promise problem (ΠYES,ΠNO) from Lemma 68.

Let t be any number such that q0(T (n)) ≤ t ≤ 2n/2, where q0 is some polynomial specified
later. Let H := HT (n),m be the hitting set generator from Lemma 70, where m := mx(t) ≤ O(n) is

defined later, and let d := O
(
log T (n) + log3m

)
be the seed length of H.

Using H and B, we will argue that the time-bounded pK complexity of yx is small given x.
First note the following.

Claim 71. There exists a polynomial q such that for every q0(T (n)) ≤ t ≤ 2n/2 and every zH ∈
{0, 1}d,

pKt·q(nm) (x ◦H(yx; zH)) ≤ pKt(x) + d+ log q(t).
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Proof of Claim 71. Let L be the following language

L′ :=

{(
DPk(x ◦H(y; z′); z), w01T (n)c , 1s, 1n, 1m

) ∣∣∣∣ ∃M ∈ {0, 1}s,M(w) outputs x ∈ {0, 1}n

within |w| steps, and V (x, y) = 1

}
,

where c > 0 is some constant so that L′ ∈ NQL. Define a distribution family

D :=
{
D⟨(n+m)k+k,t+T (n)c+1,s,n,m⟩

}
,

each member of which samples u ∼ U(n+m)k+k, w ∼ Ut and outputs(
u,w01T (n)c , 1s, 1n, 1m

)
.

By assumption, (L′, D) ∈ AvgBPQL. Let B′ be a randomized heuristic algorithm for (L′, D) as
described in Lemma 6.

Define s := pKt(x). By definition of pKt and L′, for any fixed z ∈ {0, 1}(n+m)k,

Pr
w

[(
DPk(x ◦H(yx; zH); z), w01T (n)c , 1s, 1n, 1m

)
∈ L′

]
≥ 2/3.

Then by definition of B′, it is easy to see that

Pr
z,w,r′B

[
B′
(
DPk(x ◦H(yx; zH); z), w01T (n)c , 1s, 1n, 1m

)
= 1
]
≥ 1/2. (46)

On the other hand, by a counting argument it is easy to see that for u and w selected uniformly
at random, we have

Pr
u,w

[(
u,w01T (n)c , 1s, 1n, 1m

)
∈ L′

]
≤ 2s · 2t · 2d · 2(n+m)k

2|u| · 2|w|

≤ 1/n.

where the last inequality holds by setting k := s+ d+ log n. By the definition of B′, we have

Pr
u,w,r′B

[
B′
(
u,w01T (n)c , 1s, 1n, 1m

)
= 1
]
≤ o(1). (47)

Given Equations (46) and (47), it is clear that D(−) := B′(−,Ut01
T (n)c , 1s, 1n, 1m

)
is a random-

ized distinguisher for DPk

(
x ◦H(yx; zH);U(n+m)k

)
. Note that provided that q0 is a large enough

polynomial, D needs only O(log t) bits as advice, and then it runs in time

tD := Õ(t+ T (n)c) · poly(nm) ≤ Õ(t) · poly(nm).

Lemma 22 implies that

pKÕ(t)·q(nm) (x ◦H(yx; zH)) ≤ k +O(log t) ≤ pKt(x) + d+ log q(t),

for some large polynomial q. This completes the proof of Claim 71.
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By Lemma 69, there exist polynomial p0 and p such that for every p0(n,m) ≤ t1 ≤ 2n+m

Pr
u∼{0,1}m

[
pKt1(x ◦ u) > pKt1·p(nm)(x) +m− log p(t1)

]
≥ 0.99. (48)

We set t1 := Õ(t · q(nm)) · τ(n +m), where τ is the function from Lemma 68. Note that we can
make the polynomial q0 to be large enough so that t1 satisfies the condition for which Equation (48)
holds. Now we choose m so that

pKt1·p(nm)(x) +m− log p(t1) ≥ s+ log τ(t · q(nm)). (49)

That is, we set
m :=

(
pKt(x)− pKt·nc

(x)
)
+ c · log t,

where c > 0 is some large constant, and we use the fact that t ≤ 2n/2 to simplify t1. Define the
following (probabilistic) function:

D(−) := ¬B
(
x ◦ −, 1s, 1t·q(nm)

)
.

Observe the following properties of D.

• For every z ∈ {0, 1}d, PrD [D(H(yx; z)) = 0] ≥ 2/3. This follows from Claim 71 and the
correctness of B on solving the promise problem (ΠYES,ΠNO) from Lemma 68.

• For at least 0.99 fraction of β ∈ {0, 1}m, PrD [D(β) = 1] ≥ 2/3. This follows from Equations
(48) and (49) (and the correctness of B).

• D runs in time poly(t).

At this point, we can see that D is a randomized function that distinguishes H(yx;Ud) from Um,
and by randomly fixing its internal randomness we get a deterministic distinguisher with good
probability. However, in order to utilize the reconstruction procedure in Lemma 70 to recover yx,
we need a deterministic function that avoids H. By amplifying the success probability of D on the
“promised” inputs, we can show that randomly fixing the internal randomness of D gives a function
that avoids H with high probability. More specifically, using standard error reduction techniques,
we can make both the probability in the first two items above at least 1 − 1/(4 · 2m), which only
causes a multiplicative overhead of poly(m) in the running time. By abusing notation, we use the
same D to denote this new function with small error. Now consider the set S of inputs for which
D has this small error. That is,

S :=
{
H(yx; z) | z ∈ {0, 1}d

}
∪
{
β ∈ {0, 1}m | Pr

D
[D(β) = 1] ≥ 1− 1/(4 · 2m)

}
.

Note that |S| ≤ 2m. For β ∈ S, let us say that the correct answer of β is 0 (resp. 1) if β is in the
first (resp. second) subset in the definition of S. By a union bound, we have

Pr
rD∼{0,1}poly(t)

[∃β ∈ S such that D(β; rD) is not correct] ≤ |S| · 1

4 · 2m
≤ 1

4
, (50)

where rD above denotes the internal randomness of D. This means with probability at least
2/3 over a uniformly random rD, D(−; rD) is a deterministic function that is correct on all the
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inputs in S. In particular, such a function 0.1-avoids H. Let us say that rD is good if this is
true. Let Recon(−) : {0, 1}a → {0, 1}T (n) be the reconstruction procedure in Lemma 70, where
a := 2m+O

(
log T + log3m

)
. We have

Pr
rD∼{0,1}poly(t)

[
∃α ∈ {0, 1}a such that ReconD(−;rD)(α) = x

]
≥ Pr

rD

[
∃α ∈ {0, 1}a such that ReconD(−,rD)(α) = x

∣∣∣ rD is good
]
·Pr
rD

[rD is good]

≥ 2

3
. (Lemma 70 and Equation (50))

Note that given x, D can be constructed using the integers s, t, n, m and the code for B, which
can be encoded using O(log t) bits. Then the above implies

pKpoly(t·T ) (yx | x) ≤ a+O(log t) ≤ 2m+O
(
log t+ log3m

)
. (51)

Note that the above holds for every q0(T (n)) ≤ t ≤ 2n/2. Also, recall that m = pKt(x)− pKt·c(x)+
c · log t for some constant c > 0. By Lemma 46, there exists some t∗ such that

q0(T (n)) ≤ t∗ ≤ q0(T (n)) · 2c·
√
n logn ≤ 2O(

√
n logn) and pKt∗(x)− pKt∗·nc

(x) ≤ O
(√

n log n
)
.

Then for such t∗, we have m ≤ O
(√

n log n
)
. Therefore, plugging this t∗ into Equation (51) for t,

we have that there exists some constant d > 0 such that

pK2d·
√
n logn

(yx | x) ≤ d ·
√
n log n.

This suggests the following probabilistic algorithm A for solving L:

On input x ∈ {0, 1}n, A samples w ∼ {0, 1}d·
√
n logn. It then exhaustively searches over

all M ∈ {0, 1}d·
√
n logn, running M(w, x) for 2d·

√
n logn steps to produce some output y.

A accepts iff a y is obtained such that V (x, y) = 1.

This completes the proof.
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