
One-Way Functions and pKt Complexity

Shuichi Hirahara∗ Zhenjian Lu† Igor C. Oliveira‡

Abstract

We introduce pKt complexity, a new notion of time-bounded Kolmogorov complexity that
can be seen as a probabilistic analogue of Levin’s Kt complexity. Using pKt complexity, we
upgrade two recent frameworks that characterize one-way functions (OWF) via symmetry of
information and meta-complexity, respectively. Among other contributions, we establish the
following results:

(i) OWF can be based on the worst-case assumption that BPEXP is not contained infinitely
often in P/poly if the failure of symmetry of information for pKt in the worst-case implies
its failure on average.

(ii) (Infinitely-often) OWF exist if and only if the average-case easiness of approximating pKt
with two-sided error implies its (mild) average-case easiness with one-sided error.

Previously, in a celebrated result, Liu and Pass (CRYPTO 2021 and CACM 2023) proved
that one can base (infinitely often) OWF on the assumption that EXP ⊈ BPP if and only if there
is a reduction from computing Kt on average with zero error to computing Kt on average with
two-sided error. In contrast, our second result shows that closing the gap between two-sided
error and one-sided error average-case algorithms for approximating pKt is both necessary and
sufficient to unconditionally establish the existence of OWF. Taking into account previous work,
we argue that pKt is the most appropriate measure of time-bounded Kolmogorov complexity for
the investigation of one-way functions.

∗National Institute of Informatics, Japan. E-mail: s hirahara@nii.ac.jp
†University of Warwick, UK. E-mail: zhen.j.lu@warwick.ac.uk
‡University of Warwick, UK. E-mail: igor.oliveira@warwick.ac.uk

1

Contents

1 Introduction 3
1.1 Context and Motivation . 3
1.2 Our Contributions . 4

1.2.1 pKt: A Probabilistic Analogue of Levin’s Kt Complexity 4
1.2.2 OWF from BPEXP Lower Bounds via Worst-Case to Average-Case Failure

of SoI . 4
1.2.3 OWF via One-Sided to Two-Sided Error Reductions for Approximating pKt . 6

1.3 Techniques . 8
1.4 Directions and Open Problems . 12

2 Preliminaries 13
2.1 One-Way Functions . 13
2.2 Kolmogorov Complexity . 14
2.3 Pseudorandomness . 15
2.4 Natural Properties . 15

3 pKt: Probabilistic Levin Complexity 16
3.1 Useful Properties of pKt . 16
3.2 Notions of Average-Case Tractability for Approximating pKt 18

4 One-Way Functions and Asymmetry of Information for pKt 22
4.1 Equivalence of OWF and Average-Case Asymmetry of Information 22
4.2 Asymmetry of Information from Circuit Lower Bounds 27
4.3 Proof of Theorem 1 . 30
4.4 Non-Existence of Natural Properties via Reductions from Worst-Case to Average-

Case Asymmetry of Information . 30

5 One-Way Functions and Hardness of Approximating pKt 30
5.1 Equivalence of OWF and Average-Case Hardness of Approximating pKt 30
5.2 Hardness of Approximating pKt with Mild-One-Sided Error 32
5.3 Proof of Theorem 3 . 35
5.4 PSPACE-Relativization Barrier for One-Sided to Two-Sided Error Reductions 35

A One-Way Functions and Worst-Case SoI for pKt with Computational Depth 41
A.1 Worst-Case SoI with Computational Depth from Inverting One-Way Functions . . . 42
A.2 Average-Case SoI from Worst-Case SoI with Computational Depth 45

2

1 Introduction

1.1 Context and Motivation

This paper is primarily concerned with research directions (1) and (2) described next:

(1) Existence of one-way functions.

A one-way function is a function that is easy to compute but hard to invert on average [DH76].
Due to its equivalence to several basic cryptographic primitives, such as private-key encryption
[GM84], pseudorandom generators [HILL99], digital signatures [Rom90], and commitment schemes
[Nao91], the existence of one-way functions is widely regarded as the most important open problem
in Cryptography. In order to be precise in our subsequent discussion, we capture the question of
the existence of one-way functions through the following formal statement:

∃OWF: There is a function f = {fn} ∈ FP, where each fn : {0, 1}n → {0, 1}poly(n), such that for
every probabilistic polynomial time (PPT) algorithm A, and for every large enough n,

Pr
A, x∼{0,1}n

[A(fn(x)) ∈ f−1
n (fn(x))] ≤

1

nω(1)
.

(2) Base one-way functions on a natural worst-case computational assumption.

Since a proof of the existence of one-way functions would imply that P ̸= NP, a less ambitious
problem is whether we can base their existence on a widely believed worst-case complexity as-
sumption. This question has also received significant attention over the past several decades (see,
e.g. [Imp95, AGGM06, BT06, BB15, Nan21, HN23, BLMP23, LP23a] and references therein).

Recently, there have been attempts to investigate directions (1) and (2) through the lens of
the theory of (time-bounded) Kolmogorov complexity, which studies the minimum encoding length
of binary strings according to different measures of complexity. Interestingly, the new approaches
are complete, in the sense that they provide both necessary and sufficient conditions to achieve (1)
and (2). We can categorize these approaches into two strands of research:

(A) Structural theory of time-bounded Kolmogorov complexity.

This research direction relates the existence of one-way functions to the failure of key properties
of (time-unbounded) Kolmogorov complexity in the time-bounded setting, such as language com-
pression, conditional coding, and symmetry of information.

(B) Complexity of computing time-bounded Kolmogorov complexity.

This research direction, often referred to as meta-complexity, connects one-way functions to the
computational hardness of estimating the time-bounded Kolmogorov complexity of a given string.

In both (A) and (B), several measures of (time-bounded) Kolmogorov complexity have been
considered, such as Kpoly, pKpoly and rKpoly in (A), as in [LM93, LW95, HIL+23], and K, Kpoly,
pKpoly, Kt, KT, and cKpoly in (B), as in [LP20, LP21, RS21, IRS22, LP22, LP23b].

In this work, we advance this area of research by proposing a new measure of time-bounded
Kolmogorov complexity that offers significant benefits for the investigation of connections between
(A) and (B) and directions (1) and (2). We describe our contributions in detail next.

3

1.2 Our Contributions

1.2.1 pKt: A Probabilistic Analogue of Levin’s Kt Complexity

Recall that the Kolmogorov complexity of a string x ∈ {0, 1}∗, denoted K(x), is the description
length |p| ∈ N of the shortest program p that prints x. Formally, we fix a universal machine U , and
minimize over the length of all strings p such that U(p) = x.

Despite the numerous applications of Kolmogorov complexity, its inherent uncomputability
becomes an important issue in situations where an upper bound on the running time of algorithms
is relevant. To mitigate this issue, Levin [Lev84] introduced a time-bounded variant of Kolmogorov
complexity called Kt. In Levin’s definition, the complexity of a string x considers both the length
of a program p generating x and its running time. Formally, Kt(x) denotes the minimum over
|p|+ ⌈log t⌉, where p is a string such that U(p) = x when U computes for at most t steps over the
input string p. It is also possible to consider the conditional Kt complexity of a string x given y,
denoted Kt(x | y). In this case, in addition to the input string p, we assume that the universal
machine U has random access to the string y. While the log t term might seem arbitrary at first,
it leads to a close relationship between Kt complexity and optimal search algorithms. For this and
other reasons, Levin’s definition has been highly influential in algorithms and complexity theory
(see, e.g., [All01, All92, All17]).

In this work, we put forward a probabilistic variant of Kt complexity called pKt. Informally, the
new definition is simply Kt in the presence of public randomness, i.e., x has “small” pKt complexity
if with probability at least 2/3 over the randomness r, x has “small” Kt complexity given access
to r (think of it as Kt in the “Common Random String” (CRS) model). Formally, for a string
x ∈ {0, 1}∗,

pKt(x) := min

{
k ∈ N

∣∣ Pr
r∼{0,1}2k

[
Kt(x | r) ≤ k

]
≥ 2

3

}
.

Thus bounded pKt complexity means that in the presence of a typical random string r, x has
bounded Kt complexity. A key advantage of pKt over Kt is that the former considers randomized
computations, which provides a much more suitable setting for cryptography.

Our definition of pKt is inspired by rKt, a variant of Kt complexity considered in [Oli19], and
pKpoly, a similar probabilistic notion of Kolmogorov complexity for fixed time bounds considered in
[GKLO22] (see Section 2 for the corresponding definitions). More information about probabilistic
notions of time-bounded Kolmogorov complexity is available in [LO22].

1.2.2 OWF from BPEXP Lower Bounds via Worst-Case to Average-Case Failure of
SoI

We explore the possibility of basing one-way functions on a mild worst-case computational
assumption. We consider the widely believed hypothesis that BPEXP ⊈ i.o.SIZE[poly], i.e., that
there is a language computable in probabilistic time 2poly(n) that requires super-polynomial size
Boolean circuits on all large enough input lengths. (Note that this is significantly weaker than the
standard hypothesis from derandomization that E ⊈ i.o.SIZE[2o(n)] [IW97].) In order to state our
result, we first need to review a central notion from the theory of Kolmogorov complexity.

Symmetry of Information (SoI) is a fundamental property of Kolmogorov complexity [ZL70]
that has found applications in a number of areas (see, e.g., [SUV17, LV19]). It states that for every
pair of strings x, y ∈ {0, 1}n,

K(x, y) ≈ K(y) + K(x | y) ≈ K(x) + K(y | x),

4

up to an additive factor of order ±O(log n) in each equation. In other words, SoI says that: (i) to
describe both x and y it is sufficient to describe x optimally without considering y, then describe
y optimally assuming access to a description of x; and (ii) there is no significantly better way to
describe the pair x, y. While (i) is easily seen to hold, (ii) is non-trivial and states that

K(x, y) ≥ K(x) + K(y | x)−O(log n).

Interestingly, while SoI holds for time-unbounded Kolmogorov complexity, it is known that it
fails for Levin’s Kt complexity. More precisely, [Ron04] established that for every large n, there is
a pair of strings x, y ∈ {0, 1}n such that

Kt(x, y) < Kt(x) + Kt(y | x)− ω(log n).

In contrast, whether SoI fails for other measures of time-bounded Kolmogorov complexity re-
mains open. It is known that this must be the case under the existence of one-way functions
[LM93, LW95]. More recently, [HIL+23] proved that SoI fails for pKpoly in a certain average-case
sense if and only if one-way functions exist. In other words, it is not only sufficient but also
necessary to understand SoI in time-bounded Kolmogorov complexity in order to determine the
existence of one-way functions. Unfortunately, while SoI fails for Kt (unconditionally), we appear
to be far from establishing the failure of SoI for polynomial-time measures such as pKpoly.

This motivates the consideration of the failure of SoI for pKt complexity, which is merely a
variant of Kt in the presence of a random string. To investigate this question and its connections
to cryptography, we introduce the following statements.

Worst-Case-Asymmetry-pKt: For every constant c > 0, if n is large enough then there exist x, y ∈
{0, 1}n such that

pKt(x, y) < pKt(x) + pKt(y | x)− c · log n.

Average-Case-Asymmetry-pKt: There is a polynomial-time samplable distribution family {Dn},
where each Dn is supported over {0, 1}n×{0, 1}n, and a polynomial q such that for every constant
c > 0 and for every large enough n,

Pr
(x,y)∼Dn

[pKt(x, y) < pKt(x) + pKt(y | x)− c · log n] ≥ 1

q(n)
.

We are now ready to state the main result of this section.

Theorem 1 (Conditional Equivalence Between OWF and Worst-to-Average-Case Failure of SoI).
Under the assumption that BPEXP ⊈ i.o.SIZE[poly], the following equivalence holds:

(Worst-Case-Asymmetry-pKt ⇒ Average-Case-Asymmetry-pKt) ⇐⇒ ∃OWF

Additionally, we have
Average-Case-Asymmetry-pKt ⇐⇒ ∃OWF

BPEXP ⊈ i.o.SIZE[poly] =⇒ Worst-Case-Asymmetry-pKt

As a consequence of Theorem 1, we can base one-way functions on the worst-case hardness
assumption BPEXP ⊈ i.o.SIZE[poly] if the failure of SoI for pKt in the worst case implies its failure
on average. Note that the assumption that BPEXP ⊈ i.o.SIZE[poly] is significantly weaker than
NP ⊈ i.o.SIZE[poly].

5

Corollary 2. Suppose that Worst-Case-Asymmetry-pKt ⇒ Average-Case-Asymmetry-pKt. Then
BPEXP ⊈ i.o.SIZE[poly] ⇒ ∃OWF.

In fact, we show that Average-Case-Asymmetry-pKt is equivalent to a worst-case version of
asymmetry of information with some additive error: pKt(x, y) < pKt(x)+pKt(y | x)−O(cdt(x, y)+
log t) for some x, y ∈ {0, 1}n, and some t ≥ poly(n), where cdt(x, y) := pKt(x, y)−K(x, y) is called
computational depth. Thus, we can base one-way functions on BPEXP ⊈ i.o.SIZE[poly] if the failure
of SoI for pKt in the worst case is witnessed by a pair (x, y) of strings with small computational
depth. See Appendix A for details.

We note that the relation between worst-case and average-case complexity is well understood in
certain settings, such as with respect to computational hardness against non-uniform circuits (see,
e.g., [STV01, CLLO21] and references therein). Whether similar “amplification” techniques can be
developed in the context of (a)symmetry of information is an intriguing research direction.

It would be very interesting to remove the assumption BPEXP ⊈ i.o.SIZE[poly] from Theorem 1.
Towards showing that the implication Worst-Case-Asymmetry-pKt ⇒ Average-Case-Asymmetry-pKt
yields one-way functions, we prove, without the lower bound assumption, that if the implication
Worst-Case-Asymmetry-pKt ⇒ Average-Case-Asymmetry-pKt is true, then natural properties [RR97]
against sub-exponential size circuits do not exist. (The latter statement about natural properties
is closely related to the existence of one-way functions of quasi-polynomial security.) We refer to
Section 4.4 for more details about this result.

1.2.3 OWF via One-Sided to Two-Sided Error Reductions for Approximating pKt

In this section, we consider the more ambitious goal of unconditionally proving the existence of
one-way functions. As mentioned above, several recent results have shown that to achieve this goal
it is sufficient to prove that certain meta-computational problems about time-bounded Kolmogorov
complexity are computationally hard [LP20, LP21, RS21, IRS22, LP22, LP23b].

We upgrade this approach by showing that obtaining a reduction from two-sided average-case
approximations of pKt to one-sided average-case approximations of pKt suffices to show the existence
of one-way functions. In other words, instead of proving an unconditional lower bound, as in
previous papers, designing a reduction between two notions of average-case complexity is enough.

To formalize this result, we will need a couple of definitions. For a function τ : N → N, let
GapMpKtP[τ] be the following promise problem (YES,NO):

YES := {(x, 1s) | pKt(x) ≤ s} ,
NO := {(x, 1s) | pKt(x) > s+ τ(|x|)} .

For an algorithm A, x ∈ {0, 1}∗, and s ∈ N, we say that A decides GapMpKtP[τ] on (x, 1s) if the
following holds:

A(x, 1s) =

1 if pKt(x) ≤ s,

0 if pKt(x) > s+ τ(|x|),
either 0 or 1 otherwise.

We will also need the following statements.

2-Sided-Error-Approx-pKt: For every polynomial-time samplable distribution family {Dn}n sup-
ported over {0, 1}n, and every polynomial q, there exist a PPT algorithm A and a constant c > 0

6

such that for all sufficiently large n and all 1 ≤ s ≤ n+O(log n),

Pr
x∼Dn,A

[A decides GapMpKtP[τ] on (x, 1s)] ≥ 1− 1

q(n)
,

where τ(n) = c · log n.

Mild-1-Sided-Error-Approx-pKt: There is ε > 0 and a PPT algorithm B such that, for every large
enough n, the following holds:

(1) If x ∈ {0, 1}n and pKt(x) ≤ nε, then PrB[B(x) = 1] ≥ 2
3 .

(2) With probability at least 1/n over x ∼ {0, 1}n, PrB[B(x) = 0] ≥ 2
3 .

(Note that, while 2-Sided-Error-Approx-pKt considers an arbitrary polynomial-time samplable dis-
tribution, Mild-1-Sided-Error-Approx-pKt is only concerned with the uniform distribution.)

A remark about terminology is in order. We note that any PPT algorithm B that accepts every
string x with pKt complexity at most nε and rejects every string x with pKt complexity at least
0.99n satisfies conditions (1) and (2) above. This is because one can show that the overwhelming
majority of n-bit strings have pKt complexity close to n. Since (2) significantly relaxes the correct-
ness requirement of B on strings of large complexity, we can think of the algorithm B as a mild
approximator for pKt. Regarding the error, if we think of strings x with pKt complexity at most nε

as positive instances, and strings x with pKt complexity at least 0.99n as negative instances, then
B makes mistakes only on negative instances. On the other hand, the algorithm A in the statement
2-Sided-Error-Approx-pKt can make mistakes on both negative and positive instances. Therefore, A
is a two-sided error algorithm, while B is one-sided. (In Section 1.3 below, we discuss a proof that
Mild-1-Sided-Error-Approx-pKt ⇒ 2-Sided-Error-Approx-pKt.)

Similarly to the statement ∃OWF defined above, we can consider the weaker statement ∃i.o.OWF,
which postulates the existence of one-way functions that are hard to invert on infinitely many input
lengths. (The precise definition of ∃i.o.OWF appears in Section 2.)

We are ready to state the main result of this section.

Theorem 3 (Equivalence Between OWF and One-Sided to Two-Sided Error Reductions for pKt).
The following equivalence holds:

(2-Sided-Error-Approx-pKt ⇒ Mild-1-Sided-Error-Approx-pKt) ⇐⇒ ∃i.o.OWF

Additionally, we have1

¬ 2-Sided-Error-Approx-pKt ⇐⇒ ∃i.o.OWF

¬Mild-1-Sided-Error-Approx-pKt holds unconditionally

Previously, in a celebrated result, Liu and Pass [LP21] proved that one can base (infinitely
often) OWF on the assumption that EXP ⊈ BPP if and only if there is a reduction from computing
Kt on average with zero error under the uniform distribution to computing Kt on average with
two-sided error. In contrast, as a consequence of Theorem 3, (infinitely often) one-way functions
exist unconditionally if there is a probabilistic average-case polynomial-time reduction from mildly

1We state the result in this way to allow for a direct comparison with prior work.

7

approximating pKt with one-sided error to approximating pKt with two-sided error.2 Moreover, the
existence of a quasi-polynomial-time reduction suffices, due to the proof of a slightly stronger result
in Section 1.3 below. Therefore, this result shows that the hardness needed for one-way functions
comes from the difference between 1-sided and 2-sided error, and not from the assumption that
EXP ⊈ BPP.

Theorem 3 suggests a tantalizing possibility: the existence of one-way functions would follow
from the design of an efficient reduction involving different notions of average-case complexity for
the same computational task.3 For instance, a reduction of this nature is known for UP∩ coUP and
can be constructed from an instance checker [HS22].

Given the stakes, it is natural to consider potential barriers that one might need to overcome
when attempting to obtain such a reduction. In our next result, we establish that a reduction cannot
be obtained through the use of relativizing techniques (in the sense of [BGS75]). More precisely, we
consider a scenario where an oracle O is available to all computations, i.e., the universal machine
defining pKt, the samplers defining the polynomial-time samplable distributions, and the algorithms
that attempt to approximate pKtO. We prove the following result.

Theorem 4. There exists an oracle O ∈ PSPACE relative to which 2-Sided-Error-Approx-pKt is
true, but Mild-1-Sided-Error-Approx-pKt is false.

In other words, techniques that hold in the presence of an arbitrary oracle cannot be used to
obtain a one-sided to two-sided error reduction for approximating pKt. Indeed, Theorem 4 provides
an even stronger PSPACE-relativization barrier in the sense of [HLR23]. We refer to Section 5.4 for
further discussions on this barrier.

We remark that many techniques employed in the investigation of time-bounded Kolmogorov
complexity and meta-complexity relativize, but not all of them (see [Hir22a] for a striking recent
example). For this reason, we view Theorem 4 more as a guiding principle than a strong negative
result suggesting that one should not investigate such reductions.

1.3 Techniques

In this section, we discuss the proofs of Theorem 1 and Theorem 3, which rely on some inter-
mediate results that might be of independent interest. Since our arguments make use of a number
of techniques from time-bounded Kolmogorov complexity and rely on several ideas from previous
papers, we only provide a high-level exposition, referring to the main body of the paper for further
technical details. After this discussion, we summarise the advantages of pKt complexity over other
time-bounded Kolmogorov complexity measures.

OWF and Worst-Case to Average-Case Failure of SoI for pKt (Theorem 1). First, a
careful adaptation of the techniques from [HIL+23] and [LW95] allows us to establish an equivalence
between the failure of SoI for pKt on average and the existence of one-way functions.

Theorem 5. The following equivalence holds:

Average-Case-Asymmetry-pKt ⇐⇒ ∃OWF.

2It is also possible to define zero-error and one-sided error (as opposed to mildly one-sided error) average-case
notions of approximating pKt. However, employing them in Theorem 3 would make the result weaker (i.e., it is easier
to obtain a mild one-sided error algorithm from a two-sided error algorithm than to obtain a zero-error algorithm
from a two-sided error algorithm). For completeness, we provide a comprehensive discussion of these notions in
Section 3.2.

3In a sense, one can think of the result as an algorithmic approach to establish the existence of one-way functions.

8

However, the more complex notion of pKt introduces additional technicalities, as we explain
next. Using ideas from [LW95], it can be shown that if SoI for Kpoly holds on average, then for an
average image y of the candidate one-way function, one can upper bound the Kpoly complexity of
most (say, at least 1/2) of the pre-images x of y as follows.

Kpoly(x | y) ≲ log |f−1(y)| =: k.

Then by defining a sampling procedure that randomly picks a program of size k and run it for
polynomially many steps (conditional on y), x can be obtained with probability roughly 2−k, which
is 1/|f−1(y)|. Since this holds for at least |f−1(y)|/2 pre-images, it follows that we obtain some
pre-image with decent probability. (Contrapositively, if ∃OWF then asymmetry of information for
Kt holds on average.)

Using similar ideas, we can show that if average-case SoI for pKt holds, then for an average
image y of the candidate one-way function, one can upper bound the pKt complexity of most of its
pre-images x as follows.

pKt(x | y) ≲ log |f−1(y)| =: k.

Now since we can only upper bound the pKt complexity of a pre-image (instead of pKpoly), the
previously mentioned sampling procedure no longer works. This is because, by the definition of

pKt, the above only implies that for a uniformly random string r ∈ {0, 1}2
k

, there are integers s
and t such that s + log t ≤ k and there is a program of size s that, given y and r, runs in time t
and outputs x. In particular, t may not be bounded by poly(n) in this case.

To cope with this issue, we further observe that for most of the pre-images x, with high probability

over r ∼ {0, 1}2
k

, any program that generates x, given r and y, must be large in the sense that

K(x | y, r) ≥ |f−1(y)| −O(log n).

This can by shown by using a counting argument. Now given the above, we can say that for a

uniformly random string r ∈ {0, 1}2
k

, there are integers s and t such that s + log t ≤ k and there
is a program of size s that, given y and r, runs in time t and outputs x. Moreover, s must be at
least k −O(log n). Note that this implies t = poly(n).

At this point, it seems we can carry out the previous argument and show that we can obtain a

pre-image of y in polynomial time, by randomly picking a string r ∈ {0, 1}2
k

, a program p ∈ {0, 1}≤k

and running p for poly(n) steps, while given oracle access to r and y. However, there is one more
issue. To perform this sampling procedure, we need to pick a uniformly random string r of length
2k, which is not necessarily poly(n). Fortunately, since we only need to run our programs for poly(n)
steps, we do not need to keep the entire random string. Instead, we can generate random bits on-
the-fly and maintain the same behavior of our program as if it were running with a pre-generated
random string.

Next, complementing Theorem 5, we explore the failure of SoI for pKt in the worst case. We
are able to show that the latter holds under a worst-case circuit lower bound assumption for a
language in BPEXP. This is a key result which allows us to link a worst-case lower bound in the
complexity-theoretic regime to the cryptographic regime in Theorem 1.

Theorem 6. If BPEXP ⊈ i.o.SIZE[poly] then Worst-Case-Asymmetry-pKt holds.

To our knowledge, this is the first result showing the failure of symmetry of information for
a probabilistic notion of time-bounded Kolmogorov complexity under a lower bound assumption
in the complexity-theoretic regime, as opposed to a lower bound assumption in the cryptographic
regime (e.g., [LW95, HIL+23]).

9

In Theorem 6 the goal is to construct a pair (x, y) of n-bit strings witnessing the asymmetry of
information of this pair with respect to pKt complexity. Inspired by the unconditional construction
of such a pair with respect to Kt complexity [Ron04], we attempt a generalization of the argument
to the probabilistic setting of pKt. The construction of [Ron04] relies on a simple (deterministic)
exhaustive search that defines an appropriate pair (x, y) and certifies the necessary Kt bounds
for the strings. Unfortunately, in a probabilistic setting, it is unclear if a similar (probabilistic)
exhaustive search specifies a canonical pair (x, y) with the desired properties, which is needed in
order to obtain upper bounds on probabilistic Kolmogorov complexity.

In more detail, a key step in the proof from [Ron04] is to compute given a string y the set
SKt
y ⊆ {0, 1}n of strings of conditional Kt complexity at most s, for some threshold s. This is done

in time O(2s) using a deterministic algorithm A that decides whether Kt(x | y) ≤ s for a given x.
In our case, we are only able to use a corresponding randomized algorithm B that checks whether
pKt(x | y) ≤ s or pKt(x | y) ≥ 2s, with no guarantee on the remaining instances. Unfortunately,
the exhaustive search over all strings performed with the help of B will not produce a fixed set
SpKt
y , since its behaviour outside the promise region means that on different executions a different

set of strings could be added to SpKt
y , according to the internal randomness of B.

We attempt to fix this issue under the assumption that BPEXP ⊈ i.o.SIZE[poly], which is
sufficient for the construction of a non-trivial pseudodeterministic pseudorandom generator. The
latter allows us to perform an exhaustive search over probabilistic algorithms in a way that produces
a canonical pair (x, y) with high probability.

It turns out that this is not quite enough to finish the proof, because under the weak lower
bound assumption BPEXP ⊈ i.o.SIZE[poly] we are only able to construct strings of conditional pKt

complexity larger than s in time roughly 22
o(s)

. This is an important issue that is not present
in [Ron04]. To address this difficulty, we show via a more sophisticated iterative process for con-
structing strings that symmetry of information is indeed violated for some pair (x, y) specified
during the process. Since this is somewhat delicate and technical to describe, we refer the reader
to Section 4.2.

It is easy to see that Theorem 1 follows from Theorem 5 and Theorem 6 (see Section 4.3).4

OWF and 1-Sided to 2-Sided Error Reductions for Approximating pKt (Theorem 3).
To establish this result, we first obtain an equivalence between the existence of (infinitely often)
one way functions and the average-case hardness of approximating pKt complexity with two-sided
error.

Theorem 7. The following equivalence holds:

¬ 2-Sided-Error-Approx-pKt ⇐⇒ ∃i.o.OWF.

The proof of Theorem 7 makes use of a connection between one-way functions and the hardness
of approximating (time-unbounded) Kolmogorov complexity K [IRS22], which can be adapted to
pKt by investigating the relation between K and pKt for strings generated by a polynomial-time
samplable distribution. In more detail, the argument in [IRS22] relied on the use of the coding
theorem for time-unbounded Kolmogorov complexity. Here, we extend their approach and employ
a recently discovered efficient coding theorem for pKpoly [LOZ22], which also applies to pKt.

4We note that the proof that there are strings (x, y) for which symmetry of information fails is by constructing
such strings for which the running time t of the pKt witness is exponential. On the other hand, the proof that average-
case symmetry of information implies that we can break any one-way function uses the fact that on any samplable
distribution, with high probability on the sample y, the pKt witness has polynomial running time. Bridging this gap
is a very interesting research direction.

10

Next, we establish an unconditional lower bound against probabilistic algorithms that mildly
approximate pKt on average with one-sided error.

Theorem 8. Mild-1-Sided-Error-Approx-pKt is false. Moreover, the corresponding lower bound also
holds against randomized algorithms running in time npoly(logn).

Theorem 8 highlights an important difference between pKt and Kt that plays a central role in the
proof of Theorem 3: we can establish unconditional complexity lower bounds for computing pKt,
while the same result is unknown for Kt. The proof of Theorem 8 modifies an argument employed
to show a complexity lower bound of a similar nature for estimating rKt complexity [Oli19]. It can
be described as an indirect diagonalization that heavily relies on techniques from computational
pseudorandomness. The proof relies on the following key lemmas:

1. If pKt can be approximated on average with mild-one-sided error in time npoly(logn), then
BPE ⊆ SIZE[npoly(logn)].

2. If pKt can be approximated on average with mild-one-sided error in time npoly(logn), then
PSPACE ⊆ BPTIME[npoly(logn)]. In particular, under this assumption DSPACE[2n

o(1)
] ⊆ BPE.

(We observe that this step is problematic in the setting of Kt, as it relies on techniques from
pseudorandomness whose underlying algorithms are randomized.)

These two lemmas, which require the analysis of different pseudorandom generators and
of the time-bounded Kolmogorov complexity of their output strings, use that pKt is both
“probabilistic” and “exponential” (as opposed to Kt, which is “deterministic”, and pKpoly,
which is “polynomial”).

3. There is a language in DSPACE[2n
o(1)

]\SIZE[npoly(logn)].

The proof of this third lemma uses a standard diagonalization technique.

AssumingMild-1-Sided-Error-Approx-pKt holds, we obtain from Items 1 and 2 that DSPACE[2n
o(1)

] ⊆
BPE ⊆ SIZE[npoly(logn)], in contradiction with Item 3.

Finally, Theorem 3 easily follows from Theorem 7 and Theorem 8 (see Section 5.3).

We note in passing that Theorem 7 can be used to give a reduction from the task of approx-
imating pKt with two-sided error over any polynomial-time samplable distribution to the task of
approximating pKt with one-sided error over the uniform distribution and, in particular, can be
used to prove

Mild-1-Sided-Error-Approx-pKt ⇒ 2-Sided-Error-Approx-pKt.

Indeed, under Mild-1-Sided-Error-Approx-pKt it is not hard to show that every candidate cryp-
tographic pseudorandom generator can be broken. Since the latter is equivalent to the non-
existence of (infinitely often) one-way functions [HILL99] (i.e., ¬∃i.o.OWF), we immediately derive
2-Sided-Error-Approx-pKt from Theorem 7.

Advantages of pKt complexity. We summarize here important advantages of pKt over other
time-bounded Kolmogorov complexity measures:

• An optimal coding theorem is known to hold unconditionally for pKpoly [LOZ22] and for pKt
. This is a key principle in Kolmogorov complexity and a very useful tool in applications.
The same result is not known to hold unconditionally for other complexity measures.

11

• A central aspect in recent investigations of meta-complexity and its applications is the ad-
vice complexity and time-bounded Kolmogorov complexity measure associated with the re-
construction procedure of pseudorandom generators. When using pKpoly and pKt, existing
generators offer superior bounds, which allow results to be established in the polynomial-time
regime as opposed to the quasi-polynomial time regime and above (see, e.g., [HIL+23]).

• In contrast to the situation for pKpoly and other polynomial-time complexity measures, we
have unconditional super-polynomial complexity lower bounds for approximating pKt (as in
Theorem 8).

• The unconditional failure of symmetry of information is only known to hold for an exponential-
time measure (Kt), which strongly suggests that it will be easier to resolve this question for
pKt and rKt as opposed to polynomial-time measures such as pKpoly. (Indeed, showing the
failure of symmetry of information for certain polynomial-time measures would imply that
P ̸= NP [Hir22b], while no consequence of a similar form is known in the case of pKt.)

The first two bullets highlight advantages of the probabilistic measures pKpoly and pKt, while the
last two bullets highlight the advantages of pKt over polynomial-time measures (such as pKpoly).
We also note that, while pKt is closely related to Kt, super-polynomial complexity lower bounds are
not known for Kt. Moreover, known coding theorems and PRG reconstruction routines currently
offer inferior bounds for this measure. Overall, the aforementioned features make pKt complexity a
more attractive complexity measure for the investigation of connections between one-way functions
and the theory of time-bounded Kolmogorov complexity.

1.4 Directions and Open Problems

There are a few directions to be explored that would advance this research program. Moreover,
to our knowledge the concrete problems listed below might all be within the reach of existing
techniques.

Theorem 6 establishes the failure of SoI for pKt under a circuit lower bound assumption. In
contrast, as mentioned above, it is known unconditionally that SoI fails for Kt. Can the same be
done for pKt? If not, can we connect this question to major open problems about the power of
randomness in computation?

Easiness assumptions can often be used to establish symmetry of information for different com-
plexity measures [Hir22b, GK22, GKLO22]. Is it possible to prove that if BPEXP ⊆ i.o.SIZE[poly]
then SoI holds for pKt on infinitely many input lengths (i.e., ¬Worst-Case-Asymmetry-pKt)? This
would allow us to strengthen Theorem 3 and obtain the following equivalence:

(Worst-Case-Asymmetry-pKt =⇒ Average-Case-Asymmetry-pKt)

(BPEXP ⊈ i.o.SIZE[poly] =⇒ ∃OWF)

In other words, we would obtain that connecting the failure of SoI for pKt in the worst case and in
the average case is not only sufficient but also necessary to base one-way functions on a worst-case
non-uniform lower bound for BPEXP. Given the techniques developed in previous papers, the main
difficulty in showing SoI for pKt from the assumption BPEXP ⊆ i.o.SIZE[poly] seems to be that it
states a non-uniform upper bound instead of a uniform one.

We obtained an unconditional lower bound against probabilistic quasi-polynomial time algo-
rithms for the task of estimating pKt complexity (Theorem 8). If one could show a sub-exponential

12

time lower bound, this would relax even more the running time of the reduction from two-sided ap-
proximation to mild one-sided approximation needed to establish the existence of one-way functions
in Theorem 3.

Finally, there would be significant consequences to complexity theory and cryptography if one
could show that 2-Sided-Error-Approx-pKt ⇒ Mild-1-Sided-Error-Approx-pKt (Theorem 3). Are there
additional difficulties that must be overcome beyond the relativization barrier established in The-
orem 4?

Acknowledgements. We are thankful to Eric Allender for suggesting the investigation of the
failure of symmetry of information for Kt and its connections to cryptography in light of the results
in [HIL+23]. This work received support from the Royal Society University Research Fellowship
URF\R1\191059; the UKRI Frontier Research Guarantee Grant EP/Y007999/1; and the Centre
for Discrete Mathematics and its Applications (DIMAP) at the University of Warwick.

2 Preliminaries

For a probability distribution D and a string x ∈ {0, 1}∗, we use D(x) to denote the probability
that x is sampled from D.

For a distribution D over {0, 1}n × {0, 1}n and a string y ∈ {0, 1}n, we let D(· | y) denote the
conditional distribution of D on the first half given that the second half is y.

2.1 One-Way Functions

Let FP denote the set of functions that can be computed in deterministic polynomial time.

Definition 9 (One-Way Function). We say that a function f = {fn} ∈ FP, where fn : {0, 1}n →
{0, 1}poly(n), is a one-way function if for every probabilistic polynomial time (PPT) algorithm A,
and for every large enough n,

Pr
A, x∼{0,1}n

[A(f(x)) ∈ f−1(f(x))] ≤ 1

nω(1)
.

We can also consider an infinitely-often secure variant of one-way functions.

Definition 10 (Infinitely-Often One-Way Function). We say that a function f = {fn} ∈ FP,
where fn : {0, 1}n → {0, 1}poly(n), is an infinitely-often one-way function if for every probabilistic
polynomial time (PPT) algorithm A, there is an infinite set SA ⊆ N such that for every n ∈ SA,

Pr
A, x∼{0,1}n

[A(fn(x)) ∈ f−1
n (fn(x))] ≤

1

nω(1)
.

Note that the set SA of inputs can depend on A. It is possible to show that this definition
implies that for every k there is an infinite set Sk ⊆ N such that every PPT algorithm A that runs
in time O(nk) only succeeds to invert f with negligible probability on large input lengths n ∈ SA.
(This is because one can define a “universal” PPT algorithm B that runs every algorithm of time
bound nk+1 and description length log n while trying to invert fn.)

Theorem 11 ([IL90, IL89]). Assume infinitely-often one-way functions do not exist. Let {Dn}n
be a family of polynomial-time samplable distributions, and let q be any polynomial. There exists a
probabilistic polynomial-time algorithm B such that for all n ∈ N,

Pr
x∼Dn,B

[
Dn(x)

2
≤ B(1n, x) ≤ Dn(x)

]
≥ 1− 1

q(n)
.

13

2.2 Kolmogorov Complexity

We fix a universal Turing machine U . We write U(p) to indicate the output of U on an input
string p, where p is written on the input tape. For a string y, we write Uy to indicate that U has
random access to y. In other words, y is written on an oracle tape, and U can query the i-th bit of
y by specifying the index i on a query tape.

Definition 12 (Kt [Lev84]). For x, y ∈ {0, 1}∗, the time-bounded Kolmogorov complexity of x given
y is defined as

Kt(x | y) := min
p∈{0,1}∗, t∈N

{
|p|+ ⌈log t⌉ | Uy(p) outputs x within t steps

}
.

Definition 13 (pKt [GKLO22]). Let x, y ∈ {0, 1}∗ and t ∈ N. The probabilistic t-time-bounded
Kolmogorov complexity of x given y is defined as

pKt(x | y) := min

{
k ∈ N

∣∣∣∣ Pr
r∼{0,1}t

[
∃ p ∈ {0, 1}k s.t. Uy,r(p) outputs x within t steps

]
≥ 2

3

}
.

We recall some useful results regarding Kolmogorov complexity.

Lemma 14 (See, e.g., [HIL+23, Lemma 9]). There exists a universal constant b > 0 such that for
every distribution family {En}n, where each En is over {0, 1}n, and for all n ∈ N,

Pr
x∼En

[
K(x) < log

1

En(x)
− α

]
<

nb

2α
.

Theorem 15 (Coding Theorem [Lev74]). Let E be a distribution whose cumulative distribution
function can be computed by some program p. Then for every x ∈ Support(E),

K(x | p) ≤ log
1

E(x)
+O(1).

Theorem 16 (Efficient Coding Theorem [LOZ22]). For every distribution family {Dn}n samplable
in polynomial time, where each Dn is supported over {0, 1}n, there exists a polynomial p such that
for every x ∈ Support(Dn),

pKp(n)(x) ≤ log
1

Dn(x)
+ log p(n).

Theorem 17 ([HIL+23]). The following are equivalent.

1. There exist no (resp. infinitely-often) one-way functions.

2. (Average-Case Conditional Coding) For every polynomial-time samplable distribution
family {Dn}n∈N supported over {0, 1}n × {0, 1}n and every polynomial q, there exists a poly-
nomial p such that for infinitely many (resp. all) n,

Pr
(x,y)∼Dn

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.

14

2.3 Pseudorandomness

We will need the following results in pseudorandomness.

Lemma 18 ([IW97, OS17b]). Suppose BPEXP ̸⊆ i. o. SIZE[poly] (resp. BPEXP ̸⊆ SIZE[poly]). Then
for every ε > 0, there is a pseudorandom generator mapping r := sε bits to s bits, computable in
pseudodeterministic time 2O(r), that fools circuit of size s with error 1/s, for all but finitely many
(resp. infinitely many) s.

Theorem 19 ([BFNW93, KvM02]). For every constant 0 < λ < 1, there is a pseudorandom

generator
{
G

(−)
n : {0, 1}n

λ

→ {0, 1}n
}
n
such that the following holds. Let f : {0, 1}∗ → {0, 1}.

1. Gf
n can be can be computed in deterministic time exp

(
O(nλ)

)
given oracle access to f on

inputs of length at most nλ.

2. For every function D : {0, 1}n → {0, 1}, if∣∣∣∣∣ Pr
r∼{0,1}nλ

[
D(Gf

n(r)) = 1
]
− Pr

x∼{0,1}n
[D(x) = 1]

∣∣∣∣∣ ≥ 1

O(n)

for every large enough n, then there is a sequence {Cn}n of polynomial-size D-oracle circuits
that computes f on input length n.

Theorem 20 ([IW97]). For every constant 0 < λ < 1, there is a pseudorandom generator{
IW

(−)
n : {0, 1}n

λ

→ {0, 1}n
}
n
such that the following holds. Let f : {0, 1}∗ → {0, 1} be a func-

tion that is both random self-reducible and downward self-reducible.

1. IWf
n can be can be computed in deterministic time exp

(
O(nλ)

)
given oracle access to f on

inputs of length at most nλ.

2. For every oracle O, if there is a probabilistic O-oracle algorithm D with running time t(n)
such that ∣∣∣∣∣ Pr

r∼{0,1}nλ
,D

[
D(IWf

n(r)) = 1
]
− Pr

x∼{0,1}n,D
[D(x) = 1]

∣∣∣∣∣ ≥ 1

O(n)

for every large enough n, then there is a randomized O-oracle algorithm with running time poly(n) ·
t(n) that on every input x outputs f(x) with high probability.

Theorem 21 ([TV07]). There is a language LTV ∈ DSPACE[O(n)] that is PSPACE-hard, random
self-reducible, and downward self-reducible.

2.4 Natural Properties

Definition 22 (Natural Properties). For a size function s : N → N, a dense prBPP-property useful
against SIZE[s] is a probabilistic polynomial-time algorithm P such that the following holds for
every N .

• With probability at least 1/NO(1) over x ∼ {0, 1}N , PrP [P (x) = 1] ≥ 2/3.

• For every x ∈ {0, 1}N , viewed as the truth table of a Boolean function, if x has circuit
complexity at most s(logN), then PrP [P (x) = 0] ≥ 2/3.

Theorem 23 ([RR97]). If there exists a constant ε > 0 such that dense prBPP-properties useful
against SIZE[2n

ε
] exist, then infinitely-often one-way functions do not exist.

15

3 pKt: Probabilistic Levin Complexity

In this section, we formally define pKt and state some useful properties which will be used in
the proofs of our results.

Also, we discuss in Section 3.2 different notions of average-case complexity for approximating
pKt, which will justify the notion of mild-one-sided error average-case complexity for approximating
pKt.

We start with the definition of pKt.

Definition 24 (pKt). For x ∈ {0, 1}∗ and 0 < λ ≤ 1, the λ-probabilistic time-bounded Kolmogorov
complexity of x, denoted by pKtλ(x), is defined to be the minimum k ∈ N such that with probability

at least λ over r ∼ {0, 1}2
k

, there exist a program p ∈ {0, 1}∗ and a time bound t ∈ N that satisfy
|p|+ t ≤ k and U r(p) outputs x within t steps. Equivalently

pKtλ(x) := min

{
k ∈ N

∣∣ Pr
r∼{0,1}2k

[Kt(x | r) ≤ k] ≥ λ

}
.

We omit the subscript λ when λ = 2/3.

This definition can be extended to conditional Kolmogorov complexity in the natural way. More
specifically, in pKt(x | y) the machine U is also given oracle access to the string y.

3.1 Useful Properties of pKt

Proposition 25. There is a universal constant b > 0 such that for every x, y ∈ {0, 1}∗ and t ∈ N,

1. pKt(x | y) ≤ pKt(x | y) + log t, and

2. K(x | y) ≤ pKt(x | y) + b log |x|.

Proof. Item 1 follows immediately from the definitions of pKt (Definition 13) and pKt (Defini-
tion 24).

Next, we show Item 2. Fix any x ∈ {0, 1}n and y ∈ {0, 1}∗. Let k := pKt(x | y). Consider the
following procedure for sampling x given n and y.

1. Pick a uniformly random k′ ∼ [O(n)].

2. Pick a uniformly random r ∼ {0, 1}2
k′

.

3. Pick a uniformly random s′ ∼ [O(n)].

4. Pick a uniformly random p ∼ {0, 1}s
′
.

5. Run Uy,r(p) for at most 2k steps and return its output.

By the definition of pKt, it is easy to see that the above procedure outputs x with probability at
least

1

O(n)
· 2
3
· 1

O(n)
· 1

2k
=

1

2k · poly(n)
.

Then by the coding theorem for K (Theorem 15), we have

K(x | y) ≤ k +O(log n),

as desired.

16

Next, we state a relation between Kt and pKt. The proof of this fact follows by an easy
adaptation of results from [GK22, Appendix A.2].

Proposition 26. If E ⊈ i.o.NSIZE
[
2Ω(n)

]
, then there is a constant c > 0 such that for every string

x ∈ {0, 1}∗, pKt(x) ≤ Kt(x) ≤ c · pKt(x).

Note that the relation between Kt and pKt from Proposition 26 is not as tight as the relation
between Kpoly and pKpoly described in [GK22, Appendix A.2]. This is due to the polynomial time
overhead in the simulation, which can incur a constant factor in the description complexity due to
the log t term. In particular, for this reason, we cannot easily derive the failure of SoI for pKt from
the failure of SoI for Kt under a lower bound assumption.

Lemma 27 (Success Amplification; following [GKLO22]). For any string x ∈ {0, 1}n, y ∈ {0, 1}∗,
and 0 ≤ α < β ≤ 1, we have

pKtβ(x | y) ≤ pKtα(x | y) +O(log(q/α) + log n),

where q := ln(1/(1− β)).

Proof. Suppose pKtα(x | y) = k ≤ 2n. Then by definition, we have with probability at least

α over r ∼ {0, 1}2
k

, there exist a program pr ∈ {0, 1}∗ and a time bound tr ∈ N that satisfy
|pr| + log tr ≤ k and U r(p, y) outputs x within t steps. Call such an r good. After sampling ℓ

independent r(1), r(2), . . . , r(ℓ) ∈ {0, 1}2k , the probability that no r(i) is good is at most (1− α)ℓ ≤
e−αℓ, which can be made at most 1 − β by choosing ℓ = q/α. It follows that, with probability at

least β over a random w :=
(
r(1), r(2), . . . , r(q/α)

)
∈ {0, 1}2

k·q/α, there exists an index 1 ≤ i ≤ q/α
(which can be described with at most ⌈log(q/α)⌉ bits) such that for some program pr(i) and tr(i)
that satisfy

|pr(i) |+ log tr(i) ≤ k,

and U r(i)(pr(i) , y) outputs x within tr(i) steps. For such w, we can construct a program pw of size
at most |pr(i) |+O(log(q/α)+ log k) such that Uw(pw) outputs x within tw := tr(i) ·O(log |w|) steps.
It follows that pKtβ(x | y) ≤ k +O(log(q/α) + log n).

We define a gap version of the minimum pKt problem, GapMpKtP, which can be viewed as the
decision version of the problem of approximating pKt. For τ : N → N, let GapMpKtP[τ] be the
following promise problem (YES,NO).

YES := {(x, 1s) | pKt(x) ≤ s} ,
NO := {(x, 1s) | pKt(x) > s+ τ(|x|)} .

Lemma 28. There is a constant c > 0 such that for every τ(n) ≥ c log n, GapMpKtP[τ] ∈ prBPE.

Proof. Let c > 0 a a sufficiently large constant determined later, and let τ(n) := c log n. First
consider the following problem where we are given x ∈ {0, 1}n and s ∈ N and asked to decide
whether:

1. pKt2/3(x) ≤ s, or

2. pKt1/3(x) > s.

We claim that the above problem can be solved in randomized time 2O(n). Indeed, consider the
following algorithm:

17

1. Pick r ∼ {0, 1}2
s

.

2. For all programs p ∈ {0, 1}∗ and running times t ∈ N such that |p|+ log t ≤ s, check if U r(p)
outputs x within t steps. Accepts if and only if there exist such p and t that pass the check.

It is clear that the running time of the above algorithm is 2O(n), and the correctness also follows eas-
ily from the definition of pKt. Indeed, if pKt2/3(x) ≤ s, then the algorithm accepts with probability
at least 2/3 and if pKt1/3(x) > s, the algorithm accepts with probability at most 1/3.

Now we claim that the above algorithm also solves the following problem of deciding whether:

1. pKt2/3(x) ≤ s, or

2. pKt2/3(x) > s+ τ(n).

This is because by Lemma 27, we have

pKt2/3(x) ≤ pKt1/3(x) +O(logm).

Hence, if pKt2/3(x) > s + τ(n), then we get pKt1/3(x) > s + τ(n) − O(log n) > s, provided that c
is a sufficiently large constant.

The following lemma will be convenient for us.

Lemma 29. There is a probabilistic algorithm B such that given x ∈ {0, 1}m and y ∈ {0, 1}≤2m,
B(x, y) runs in time 2O(m), rejects (with high probability) if pKt(x | y) < m/2 and accepts (with
high probability) if pKt(x | y) ≥ 2m/3.

Proof Sketch. The proof is essentially the same as that of Lemma 28. We first consider the following
problem where we are given x ∈ {0, 1}m and y ∈ {0, 1}≤2m and asked to decide whether:

1. pKt2/3(x | y) ≤ m/2, or

2. pKt1/3(x | y) > m/2.

As in the proof of Lemma 28, we can then show that there is a prBPE-algorithm that solves the
above problem. Finally, we observe that the same algorithm solves the problem stated in the
lemma, since by using Lemma 27, if pKt2/3(x | y) > 2m/3, then pKt1/3(x | y) > m/2.

3.2 Notions of Average-Case Tractability for Approximating pKt

For an algorithm A, x ∈ {0, 1}∗, and s ∈ N, we say that A decides GapMpKtP[τ] on (x, 1s) if
the following holds.

A(x, 1s) =

1 if pKt(x) ≤ s,

0 if pKt(x) > s+ τ(|x|),
either 0 or 1 otherwise.

Definition 30 (2-Sided-Error-Approx-pKt). We say that pKt can be approximated on average with
two-sided error if for every polynomial-time samplable distribution family {Dn}n supported over
{0, 1}n, and every polynomial q, there exist a PPT algorithm A and a constant c > 0 such that for
all sufficiently large n and all s ∈ [n+O(log n)],

Pr
x∼Dn,A

[A decides GapMpKtP[τ] on (x, 1s)] ≥ 1− 1

q(n)
,

where τ(n) = c · log n. We let 2-Sided-Error-Approx-pKt denote the statement that pKt can be
approximated on average with two-sided error.

18

Definition 31 (1-Sided-Error-Approx-pKt). We say that pKt can be approximated on average with
one-sided error if for every polynomial-time samplable distribution family {Dn}n supported over
{0, 1}n, and every polynomial q, there exist a PPT algorithm A and a constant c > 0 such that for
all sufficiently large n and all s ∈ [n+O(log n)],

Pr
x∼Dn,A

[A decides GapMpKtP[τ] on (x, 1s)] ≥ 1− 1

q(n)
,

where τ(n) = c · log n, and for every x ∈ {0, 1}n with pKt(x) ≤ s,

Pr
A
[A(x, 1s) = 1] ≥ 2

3
.

We let 1-Sided-Error-Approx-pKt denote the statement that pKt can be approximated on average
with one-sided error.

In other words, in addition to computing GapMpKtP on an average x ∼ Dn as in the two-sided
error setting, in the one-sided error setting we also require the algorithm to be correct on all the
positive instances, and hence it can only have one-sided error on the negative instances.

In the following zero error setting, we further require that the algorithm will never output an
incorrect answer on both the positive and negative instances (except with small probability over
the internal randomness of the algorithm), while it can output ⊥ to indicate that it does not know
the correct answer.

Definition 32 (Zero-Error-Approx-pKt). We say that pKt can be approximated on average with zero
error if for every polynomial-time samplable distribution family {Dn}n supported over {0, 1}n, and
every polynomial q, there exist a PPT algorithm A and a constant c > 0 such that for all sufficiently
large n and all s ∈ [n+O(log n)],

Pr
x∼Dn,A

[A decides GapMpKtP[τ] on (x, 1s)] ≥ 1− 1

q(n)
,

where τ(n) = c · log n, and for every x ∈ {0, 1}n with pKt(x) ≤ s,

Pr
A
[A decides GapMpKtP[τ] on (x, 1s) OR A(x, 1s) = ⊥] ≥ 2

3
.

We let Zero-Error-Approx-pKt denote the statement that pKt can be approximated on average with
zero error.

In addition to the above three standard notions of average-case tractability, we also introduce
the following notion of average-case tractability for approximating pKt.

Definition 33 (Mild-1-Sided-Error-Approx-pKt). We say that pKt can be approximated on average
with mild-one-sided error if there exist a constant 0 < ε < 1 and a PPT algorithm A such that for
all sufficiently large n,

Pr
x∼{0,1}n,A

[A(x) = 0] ≥ 1

n
,

and for every x ∈ {0, 1}n with pKt(x) ≤ nε,

Pr
A
[A(x) = 1] ≥ 2

3
.

We let Mild-1-Sided-Error-Approx-pKt denote the statement that pKt can be approximated on aver-
age with mild-one-sided error.

19

As we will show next, the notion of approximating pKt on average with mild-one-sided error
is sandwiched between that of one-sided error and two-sided error. Also, our result of Theorem 8
states that one-way functions exist if and only if one can close the gap between mild-one-sided error
and two-sided error.

Proposition 34. The following holds.

Zero-Error-Approx-pKt 1-Sided-Error-Approx-pKt

Mild-1-Sided-Error-Approx-pKt 2-Sided-Error-Approx-pKt

Proof. (Zero-Error-Approx-pKt =⇒ 1-Sided-Error-Approx-pKt.) If we have an algorithm for com-
puting GapMpKtP on average with zero error, we can replace the output ⊥ in the algorithm with
1. Then we get an algorithm that satisfies the second condition stated in Definition 31.

(1-Sided-Error-Approx-pKt =⇒ Mild-1-Sided-Error-Approx-pKt.) We will in fact show that to get
Mild-1-Sided-Error-Approx-pKt, it suffices to assume that pKt can be approximated within additive
error n− nε (as opposed to O(log n) in the definition of 1-Sided-Error-Approx-pKt) on average over
the uniform distribution.

Suppose 1-Sided-Error-Approx-pKt holds. It follows that there exist a probabilistic polynomial-
time algorithm A and a constant 0 < ε < 1 such that for all sufficiently large n,

Pr
x∼{0,1}n,A

[A decides GapMpKtP[τ] on (x, 1s)] ≥ 1− 1

4n2
, (1)

where τ(n) := n− 2nε and s := nε. Also, for every x ∈ {0, 1}n with pKt(x) ≤ nε,

Pr
A
[A(x, 1s) = 1] ≥ 2

3
. (2)

Then to get Mild-1-Sided-Error-Approx-pKt, it suffices to show that

Pr
x∼{0,1}n

[
Pr
A
[A(x, 1s) = 0] ≥ 2

3

]
≥ 1

n
. (3)

First of all, by applying an averaging argument to Equation (1), we get that

Pr
x∼{0,1}n

[
Pr
A
[A decides GapMpKtP[τ] on (x, 1s)] ≥ 1− 1

2n

]
≥ 1− 1

2n
. (4)

Also, by a simple counting argument, we have that with probability at least 1 − 1/(2n) over
x ∼ {0, 1}n,

pKt(x) ≥ n−O(log n).

For every such x, we get

pKt(x) ≥ n−O(log n)

= nε + (n− 2nε) + nε −O(log n)

> s+ τ(n). (5)

It follows from Equation (4) and Equation (5) that with probability at least 1− 1/n, we get both

Pr
A
[A decides GapMpKtP[τ] on (x, 1s)] ≥ 1− 1

2n
.

20

and
pKt(x) > s+ τ(n).

Note that the above implies that with probability at least 1− 1/n,

Pr
A
[A(x, 1s) = 0] ≥ 1− 1

2n
,

which yields Equation (3), as desired.
(Mild-1-Sided-Error-Approx-pKt =⇒ 2-Sided-Error-Approx-pKt.) First of all, note that assuming

Mild-1-Sided-Error-Approx-pKt one can get an efficient algorithm that breaks any cryptographic
pseudorandom generator. This then implies the non-existence of one-way functions [HILL99]. By
Theorem 7, this further implies 2-Sided-Error-Approx-pKt.

The following relates the problem of computing GapMpKtP and that of approximating pKt.

Proposition 35. The following are equivalent.

1. 2-Sided-Error-Approx-pKt.

2. For every polynomial-time samplable distribution family {Dn}n supported over {0, 1}n and
every polynomial q there exist a probabilistic polynomial-time algorithm A and a polynomial
p such that for all n ∈ N,

Pr
x∼Dn,A

[pKt(x)− log p(n) ≤ A(x) ≤ pKt(x)] ≥ 1− 1

q(n)
.

Proof. (=⇒) Let {Dn} be any distribution family and q be any polynomial. Suppose Item 1 holds.
Then we have a probabilistic polynomial-time B and a constant c > 0 such that for all sufficiently
large n and all s ∈ [n+O(log n)],

Pr
x∼Dn

[
Pr
B
[B decides GapMpKtP[τ] on (x, 1s)] ≥ 1− 1√

q(n)

]
≥ 1− 1√

q(n)
, (6)

where τ(n) := c · log n.
Consider the following algorithm A:

On input x ∈ {0, 1}n, A runs B(x, 1s) for s = 1, 2, . . . , n + O(log n) and outputs the
smallest s such that B(x, 1s) = 1.

We say that x ∈ {0, 1}n is good if for all s ∈ [n+O(log n)],

Pr
B
[B decides GapMpKtP[τ] on (x, 1s)] ≥ 1− 1√

q(n)
.

Note that by Equation (6) and a union bound over s, a random x picked from Dn is good with
probability at least 1− 2n/

√
q(n) over x ∼ Dn.

Observe that for any good x ∈ {0, 1}n, the output of A(x) will lie in the interval [pKt(x) −
log τ(n), pKt(x) if for all s < pKt(x) − log τ(n), B(x, 1s) = 0 and for s = pKt(x), B(x, 1s) = 1.
Since for all s, B decides GapMpKtP[τ] on (x, 1s) with probability at least 1− 1/

√
q(n), then by a

union bound, the probability that the above does not happen is at most 2n/
√

q(n).

21

It follows that with probability at least 1 − 2n/
√

q(n) over x ∼ Dn, A(x) ∈ [pKt(x) −
log τ(n), pKt(x)] with probability at least 1−2n/

√
q(n) (over the internal randomness of A), which

implies

Pr
x∼Dn,A

[pKt(x)− c · log n ≤ A(x) ≤ pKt(x)] ≥ 1− 4n√
q(n)

.

This yields Item 2 by re-scaling the polynomial q.
(⇐=) Let {Dn} be any distribution family and q be any polynomial. Suppose Item 2 holds.

Then there exist a probabilistic polynomial-time A and a constant c > 0 such that for all n ∈ N,

Pr
x∼Dn,A

[pKt(x)− c · log n ≤ A(x) ≤ pKt(x)] ≥ 1− 1

q(n)
.

Let B be the algorithm defined as follows. For x ∈ {0, 1}n and s ∈ [n+O(log n)],

B(x, 1s) = 1 ⇐⇒ A(x) ≤ s.

Fix any s ∈ [n+O(log n)], it suffices to show that

Pr
x∼Dn,B

[B decides GapMpKtP[τ] on (x, 1s)] ≥ 1− 1

q(n)
,

where τ(n) := c · log n.
Consider any x ∈ {0, 1}n and any rA which is the internal randomness used by the algorithm

A such that
pKt(x)− c · log n ≤ A(x; rA) ≤ pKt(x).

Note that if pKt(x) ≤ s, then we have A(x; rA) ≤ pKt(x) ≤ s, which implies B(x, 1s) = 1. Similarly,
if pKt(x) > s + τ(n), then we have A(x; rA) ≥ pKt(x) − c · log n > s, which implies B(x, 1s) = 0.
Therefore, we get that

Pr
x∼Dn,B

[B decides GapMpKtP[τ] on (x, 1s)]

≥ Pr
x∼Dn,rA

[pKt(x)− c · log n ≤ A(x; rA) ≤ pKt(x)]

≥ 1− 1

q(n)
,

as desired.

4 One-Way Functions and Asymmetry of Information for pKt

4.1 Equivalence of OWF and Average-Case Asymmetry of Information

We show the following which implies Theorem 5.

Theorem 36. The following are equivalent.

1. There exist no (resp. infinitely-often) one-way functions.

2. (Infinitely-Often (resp. Almost-Everywhere) Average-Case Symmetry of Infor-
mation for pKt) For every polynomial-time samplable distribution family {Dn}n supported
over {0, 1}n×{0, 1}n and every polynomial q, there exists a constant c such that for infinitely
many (resp. all) n ∈ N,

Pr
(x,y)∼Dn

[pKt(x, y) ≥ pKt(x) + pKt(y | x)− c · log n)] ≥ 1− 1

q(n)
.

22

Lemma 37. (Item 1 ⇒ Item 2 in Theorem 36). If one-way functions do not exist, then for
every polynomial-time samplable distribution family {Dn}n supported over {0, 1}n × {0, 1}n and
every polynomial q, there exists a constant c such that for infinitely many n ∈ N,

Pr
(x,y)∼Dn

[pKt(x, y) ≥ pKt(x) + pKt(y | x)− c · log n] ≥ 1− 1

q(n)
.

To show Lemma 37, we need the following technical lemma.

Lemma 38. If one-way functions do not exist, then for every polynomial-time samplable distri-
bution family {En}n supported over {0, 1}n × {0, 1}n and for every polynomial q, there exists a
polynomial p such that for infinitely many n ∈ N,

Pr
(a,b)∼En

[
pKt(a | b) ≤ log

1

En(a | b)
+ 2 log p(n)

]
≥ 1− 1

q(n)
.

Proof. The lemma follows directly from Theorem 17 and Proposition 25.

We are now ready to show Lemma 37.

Proof. Let {Dn}n be a polynomial-time samplable distribution family and q be a polynomial.
Let {En}n be the polynomial-time samplable distribution family that is dual to {Dn}n in the

following sense: To sample En, we sample (x, y) from Dn and output (y, x). To show the lemma, it
suffices to show that there exists a constant c such that for infinitely many n ∈ N,

Pr
(a,b)∼En

[pKt(b, a) ≥ pKt(b) + pKt(a | b)− c · log n] ≥ 1− 1

q(n)
.

Since we assume that one-way function do not exist, then by Lemma 38, there exists a polyno-
mial p such that for infinitely many n ∈ N,

Pr
(a,b)∼En

[
pKt(a | b) ≤ log

1

En(a | b)
+ 2 log p(n)

]
≥ 1− 1

2q(n)
.

Let E ′
n be the marginal distribution of En on the second half. Note that

pKt(a | b) ≤ log
1

En(a | b)
+ 2 log p(n)

= log
En(a, b)
E ′
n(b)

+ 2 log p(n)

= log
1

En(a, b)
− log

1

E ′
n(b)

+ 2 log p(n). (7)

On the one hand, by Lemma 14, we get that for every n, with probability at least 1− 1/(2q(n))
over (a, b) ∼ En,

K(b, a) ≥ log
1

En(a, b)
− log 2q(n)−O(log n).

Then by Proposition 25, with the same probability we get

pKt(b, a) ≥ K(b, a)−O(log n) ≥ log
1

En(a, b)
− log 2q(n)−O(log n). (8)

23

On the other hand, by Theorem 16, there exists a polynomial p′ such that for every n and
b ∈ Support(E ′

n),

pKt(b) ≤ pKp′(n)(b) + log p′(n) ≤ log
1

E ′
n(y)

+ 2 log p′(n). (9)

By plugging Equations (8) and (9) into Equation (7), and by a union bound, we get that for
infinitely many n ∈ N, with probability at least 1− 1/q(n) over (a, b) ∼ En,

pKt(a | b) ≤ pKt(b, a)− pKt(b) + 2 log p(n) + log 2q(n) + 2 log p′(n) +O(log n),

as desired.

Lemma 39. (Item 2 ⇒ Item 1 in Theorem 36). If infinitely-often average-case symmetry of
information for pKt holds, then one-way functions do not exist.

Proof. Let f : {0, 1}n → {0, 1}n be any candidate one-way function that is supposed to be infinitely-
often secure. Let q be any polynomial. We will construct a polynomial-time algorithm that inverts
f with probability at least 1− 1/q(n). We first show a few useful claims.

Claim 40 ([LW95, Lemma 3.5]). For every n and every x ∈ {0, 1}n, we have

K(f(x)) ≥ K(x)− log |f−1(f(x))| −O(log n).

Proof of Claim 40. Note that for every x ∈ {0, 1}n, we have

K(x | f(x)) ≤ log |f−1(f(x))|+O(log n). (10)

This is because given f(x), we can recover x knowing the index of x in the set f−1(f(x)). Also, we
have

K(x) ≤ K(x | f(x)) + K(f(x)),

which combined with Equation (10) yields

K(f(x)) ≥ K(x)− K(x | f(x))
≥ K(x)− log |f−1(f(x))| −O(log n).

This completes the proof of Claim 40. ⋄

Claim 41. For infinitely many n ∈ N, with probability at least 1 − 1/q(n)2 over x ∼ {0, 1}n, we
have

pKt(x | f(x)) ≤ log |f−1(f(x))|+O(log q(n)).

Proof of Claim 41. Consider the polynomial-time samplable distribution family {Dn} where each
Dn samples x ∼ {0, 1}n and outputs (f(x), x).

By the assumption that infinitely-often average-case symmetry of information for pKt holds,
there is a constant c > 0 such that for infinitely many n ∈ N, with probability at least 1−1/(2q(n)2)
over x ∼ {0, 1}n,

pKt(x | f(x)) ≤ pKt(f(x), x)− pKt(f(x)) + c log n

≤ pKt(x)− pKt(f(x)) + c log n+O(log n)

≤ pKt(x)− K(f(x)) + c log n+O(log n)

≤ pKt(x)−
(
K(x)− log |f−1(f(x))| −O(log n)

)
+ c log n+O(log n)

≤ pKt(x)− K(x) + log |f−1(f(x))|+ c log n+O(log n), (11)

24

where the second inequality uses the fact that given x we can compute f(x) efficiently and the
second last inequality is by Claim 40.

Also, note that by a counting argument, with probability at least 1−1/(2q(n)2) over x ∼ {0, 1}n,
we have

K(x) ≥ n−O(log q(n)),

which implies
pKt(x)− K(x) ≤ O(log q(n)).

Plugging this into Equation (11), we get, by a union bound, that with probability at least 1−1/q(n)2

over x ∼ {0, 1}n
pKt(x | f(x)) ≤ log |f−1(f(x))|+O(log q(n)),

as desired. ⋄

Claim 42. For every n ∈ N, every image y of f and k ≤ 2n, with probability at least 1 − 1/q(n)
over x ∼ f−1(y), we have

Pr
r∼{0,1}2k

[
K(x | y, r) ≥ log |f−1(y)| −O(log q(n))

]
≥ 1− 1

n
.

Proof of Claim 42. By a simple counting argument, for every fixed image y of f and every fixed

r ∈ {0, 1}2
k

, we have

Pr
x∼f−1(y)

[
K(x | y, r) ≥ log |f−1(y)| −O(log q(n))

]
≥ 1− 1

n · q(n)
.

This implies that every image y, we have

Pr
x∼f−1(y)

r∼{0,1}2
k

[
K(x | y, r) ≥ log |f−1(y)| −O(log q(n)

]
≥ 1− 1

n · q(n)
.

Finally, by an averaging argument, we have that with probability at least 1−1/q(n) over x ∼ f−1(y),
it holds that

Pr
r∼{0,1}2k

[
K(x | y, r) ≥ log |f−1(y)| −O(log q(n)

]
≥ 1

n
,

as desired. ⋄

By Claim 41, we get that for infinitely many n ∈ N, with probability at least 1− 1/q(n)2 over
x ∼ {0, 1}n, we have

pKt(x | f(x)) ≤ log |f−1(f(x))|+O(log q(n)). (12)

In what follows, we fix n so that Equation (12)) holds.
Now observe the following equivalent way of sampling (x, f(x)) while x is uniformly at random:

We first sample y := f(z) for a uniformly random z and then sample x ∼ f−1(y). By an averaging
argument, Equation (12) yields that with probability at least 1 − 1/q(n) over y sample this way,
for at least 1− 1/q(n) fraction of the x ∈ f−1(y), we have

pKt(x | y) ≤ log |f−1(y)|+O(log q(n)). (13)

25

Consider any good y such that Equation (13) holds. By Claim 42, we get that for at least
1− 1/q(n) fraction of the x ∈ f−1(y), it holds that

Pr
r∼{0,1}2k

[
K(x | y, r) ≥ log |f−1(y)| −O(log q(n))

]
≥ 1− 1

n
, (14)

where k := pKt(x | y).
let Sy be the set of x ∈ f−1(y) such that both Equations (13) and (14) hold. Note that by a

union bound,
|Sy| ≥ (1− 2/q(n)) · |f−1(y)|.

Let d > 0 be a sufficiently large constant. Consider the following procedure A that takes n and
y as input and does the following.

1. Pick a uniformly random k ∼ [O(n)],

2. Pick a uniformly random r ∼ {0, 1}2k ,

3. Pick uniformly at random ℓ ∼ [O(n)] and p ∼ {0, 1}ℓ,

4. Run Uy,r(p) for nd steps and return its output.

Claim 43. For every x ∈ Sy, A(1
n, y) outputs x with probability at least

1

poly(n) · |f−1(y)|
.

Proof of Claim 43. Fix x ∈ Sy. Note that we have

pKt(x | y) ≤ log |f−1(y)|+O(log q(n)).

In other words, for k := pKt(x | y) ≤ log |f−1(y)| + O(log n), with probability at least 2/3 over

r ∼ {0, 1}2
k

, there exist a program of p and a running time t ∈ N such that |p| + log t ≤ k and
Uy,r(p) outputs x within t steps. Note that t may not be upper bounded by poly(n). However, if
for that r we also have that

K(x | y, r) ≥ log |f−1(y)| −O(log q(n)), (15)

then it must be the case that |p| ≥ log |f−1(y)| − O(log q(n)). The condition |p| + log t ≤
log |f−1(y)|+O(log q(n)) then implies that t ≤ nd for some sufficiently large constant d.

Note that Equation (15) also holds with probability at least 1−1/n over r ∼ {0, 1}2
k

. It follows

that with probability at least 2/3 − 1/n over r ∼ {0, 1}2
k

, there is a program p of size at most
log |f−1(y)|+O(log q(n)) such that Uy,r(p) outputs x within nd steps.

Therefore, after performing the first 3 steps in the procedure, we get such a program p with
probability at least

1

O(n)
·
(
2

3
− 1

n

)
· 1

O(n)
· 1

2log |f−1(y)|+O(log q(n))
≥ 1

poly(n) · |f−1(y)|)
,

as desired. ⋄

Now consider the following procedure A′ that can simulate A.

26

1. Pick a uniformly random k ∼ [O(n)],

2. Pick uniformly at random ℓ ∼ [O(n)] and p ∼ {0, 1}ℓ,

3. Run Uy,(−)(p) for nd steps while answering its queries to the second oracle string (which is
of length 2k) as follows. For any valid query, if it did not appear before, pick a random bit
b, record the query as well as the bit b, and return b; otherwise, return the corresponding bit
recorded.

Denote the above procedure by A′. Note that A(1n, y) has running time poly(n). Also, by Claim 43
the probability that A′(1n, y) outputs some x ∈ Sy is at least

|Sy| ·
1

poly(n) · |f−1(y)|)
≥ 1

poly(n)
.

In other words, with probability at least 1/q(n) over x ∼ {0, 1}n (in which case f(x) is good),
A′(1n, y) outputs some pre-image of f(x) with probability at least 1/poly(n). This breaks the
one-way-ness of f .

Finally, we complete the proof of Theorem 36.

Proof of Theorem 36. Each direction of the theorem follows directly from Lemmas 37 and 39, re-
spectively.

Also, we note that while those lemmas only show the equivalence between the non-existence of
one-way functions and infinitely-often average-case symmetry of information for pKt, it is straight-
forward to adapt the proofs to show the equivalence between the non-existence of infinitely-often
one-way functions and almost-everywhere average-case symmetry of information for pKt.

4.2 Asymmetry of Information from Circuit Lower Bounds

In this subsection, we show the following which implies Theorem 6.

Theorem 44. Suppose BPEXP ̸⊆ i. o.SIZE[poly] (resp. BPEXP ̸⊆ SIZE[poly]). Then for every
constant c > 0, there exist x, y ∈ {0, 1}n such that

pKt(x, y) < pKt(x) + pKt(y | x)− c · log n,

for all but finitely many (resp. infinitely many) n.

We first show the following technical lemma.

Lemma 45. Suppose BPEXP ̸⊆ i. o.SIZE[poly] (resp. BPEXP ̸⊆ SIZE[poly]). Then for every
constant c > 0, the following holds for all but finitely many (resp. infinitely many) m. There exist

v ∈ {0, 1}m and u ∈ {0, 1}m
′
, where m ≤ m′ ≤ 2m/(8c), such that

pKt(u, v) < pKt(u) + pKt(v | u)−m/4,

Proof. We first show the case for BPEXP ̸⊆ i. o. SIZE[poly].
For the sake of contradiction, suppose there is a constant c > 0 such that the following holds

for infinitely many m. For all v ∈ {0, 1}m and all u ∈ {0, 1}m
′
, where m′ ≤ 2m/(8c),

pKt(u, v) ≥ pKt(u) + pKt(v | u)−m/4.

27

Fix any (sufficiently large) m such that the above holds. For x ∈ {0, 1}m and y ∈ {0, 1}≤2m , let

C(x,y) : {0, 1}2
bm

→ {0, 1} be a circuit of size 2bm that views its input as internal randomness and
computes B(x, y), where B is the algorithm in Lemma 29 and b ≥ 0 is a constant.

Let ε := 1/(32bc) and let Gs : {0, 1}r → {0, 1}s be the PRG in Lemma 18, where s := 2bm

and r := sε. We assume without loss of generality, using amplification if necessary, that the pseu-
dodeterministic algorithm that computes Gs outputs the correct answer except with exponentially
small probability. We abuse notation and use Gs to denote the algorithm that computes the PRG
Gs.

Consider the following algorithm.

Algorithm 1 Pseudodeterministic Constructions of Large pKt-Complexity Strings

1: procedure A(1m, y)
2: for x ∈ {0, 1}m do
3: µx := Prz∼{0,1}r [C(x,y)(Gs(z)) = 1]
4: if µx > 1/3 + 1/10 then
5: output x

6: Output ⊥

Claim 46. The above algorithm A, on input 1m and y ∈ {0, 1}≤2m, runs in time 22
m/(16c)

and
outputs, with high probability, a fixed m-bit string x such that pKt(x | y) ≥ m/2.

Proof of Claim 46. We first argue the running time. It is easy to that the algorithm runs in time

2m · 2O(sε) ≤ 22
m/(16c)

.

Also, since Gs can be computed pseudodeterministically with error 1/ exp(s), by a union bound
over x ∈ {0, 1}m and z ∈ {0, 1}s

ε

, the algorithm will output a fixed answer with high probability.
We now argue the correctness. Note that since Gs (1/10)-fools C(x,y) on every x ∈ {0, 1}m

and y ∈ {0, 1}≤2m , for every x, (the canonical) µx is a good estimate of PrB[B(x, y) = 1]. Then
an output x of the algorithm cannot be that pKt(x | y) < m/2. This is because in that case the
algorithm PrB[B(x, y) = 1] < 1/3 and µx should be less than 1/3+1/10. Also, since we enumerate
every x in {0, 1}m, B(−, y) must accept at least one x, and in this case we have µx ≥ 2/3− 1/10 ≥
1/3 + 1/10. This completes the proof of Claim 46. ⋄

Let t := 2m/(10c). We define z1, z2, . . . , zt ∈ {0, 1}m as follows.

• z1 is the canonical output of A(1m, ∅).

• zi is the canonical output of A(1m, z1, . . . , zi−1) for i = 2, 3. . . . , t.

On the one hand, by our assumption and by Claim 46, we have

pKt(z1, z2, . . . , zt) ≥ pKt(z1, z2, . . . , zt−1) + pKt(zt | z1, z2, . . . , zt−1)−m/4

≥ pKt(z1, z2, . . . , zt−1) +m/2−m/4

≥ pKt(z1, z2, . . . , zt−1) +m/4.

We can repeat the above for pKt(z1, z2, . . . , zt−1) and so on. As a result we get

pKt(z1, z2, . . . , zt) ≥ tm/4 ≥ 2m/(10c). (16)

28

On the other hand, since A is pseudodeterministic (and hence outputs the same value with very

high probability) and runs in time 22
m/(16c)

, given the numbers m and t, we can obtain z1, z2, . . . , zt
(with high probability) in time

O
(
t · 22m/(16c)

)
.

Therefore, we have

pKt(z1, z2, . . . , zt) ≤ O(logm) +O(log t) + 2m/(16c) < 2m/(8c),

which contradicts Equation (16).
The case for BPEXP ̸⊆ SIZE[poly] can be shown similarly. We assume, for contradiction, that

there is a constant c > 0 such that the following holds for all but finitely manym. For all v ∈ {0, 1}m

and all u ∈ {0, 1}m
′
, where m ≤ m′ ≤ 2m/(8c),

pKt(u, v) ≥ pKt(u) + pKt(v | u)−m/4.

We then consider any (sufficiently large) s such that Gs is a good PRG, and let m be the largest
integer such that 2bm ≤ s. The remainder of the argument is essentially the same.

We are now ready to show Theorem 44.

Proof of Theorem 44. We first show the case for BPEXP ̸⊆ i. o.SIZE[poly].
Let c > 0 be a sufficiently large constant, and let n be any large enough integer. We let m be

such that
2m/(8c) ≤ n < 2(m+1)/(8c). (17)

By Lemma 45, there exist v ∈ {0, 1}m and u ∈ {0, 1}m
′
, where m ≤ m′ ≤ 2m/(8c), such that

pKt(u, v) < pKt(u) + pKt(v | u)−m/4. (18)

We let
x := u0n−|u| and y := v0n−|v|. (19)

Then we have

pKt(x, y) ≤ pKt(u, v) +O(log n) (by Equation (19))

≤ pKt(u) + pKt(v | u)−m/4 +O(log n) (by Equation (18))

< pKt(x) + pKt(y | x) +O(log n)−m/4 +O(log n) (by Equation (19))

≤ pKt(x) + pKt(y | x) +O(m/c)−m/4 (by Equation (17))

≤ pKt(x) + pKt(y | x)−m/5

≤ pKt(x) + pKt(y | x)− c log n, (by Equation (17))

where for the second last inequality we use that c is a sufficiently large constant.
The case for BPEXP ̸⊆ SIZE[poly] can be shown similarly. By Lemma 45, for infinitely many

m, there exist v ∈ {0, 1}m and u ∈ {0, 1}m
′
, where m′ ≤ 2m/(8c), such that

pKt(u, v) < pKt(u) + pKt(v | u)−m/4.

We can then let x := v0m
′−|v| and y := u, and the remainder of the argument is essentially the

same as in the case for BPEXP ̸⊆ i. o.SIZE[poly] described above.

29

4.3 Proof of Theorem 1

In this subsection, we prove Theorem 1, which is restated below.

Theorem 1 (Conditional Equivalence Between OWF and Worst-to-Average-Case Failure of SoI).
Under the assumption that BPEXP ⊈ i.o.SIZE[poly], the following equivalence holds:

(Worst-Case-Asymmetry-pKt ⇒ Average-Case-Asymmetry-pKt) ⇐⇒ ∃OWF

Proof. Suppose it holds that (Worst-Case-Asymmetry-pKt ⇒ Average-Case-Asymmetry-pKt).
Assuming BPEXP ⊈ i.o.SIZE[poly], by Theorem 44, Worst-Case-Asymmetry-pKt holds, which

then implies that Average-Case-Asymmetry-pKt also holds. By Theorem 5, this implies that one-
way functions exist.

Suppose one-way functions exist. Then by Theorem 5, Average-Case-Asymmetry-pKt holds. This
implies that (Worst-Case-Asymmetry-pKt ⇒ Average-Case-Asymmetry-pKt).

4.4 Non-Existence of Natural Properties via Reductions from Worst-Case to
Average-Case Asymmetry of Information

Here, we show that if worst-case asymmetry of information pKt implies the average-case, then
natural properties do no exist.

Theorem 47. If infinitely-often worst-case asymmetry of information for pKt implies the average-
case, then for every ε > 0, dense prBPP-properties useful against SIZE[2n

ε
] do not exist.

We need the following result.

Lemma 48. If dense prBPP-properties useful against P/poly exist, then BPEXP ̸⊆ P/poly.

Proof Sketch. It follows from [CIKK16, OS17a] that the existence of dense prBPP-properties useful
against P/poly yields a non-trivial learning algorithm for polynomial-size circuits. It was shown in
[OS17a] that such an algorithm gives a language in BPEXP that is not in P/poly.

We are now ready to show Theorem 47.

Proof of Theorem 47. Suppose, for the sake of contradiction, dense prBPP-properties useful against
SIZE[2ε] exist, for some ε > 0.

On the one hand, by Theorem 23, the existence of such properties implies that infinitely-often
one-way functions do not exist.

On the other hand, by Lemma 48, such a property implies BPEXP ̸⊆ P/poly. Then by The-
orem 44, infinitely-often worst-case asymmetry of information for pKt holds. By our assumption,
this implies infinitely-often average-case asymmetry of information for pKt, which, by Theorem 36,
implies the existence of infinitely-often one-way functions. A contradiction.

5 One-Way Functions and Hardness of Approximating pKt

5.1 Equivalence of OWF and Average-Case Hardness of Approximating pKt

We show the following which, by Proposition 35, implies Theorem 7.

Theorem 49. The following are equivalent.

1. Infinitely-often one-way functions do not exist.

30

2. (Average-Case Easiness of Approximating pKt) For every polynomial-time samplable
distribution family {Dn}n supported over {0, 1}n, there exist a probabilistic polynomial-time
algorithm A and a polynomial τ such that for all n ∈ N,

Pr
x∼Dn,A

[pKt(x)− log τ(n) ≤ A(x) ≤ pKt(x)] ≥ 1− 1

q(n)
.

Lemma 50. (Item 1 ⇒ Item 2 in Theorem 49). If infinitely-often one-way functions do not
exist, then for every polynomial-time samplable distribution family {Dn}n supported over {0, 1}n,
there exist a probabilistic polynomial-time algorithm A and a polynomial τ such that for all n ∈ N,

Pr
x∼Dn,A

[pKt(x)− log τ(n) ≤ A(x) ≤ pKt(x)] ≥ 1− 1

q(n)
.

Proof. Let {Dn}n be a polynomial-time samplable distribution family, where eachDn is over {0, 1}n.
Let q be any polynomial. Let τ be a polynomial specified later.

First of all, by Theorem 16 and Proposition 25, there is a polynomial p such that for all
x ∈ Support(Dn),

pKt(x) ≤ pKp(n)(x) + log p(n) ≤ log
1

Dn(x)
+ 2 log p(n). (20)

On the other hand, by Lemma 14, we get

Pr
x∼Dx

[
K(x) > log

1

Dn(x)
− b · log n− 2 log q(n)

]
≥ 1− 1

q(n)2
,

for some large constant b. Note that by Proposition 25,

K(x) ≤ pKt(x) + b · log n.

Then the above implies that with probability at least 1− 1/q(n)2 over x ∼ Dn, it holds that

pKt(x) > log
1

Dn(x)
− 2b · log n− 2 log q(n). (21)

Let B be the algorithm in Theorem 11, instantiated with the polynomial q′(n) := q(n)2. Then
by Theorem 11, we get that at least 1− 1/q(n)2 over x ∼ Dn and the internal randomness of B,

Dn(x)

2
≤ B(1n, x) ≤ Dn(x). (22)

Our algorithm A works as follows: On (x, 1s), output

β := log
1

B(1n, x)
− 2b · log n− 2 log q(n)− 1.

It is easy to see that A runs in polynomial time. Next, we show its correctness.
Note that if both Equation (21) and Equation (22) hold, which happens with probability at

least 1− 1/q(n) over x ∼ Dn and the internal randomness of A, we have both

β := log
1

B(1n, x)
− 2b · log n− 2 log q(n)− 1

≤ log
1

Dn(x)
+ 1− 2b · log n− 2 log q(n)− 1 (by Equation (22))

≤ pKt(x). (by Equation (21))

31

and

β : = log
1

B(1n, x)
− 2b · log n− 2 log q(n)− 1

≥ log
1

Dn(x)
− 1− 2b · log n− 2 log q(n)− 1 (by Equation (22))

≥ pKt(x)− 2− 2b · log n− 2 log q(n)− 2 log p(n) (by Equation (20))

≥ pKt(x)− log τ(n),

where the last inequality holds if we let τ be a sufficiently large polynomial. This completes the
proof of the lemma.

Lemma 51. (Item 2 ⇒ Item 1 in Theorem 49). Suppose for every polynomial-time sam-
plable distribution family {Dn}n supported over {0, 1}n, there exist a probabilistic polynomial-time
algorithm A and a polynomial τ such that for all n ∈ N,

Pr
x∼Dn,A

[pKt(x)− log τ(n) ≤ A(x) ≤ pKt(x)] ≥ 1− 1

q(n)
.

Then infinitely-often one-way functions do not exist.

Proof Sketch. The proof follows that of [IRS21, Theorem 36]. At a higher level, the idea is that if
we have an efficient algorithm for approximating pKt on average over polynomial-time samplable
distributions, then we can construct a function that distinguishes the output distribution of a cryp-
tographic pseudorandom generator from the uniform distribution. This is because the outputs of
such a generator have low pKt complexity while a uniformly random string has high pKt complexity.
By [HILL99], this implies that infinitely-often one-way functions do not exist.

We now complete the proof of Theorem 49.

Proof of Theorem 49. The theorem follows directly from Lemmas 50 and 51.

5.2 Hardness of Approximating pKt with Mild-One-Sided Error

In this subsection, we prove Theorem 8, which is restated below.

Theorem 8. Mild-1-Sided-Error-Approx-pKt is false. Moreover, the corresponding lower bound also
holds against randomized algorithms running in time npoly(logn).

To show Theorem 8, we will need the following lemmas.

Lemma 52. If pKt can be approximated on average with mild-one-sided error in time npoly(logn),
then BPE ⊆ SIZE[npoly(logn)].

Proof. Let L ∈ BPE. we identify L with a function from {0, 1}∗ to {0, 1}.
Since pKt can be approximated on average with mild-one-sided error in time npoly(logn), by

standard amplification techniques, there exist a constant 0 < ε < 1 and a probabilistic polynomial-
time A such that for all sufficiently large n,

Pr
x∼{0,1}n

[
Pr
A
[A(x) = 0] ≥ 1− 1

n2

]
≥ 1

n
,

32

Note that this implies

Pr
x∼{0,1}n,A

[A(x) = 0] ≥ 1

2n
.

Also, for every x ∈ {0, 1}n with pKt(x) ≤ nε,

Pr
A
[A(x) = 1] ≥ 1− 1

n2
.

Now let
{
G

(−)
n : {0, 1}n

λ

→ {0, 1}
}
n
be the pseudorandom generator from Theorem 19 instan-

tiated with parameter λ := ε/2.

Firstly, note that for every r ∈ {0, 1}n
λ

, GL
n(r) can be computed in deterministic time exp

(
O(nλ)

)
given oracle access to L on inputs of length at most nλ. Since L on inputs of length at most nλ can
be computed in randomized time exp(O(nλ)). It follows that GL

n(r) can be obtained (with high
probability) in randomized time exp(O(nλ)), which implies

pKt(GL
n(r)) ≤ O(nλ) ≤ nε. (23)

We remark that since GL
n can only be computed in a randomized manner, in the above we can only

upper-bound the pKt complexity of the output strings of GL
n , rather than the Kt complexity.5

It follows by the properties of the algorithm A that

Pr
r∼{0,1}nλ

,A

[
A(GL

n(r)) = 1
]
≥ 1− 1

n2
and Pr

x∼{0,1}n,A
[A(x) = 1] ≤ 1− 1

2n
.

Now by averaging, there exists some fixing of the internal randomness of A, which gives a quasi-
polynomial-size O-oracle circuit A′, so that A′ can distinguish the output of GL

n from the uniform
distribution with advantage at least 1/(3n). By Theorem 19, we get that L can be computed by
polynomial-size A′-oracle circuits, and hence by a quasi-polynomial-size O-oracle circuit.

Lemma 53. If pKt can be approximated on average with mild-one-sided error in time npoly(logn),
then PSPACE ⊆ BPTIME[npoly(logn)].

Proof. The proof is similar to that of Lemma 52. We present the full proof for completeness.
Let LTV be the PSPACE-hard language in Theorem 21. It suffices to show that LTV ∈

BPTIME[npoly(logn)].
Since Since pKt can be approximated on average with mild-one-sided error in time npoly(logn), by

standard amplification techniques, there exist a constant 0 < ε < 1 and a probabilistic polynomial-
time A such that for all sufficiently large n,

Pr
x∼{0,1}n

[
Pr
A
[A(x) = 0] ≥ 1− 1

n2

]
≥ 1

n
,

Note that this implies Prx∼{0,1}n,A[A(x) = 0] ≥ 1/(2n). Also, for every x ∈ {0, 1}n with pKt(x) ≤
nε, PrA[A(x) = 1] ≥ 1− 1/n2.

Let
{
IW

(−)
n : {0, 1}n

λ

→ {0, 1}
}
n
be the pseudorandom generator from Theorem 20 instantiated

with parameter λ := ε/2.

5We would be able to upper bound Kt complexity if we started with a language in E instead of BPE, but the
resulting inclusion E ⊆ SIZE[npoly(logn)] would be insufficient for the proof of a deterministic variant of Theorem 8,
since a deterministic analogue of Lemma 53 is unknown.

33

For every r ∈ {0, 1}n
λ

, IWLTV
n (r) can be computed in deterministic time exp

(
O(nλ)

)
given oracle

access to LTV on inputs of length at most nλ. Since LTV ∈ DPACE[O(n)], LTV on inputs of length
at most nλ can be computed in deterministic time exp(O(nλ)). It follows that IWLTV

n (r) can be
computed in time exp(O(nλ)), which implies

pKt
(
IWLTV

n (r)
)
≤ O(nλ) ≤ nε. (24)

It follows by the properties of the algorithm A that

Pr
r∼{0,1}nλ

,A

[
A(IWLTV

n (r)) = 1
]
≥ 1− 1

n2
and Pr

x∼{0,1}n,A
[A(x) = 1] ≤ 1− 1

2n
.

By Theorem 20, this yields a quasi-polynomial-time randomized algorithm for computing LTV.

Finally, we need the following lemma.

Lemma 54. There is a language in DSPACE[2n
o(1)

]\SIZE[npoly(logn)].

Proof. This can be shown using a diagonalization argument, which is similar to the proof of the
folklore result that PSPACE does not have fixed-polynomial-size circuits. Here, for n ∈ N, we use
one input of length n to diagonalize against at least half of the circuits in SIZE[npoly(logn)]. Details
follow.

Let s be any time-constructable function such that s(n) ∈ 2n
o(1)

and s(n) ∈ 2log
ω(1)(n). For n ∈

N, we let Sn denote the set of circuits with size at most s(n). Note that |Sn| ≤ exp(s(n) · log s(n)).
We describe a language L that is computable in space poly(s(n)) but not in SIZE[s(n)].
Fix n ∈ N. We let t := t(n) be the smallest integer such that |Sn| · 2−t < 1. Note that

t ≤ O(s(n) · log s(n)). Also, we identify t with the n-bit string which is the binary representation
of t.

For x ∈ {0, 1}n such that x ⪯ t, where “⪯” is defined with respect to lexicographic order, we
define bx ∈ {0, 1} recursively as follows.

bx := Majority{C(x) | C ∈ Sn and C(y) = by for all y ≺ x}.

We then let L(x) := 1− bx. Also, for x ≻ t, we let L(x) := 0.
First of all, note that given x ⪯ t and {by}y≺x, we can compute bx in space poly(s(n)), by

enumerating each C ∈ Sn and simulating C on inputs ⪯ x. Since we can also recursively compute
(and store) by for all y ≺ x, we conclude that L(x) can be computed in space poly(s(n)).

To see that L is not in SIZE[s(n)], note that using 0n, we can diagonalize against at least half
of the circuits in Sn. Then using 0n−11, we can further diagonalize against at least half of the
remaining circuits. After t steps, we will be able to diagonalize against all the circuits in Sn.

We are now ready to show Theorem 8.

Proof of Theorem 8. Suppose, for the sake of contradiction, pKt can be approximated on average
with mild-one-sided error in time npoly(logn). First of all, by Lemma 52, we get that BPE ⊆
SIZE[npoly(logn)].

By Lemma 54, there is a language L ∈ DSPACE[2n
o(1)

]\SIZE[npoly(logn)]. Now by Lemma 53,
we get that PSPACE ⊆ BPTIME[npoly(logn)]. Then by a padding argument, we get that L ∈ BPE.
However, this means that BPE ̸∈ SIZE[npoly(logn)]. A contradiction.

34

5.3 Proof of Theorem 3

In this subsection, we show Theorem 3, which is restated below.

Theorem 3 (Equivalence Between OWF and One-Sided to Two-Sided Error Reductions for pKt).
The following equivalence holds:

(2-Sided-Error-Approx-pKt ⇒ Mild-1-Sided-Error-Approx-pKt) ⇐⇒ ∃i.o.OWF

Proof. Suppose it holds that (2-Sided-Error-Approx-pKt ⇒ Mild-1-Sided-Error-Approx-pKt).
By Theorem 8, we have that ¬Mild-1-Sided-Error-Approx-pKt holds, which by the above implica-

tion yields that ¬ 2-Sided-Error-Approx-pKt holds. Then by Theorem 7, we get that infinitely-often
one-way functions exist.

On the other hand, suppose infinitely-often one-way functions exist. It follows from Theorem 7
that 2-Sided-Error-Approx-pKt does not hold. This trivially implies that (2-Sided-Error-Approx-pKt ⇒
Mild-1-Sided-Error-Approx-pKt).

5.4 PSPACE-Relativization Barrier for One-Sided to Two-Sided Error Reduc-
tions

Here, we prove Theorem 4, which is restated below.

Theorem 4. There exists an oracle O ∈ PSPACE relative to which 2-Sided-Error-Approx-pKt is
true, but Mild-1-Sided-Error-Approx-pKt is false.

To be precise, by saying that 2-Sided-Error-Approx-pKt is true relative to an oracle O (or pKt
can be approximated on average with two-sided error in polynomial time relative to O), we mean
the following.

For every distribution family {Dn}n supported over {0, 1}n that is samplable in poly-
nomial time given oracle access to O, and every polynomial q, there exist a PPT or-
acle algorithm A and a constant c > 0 such that for all sufficiently large n and all
1 ≤ s ≤ n+O(log n),

Pr
x∼Dn,A

[
AO decides GapMpKtPO[τ] on (x, 1s)

]
≥ 1− 1

q(n)
,

where τ(n) = c · log n, and GapMpKtPO[τ] is the following promise problem (YES,NO):

YES :=
{
(x, 1s) | pKtO(x) ≤ s

}
,

NO :=
{
(x, 1s) | pKtO(x) > s+ τ(|x|)

}
.

Here pKtO(x) denotes the variant of pKt complexity where the universal machine is an oracle
machine with access to O.

Similarly, we say that Mild-1-Sided-Error-Approx-pKt is true relative to an oracle O (or pKt can
be approximated on average with mild-one-sided error in polynomial time relative to O) if the
following holds.

There is ε > 0 and a PPT oracle algorithm B such that, for every large enough n, the
following hold.

• If x ∈ {0, 1}n and pKtO(x) ≤ nε, then PrB[B
O(x) = 1] ≥ 2

3 .

• With probability at least 1/n over x ∼ {0, 1}n, PrB[B
O(x) = 0] ≥ 2

3 .

Proof of Theorem 4. The proof follows directly from Lemma 55 and Lemma 60, which are stated
and proved below.

35

2-Sided-Error-Approx-pKt is true relative to some oracle O ∈ PSPACE.

Lemma 55. There exists an oracle O ∈ PSPACE relative to which 2-Sided-Error-Approx-pKt is
true.

To show Lemma 55, we need a “relativizing” version of Lemma 50.

Lemma 56. Let O be any oracle. If infinitely-often one-way functions do not exist relative to O,6

then 2-Sided-Error-Approx-pKt is true relative to O.

Proof Sketch. The proof is essentially the same as that of Lemma 50, except that we will use the
relativizing versions of Theorem 11, Lemma 14, Theorem 16, which can be obtained by adapting
their original proofs in a straightforward manner. We stated them formally below.

Lemma 57 (Following [IL90, IL89]). Let O be any oracle. If infinitely-often one-way functions
do not exist relative to O. then for every distribution family {Dn}n samplable in polynomial time
given oracle access to O, and every polynomial 1, there exists a probabilistic polynomial-time oracle
algorithm B such that for all n ∈ N,

Pr
x∼Dn,B

[
Dn(x)

2
≤ BO(1n, x) ≤ Dn(x)

]
≥ 1− 1

q(n)
.

Lemma 58 (See, e.g., the proof of [HIL+23, Lemma 9]). Let O be any oracle. There exists a
universal constant b > 0 such that for every distribution family {En}n, where each En is over
{0, 1}n, and for all n ∈ N,

Pr
x∼En

[
pKtO(x) < log

1

En(x)
− α

]
<

nb

2α
.

Lemma 59 (Following [LOZ22]). Let O be any oracle. For every distribution family {Dn}n sam-
plable in polynomial time given oracle access to O, where each Dn is supported over {0, 1}n, there
exists a polynomial p such that for every x ∈ Support(Dn),

pKO,p(n)(x) ≤ log
1

Dn(x)
+ log p(n).

Given the above lemmas, one can easily adapt the proof of Lemma 50 to get Lemma 56. We
omit the details here.

We are now ready to prove Lemma 55.

Proof of Lemma 55. A classical work by Baker, Gill and Solovay [BGS75] showed that there exists
an oracle O ∈ PSPACE relative to which NP = P. It follows that relative to the same oracle,
infinitely-often one-way functions do not exits. Then by Lemma 56, 2-Sided-Error-Approx-pKt is
true relative to the same oracle O.

6This means that for every f = {fn} ∈ FPO, where fn : {0, 1}n → {0, 1}poly(n), there exists a PPT algorithm A
and a constant c > 0 such that for infinitely-many n ∈ N, PrA, x∼{0,1}n [A

O(f(x)) ∈ f−1(f(x))] ≥ 1/nc.

36

Mild-1-Sided-Error-Approx-pKt is false relative to every oracle O ∈ PSPACE.

Lemma 60. Let O be any oracle in PSPACE. Then Mild-1-Sided-Error-Approx-pKt is false relative
to O (i.e., ¬Mild-1-Sided-Error-Approx-pKt holds relative to O). Moreover, the corresponding lower
bound also holds against randomized (O-oracle) algorithms running in time npoly(logn).

To show Lemma 60, we first need the following “relativizing” versions of Lemma 52 and
Lemma 52.

Lemma 61. Let O be any oracle. If pKt can be approximated on average with mild-one-sided error
in time npoly(logn) relative to O, then BPEO ⊆ SIZEO[npoly(logn)].

Lemma 62. Let O be any oracle. If pKt can be approximated on average with mild-one-sided error
in time npoly(logn) relative to O, then PSPACE ⊆ BPTIMEO[npoly(logn)].

Again, the proofs of Lemma 61 and Lemma 62 can be easily adapted from those of Lemma 52
and Lemma 52, and we omit the details here.

Next, we show a lemma analogous to Lemma 63. Note that here we only consider oracles in
PSPACE. This allows us to establish the existence of a language in DSPACE[2n

o(1)
]\SIZEO[npoly(logn)]

instead of DSPACEO[2n
o(1)

]\SIZEO[npoly(logn)], which will be crucial for proving Lemma 60 later.

Lemma 63. Let O ∈ PSPACE. There is a language in DSPACE[2n
o(1)

]\SIZEO[npoly(logn)].

Proof Sketch. This can be shown using a diagonalization argument, which is similar to the proof of
Lemma 54. More specifically, for n ∈ N, we use one input of length n to diagonalize against at least
half of the O-oracle circuits whose size are at most npoly(logn). (To be more precise, we will consider
the set of size-s(n) O-oracle circuits where s is some super-quasi-polynomial size function.)

The reason this diagonalization argument works is because O ∈ PSPACE, and any O-oracle
circuit can only query O on inputs of length at most its size. Therefore, we can simulate any such
circuit using 2n

o(1)
space .

Next, we prove Lemma 60.

Proof of Lemma 60. The proof follows closely to that of Theorem 8.
Suppose, for the sake of contradiction, there exists an oracle O ∈ PSPACE such that pKt can

be approximated on average with mild-one-sided error in time npoly(logn) relative to O. First of all,
by Lemma 61, we get that BPEO ⊆ SIZEO[npoly(logn)].

By Lemma 63, there is a language L ∈ DSPACE[2n
o(1)

]\SIZEO[npoly(logn)]. Now by Lemma 62,
we get that PSPACE ⊆ BPTIMEO[npoly(logn)]. Then by a padding argument, we get that L ∈ BPEO.
However, this means that BPEO ̸∈ SIZEO[npoly(logn)]. A contradiction.

References

[AGGM06] Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing one-
way functions on NP-hardness. In Symposium on Theory of Computing (STOC), pages
701–710, 2006.

[All92] Eric Allender. Applications of time-bounded Kolmogorov complexity in complexity
theory. In Kolmogorov complexity and computational complexity, pages 4–22. Springer,
1992.

37

[All01] Eric Allender. When worlds collide: Derandomization, lower bounds, and kolmogorov
complexity. In Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 1–15, 2001.

[All17] Eric Allender. The complexity of complexity. In Computability and Complexity, pages
79–94. Springer, 2017.

[BB15] Andrej Bogdanov and Christina Brzuska. On basing size-verifiable one-way functions
on NP-hardness. In Theory of Cryptography Conference (TCC), pages 1–6, 2015.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexpo-
nential time simulations unless EXPTIME has publishable proofs. Comput. Complex.,
3:307–318, 1993.

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizatons of the P =? NP
Question. SIAM J. Comput., 4(4):431–442, 1975.

[BLMP23] Marshall Ball, Yanyi Liu, Noam Mazor, and Rafael Pass. Kolmogorov comes to cryp-
tomania: On interactive Kolmogorov complexity and key-agreement. In Symposium on
Foundations of Computer Science (FOCS), 2023.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor.
Comput. Sci., 2(1), 2006.

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Learning algorithms from natural proofs. In Conference on Computa-
tional Complexity (CCC), pages 10:1–10:24, 2016.

[CLLO21] Lijie Chen, Zhenjian Lu, Xin Lyu, and Igor C. Oliveira. Majority vs. approximate
linear sum and average-case complexity below NC1. In International Colloquium on
Automata, Languages, and Programming (ICALP), pages 51:1–51:20, 2021.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans.
Inf. Theory, 22(6):644–654, 1976.

[GK22] Halley Goldberg and Valentine Kabanets. A simpler proof of the worst-case to average-
case reduction for polynomial hierarchy via symmetry of information. Electron. Collo-
quium Comput. Complex., TR22-007, 2022.

[GKLO22] Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. Probabilistic
Kolmogorov complexity with applications to average-case complexity. In Computational
Complexity Conference (CCC), pages 16:1–16:60, 2022.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[HIL+23] Shuichi Hirahara, Rahul Ilango, Zhenjian Lu, Mikito Nanashima, and Igor C. Oliveira.
A duality between one-way functions and average-case symmetry of information. In
Symposium on Theory of Computing (STOC), pages 1039–1050, 2023.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

38

[Hir21] Shuichi Hirahara. Average-case hardness of NP from exponential worst-case hardness
assumptions. In Symposium on Theory of Computing (STOC), pages 292–302, 2021.

[Hir22a] Shuichi Hirahara. Np-hardness of learning programs and partial MCSP. In Symposium
on Foundations of Computer Science (FOCS), pages 968–979, 2022.

[Hir22b] Shuichi Hirahara. Symmetry of information from meta-complexity. In Computational
Complexity Conference (CCC), pages 26:1–26:41, 2022.

[HLR23] Shuichi Hirahara, Zhenjian Lu, and Hanlin Ren. Bounded relativization. In Conference
on Computational Complexity (CCC), pages 6:1–6:45, 2023.

[HN23] Shuichi Hirahara and Mikito Nanashima. Learning in pessiland via inductive inference.
In Symposium on Foundations of Computer Science (FOCS), 2023.

[HS22] Shuichi Hirahara and Rahul Santhanam. Errorless versus error-prone average-case
complexity. In Innovations in Theoretical Computer Science Conference (ITCS), pages
84:1–84:23, 2022.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complex-
ity based cryptography (extended abstract). In Symposium on Theory of Computing
(STOC), pages 230–235, 1989.

[IL90] Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances
than picking uniformly at random. In Symposium on Theory of Computing (STOC),
pages 812–821, 1990.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of
Structure in Complexity Theory (CCC), pages 134–147, 1995.

[IRS21] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Hardness on any samplable distribu-
tion suffices: New characterizations of one-way functions by meta-complexity. Electron.
Colloquium Comput. Complex., TR21-082, 2021.

[IRS22] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Robustness of average-case meta-
complexity via pseudorandomness. In Symposium on Theory of Computing (STOC),
pages 1575–1583, 2022.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Frank Thomson Leighton and Peter W. Shor,
editors, Symposium on Theory of Computing (STOC), pages 220–229, 1997.

[KvM02] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexpo-
nential size proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput.,
31(5):1501–1526, 2002.

[Lev74] Leonid A. Levin. Laws of information conservation (nongrowth) and aspects of the
foundation of probability theory. Problemy Peredachi Informatsii, 10(3):30–35, 1974.

[Lev84] Leonid A. Levin. Randomness conservation inequalities; information and independence
in mathematical theories. Information and Control, 61(1):15–37, 1984.

[LM93] Luc Longpré and Sarah Mocas. Symmetry of information and one-way functions. Inf.
Process. Lett., 46(2):95–100, 1993.

39

[LO22] Zhenjian Lu and Igor C. Oliveira. Theory and applications of probabilistic Kolmogorov
complexity. Bull. EATCS, 137, 2022.

[LOZ22] Zhenjian Lu, Igor Carboni Oliveira, and Marius Zimand. Optimal coding theorems
in time-bounded Kolmogorov complexity. In International Colloquium on Automata,
Languages, and Programming (ICALP), pages 92:1–92:14, 2022.

[LP20] Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In
Symposium on Foundations of Computer Science (FOCS), pages 1243–1254, 2020.

[LP21] Yanyi Liu and Rafael Pass. On the possibility of basing cryptography on EXP̸=BPP.
In International Cryptology Conference (CRYPTO), pages 11–40, 2021.

[LP22] Yanyi Liu and Rafael Pass. On one-way functions from NP-complete problems. In
Conference on Computational Complexity (CCC), pages 36:1–36:24, 2022.

[LP23a] Yanyi Liu and Rafael Pass. On one-way functions and the worst-case hardness of time-
bounded Kolmogorov complexity. Electron. Colloquium Comput. Complex., TR23-103,
2023.

[LP23b] Yanyi Liu and Rafael Pass. One-way functions and the hardness of (probabilistic)
time-bounded Kolmogorov complexity w.r.t. samplable distributions. In International
Cryptology Conference (CRYPTO), pages 645–673, 2023.

[LV19] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications, 4th Edition. Texts in Computer Science. Springer, 2019.

[LW95] Luc Longpré and Osamu Watanabe. On symmetry of information and polynomial time
invertibility. Inf. Comput., 121(1):14–22, 1995.

[Nan21] Mikito Nanashima. On basing auxiliary-input cryptography on np-hardness via non-
adaptive black-box reductions. In Innovations in Theoretical Computer Science (ITCS),
pages 29:1–29:15, 2021.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptol., 4(2):151–158, 1991.

[Oli19] Igor C. Oliveira. Randomness and intractability in Kolmogorov complexity. In In-
ternational Colloquium on Automata, Languages, and Programming (ICALP), pages
32:1–32:14, 2019.

[OS17a] Igor C. Oliveira and Rahul Santhanam. Conspiracies between learning algorithms,
circuit lower bounds, and pseudorandomness. In Computational Complexity Conference
(CCC), pages 18:1–18:49, 2017.

[OS17b] Igor C. Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subex-
ponential time. In Symposium on Theory of Computing (STOC), pages 665–677, 2017.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
Symposium on Theory of Computing (STOC), pages 387–394, 1990.

[Ron04] Detlef Ronneburger. Kolmogorov Complexity and Derandomization. PhD thesis, Rut-
gers University, 2004.

40

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci.,
55(1):24–35, 1997.

[RS21] Hanlin Ren and Rahul Santhanam. Hardness of KT characterizes parallel cryptography.
In Computational Complexity Conference (CCC), pages 35:1–35:58, 2021.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without
the XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[SUV17] Alexander Shen, Vladimir A. Uspensky, and Nikolay Vereshchagin. Kolmogorov com-
plexity and algorithmic randomness. American Mathematical Society, 2017.

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity
via uniform reductions. Comput. Complex., 16(4):331–364, 2007.

[ZL70] Alexander K. Zvonkin and Leonid A. Levin. The complexity of finite objects and the
algorithmic concepts of randomness and information. UMN (Russian Math. Surveys),
25(6):83–124, 1970.

A One-Way Functions and Worst-Case SoI for pKt with Compu-
tational Depth

For a time bound t ∈ N, the computational depth of x, denoted by cdt(x), is defined as

cdt(x) := pKt(x)− K(x).

We say that a string is computationally shallow if its computational depth is small. The main result
of this section is to characterize the existence of a one-way function by symmetry of information
for computationally shallow strings.

Theorem 64. The following are equivalent.

1. Infinitely-often one-way functions do not exist.

2. (Worst-Case Symmetry of Information using Computational Depth) There exist a
constant c and a polynomial ρ such that for all t, n ∈ N and x, y ∈ {0, 1}n such that t ≥ ρ(n),

pKt(x, y) ≥ pKt(x) + pKt(y | x)− c ·
(
cdt(x, y) + log t

)
.

3. (Average-Case Symmetry of Information) For every polynomial-time samplable distri-
bution family {Dn}n∈N, where each Dn is over {0, 1}n×{0, 1}n, and every polynomial q, there
exists a constant c such that for all n,

Pr
(x,y)∼Dn

[pKt(x, y) ≥ pKt(x) + pKt(y | x)− c · log n] ≥ 1− 1

q(n)
.

Proof. The theorem follows directly from Theorem 65 (stated and proved in Sections A.1), Propo-
sition 72 and Lemma 39, respectively.

41

A.1 Worst-Case SoI with Computational Depth from Inverting One-Way Func-
tions

Theorem 65. (Item 1 ⇒ Item 2 in Theorem 64). If infinitely-often one-way functions do not
exist, then there exist a constant c and a polynomial ρ such that for all t, n ∈ N and x, y ∈ {0, 1}n
such that t ≥ ρ(n),

pKt(x, y) ≥ pKt(x) + pKt(y | x)− c ·
(
cdt(x, y) + log t

)
.

We will need a couple of the technical lemmas. The following theorem shows that there exists
an efficient algorithm that approximates K(x) for every computationally shallow string x under the
non-existence of one-way functions.

Theorem 66 (See [HN23, Theorem 7.2]). The following are equivalent.

1. Infinitely-often one-way functions do not exist.

2. There exists a randomized polynomial-time algorithm M such that for all n, k, t, α ∈ N and
all x ∈ {0, 1}n with cdt(x) ≤ α,

Pr
M

[
K(x) ≤ M(x, 1k, 1t, 12

α
) ≤ K(x) + α+O(log tk)

]
≥ 1− 1

k
.

An important property of computational depth is that any efficient randomized algorithm can-
not significantly increase the computational depth.

Lemma 67 (Slow growth law [HN23, Lemma 6.15]). Let M be any randomized polynomial-time
algorithm of description length d ∈ N. Then, there exist polynomials τ, ρ such that for all n, t, k ∈ N
and all x ∈ {0, 1}n such that t ≥ ρ(d, n),

Pr
M

[
cdτ(t)(M(x)) ≤ cdt(x) + k

]
≥ 1− 2−k+log t+O(d),

where the probability is taken over the internal randomness of M .

Using the symmetry of information for K, we upgrade the algorithm of Theorem 66 to one that
approximates the conditional Kolmogorov complexity K(y | x) for every computationally shallow
pair (y, x).

Lemma 68. If infinitely-often one-way functions do not exist, then there exists a randomized
polynomial-time algorithm M such that for all n,m, k, t, α ∈ N and all x ∈ {0, 1}n and y ∈ {0, 1}m
with cdt(x, y) ≤ α,

Pr
M

[
K(y | x)− 2α−O(log tknm) ≤ M(y, x, 1k, 1t, 12

α
) ≤ K(y | x)

]
≥ 1− 1

k
.

Proof Sketch. By the slow growth law (Lemma 67), we have

cdρ(t)(x) ≤ cdt(x, y) +O(log t)

for every x ∈ {0, 1}n, y ∈ {0, 1}m such that n +m ≥ ρ(t). Using the algorithm from Theorem 66,
we can first compute u such that

K(x, y) ≤ u ≤ K(x, y) + α+O(log t+ log k),

42

and then compute v such that

K(x) ≤ v ≤ K(x) + α+O(log t+ log k).

Then using symmetry of information for K [ZL70], we have

u− v ≥ K(x, y)− K(x)− α−O(log t+ log k) ≥ K(y | x)− α−O(log tknm),

and

u− v ≤ K(x, y) + α+O(log t+ log k)− K(x) ≤ K(y | x) + α+O(log t+ log k).

We can then output u−v−α−O(log tknm), which will be a proper approximation of K(y | x).

The proof strategy of Lemma 37 is to break the security of a pseudorandom generator construc-
tion, which is called the direct product generator.

Definition 69 (Direct Product Generator [Hir21, Definiton 3.10]). For k, n ∈ N, we define the
k-wise direct product generator to be the function

DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k

such that
DPk(x; z1, . . . , zk) := (z1, . . . , zk, x · z1, . . . , x · zk),

where x · zi ∈ {0, 1} denotes the inner product between x and zi modulo 2.

It is known that DPk(x;U) is pseudorandom if x has high Kolmogorov complexity.

Lemma 70 (Reconstruction Lemma for pKt; see [GKLO22]). There exists a polynomial pDP such
that, for every ε > 0, x ∈ {0, 1}n, s ∈ N, and k ∈ N satisfying k ≤ 2n, for every randomized
algorithm D that takes an advice string β and runs in time tD such that

Pr
z,D

[D(DPk(x; z)) = 1]− Pr
w,D

[D(w) = 1] ≥ ε,

where the probabilities are taken over z ∼ {0, 1}nk, w ∼ {0, 1}nk+k, and the internal randomness
of D, it holds that

pKp
DP

(ntD/ε)(x | β) ≤ k + log p
DP
(ntD/ε).

We now combine Lemmas 68 and 70 to show an upper bound of pKt.

Lemma 71. If infinitely-often one-way functions do not exist, then there exist a constant c > 0
and a polynomial ρ such that for all n, t ∈ N and all x, y ∈ {0, 1}n such that t ≥ ρ(n),

pKt(y | x) ≤ K(y | x) + c ·
(
cdt(x, y) + log t

)
.

Proof. Let x, y ∈ {0, 1}n. Let k ≤ 2n be a parameter chosen later. Let ϵ := 1/10.
Recall the definition of direct product generator in Definition 69. Since DPk is computable, we

have for all z ∈ {0, 1}nk,

K(DPk(y; z) | x) ≤ K(y | x) + |z|+O(log n) ≤ K(y | x) + nk +O(log n) =: s,

where we define s as in the last equality.

43

Applying Lemma 67 to the randomized algorithm that outputs (DPk(x; z), y) on input (x, y)
over a coin flip sequence z ∼ {0, 1}nk, we obtain polynomials ρ, τ such that

cdτ(t)(DPk(x; z), y) ≤ cdt(x, y) +O(log t) =: α (25)

with probability at least 1− ϵ over z ∼ {0, 1}nk for all t ≥ ρ(n). We define α := cdt(x, y)+O(log t)
so that cdτ(t)(DPk(x; z), y) ≤ α with probability 1− ϵ. Similarly, we also obtain

cdτ(t)(w, y) ≤ cdt(x, y) +O(log t) ≤ α (26)

with probability at least 1− ϵ over w ∼ {0, 1}nk+k.
Let M be the algorithm in Lemma 68 and let M ′ be the algorithm such that M ′(w, x) :=

M(w, x, 1ϵ
−1
, 1τ(t), 12

α
). By Lemma 68 and Equation (25), with probability at least 1− 2ϵ over the

internal randomness of M ′ and z ∼ {0, 1}nk, we have

M ′(DPk(y; z), x) ≤ K(DPk(y; z) | x) ≤ s.

Let D be a randomized algorithm that takes non-uniform advice s, t, α ∈ N and x ∈ {0, 1}n, and
outputs 1 on input w ∈ {0, 1}nk+k if and only if M ′(w, x) ≤ s. Then we have

Pr
z,D

[D(DPk(y; z)) = 1] ≥ 1− 2ϵ, (27)

where the probability is over the internal randomness of D and z ∼ {0, 1}nk.
On the other hand, by Lemma 68 and Equation (26), with probability at least 1− 2ϵ over the

internal randomness of M ′ and w ∼ {0, 1}nk+k, we also have

M ′(w, x) ≥ K(w | x)− 2α−O(log t)

Moreover, by a simple counting argument, we have

K(w | y) ≥ |w| −O(log(1/ϵ)) ≥ nk + k −O(log(1/ϵ))

with probability at least 1 − ϵ over w ∼ {0, 1}nk+k. By a union bound, with probability at least
1− 3ϵ, we obtain

M ′(w, x) ≥ nk + k − 2α−O(log t) > s,

where the last inequality holds by choosing a sufficiently large k := K(y | x) + 2α+O(log t). Then
we have

Pr
w,D

[D(w) = 1] ≤ 3ϵ, (28)

where the probability is over the internal randomness of D and w ∼ {0, 1}nk+k.
By Equations (27) and (28), the non-uniform randomized algorithm D distinguishes the output

distribution of DPk(x; ·) from the uniform distribution. By Lemma 70, we obtain

pKtD(x) ≤ k + log tD ≤ K(y | x) + 2α+O(log tD),

where tD ≤ poly(t, 2α) is a sufficiently large upper bound of the running time of D. Finally, we
have

pKt(x) ≤ log tD + pKtD(x) ≤ K(y | x) +O(α+ log t).

44

Proof of Theorem 65. We apply Lemma 71 twice for (x, y) and (the empty string, x). By Lemma 71,
there exist a constant c > 0 and a polynomial ρ such that for all n, t ∈ N and all x, y ∈ {0, 1}n such
that t ≥ ρ(n),

pKt(y | x) ≤ K(y | x) + c ·
(
cdt(x, y) + log t

)
.

Similarly, we also have

pKt(x) ≤ K(x) + c ·
(
cdp(t)(x) + log p(t)

)
,

where p is an arbitrary polynomial. By Lemma 67, we have cdp(t)(x) ≤ cdt(x, y) + O(log t). It
follows from the three inequalities above that

pKt(y | x) + pKt(x) ≤ K(y | x) + K(x) +O
(
cdt(x, y) + log t

)
≤ K(x, y) +O(cdt(x, y) + log t),

where the last inequality holds because of the symmetry of information for K. The result follows
by observing that K(x, y) ≤ pKt(x, y) +O(1).

A.2 Average-Case SoI from Worst-Case SoI with Computational Depth

Proposition 72. (Item 2 ⇒ Item 3 in Theorem 64). If for every polynomial ρ, there exists a
constant c such that for all n ∈ N and x, y ∈ {0, 1}n,

pKt(x, y) ≥ pKt(x) + pKt(y | x)− c ·
(
cdt(x, y) + log n

)
,

where t := ρ(n), then average-case symmetry of information for pKt (Item 3 in Theorem 64) holds.

It is easy to observe that Item 2 of Theorem 64 implies the assumption of Proposition 72. Thus,
(Item 2 ⇒ Item 3) in Theorem 64 follows from Proposition 72.

The proof of Proposition 72 is based on the fact that a string drawn from an arbitrary polynomial-
time samplable distribution is computationally shallow.

Lemma 73 (see also [HN23, Lemma 6.14]). For every polynomial-time samplable distribution
{Dn}n∈N, there exists a polynomial ρ such that for every n ∈ N, every t ≥ ρ(n), and every k ∈ N,

Pr
x∼Dn

[
cdt(x) > k

]
≤ 2−k+O(logn).

Proof. LetM be the randomized algorithm that, on input 1n, samples a string distributed according
to Dn. The result follows by applying Lemma 67 to M .

Proof of Proposition 72. Let {Dn}n∈N be any polynomial-time samplable distribution. By Lemma 73,
with probability at least 1− 1/q(n) over (x, y) ∼ Dn, it holds that

cdt(x, y) ≤ O(log n).

Thus, it follows that

pKt(x, y) ≥ pKt(x) + pKt(y | x)− c ·
(
cdt(x, y) + log n

)
≥ pKt(x) + pKt(y | x)−O(log n),

as desired.

45

	Introduction
	Context and Motivation
	Our Contributions
	pKt: A Probabilistic Analogue of Levin's Kt Complexity
	OWF from BPEXP Lower Bounds via Worst-Case to Average-Case Failure of SoI
	OWF via One-Sided to Two-Sided Error Reductions for Approximating pKt

	Techniques
	Directions and Open Problems

	Preliminaries
	One-Way Functions
	Kolmogorov Complexity
	Pseudorandomness
	Natural Properties

	pKt: Probabilistic Levin Complexity
	Useful Properties of pKt
	Notions of Average-Case Tractability for Approximating pKt

	One-Way Functions and Asymmetry of Information for pKt
	Equivalence of OWF and Average-Case Asymmetry of Information
	Asymmetry of Information from Circuit Lower Bounds
	Proof of Theorem 1
	Non-Existence of Natural Properties via Reductions from Worst-Case to Average-Case Asymmetry of Information

	One-Way Functions and Hardness of Approximating pKt
	Equivalence of OWF and Average-Case Hardness of Approximating pKt
	Hardness of Approximating pKt with Mild-One-Sided Error
	Proof of Theorem 2
	PSPACE-Relativization Barrier for One-Sided to Two-Sided Error Reductions

	One-Way Functions and Worst-Case SoI for pKt with Computational Depth
	Worst-Case SoI with Computational Depth from Inverting One-Way Functions
	Average-Case SoI from Worst-Case SoI with Computational Depth

