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Abstract

The classical coding theorem in Kolmogorov complexity [Lev74] states that if a string x is sampled
with probability ≥ δ by an algorithm with prefix-free domain, then K(x) ≤ log(1/δ)+O(1). Motivated
by applications in algorithms, average-case complexity, learning, and cryptography, computationally ef-
ficient variants of this result have been established for several recently introduced probabilistic measures
of time-bounded Kolmogorov complexity, including rKt [LO21] and pKt [LOZ22]. However, establish-
ing a coding theorem for classical (non-probabilistic) notions of time-bounded Kolmogorov complexity,
such as Kt complexity [Lev84], remains a longstanding open problem despite its significance. In partic-
ular, the current status of coding results reveals a fundamental gap in our understanding of the role of
randomness in data compression.

In this work, we make progress by establishing the first equivalence between coding for Kt com-
plexity and complexity lower bounds. Building on this equivalence, we show that similar characteriza-
tions hold for non-deterministic and zero-error variants of Kt complexity, demonstrating that coding is
equivalent to a corresponding complexity separation in each case. We complement these results by es-
tablishing additional equivalences involving the computational hardness of approximating time-bounded
Kolmogorov complexity, along with an unconditional lower bound on the complexity of approximating
zero-error time-bounded Kolmogorov complexity.

These results reveal novel connections between coding (the existence of succinct encodings), com-
plexity separations (e.g., NEXP versus BPP), and meta-complexity (the complexity of deciding if a
succinct encoding exists). In particular, our work provides a new perspective on frontier questions in
complexity theory and explains why coding theorems exist for rKt and pKt but remain unknown for
other measures of time-bounded Kolmogorov complexity. Finally, our results determine the minimal
hardness assumptions sufficient for coding in different settings.
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1 Introduction

1.1 Context and Motivation

The investigation of data compression problems and their computational complexity has seen significant
progress and impact in recent years. In particular, a sequence of works have established that different notions
of compression and their associated computational problems can be used to capture major open problems
from theoretical computer science. Some notable examples include the existence of one-way functions
[LP20] and secure key-agreement protocols [BLMP23] in cryptography, and the efficient learnability of
Boolean circuits [CIKK16] and the complexity of inductive inference [HN23] in computational learning
theory. Strikingly, for several statements that do not refer to compression, the only known proof of the result
seems to crucially rely on ideas and techniques from compression. Among them, we have the existence
of learning speedups [OS17], a connection between worst-case and average-case complexity [Hir21], and
lower bounds on program size overhead in indistinguishability obfuscation [LMOP24].

A central tool in the study of compression is the coding theorem from Kolmogorov complexity [Lev74].
It states that if a string x ∈ {0, 1}n is sampled with probability ≥ δ by an algorithm with prefix-free domain
then K(x) ≤ log(1/δ) + O(1). This general result connects randomized computations to compression and
is widely considered to be one of the pillars of the theory of Kolmogorov complexity [Lee06].

Due to the time-unbounded nature of Kolmogorov complexity, the coding theorem as stated above is
typically not sufficient in algorithmic applications where the running time of algorithms is relevant. A few
years ago, [LO21, LOZ22] established a similar result for certain time-bounded variants of Kolmogorov
complexity, namely, rKt and pKt complexities. Since then, these results have found several applications
in cryptography [IRS22, LP23, HIL+23, HLO24, HLN24, LP25], algorithm design and hardness results
[HKLO24, LORS24, GK24], average-case complexity [LOZ22, LS24], learning theory [GKLO22, HN23,
GK23], and complexity lower bounds [Hir22, San23, LP24].

While unconditional, a drawback of these coding results is that rKt and pKt are probabilistic notions of
time-bounded Kolmogorov complexity [LO22], meaning that randomness (and consequently uncertainty) is
essential to the representation of the string x. Establishing a coding theorem for classical (non-probabilistic)
notions of time-bounded Kolmogorov complexity, such as Levin’s Kt complexity [Lev84], remains a long-
standing open problem. It provides a natural computational setting where randomness offers a significant
advantage over deterministic computations given our current knowledge of algorithms and complexity the-
ory.

Let κ be a measure of (time-bounded) Kolmogorov complexity, such as Kt, rKt, etc. Let {Dn}n∈N be a
polynomial-time samplable distribution family. In order to put our results in perspective, we can informally
classify coding theorems according to the amount of compression they achieve:

• Optimal Coding: κ(x) ≤ log(1/Dn(x)) +O(log n). This is known for κ ∈ {K, pKt} [Lev84, LOZ22].

• Near-Optimal Coding: κ(x) ≤ O(log(1/Dn(x)) + log n). This is known for κ = rKt [LO21, LOZ22].

• Weak Coding: κ(x) ≤
(

1
Dn(x)

· n
)ε

, for a fixed but arbitrarily small ε > 0.

• Non-Trivial Coding: κ(x) ≤ n− ω(log n) assuming, say, x is generated with probability Dn(x) ≥ 0.99.

For non-probabilistic measures of time-bounded Kolmogorov complexity, conditional results are known:

– Antunes and Fortnow [AF09] established that optimal coding holds for Kt under the assumption that
exponential time is not infinitely often in subexponential space.

– Under the existence of pseudorandom generators of exponential stretch secure against non-uniform cir-
cuits, near-optimal coding holds for Kt (e.g., by combining [LO21] and [GKLO22, Section A.2]).
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– In the other direction, Lee [Lee06, Chapter 5] proved that if optimal coding holds for Kpoly then EXP ̸=
BPP.

There is a sharp contrast between the unconditional results established for probabilistic measures such
as rKt and pKt, and the conditional results known for non-probabilistic measures such as Kt, which require
strong computational assumptions. Motivated by this discrepancy and with the goal of advancing our un-
derstanding of randomness in computation, we systematically investigate the prospects of achieving better
coding results in time-bounded Kolmogorov complexity. From a technical perspective, we are interested in
the following basic questions:

(1) Is it possible to show non-trivial coding for Kt without hardness assumptions?

(2) If non-trivial coding for Kt is difficult to achieve, can we at least improve the existing coding result
for rKt in order to achieve zero-error encodings?

(3) Is there a connection between coding (i.e., the existence of succinct encodings) and the hardness of the
corresponding meta-computational problem (i.e., the task of deciding if a succinct encoding exists)?

More broadly, we seek to deepen our knowledge of the role of randomness in data compression and
identify when it can be eliminated without incurring significant overhead, under minimal hardness assump-
tions.

1.2 Results

Summary. Our main contribution is to show that coding and complexity lower bounds are in fact equivalent.
As a consequence of our results and techniques, we also establish a surprising equivalence between weak
coding and non-trivial coding for different measures of time-bounded Kolmogorov complexity. Finally, we
extend these equivalences by considering the computational complexity of estimating time-bounded Kol-
mogorov complexity. This extends our results and uncovers a novel connection between the existence of suc-
cinct encodings (coding) and the feasibility of deciding when a succinct encoding exists (meta-complexity).

Altogether, our results completely answer Questions 1-3 stated above. They also show that the validity
of a key property (coding) of Kolmogorov complexity in the time-bounded setting captures several frontier
questions in complexity theory. This exhibits another significant example of the relevance of compression
to central questions in theoretical computer science.

Organization. In Section 1.2.1, we establish the equivalence between coding and complexity lower bounds
for Kt complexity. Section 1.2.2 and Section 1.2.3 extend these results to the non-deterministic and zero-
error variants, denoted by nKt and zKt, respectively. The computational complexity of estimating time-
bounded Kolmogorov complexity is explored in Section 1.2.4.

1.2.1 Coding for Deterministic Time-Bounded Kolmogorov Complexity

Fix an efficient universal machine U . Recall that for a string x ∈ {0, 1}∗, we let

Kt(x) ≜ min
p∈{0,1}∗, t∈N

{
|p|+ ⌈log t⌉ : U t(p) = x

}
.

The notation U t(p) denotes the output of U on input string p when it computes for at most t steps. It is also
possible to consider a relativized version of Kt, namely KtO, where we give the universal Turing machine
U oracle access to the set O ⊆ {0, 1}∗.
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Recall that an ensemble {Dn}n∈N of distributions Dn supported over {0, 1}∗ is polynomial-time sam-
plable if there is a polynomial-time randomized algorithm A whose output A(1n, r) for r ∼ {0, 1}∗ is
distributed according to Dn. We denote the probability of an element x over Dn by Dn(x) ∈ [0, 1].

Theorem 1. The following statements are equivalent.

1. EXP ̸= BPP.

2. (Weak coding for Kt.) For any ε > 0 and any polynomial-time samplable distribution family
{Dn}n∈N, there are infinitely many n ∈ N such that for all x ∈ Support(Dn),

Kt(x) ≤
(

1

Dn(x)
· n

)ε

.

3. (Non-trivial coding for Kt.) There exists a constant c > 0 such that the following holds. Let {Dn}n∈N
be a polynomial-time samplable distribution family, where each Dn is supported over {0, 1}n, satisfy-
ing that there exists a sequence {xn}n∈N such that Dn(xn) ≥ 1−n−c for every n. Then for infinitely
many n, we have

Kt(xn) ≤ n− ω(log n).

As a consequence of this result, merely showing that Kt admits non-trivial coding requires a hardness
assumption. This addresses Question 1 from Section 1.1.

The equivalence stated in Theorem 1 significantly strengthens a result from [Lee06, Chapter 5] showing
that optimal coding for Kpoly yields EXP ̸= BPP. In addition, our proof that Item 3 implies Item 1 is
considerably simpler.

Theorem 1 also establishes an equivalence between weak coding and non-trivial coding for Kt. On the
other hand, we observe in Section 3.2 that near-optimal coding for Kt implies the significantly stronger
separation DTIME[2O(n)] ⊈ i.o.BPTIME[2n]. Consequently, in contrast to the equivalence between non-
trivial coding and weak coding, we are unlikely to obtain an equivalence between weak-coding and near-
optimal coding given our current knowledge of complexity theory, unless we can show how to boost the
separation EXP ̸= BPP to a much stronger result.1

1.2.2 Coding for Non-Deterministic Time-Bounded Kolmogorov Complexity

Next, we establish an equivalence between coding with non-deterministic encodings and complexity
lower bounds. We will need the following definition, which offers a natural extension of Kt to the setting of
non-deterministic computations. For a string x ∈ {0, 1}∗, the non-deterministic time-bounded Kolmogorov
complexity of x is defined as

nKt(x) ≜ min
p∈{0,1}∗, t∈N

{
|p|+ ⌈log t⌉

∣∣∣∣ • ∀w ∈ {0, 1}t, U(p, w) outputs x or ⊥ within t steps
• ∃w ∈ {0, 1}t, U(p, w) outputs x within t steps

}
.

The above definition is equivalent to a “local” notion of non-deterministic Kolmogorov complexity investi-
gated in [AKRR11], which considers instead individual bits of x (see Appendix A).

Theorem 2. The following statements are equivalent.

1. NEXP ̸= BPP.

1In fact, it seems plausible that near-optimal coding for Kt is equivalent to lower bounds of the form DTIME[2O(n)] ⊈
BPTIME[2n]. However, it is unclear to us how to establish this equivalence using our techniques, which are based on the the-
ory of computational pseudorandomness.
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2. (Weak coding for nKt) For any ε > 0 and any polynomial-time samplable distribution family
{Dn}n∈N, there are infinitely many n ∈ N such that for all x ∈ Support(Dn),

nKt(x) ≤
(

1

Dn(x)
· n

)ε

.

3. (Non-trivial coding for nKt.) There exists a constant c > 0 such that the following holds. Let
{Dn}n∈N be a polynomial-time samplable distribution family, where each Dn is supported over
{0, 1}n, satisfying that there exists a sequence {xn}n∈N such that Dn(xn) ≥ 1 − n−c for every
n. Then for infinitely many n, we have

nKt(xn) ≤ n− ω(log n).

Moreover, the above holds if we replace NEXP with EXPNP, and nKt with KtNP.2

As a consequence of this result, even if we could achieve non-trivial coding using non-deterministic
encodings, a new complexity lower bound would follow. Indeed, Theorem 2 provides a new characterization
of the NEXP versus BPP problem as a statement about the existence of succinct encodings.

1.2.3 Coding for Zero-Error Time-Bounded Kolmogorov Complexity

Finally, we introduce a natural zero-error variant of Kt complexity, which can also be seen as the re-
striction of rKt [Oli19] to errorless encodings. To the best of our knowledge, this definition has not been
considered in previous work. For a string x ∈ {0, 1}∗, we let

zKt(x) ≜ min
p∈{0,1}∗, t∈N

{
|p|+ ⌈log t⌉

∣∣∣∣ • ∀r ∈ {0, 1}t, U(p, r) outputs x or ⊥ within t steps
• Prr[U(p, r) outputs x within t steps] ≥ 2

3

}
.

In Section 5.3, we observe that the existing near-optimal coding result for rKt [LO21] yields zero-error
encodings whenever the distribution Dn is flat, i.e., when it is uniformly distributed over a set S ⊆ {0, 1}n.
In contrast, our next result indicates that it will be difficult to extend this zero-error coding theorem to all
polynomial-time samplable distributions, even in the non-trivial coding regime.

Theorem 3. The following statements are equivalent.

1. prZPEXP ̸= prBPP.

2. (Weak coding for zKt) For any ε > 0 and any polynomial-time samplable distribution family
{Dn}n∈N, there are infinitely many n ∈ N such that for all x ∈ Support(Dn),

zKt(x) ≤
(

1

Dn(x)
· n

)ε

.

3. (Non-trivial coding for zKt) There exists a constant c > 0 such that the following holds. Let
{Dn}n∈N be a polynomial-time samplable distribution family, where each Dn is supported over
{0, 1}n, satisfying that there exists a sequence {xn}n∈N such that Dn(xn) ≥ 1 − n−c for every
n. Then for infinitely many n, we have

zKt(xn) ≤ n− ω(log n).

2Recall that KtNP denotes the extension of Kt where the universal machine U has access to a SAT oracle.
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Therefore, obtaining a zero-error version of existing coding results yields a new complexity separation.
This addresses Question 2 from Section 1.1. Note that zero-error coding (Theorem 3) implies a stronger
separation than non-deterministic coding (Theorem 2), which is expected since nKt(x) ≤ zKt(x) for every
string x (i.e., it is more challenging to achieve a zero-error encoding).

For the interested reader, in Section 5.2 we investigate the possibility of achieving the stronger separation
ZPEXP ̸= BPP from coding for zKt.

1.2.4 Complexity Separations and Meta-Complexity

Let MKtP be the following problem: Given (x, 1s), where x ∈ {0, 1}∗ and s ∈ N, decide whether
Kt(x) ≤ s. We also consider a parametrized “gap” version of MKtP. Let s1, s2 : N → N be such that
s1(n) < s2(n) for every large n. Define MKtP[s1, s2] as the problem of deciding, given x ∈ {0, 1}n,
whether Kt(x) ≤ s1(n) or Kt(x) ≥ s2(n). When s1(n) = nε and s2(n) = n − 1, we might informally
refer to the problem as Gap-MKtP.

Similarly, we can define analogous problems for nKt, KtNP, and zKt, denoted as MnKtP, MKtNPP, and
MzKtP, respectively.

We identify these problems with their corresponding (promise) languages in a natural way.
The problem Gap-MKtP is complete for EXP under non-uniform polynomial-time reductions [ABK+06].

A similar result also holds for Gap-MnKtP, i.e., Gap-MnKtP is complete for NEXP/poly under non-uniform
polynomial-time reductions [AKRR11]. These results imply that EXP ̸⊆ P/poly (resp. NEXP ̸⊆ P/poly) if
and only if Gap-MKtP ̸̸∈ P/poly (resp, Gap-MnKtP ̸∈ P/poly).

On the other hand, it was also established that Gap-MKtP captures the hardness of EXP with respect
to uniform randomized algorithms. That is, EXP ̸= BPP if and only if Gap-MKtP ̸∈ prBPP [ABK+06].
Here, we extend this result to the notion of nKt.

Theorem 4. The following are equivalent.

1. NEXP ̸= BPP.

2. MnKtP[nε, n− 1] /∈ prBPP, for all ε > 0.

Moreover, the above holds if we replace MnKtP with MKtNPP, and NEXP with EXPNP.3

For zero-error time bounded Kolmogorov complexity, we show that the problem of approximating zKt is
at least as hard as solving every problem in prZPEXP with respect to two-sided error randomized algorithms.

Theorem 5. If MzKtP[nε, n− 1] ∈ prBPP for some ε > 0, then prZPEXP = prBPP.

Finally, we obtain an unconditional lower bound for approximating zKt against zero-error randomized
algorithms.

Theorem 6. MzKtP[nε, n− 1] ̸∈ prZPTIME
[
2polylog(n)

]
, for all ε > 0.

Theorem 6 builds on a lower bound for approximating rKt from [Oli19] (i.e., MrKtP /∈ BPP). Since zKt
is an intermediate measure between Kt and rKt, in a sense, the result can be seen as progress towards show-
ing that MKtP /∈ P. The latter is a well-known open problem in meta-complexity (see, e.g., [ABK+06]).

3In fact, in all these results, the proof implicitly shows that the gap version of the problem is easy if and only if the non-gap
version is easy. For instance, it is known that Gap-MKtP /∈ prBPP if and only if MKtP /∈ BPP. This will also be the case for the
equivalences established in this paper.
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1.3 Summary of Equivalences and Concluding Remarks

For convenience of the reader, we summarize the equivalences established in this paper in Table 1.
Note that, from the perspective of derandomization, our results identify the minimal complexity-theoretic
assumptions required to obtain coding for different measures of Kolmogorov complexity.

Complexity Separation Coding Theorem Meta-Complexity

EXP ̸= BPP Weak/Non-Trivial Coding for Kt Gap-MKtP ̸∈ prBPP

NEXP ̸= BPP Weak/Non-Trivial Coding for nKt Gap-MnKtP ̸∈ prBPP

EXPNP ̸= BPP Weak/Non-Trivial Coding for KtNP Gap-MKtNPP ̸∈ prBPP

prZPEXP ̸= prBPP Weak/Non-Trivial Coding for zKt =⇒ Gap-MzKtP ̸∈ prBPP

Table 1: Summary of Equivalences: In each row, the three items are equivalent, except for the last row,
where the complexity separation and the coding theorem are equivalent, and they imply that probabilistic
polynomial-time algorithms cannot approximate zKt (Gap-MzKtP ̸∈ prBPP).

As mentioned above, the equivalence between EXP ̸= BPP and Gap-MKtP ̸∈ prBPP included in the
first row of Table 1 was established in [ABK+06]. It is unclear to us how to prove that Gap-MzKtP ∈ prBPP
from prZPEXP = prBPP, which would provide the equivalence between all items in the last row of Table 1.

K(x)

KtNP(x)
rKt(x)

nKt(x)

zKt(x)

Kt(x)

Coding & Lower Bounds D

Figure 1: An arrow from a Kolmogorov complexity measure κ1 to κ2 indicates that κ1(x) ≤ κ2(x) for
every string x. Our results show that, for each measure κ, the existence of weak coding and a corresponding
complexity separation against BPP are equivalent (see Table 1). In particular, for κ ∈ {K, rKt}, both coding
and lower bounds are known, while for κ ∈ {KtNP, nKt, zKt,Kt}, these remain longstanding challenges.
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In contrast to the equivalences described in Table 1, for the two-sided error notion of time-bounded
Kolmogorov complexity rKt, we know unconditionally that:

• BPEXP ⊈ BPP (see, e.g., [BFS09] and references therein);

• a near-optimal coding theorem holds [LO21]; and

• Gap-MrKtP /∈ prBPP [Oli19].

Our work highlights that this is not a coincidence, i.e., these different statements are intimately related (see
Figure 1). Moreover, our results provide an equivalence between coding (i.e., the existence of succinct
encodings) and the hardness of the corresponding meta-computational problem (i.e., the task of deciding if
a succinct encoding exists). In other words, they answer affirmatively Question 3 stated in Section 1.1.

Finally, our results show that any non-trivial compression (even with nondeterminism) would imply
new separations in complexity theory and advance our understand of the power and limits of randomness
in computation. It would be worthwhile to investigate whether this perspective can be combined with other
techniques and employed as a concrete method for establishing new lower bounds.

1.4 Techniques

In this section, we explain the main ideas behind our proofs. We start off with our results for Kt com-
plexity. We then discuss the non-deterministic and zero-error settings, which require additional ideas and
more elaborate proofs. In particular, the techniques we develop to establish our results in the context of
zero-error Kolmogorov complexity might be of independent interest.

Equivalence Between Coding for Kt and EXP ̸= BPP. We first describe how to obtain EXP ̸= BPP
from a non-trivial coding theorem for Kt. Note that, by a standard padding argument, it suffices to show
that EE ̸= BPE, where EE ≜ DTIME[22

O(n)
] and BPE ≜ BPTIME[2O(n)]. Our goal is then to diagonalize

against BPE within EE. The first observation is that if we have a non-trivial coding theorem for Kt, then
the truth table of every language in BPE on n-bit inputs will have Kt complexity strictly less than 2n, for
infinitely many n. To see this, consider any language L ∈ BPE and a sampler A that, on input 1N , aims to
output the N -bit truth table of L=n, where n = logN ,4 by running a probabilistic machine for computing
L on every input in {0, 1}n. It is not hard to see that A(1N ) can be implemented to run in time poly(N) and
outputs tt(L=n) with probability at least 1− 1/poly(N). Then, by invoking the non-trivial coding theorem
for Kt on this sampler, we get that for infinitely many n, Kt(tt(L=n)) ≤ 2n−ω(n). Note that this holds for
every L ∈ BPE. To diagonalize against all such L, we define a language Lhard whose 2n-bit truth table has
Kt complexity at least 2n − 1 for all n. Since one can compute an N -bit string with Kt complexity at least
N − 1 in time poly(2N ) using exhaustive search, it follows that Lhard is computable in EE.

To derive a non-trivial coding theorem for Kt from EXP ̸= BPP, the main idea is to use the hardness-
vs-randomness framework to construct a pseudorandom generator (PRG). More specifically, by classical
results in [IW01, TV07], we obtain that if PSPACE ̸= BPP, then for every b, c > 0, there exists a PRG G

that takes a short seed of length n1/b, runs in time 2O(n1/b), and outputs a longer string of length nc that can
fool any nb-time algorithm D, for infinitely many n. More formally:∣∣∣∣∣ Pr

z∼{0,1}n
1/b

[D(G(z)) = 1]− Pr
u∼{0,1}nc

[D(u) = 1]

∣∣∣∣∣ ≤ 1

nb
.

4For simplicity, let’s assume that N is always a power of two.
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Let D ≜ {Dn} be a polynomial-time samplable distribution family and A be its sampler, i.e, A(u)
is distributed according to Dn for uniformly random u ∼ {0, 1}n

c

, where c > 0 is some constant. Let
x ∈ Support(Dn) be the string for which we aim to find a short encoding. (For simplicity, let’s assume
that each Dn is supported on {0, 1}n.) First observe that the weak coding theorem holds trivially on a given
n-bit string x if Dn(x) < 1/n1/ε, since in this case the desired encoding bound is larger than the length of
the string. Therefore, we can assume without loss of generality that Dn(x) ≥ 1/n1/ε.

Consider the function Dx, defined as Dx(y) = 1 if and only if A(y) = x. Note that Pru[Dx(u) = 1] ≥
1/n1/ε. Using the pseudorandom property of G (with b > 1/ε chosen sufficiently large), it follows that:

Pr
z∼{0,1}n

1/b
[Dx(G(z)) = 1] ≥ Pr

u∼{0,1}nc
[Dx(u) = 1]− 1

nb
> 0.

This implies the existence of some z ∈ {0, 1}n
1/b

such that A(G(z)) = x. Given the descriptions of A, G,
and the seed z, x can be recovered in time 2O(n1/b), yielding Kt(x) ≤ O(n1/b) ≤ nε.

However, there is an issue in the above argument: the function Dx depends on x, making it non-uniform,
while the PRG G is designed to fool only uniform algorithms. The key observation is that the PRG obtained
from [IW01, TV07] possesses a slightly stronger property: it not only fools uniform algorithms but in our
case also fools Dx with probability at least 1−1/nb over x sampled from any nb-time samplable distribution
(see Theorem 12). Since x is assumed to be sampled from Dn with probability at least 1/n1/ε, we conclude
that G can successfully fool Dx in this case; otherwise, it would fail with probability at least 1/n1/ε > 1/nb,
contradicting the pseudorandomness guarantee.

The above requires assuming that PSPACE ̸= BPP, while we only have EXP ̸= BPP. We address this
with a standard win-win argument. If PSPACE ̸= BPP, then we are done. Otherwise, if PSPACE = BPP,
our assumption that EXP ̸= BPP implies EXP ̸= PSPACE. By the classical Karp–Lipton result [KL80],
which states that if EXP ⊆ SIZE[poly], then EXP = PSPACE, it follows that EXP ̸⊆ SIZE[poly]. Using
a different hardness-vs-randomness framework [BFNW93] (see Theorem 11), which allows us to produce
pseudorandomness using the hard truth table of a language in EXP, this also yields an infinitely-often secure
PRG with sub-polynomial seed length.5 Such a PRG can be used to achieve weak coding for Kt as described
in previous paragraphs.

Equivalence Between Coding for nKt and NEXP ̸= BPP. To obtain NEXP ̸= BPP from a non-trivial
coding theorem for nKt, one might consider resembling the proof used in the previous case. However, for
this approach to work, we would need to be able to construct an N -bit string with high nKt-complexity in
time poly(2N ), which is not clear how to achieve (even non-deterministically).6 Here, we present a more
sophisticated diagonalization argument that bypasses the need for this task. For simplicity, we describe how
to obtain NEXP ̸= BPP from a weak coding theorem for nKt.

First of all, if we have a weak coding theorem for nKt, by a similar argument as described in the previous
case, we get that the truth table of every language in BPE on n-bit inputs will have nKt-complexity less than
2εn, for infinitely many n. This means one can non-deterministically generate these truth tables in time 22

εn

with at most 2εn-bits of advice. This allows us to conclude that BPE ⊆ i.o.NTIME
[
22

εn]
/2εn .

Now suppose, for the sake of contradiction, NEXP = BPP. Note that by the existence of NE-complete
problems under linear-time reductions, this implies NE ⊆ BPTIME[nk] for some fixed k > 0. Then we

5In fact, the PRG obtained in this case can even fool non-uniform algorithms.
6Note that a naive algorithm for this task runs in time at least 22

N

. In other words, we need to consider each candidate
nondeterministic program running in time at most 2N , and enumerating over all choices of the nondeterministic string to check that
the program is suitable takes doubly exponential time.
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have

EE ⊆ BPE (by padding and NEXP = BPP)

⊆ i.o.NTIME
[
22

εn]
/2εn (by the previous paragraph)

⊆ i. o.BPTIME
[
2k·ε·n

]
/2εn (by padding and NE ⊆ BPTIME[nk])

⊆ i. o.BPTIME[2n]/2εn (by choosing ε ≤ 1/k)

⊆ i. o.DTIME
[
22

n]
/2εn (by deterministic simulation)

Note that we use the assumption NEXP = BPP twice in the above. Finally, one can show by diagonalization
that EE ̸∈ i. o.DTIME

[
22

n]
/2εn , which gives a contradiction as desired.

The proof that weak coding for nKt follows from NEXP ̸= BPP is similar to the previous case. We use
the hardness-vs-randomness framework (and a win-win argument) to construct a PRG that “hits” any string
x sampled with probability at least 1/poly(n). However, there are a couple of differences in this setting.
First, in the win-win argument, we use the Karp–Lipton result for NEXP [IKW02] instead of the one for
EXP. Second, to obtain weak coding for nKt, we require our PRG to be computable non-deterministically
in the sense that there exists some good guess w that allows us to correctly compute the output of the PRG,
while for all other bad guesses, we output ⊥. While we don’t know how to achieve this exactly, we can
show that it is possible with access to a small advice string. This is because one can non-deterministically
construct the truth table of a language in NEXP using a small amount of advice that indicates the number of
positive instances, as observed for instance in [IKW02]. Such a PRG is sufficient for our purposes.

Equivalence Between Coding for zKt and prZPEXP ̸= prBPP. The task of obtaining prZPEXP ̸=
prBPP from a non-trivial coding theorem for zKt faces the same challenge as in the case of showing
NEXP ̸= BPP from a coding theorem for nKt, since it is unclear how to construct an N -bit string with
high zKt-complexity in time poly(2N ). On the other hand, the alternative approach used to show the latter
can also be applied in this context. However, when using this approach in the case of NEXP, it relied on the
fact that NEXP is a syntactic class, whereas ZPEXP is not (i.e., it is semantic). To address this issue, we
consider the weaker conclusion that prZPEXP ̸= prBPP instead of ZPEXP ̸= BPP.

A bigger challenge arises in showing that weak coding for zKt follows from prZPEXP ̸= prBPP. Recall
that in previous cases, we needed to use a Karp–Lipton result for either EXP or NEXP. However, we do
not have such a Karp–Lipton result for zero-error probabilistic classes. In fact, obtaining Karp–Lipton
theorems for probabilistic classes is known to be a challenging task in complexity theory. While there
are known results showing some weak versions of such a theorem for ZPEXP (see [OS17]), they are not
sufficient for our purpose here.

Our key observation is that we only need the Karp–Lipton result in one of the cases in our win-win
argument. Specifically, we can consider two cases: EXP ̸= BPP, in which we have weak coding for Kt
and hence for zKt, and EXP = BPP. We show that in the latter case, we can indeed obtain a Karp–Lipton
theorem for zero-error probabilistic classes. More specifically, we show that assuming EXP = BPP, if
ZPE/n ⊆ SIZE[nk] for some k > 0, then prZPEXP = prEXP (see Lemma 35).

Now assume prZPEXP ̸= prBPP, and suppose we are in the remaining case EXP = BPP (which is
equivalent to prEXP = prBPP). We get that prZPEXP ̸= prEXP. By our aforementioned Karp–Lipton
theorem, we obtain that ZPE/n ⊈ SIZE[nk] for all k. Again, using the hardness-vs-randomness framework,
this allows us to obtain an infinitely-often secure PRG with sub-polynomial seed length that is computable
probabilistically with zero error using a small amount of advice. Proceeding similarly to previous proofs,
this yields weak coding for zKt, as desired.
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Complexity Separations and Meta-Complexity. We first describe the proof of Theorem 4. As mentioned
in Section 1.2.4, it was shown in [ABK+06] that EXP = BPP if and only if Gap-MKtP ∈ prBPP. The
original proof relied on the fact that EXP admits instance checkers [BFL91], which are not available for
NEXP. Here, we provide an alternative proof that does not use instance checkers.

For the direction that NEXP = BPP implies Gap-MnKtP ∈ prBPP, it is not hard to see that MnKtP ∈
PSPACENEXP, where the queries to the NEXP oracle are of polynomial size. It is then not difficult to
show that the desired inclusion follows from NEXP = BPP. Indeed, we get the stronger conclusion that
MnKtP ∈ BPP.

For the other direction, assume NEXP ̸= BPP. Then, as shown in previous paragraphs, we obtain an
infinitely-often secure PRG that is computable non-deterministically with a small amount of advice. Now
suppose, for the sake of contradiction, that Gap-MnKtP ∈ prBPP. In that case, an efficient algorithm
solving Gap-MnKtP could be used to break the security of the aforementioned PRG. This is because every
output of such a PRG has small nKt-complexity, while a uniformly random string has high nKt-complexity.

The proof of Theorem 5 for Gap-MzKtP can be shown similarly, using a PRG that is computable prob-
abilistically with zero error using a small advice. Such a PRG can be obtained under the assumption that
prZPEXP ̸= prBPP, as described in previous paragraphs.

Finally, for our unconditional lower bound in Theorem 6, a natural approach is to try to adapt the lower
bound for rKt in the two-sided error setting from [Oli19] to the zero-error setting. The proof makes crucial
use of techniques from pseudorandomness and of the properties of the reconstruction procedure of different
PRGs. In order to adapt the original argument to the zero-error setting, it is necessary to obtain zero-error
reconstruction routines for the corresponding PRGs. This, however, seems to be out of reach using current
techniques (see [LPT24] for related results).

Instead, we show that if Gap-MzKtP can be solved by a zero-error randomized algorithm in quasi-
polynomial time, then, using the easy witness method introduced by [Kab00], one can approximately “col-
lapse” rKt and zKt (Lemma 40). This, in particular, implies that Gap-MrKtP can also be solved in quasi-
polynomial time by a randomized algorithm. Using the known unconditional lower bound for Gap-MrKtP
established in [Oli19], this leads to a contradiction.

Acknowledgements. We would like to thank Hanlin Ren for discussions related to the problem of show-
ing that ZPEXP ⊈ ZPP/O(logn). This work received support from the UKRI Frontier Research Guarantee
Grant EP/Y007999/1 and the Centre for Discrete Mathematics and its Applications (DIMAP) at the Univer-
sity of Warwick.

2 Preliminaries

2.1 Time-Bounded Kolmogorov Complexity

Fix a time-efficient universal Turing machine U . For convenience of the reader, we collect below the
main notions of time-bounded Kolmogorov complexity considered in this work.

Definition 7 (Kt [Lev84]). For a string x ∈ {0, 1}∗ and an oracle O ⊆ {0, 1}∗, we let

KtO(x) ≜ min
p∈{0,1}∗, t∈N

{
|p|+ ⌈log t⌉ : UO,t(p) = x

}
.

The notation UO,t(p) denotes that U computes for at most t steps. In the absence of O, we simply write
Kt(x).
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Definition 8 (rKt [Oli19]). For a string x ∈ {0, 1}∗, we let

rKt(x) ≜ min
p∈{0,1}∗, t∈N

{
|p|+ ⌈log t⌉ : Pr

r
[U t(p, r) = x] ≥ 2/3

}
.

Next, we define zero-error and nondeterministic analogues of these measures.

Definition 9 (zKt). For a string x ∈ {0, 1}∗, we let

zKt(x) ≜ min
p∈{0,1}∗, t∈N

{
|p|+ ⌈log t⌉

∣∣∣ Pr
r
[U t(p, r) = x] ≥ 2/3 and ∀r, U t(p, r) ∈ {x,⊥}

}
.

Definition 10 (nKt). For x ∈ {0, 1}∗, we let

nKt(x) ≜ min
p∈{0,1}∗, t∈N

{
|p|+ ⌈log t⌉

∣∣ ∃w,U t(p, w) = x and ∀w, U t(p, w) ∈ {x,⊥}
}
.

Note that, for every x ∈ {0, 1}∗, we have nKt(x) ≤ zKt(x) ≤ Kt(x) and rKt(x) ≤ zKt(x) ≤ Kt(x).
The relation between rKt(x) and nKt(x) is unclear. For an overview of probabilistic notions of Kolmogorov
complexity and their applications, we refer to [LO22].

2.2 Pseudorandomness

For a finite set A, we write x ∼ A to denote that x is uniformly distributed over A.
Let Dn be a distribution supported over {0, 1}n. Let ε ∈ [0, 1]. Finally, let f : {0, 1}n → {0, 1}. We

say that Dn ε-fools f if ∣∣∣ Pr
x∼Dn

[f(x) = 1]− Pr
x∼{0,1}n

[f(x) = 1]
∣∣∣ ≤ ε.

For a function H : {0, 1}ℓ → {0, 1}m, we write H(−) to denote the distribution induced by H(y) for
y ∼ {0, 1}ℓ.

Theorem 11 ([BFNW93]). For every ε > 0 and b ∈ N, there exist a polynomial time computable function
F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, δ < ε and c ∈ N such that the following holds.

F : {0, 1}2n
δ

× {0, 1}nε → {0, 1}nb
,

and if T is the truth table of a Boolean function on nδ variables that has circuit complexity at least ncδ, then
the generator GT (−) ≜ F (T,−) (n−b)-fool every circuit of size at most nb.

Theorem 12 ([IW01, TV07]). Assume PSPACE ̸= BPP. Then for every ε > 0 and b ∈ N, there is a
sequence {Gn}n∈N, where Gn : {0, 1}n

ε

→ {0, 1}n
b

is computable in time 2O(nε), such that the following
holds. For every distribution family {Cn}n∈N of Boolean circuits samplable in time nb, there are infinitely
many n ∈ N such that with probability at least 1− n−b over C sampled from Cn, Gn (n−b)-fools C.

2.3 Complexity Theory and Diagonalization Against Advice

For the definition of standard notions, such as complexity classes with advice and promise classes, we
refer to a textbook in complexity theory.

The following simple diagonalization lemma will be sufficient for our purposes.

Lemma 13. Let a(n), b(n), c(n), s(n) be time-constructible functions satisfying the following properties:

1. b2(n) · 23c(n) · s3(n) = o(a(n)),
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2. c(n) + log s(n) < 2n,

3. s(n) = ω(1),

4. b(n) = Ω(n).

Then we have DTIME[a(n)] ⊈ i.o.DTIME[b(n)]/c(n).

Proof. We define a language as follows. For input length n, define l(n) = ⌊log(s(n) · 2c(n))⌋ + 1. Item 2
guarantees that l(n) ≤ 2n. We construct the length-l(n) prefix of truth tables of the first s(n) Turing
machines with all possible length-c(n) advice strings running in time b(n). There are at most s(n) · 2c(n)
such prefixes, and since 2l(n) > s(n) · 2c(n), we can enumerate over all length-l(n) strings, and find the first
string p outside this list. We then define the truth table of this language on input length n as p02

n−l(n).
The first enumeration and simulation step takes time s(n) · 2c(n) · l(n) · b(n) · log b(n). Using a naive

search over all l(n)-bit strings, finding p takes time at most s(n)·2c(n) ·l(n)·2l(n). By Item 1 and Item 4, this
language is decidable in time a(n). However, by our construction and Item 3, any Turing machine running
in time b(n) fails to decide this language with any length-c(n) advice string for all large enough n.

Recall that EE ≜ DTIME[22
O(n)

] denotes the class of languages that can be decided in double exponen-
tial time, E ≜ DTIME[2O(n)] denotes the class of languages that can be decided in single exponential time,
and EXP ≜ DTIME[2n

O(1)
].

Corollary 14. For any fixed k ∈ N and time-constructible s(n) = ω(1), EE ⊈ i.o.DTIME[22
kn
]/2n−s(n).

Corollary 15. For any fixed k ∈ N, EXP ⊈ i.o.SIZE[nk].

For a language L ⊆ {0, 1}∗, we let tt(L=n) ∈ {0, 1}2n denote the string representing the truth table of
L on inputs of length n.

3 Coding for Deterministic Time-Bounded Kolmogorov Complexity

3.1 Equivalence Between Coding for Kt and EXP ̸= BPP

Theorem 1. The following statements are equivalent.

1. EXP ̸= BPP.

2. (Weak coding for Kt.) For any ε > 0 and any polynomial-time samplable distribution family
{Dn}n∈N, there are infinitely many n ∈ N such that for all x ∈ Support(Dn),

Kt(x) ≤
(

1

Dn(x)
· n

)ε

.

3. (Non-trivial coding for Kt.) There exists a constant c > 0 such that the following holds. Let {Dn}n∈N
be a polynomial-time samplable distribution family, where each Dn is supported over {0, 1}n, satisfy-
ing that there exists a sequence {xn}n∈N such that Dn(xn) ≥ 1−n−c for every n. Then for infinitely
many n, we have

Kt(xn) ≤ n− ω(log n).

Proof. We show the following implications.
(Item 2 =⇒ Item 3). This holds trivially.
(Item 3 =⇒ Item 1). This is shown by Lemma 16, stated and proved in Section 3.1.1.
(Item 1 =⇒ Item 2). This follows from Lemma 18, stated and proved in Section 3.1.2.
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3.1.1 EXP ̸= BPP from Non-Trivial Coding for Kt

Lemma 16. (Item 3 ⇒ Item 1 in Theorem 1). If non-trivial coding for Kt is true, then EXP ̸= BPP.

Proof. For the sake of contradiction, suppose EXP = BPP. By a simple padding argument, this implies
EE ⊆ BPE. Then it suffices to show the existence of a language Lhard ∈ EE such that Lhard ̸∈ BPE.

We first show the following claim.

Claim 17. If non-trivial coding for Kt is true, then for every L ∈ BPE, there are infinitely many n such that
Kt(tt(L=n)) ≤ 2n − ω(n).

Proof of Claim 17. Let c > 0 be the constant in the non-trivial coding theorem (Item 3 of Theorem 1).
Fix L ∈ BPE. Let M be a 2O(cn)-time probabilistic Turing machine that computes L on each input of

length n with error ≤ 2−n−cn. Such a machine can be obtained by using error reduction techniques.
Consider the distribution family D ≜ {DN} where each DN is defined by the following sampling

procedure:

On input 1N , let n ≜ ⌈logN⌉. Let S be the ordered set consisting of the lexicographically first
N elements of {0, 1}n. For each x ∈ S compute bx ≜ M(x). Finally, output ◦x∈S bx, i.e., the
concatenation of these bits.

Note that since M has exponentially small error for each input, by a union bound, we get that for every
N ∈ N, with probability at least 1− 2−cn, DN outputs the N -bit prefix of the truth table given by L=n, i.e.,
tt(L=n)[1:N ], where n = ⌈logN⌉. Also note that D is polynomial-time samplable.

By applying non-trivial coding for Kt to D, it follows that there are infinitely many N such that, for
n ≜ ⌈logN⌉,

Kt
(
tt(L=n)[1:N ]

)
≤ N − ω(logN) ≤ N − ω(n).

Fix any N such that the above holds, and let (p, t) ∈ {0, 1}∗ × N be such that |p|+ log t ≤ N − ω(n)
and U(p) outputs tt(L=n)[1:N ] within t steps. Consider the following procedure for generating tt(L=n).

Given (p, suffix ≜ tt(L=n)[N+1,2n]), we first run U(p) to obtain prefix ≜ tt(L=n)[1:N ] and
output prefix ◦ suffix.

It is easy to see that the above procedure runs in time t · 2O(n). This implies that

Kt(tt(L=n)) ≤ |p|+ (2n −N) +O(n) + log
(
t · 2O(n)

)
≤ 2n − ω(n).

This completes the proof of Claim 17. ⋄

We define the language Lhard as follows.

On input x ∈ {0, 1}n, we first compute a string T ∈ {0, 1}2
n

such that Kt(T ) > 2n − 1, as
follows. We enumerate all pairs (p, t) ∈ {0, 1}∗ × N such that |p| + ⌈log t⌉ ≤ 2n − 1 and run
U(p) for at most t steps. This gives all the strings whose Kt-complexity are at most 2n− 1. We
then let T be the lexicographically first 2n-bit string that is not in the list. Finally, we output the
x-th bit of T .

It is easy to see that Lhard ∈ EE. Also, by construction, we have that for all n, Kt(tt(L=n
hard)) > 2n − 1. It

follows from Claim 17 that Lhard ̸∈ BPE.
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3.1.2 Weak Coding for Kt from EXP ̸= BPP

Lemma 18. (Item 1 ⇒ Item 2 in Theorem 1). If EXP ̸= BPP, then weak coding for Kt is true.

We first show the following technical lemma.

Lemma 19. If EXP ̸= BPP, then for every ε > 0 and b ∈ N, there is a sequence {Gn}n∈N, where
Gn : {0, 1}n

ε

→ {0, 1}n
b

is computable in time 2O(nε), such that the following holds. For every distribution
family {Cn}n∈N of Boolean circuits samplable in time nb, there are infinitely many n ∈ N such that with
probability at least 1− n−b over C sampled from Cn, Gn (n−b)-fools C.

Proof. Assume EXP ̸= BPP. We consider two cases and show that the desired conclusion holds in each
one of those cases.

Case 1: PSPACE ̸⊆ BPP. The desired pseudorandom generator follows directly from Theorem 12.

Case 2: PSPACE ⊆ BPP. Since we assume EXP ̸⊆ BPP, we have EXP ̸= PSPACE in this case. Recall
that if EXP ⊆ SIZE[poly] then EXP = PSPACE [KL80]. Therefore, we have EXP ⊈ SIZE[poly], which
further implies E ̸⊆ SIZE[poly]. Let L ∈ E be a language that is not computable by any polynomial-size
circuit.

Consider any 0 < ε < 1 and b ∈ N. Let F , δ < ε and c ∈ N be as provided by Theorem 11. By
the property of F and the hardness of the language L, we have that, for infinitely many n, the generator
Gn : {0, 1}n

ε

→ {0, 1}b, defined as

Gn(−) ≜ F
(
tt(L=nδ

),−
)
,

(n−b)-fools circuits of size at most nb. Note that since L ∈ E, tt(L=nδ
) can be obtained in time 2O(nδ).

Also, F is polynomial-time computable. It follows that each Gn can be computed in time 2O(nε). Finally,
note that the above also yields the desired conclusion.

We are now ready to show Lemma 18.

Proof of Lemma 18. Assume EXP ̸= BPP. The main idea is to use the pseudorandom generator G in
Lemma 19 to “hit” any string x that is sampled with probability at least 1/poly(n). That is, there is a seed
z ∈ {0, 1}n

ε

such that A(G(z)) = x. Then x can be encoded using the short seed z. Details follow.
Let ε > 0 and {Dn} be a distribution family that admits a sampler A that, on input 1n, runs in time at

most nc, for some constant c ≥ 1.
Let {Gn : {0, 1}n

ε/2

→ {0, 1}n
b

} be the sequence of generators in Theorem 12, where b > c/ε is a
constant specified later.

Consider the following distribution {Cn} of circuits:

On input 1n, we run A(1n) to obtain a string x. We then construct the circuit Cx such that
Cx(r) = 1 if and only if A(1n; r) = x. Finally, we output Cx.

First of all, note that by letting b be a sufficiently large constant, we get that {Cn} is samplable in time
nb. Then by Theorem 12 and the security of {Gn}, there are infinitely many n such that

Pr
C∼Cn

[
Gn (n−b)-fools C

]
≥ 1− n−b. (1)
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Now fix any large enough n such that Equation (1) holds and consider any x in the support of Dn.
Suppose Dn(x) < n−c/ε. Then we have

Kt(x) ≤ 2 · nc ≤
(

1

Dn(x)
· n

)ε

,

as desired.
Suppose Dn(x) ≥ n−c/ε. Then by construction, we have that Cn samples Cx with probability at least

n−c/ε > n−b. It follows from Equation (1) that Gn (n−b)-fools Cx; this is because otherwise the probability
that Gn fails to be pseudorandom would be greater than n−b. In particular, this means

Pr
z∼{0,1}n

ε/2
[Cx(Gn(z)) = 1] ≥ Pr

r∼{0,1}nb
[Cx(r) = 1]− n−b

≥ n−c/ε − n−b > 0.

It follows that there exists some z ∈ {0, 1}n
ε/2

such that A(1n;Gn(z)) = x. From here, it is easy to show
that Kt(x) ≤ nε, as desired.

3.2 Stronger Lower Bounds from Near-Optimal Coding for Kt

We say that near-optimal coding for Kt holds if for every polynomial-time sampler A(1n) and for every
string x ∈ {0, 1}n, if x has probability ≥ δ under A(1n) then Kt(x) = O(log(1/δ) + log n).

Theorem 20. Suppose that near-optimal coding for Kt holds. Then, for every c ≥ 1 there is k ≥ 1 and a
language L ∈ DTIME[2kn] such that L /∈ i.o.BPTIME[2cn].

Proof. Fix a constant c ≥ 1. We define a sampler A(1N ) with N ≜ 2n that randomly selects one of the
first α(N) ≜ log logN randomized Turing machines, runs it for 22cn steps on every string of length n,
and outputs the corresponding truth table. We also assume that A(1N ) boosts the success probability of the
machine on a given input string by simulating it n2 times and taking a majority vote, meaning that once a
machine with bounded acceptance probabilities is selected, the corresponding truth table is produced with
probability at least 9/10.

Note that for every language L′ ∈ BPTIME[2cn] and for each large enough n, the truth table of L′ on
inputs of length n is output by A(1N ) with probability at least δ ≜ (9/10) · (1/ log logN) = Ω(1/ log n).
Consequently, by the near-optimal coding assumption, every truth table in BPTIME[2cn] (a string of length
N = 2n) has Kt complexity at most O(log(1/δ) + logN) ≤ c1 · n, for a large enough constant c1.

Finally, we can define a hard language L ∈ DTIME[2kn] as follows. On an input string of length n, we
find by diagonalization a string of length 2n of Kt complexity ≥ c2n, for c2 > c1, and compute according to
the truth table encoded by this string. The latter can be done by exhaustive search in deterministic time 2kn,
for a large enough positive integer k > c2. By the previous paragraph, we obtain that L /∈ BPTIME[2cn],
which completes the proof.

We note that the elementary proof given above strengthens and simplifies [Lee06, Theorem 5.3.4].

4 Coding for Non-Deterministic Time-Bounded Kolmogorov Complexity

4.1 Equivalence Between Coding for nKt and NEXP ̸= BPP

Theorem 21. The following statements are equivalent.
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1. NEXP ̸= BPP.

2. (Weak coding for nKt) For any ε > 0 and any polynomial-time samplable distribution family
{Dn}n∈N, there are infinitely many n ∈ N such that for all x ∈ Support(Dn),

nKt(x) ≤
(

1

Dn(x)
· n

)ε

.

3. (Non-trivial coding for nKt.) There exists a constant c > 0 such that the following holds. Let
{Dn}n∈N be a polynomial-time samplable distribution family, where each Dn is supported over
{0, 1}n, satisfying that there exists a sequence {xn}n∈N such that Dn(xn) ≥ 1 − n−c for every
n. Then for infinitely many n, we have

nKt(xn) ≤ n− ω(log n).

Proof. We establish the following implications:
(Item 2 =⇒ Item 3). This follows immediately.
(Item 3 =⇒ Item 1). This is shown by Lemma 22, which is stated and proved in Section 4.1.1.
(Item 1 =⇒ Item 2). This follows from Lemma 25, which is stated and proved in Section 4.1.2.

4.1.1 NEXP ̸= BPP from Non-Trivial Coding for nKt

Lemma 22. (Item 3 ⇒ Item 1 in Theorem 21). If non-trivial coding for nKt is true, then NEXP ̸= BPP.

Proof. We first show the following two claims.

Claim 23. If non-trivial coding for nKt is true, then for every L ∈ BPE, there are infinitely many n such
that nKt(tt(L=n)) ≤ 2n − ω(n).

Proof Sketch of Claim 23. The proof can be easily adapted from that of Claim 17, by replacing the use of
non-trivial coding for Kt with that for nKt. ⋄

Claim 24. If non-trivial coding for nKt is true, then

BPE ⊆ i.o.NTIME
[
22

n−ω(n)
]
/2n−ω(n).

Proof of Claim 24. Fix L ∈ BPE. First of all, by Claim 23, we have that there are infinitely many n such
that nKt(tt(L=n)) ≤ 2n − ω(n). This means for infinitely many n, there exist a program p of size at most
2n − ω(n) such that for t ≜ 22

n−ω(n),

• ∃w ∈ {0, 1}t, U(p, w) outputs tt(L=n) within t steps, and

• ∀w ∈ {0, 1}t, U(p, w) outputs tt(L=n) or ⊥ within t steps

It is easy to see that for any n such that the above holds, given p as an advice, L on input length n can
be solved non-deterministically in time 22

n−ω(n), by guessing w ∈ {0, 1}t and trying to use p to generate
tt(L=n). ⋄

We are now ready to show the lemma. Suppose

NEXP = BPP. (2)
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Note that by the existence of languages that are NE-complete under linear-time reductions, the above implies
that there exists some k > 0 such that

NE ⊆ BPTIME[nk]. (3)

Next, we aim to derive a contradiction. By Equation (2) and padding, we have

EE ⊆ BPE. (4)

By Claim 24, we get
BPE ⊆ i.o.NTIME

[
22

n]
/2n−ω(n). (5)

Now by using Equation (3) and a standard padding argument that incorporates the advice as an extra input
string, we get that there exists some k′ > 0 such that

NTIME
[
22

n]
/2n−ω(n) ⊆ BPTIME

[
2k

′n
]
/2n−ω(n). (6)

Finally, by deterministic simulation of randomized algorithms, we get that there exists some k > 0 such that

BPTIME
[
2k

′n
]
/2n−ω(n) ⊆ DTIME

[
22

kn
]
/2n−ω(n). (7)

Equations (4) to (7) yield the existence of some k > 0 such that

EE ⊆ i.o.DTIME
[
22

kn
]
/2n−ω(n)

However, the above contradicts Corollary 14.

4.1.2 Weak Coding for nKt from NEXP ̸= BPP

Lemma 25. (Item 1 ⇒ Item 2 in Theorem 21). If NEXP ̸= BPP, then weak coding for nKt is true.

We rely on the following result, which is analogous to Lemma 19 but for the case of NEXP ̸= BPP.

Lemma 26. If NEXP ̸= BPP, then for every ε > 0 and b ∈ N, there is a sequence {Gn}n∈N, where
Gn : {0, 1}n

ε

→ {0, 1}n
b

, such that the following holds. For every distribution family {Cn}n∈N of Boolean
circuits samplable in time nb, there are infinitely many n ∈ N such that with probability at least 1 − n−b

over C sampled from Cn, Gn (n−b)-fools C. Moreover, each Gn can be computed non-deterministically
with advice in the following sense: There exists a deterministic Turing machine M and a sequence of advice
strings an ∈ {0, 1}n

ε

such that, given z ∈ {0, 1}n
ε

and w ∈ {0, 1}2
nε

, M(z, w; an) runs in time 2O(nε).
Also, for every z ∈ {0, 1}n

ε

, the following hold:

• There exists w ∈ {0, 1}2
nε

such that M(z, w; an) = Gn(z).

• For all w ∈ {0, 1}2
nε

, M(z, w; an) ∈ {Gn(z),⊥}.

Proof. The proof is similar to that of Lemma 26 but requires some crucial observations on the efficiency of
computing the pseudorandom generator in the non-deterministic setting.

Assume NEXP ̸= BPP. We consider two cases below.

Case 1: PSPACE ̸⊆ BPP. The desired pseudorandom generator follows directly from Theorem 12.
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Case 2: PSPACE ⊆ BPP. By the assumption that NEXP ̸= BPP, we get that NEXP ̸= PSPACE in this
case. Then, by [IKW02], NEXP ⊆ SIZE[poly] implies NEXP = MA = PSPACE. Therefore, we obtain
NEXP ⊈ SIZE[poly] in this case.

Analogous to the proof of Lemma 26, given that NEXP ⊈ SIZE[poly], we have a language L ∈ NE that
is not computable by any polynomial-size circuit. Then for every ε > 0 and b ∈ N, we get that the generator
Gn : {0, 1}n

ε

→ {0, 1}b, defined as Gn(−) ≜ F
(
tt(L=nδ

),−
)

, where F and δ > 0 are as provided by

Theorem 11, fools circuits of size at most nb, for infinitely many n.
To show that each Gn can be computed non-deterministically with a small advice, it suffices to generate

tt(L=nδ
) in non-deterministic time 2O(nδ) with nδ bits of advice. This can be done, as observed in [IKW02,

Lemma 1].

We now show Lemma 25.

Proof Sketch of Lemma 25. If NEXP ̸= BPP, then by Lemma 26, we have an infinitely-often secure pseu-
dorandom generator that is computable non-deterministically with a small advice string. Using an argument
similar to the proof of Lemma 18, such a generator can be used to achieve weak coding for nKt.

4.2 Equivalence Between Coding for KtNP and EXPNP ̸= BPP

Theorem 27. The following statements are equivalent.

1. EXPNP ̸= BPP.

2. (Weak coding for KtNP) For any ε > 0 and any polynomial-time samplable distribution family
{Dn}n∈N, there are infinitely many n ∈ N such that for all x ∈ Support(Dn),

KtNP(x) ≤
(

1

Dn(x)
· n

)ε

.

3. (Non-trivial coding for KtNP.) There exists a constant c > 0 such that the following holds. Let
{Dn}n∈N be a polynomial-time samplable distribution family, where each Dn is supported over
{0, 1}n, satisfying that there exists a sequence {xn}n∈N such that Dn(xn) ≥ 1 − n−c for every
n. Then for infinitely many n, we have

KtNP(xn) ≤ n− ω(log n).

Proof Sketch. The proof can be easily adapted from that of Theorem 1.
One difference arises in showing that EXPNP ̸= BPP implies weak coding for KtNP. Analogously to

Lemma 19, we can show that if EXPNP ̸= BPP, then for every ε > 0 and b ∈ N, there exists an infinitely-
often secure pseudorandom generator G ≜ {Gn}n∈N, where each Gn : {0, 1}n

ε

→ {0, 1}n
b

is computable
in time 2O(nε) with access to an NP oracle. Instead of using the Karp–Lipton theorem for EXP as in the
proof of Lemma 19, we use the version for EXPNP [BH92], which states that if EXPNP ⊆ SIZE[poly], then
EXPNP = PSPACE.

5 Coding for Zero-Error Time-Bounded Kolmogorov Complexity

5.1 Equivalence Between Coding for zKt and prZPEXP ̸= prBPP

Theorem 3. The following statements are equivalent.

20



1. prZPEXP ̸= prBPP.

2. (Weak coding for zKt) For any ε > 0 and any polynomial-time samplable distribution family
{Dn}n∈N, there are infinitely many n ∈ N such that for all x ∈ Support(Dn),

zKt(x) ≤
(

1

Dn(x)
· n

)ε

.

3. (Non-trivial coding for zKt) There exists a constant c > 0 such that the following holds. Let
{Dn}n∈N be a polynomial-time samplable distribution family, where each Dn is supported over
{0, 1}n, satisfying that there exists a sequence {xn}n∈N such that Dn(xn) ≥ 1 − n−c for every
n. Then for infinitely many n, we have

zKt(xn) ≤ n− ω(log n).

Proof. We present the following implications.
(Item 2 =⇒ Item 3). This holds trivially.
(Item 3 =⇒ Item 1). This is established by Lemma 28, stated and proved in Section 5.1.1.
(Item 1 =⇒ Item 2). This follows from Lemma 33, stated and proved in Section 5.1.2.

5.1.1 prZPEXP ̸= prBPP from Non-Trivial Coding for zKt

Lemma 28. (Item 3 ⇒ Item 1 in Theorem 3). If weak coding for zKt is true, then prZPEXP ̸= prBPP.

We need the following ingredients in our proof:

Claim 29. If non-trivial coding for zKt is true, then for every L ∈ BPE, there are infinitely many n such
that zKt(tt(L=n)) ≤ 2n − ω(n).

Proof Sketch of Claim 29. The proof can be easily adapted from that of Claim 17, by replacing the use of
non-trivial coding for Kt with that for zKt. ⋄

By the definition of zKt, we immediately have the following corollary:

Corollary 30. If non-trivial coding for zKt is true, then

BPE ⊆ i.o.ZPTIME[22
n−ω(n)]/2n−ω(n).

Lemma 31. If prZPE ⊆ prBPP, then there exists some k > 0, such that prZPE ⊆ prBPTIME[nk].

Proof. We use the fact that there exists a “complete” problem for prZPE. More specifically, we define the
promise problem Π ≜ (YES,NO) as

YES ≜

{
(M,x, 1t)

∣∣∣∣ M(x) ∈ {1,⊥} ∧Pr[M≤2t(x) = 1] ≥ 2

3

}
,

NO ≜

{
(M,x, 1t)

∣∣∣∣ M(x) ∈ {0,⊥} ∧Pr[M≤2t(x) = 0] ≥ 2

3

}
,

where M is a randomized machine, and the notation M≤2t denotes that we run it for at most 2t steps.
One can see that Π ∈ prZPE. By our assumption, Π ∈ prBPP, therefore there exists some k such that
Π ∈ prBPTIME[nk]. Notice that each problem in prZPE can be reduced to Π in linear time, implying
prZPE ⊆ prBPTIME[nk].
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Claim 32. If prZPE ⊆ prBPP, then there exists some k ∈ N such that for any time-constructible a(n), we
have ZPTIME[2a(n)]/a(n) ⊆ BPTIME[(n+ a(n))k]/a(n).

Proof. Fix L ∈ ZPTIME[2a(n)]/a(n), and let M(x, r, s) be the corresponding Turing machine, where x is
the input, r is the random string and s is the advice. We define a promise problem Π ≜ (YES,NO) as
follows:

YES ≜

{
(x, s)

∣∣∣∣ ∀r,M(x, r, s) ∈ {1,⊥} ∧Pr
r
[M(x, r, s) = 1] ≥ 2

3

}
,

NO ≜

{
(x, s)

∣∣∣∣ ∀r,M(x, r, s) ∈ {0,⊥} ∧Pr
r
[M(x, r, s) = 0] ≥ 2

3

}
.

By definition, Π is in prZPE. By our assumption and Lemma 31, there exists some k such that Π ∈
prBPTIME[nk]. Let M ′(x, r, s) be the Turing machine witnessing such inclusion. Let sn ∈ {0, 1}a(n) be
the advice string for M on input length n. Then we have

x ∈ L → (x, sn) ∈ YES → Pr
r
[M ′(x, r, sn) = 1] ≥ 2

3
,

x ̸∈ L → (x, sn) ∈ NO → Pr
r
[M ′(x, r, sn) = 0] ≥ 2

3
.

Since M ′ runs in time mk, where m = (n + a(n)) is the length of (x, sn), we conclude that L ∈
BPTIME[(n+ a(n))k]/a(n). We finish our proof by observing that k is independent of a(n) and L. ⋄

Proof of Lemma 28. For the sake of contradiction, assume non-trivial coding for zKt is true and prZPEXP =
prBPP. Our assumption implies EXP ⊆ BPP. By a padding argument, we have

EE ⊆ BPE.

By Corollary 30,
BPE ⊆ i.o.ZPTIME[22

n−ω(n)]/2n−ω(n).

By Claim 32,

ZPTIME[22
n−ω(n)

]/2n−ω(n) ⊆ BPTIME[2kn]/2n−ω(n) ⊆ DTIME[22
kn
]/2n−ω(n).

Combining these three inclusions gives us

EE ⊆ i.o.DTIME[22
kn
]/2n−ω(n).

However, this contradicts the diagonalization result of Corollary 14.

5.1.2 Weak Coding for zKt from prZPEXP ̸= prBPP

Lemma 33. (Item 1 ⇒ Item 2 in Theorem 1). If prZPEXP ̸= prBPP, then weak coding for zKt is true.

To prove Lemma 33, we need the following tools:

Lemma 34. If prZPEXP ⊈ prEXP, then for any ε > 0, BPP ⊆ i.o.ZPTIME[2n
ε
]/nε .

Proof. The proof relies on the easy witness method introduced by [Kab00].
We claim that it suffices to show the following statement:
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If prZPEXP ⊈ prEXP, then for any c ∈ N, there exists a Turing machine A, satisfying the
following conditions:

1. For r ∈ {0, 1}2n and s ∈ {0, 1}n, A(r, s) runs in 2O(n) steps using r as random string
and s as advice and it either outputs some string in {0, 1}2n or ⊥.

2. For infinitely many n, there exists some advice sn such that Prr[A(r, sn) = ⊥] ≤ 1/3,
and for every r such that A(r, sn) ̸= ⊥, A(r, sn) is the truth table of an n-variable Boolean
function with circuit complexity at least nc.

In fact, if we have such a machine A, then for any 0 < δ < ε and c ∈ N, for infinitely many n, using nδ

bits of advice, A can generate the truth table of some nδ-variable Boolean function with circuit complexity
at least ncδ, succeeding with high probability with zero error. We can then plug this hard truth table into
the generator of Theorem 11 to derandomize BPP. Since nδ < nε, BPP ⊆ i.o.ZPTIME[2n

ε
]/nε . All that

remains is to prove the above statement.
First, observe that our assumption implies prZPTIME[2n] ⊈ prEXP, because otherwise a simple padding

argument gives prZPEXP ⊆ prEXP. Let Π ≜ (YES,NO) be a promise problem in prZPTIME[2n]\prEXP,
and let M(x, r) be the Turing machine witnessing such inclusion, where x ∈ {0, 1}n is the input and
r ∈ {0, 1}2n is the random string. We define a Turing machine B(x) that “tries to derandomize M” as
follows:

On input x ∈ {0, 1}n, enumerate over all n-variable Boolean circuits C of size at most nc,
and compute M(z, tt(C)), where tt(C) ∈ {0, 1}2n is the string representing the truth table of
circuit C. If all runs of M outputs ⊥, then B outputs ⊥; otherwise if b ∈ {0, 1} appeared as the
output of one of the runs, B outputs b. (If both 0 and 1 appeared, B outputs arbitrarily.)

One can see that B runs in deterministic time 2n
2c

. So by our assumption that Π ̸∈ prEXP, B cannot
compute Π. In other words, there are infinitely many input lengths n where there exists some xn ∈ YESn ∪
NOn such that B(xn) ̸= Π(xn). Since M makes zero error on the promised inputs, B(xn) = ⊥. By
definition of B, for any r, if r is the truth table of an n-variable Boolean circuit of size at most nc, then
M(xn, r) = ⊥. Taking the contrapositive, if M(xn, r) ̸= ⊥, then r is the truth table of an n-variable
Boolean function with circuit complexity at least nc. But if we sample r uniformly from {0, 1}2n , then
Prr[M(xn, r) ̸= ⊥] ≥ 2/3. Hence we define the Turing machine A as follows:

Given xn as advice, A samples r from {0, 1}2n uniformly. If M(xn, r) ̸= ⊥, then A outputs r;
otherwise A outputs ⊥.

It is not hard to see that A satisfies the two conditions stated above.

We show the following Karp–Lipton theorem for zero-error probabilistic classes, under the assumption
that EXP = BPP.

Lemma 35. Suppose EXP = BPP. If ZPE/n ⊆ SIZE[nk] for some k, then prZPEXP = prEXP.

Proof. Assume EXP = BPP. For the sake of contradiction, suppose ZPE/n ⊆ SIZE[nk] for some k > 0
and prZPEXP ̸= prEXP. By Lemma 34, the latter implies that BPP ⊆ i.o.ZPTIME[2n

ε
]/nε for any ε > 0.

Then we have EXP ⊆ BPP ⊆ i.o.ZPE/n ⊆ i.o.SIZE[nk], which contradicts Corollary 15.

Finally, we need the following analogue of Lemma 19, which gives an infinitely-often secure pseudo-
random generator under the assumption that prZPEXP ̸= prBPP.
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Lemma 36. If prZPEXP ̸= prBPP, then for every ε > 0 and b ∈ N, there is a sequence {Gn}n∈N, where
Gn : {0, 1}n

ε

→ {0, 1}n
b

, such that the following holds. For every distribution family {Cn}n∈N of Boolean
circuits samplable in time nb, there are infinitely many n ∈ N such that with probability at least 1 − n−b

over C sampled from Cn, Gn (n−b)-fools C. Moreover, each Gn can be computed probabilistically with
zero error using a small advice in the following sense: There exists a deterministic Turing machine M and
a sequence of advice strings an ∈ {0, 1}n

ε

such that, given z ∈ {0, 1}n
ε

and w ∈ {0, 1}2
nε

, M(z, w; an)

runs in time 2O(nδ). Also, for every z ∈ {0, 1}n
ε

, the following hold:

• Pr
w∼{0,1}2n

ε [M(z, w; an) = Gn(z)] ≥ 2/3.

• For all w ∈ {0, 1}2
nε

, M(z, w; an) ∈ {Gn(z),⊥}.

Proof. Assume prZPEXP ̸= prBPP. We consider two cases below.

Case 1: EXP ̸= BPP. The desired pseudorandom generator follows directly from Lemma 19.

Case 2: EXP = BPP. Note that EXP = BPP implies prEXP = prBPP. Since we assume prZPEXP ̸=
prBPP, it follows that prZPEXP ̸= prEXP. By Lemma 35, we have ZPE/n ̸⊆ SIZE[nk] for every k.
Then we can plug the hard truth table of some language in ZPE/n into the function F of Theorem 11 to
get a pseudorandom generator. More specifically, for every ε > 0 and b ∈ N, we consider the generator
Gn : {0, 1}n

ε

→ {0, 1}b, defined as Gn(−) ≜ F
(
tt(L=nδ

),−
)

, where F and δ < ε are provided by

Theorem 11, and L is a language in ZPE with linear advice that has circuit complexity at least ncδ, for some
constant c > 0 specified in Theorem 11.

Finally, note that since L ∈ ZPE/n, tt(L=nδ
) can be computed probabilistically with zero error in time

2O(nδ) with nδ bits of advice.

We are now ready to show Lemma 33.

Proof of Lemma 33. If prZPEXP ̸= prBPP, then by Lemma 36, we have an infinitely-often pseudorandom
generator that is computable probabilistically with zero error using a small advice. Using a similar argument
as in the proof of Lemma 18, such a generator can be used to achieve weak coding for zKt.

5.2 On Coding for zKt and ZPEXP ̸= BPP

Theorem 37. Assume that ZPEXP ⊈ ZPP/O(logn). Then a near-optimal coding theorem for zKt implies
that ZPEXP ⊈ BPP.

Proof. For the sake of contradiction, assume that ZPEXP ⊆ BPP. Our goal is to derandomize BPP to
ZPP/O(logn). This contradicts the initial assumption that ZPEXP ⊈ ZPP/O(logn), which concludes the
proof.

To achieve our goal, we adapt the proofs of Lemma 5.3.3 and Theorem 5.3.4 of [Lee06]. Let L ∈ BPP,
and let M be a randomized TM deciding L. Assume that on input length n, M uses m random bits for
some m > n. We do error reduction over M , such that the resulting TM M ′ uses m3 random bits, and
the probability of error on a given input string is O(2−m2

). If r is a string that leads to a wrong answer
for x, then by Theorem 4.1.4 of [Lee06] for some polynomial p we have CNp(r|x) ≤ m3 − O(m2). Here
CNp(r|x) denotes (conditional) non-deterministic printing complexity, defined as the length of a shortest
non-deterministic program w (simulated on a non-deterministic universal machine Un) such that:

• Un(w, x) has at least one accepting path.
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• Un(w, x) outputs r on every accepting path.

• Un(w, x) runs in at most p(|r|+ |x|) steps.

Note that CNp(r) ≤ m3 − O(m2) + n < m3, where we used that m > n, |x| = n, and CNp(r|x) ≤
m3 − O(m2). Therefore any m-bit string with CNp complexity ≥ m3 will always be a good choice of the
random string for M ′, no matter the choice of x.

We define yl to be the lexicographically smallest string of length l satisfying CNp(yl) = l. We then
define a language R: (1l, i, b) ∈ R if and only if the i’th bit of yl is b. Then one can see that R ∈ EXP. By
our assumption that ZPEXP ⊆ BPP, R ∈ BPP. Therefore, given 1l as input, by computing R and using
error reduction, we can output yl in polynomial time with probability > 2/3, implying rKt(yl) = O(log l).

Next, by defining an appropriate sampler that selects a random program of length at most O(log ℓ) and
simulates it for at most 2O(log ℓ) steps (see, e.g., [LO21, Section 4.1]), we can output yℓ with probability at
least 1/2O(log ℓ). Invoking the assumed near-optimal coding theorem for zKt, we conclude that zKt(yl) =
O(log l).

Since zKt(yl) = O(log l), using O(log l) bits of advice, we can compute yl in polynomial time with
zero error. Lastly, since ym3 is always a good random string for M ′, we can compute L in polynomial time
with zero error. This implies BPP ⊆ ZPP/O(logn), as desired.7

Both RPEXP ⊈ RP/O(logn) and BPEXP ⊈ BPP/O(logn) hold unconditionally [BFS09]. It is also
known that ZPEXP ⊈ ZPP. However, achieving the separation in the zero-error case against O(log n) bits
of advice is an interesting open problem.

5.3 Unconditional Near-Optimal zKt Coding for Flat Sources

A distribution Dn supported over {0, 1}n is flat if there is a set S ⊆ {0, 1}n such that Dn is uniformly
distributed over S. In this section, we note that the near-optimal coding theorem for rKt established in
[LO21] provides a near-optimal coding theorem for zKt if Dn is a flat polynomial-time samplable distribu-
tion. The result easily follows from the following more general statement.

Theorem 38. Let {Dn}n∈N be a polynomial-time samplable distribution. For every n ≥ 1, let δn ∈ [0, 1]
be a parameter such that if x ∈ Support(Dn) then Dn(x) ≥ δn. Then

zKt(x) = O(log(1/δn) + log n).

Proof Sketch. We explain why the proof of [LO21, Theorem 20] provides a zero-error encoding under the
extra assumption that every element in the support of Dn has probability weight at least δn.

First, note that a key component of this proof is [LO21, Lemma 19], which shows how to efficiently
isolate a string x from a collection W of strings using a short advice string v whose length depends on the
logarithm of the size of W . This lemma will be used in a black-box way without modifications.

Now we proceed as in the proof of [LO21, Theorem 20]. We employ the following analogous definition
for the set W , i.e.,

W ≜ {w ∈ Support(Dn) | Dn(w) ≥ δn/32},

which simplifies to W = Support(Dn) under the assumption over the distribution. Note that |W | ≤ 1/δn.
By [LO21, Lemma 19], there is a string u of length O(log(1/δn) + log n) such that the machine M(1n, u)

7Alternatively, for any L ∈ BPP, by reducing the error of a machine computing L to at most 2−n−1, there exists a good choice
of the random string that works for all inputs of length n. Then given 1n one can find the first good random string rn in exponential
time, and by our assumption that EXP ⊆ BPP, it is easy to describe a sampler A such that Pr[A(1n) = rn] ≥ 2/3. Using
near-optimal coding for zKt, we can conclude in a similar way that L ∈ ZPP/O(logn).
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runs in deterministic time poly(n) and outputs a Boolean circuit that computes a function H : {0, 1}n →
{0, 1}O(log 1/δn) such that

H(w) ̸= H(w′) for every distinct pair w,w′ ∈ W.

In particular, u and the value H(x) allow us to identify x among any set S of strings with S ⊆ W .
Crucially, inspecting the remaining steps of the argument we are able to achieve a zero-error encoding

because the set S constructed in the proof of [LO21, Theorem 20] is always a subset of W under the extra
assumption on Dn. Therefore, we either recover x when it is in S, or output “⊥” otherwise.

Corollary 39. Let {Dn}n∈N be a polynomial-time samplable distribution. If each Dn is flat, then for every
n ≥ 1 and for every string x ∈ Support(Dn), we have

zKt(x) = O(log(1/Dn(x)) + log n).

6 Complexity Separations and Meta-Complexity

6.1 Complexity of Approximating nKt Complexity

Theorem 4. The following are equivalent.

1. NEXP ̸= BPP.

2. MnKtP[nε, n− 1] /∈ prBPP, for all ε > 0.

Moreover, the above holds if we replace MnKtP with MKtNPP, and NEXP with EXPNP.8

Proof. We show each implication below.

Item 1 ⇒ Item 2: For the sake of contradiction, suppose NEXP ̸= BPP and MnKtP[nε, n− 1] ∈ prBPP,
for some ε > 0.

Let A be a randomized polynomial-time algorithm for deciding MnKtP[nε, n − 1] with exponentially
small error. Let c > 0 be the constant such that A runs in time nc on inputs of length n.

Let b > c be a sufficiently large constant, and let G ≜ {Gn : {0, 1}n
ε/2

→ {0, 1}n} be the sequence
of generators provided by Lemma 26, such that for every distribution family {Cn} of Boolean circuits
samplable in time nb, there are infinitely many n ∈ N such that, with probability at least 1 − n−b over C
sampled from Cn, Gn (n−b)-fools C.

Consider the following distribution family {Cn} of circuits, where each Cn is given by the following
sampling procedure:

On input 1n, sample r uniformly at random from {0, 1}poly(n). Construct the circuit Cr such
that Cr(x) = A(x; r) for every x ∈ {0, 1}n. Finally, output Cr.

Note that Cn is samplable in time nb if b is sufficiently large. By construction, for every n ∈ N, with
probability at least, say, 2/3 over a circuit C sampled from Cn, C correctly decides MnKtP[nε, n − 1]. In
what follows, fix n ∈ N and such a circuit C.

8In fact, in all these results, the proof implicitly shows that the gap version of the problem is easy if and only if the non-gap
version is easy. For instance, it is known that Gap-MKtP /∈ prBPP if and only if MKtP /∈ BPP. This will also be the case for the
equivalences established in this paper.

26



On the one hand, since Gn can be computed non-deterministically in time 2O(nε/2) with nε bits of
advice, we have that for every z ∈ {0, 1}n

ε

, nKt(Gn(z)) ≤ nε. It follows that

Pr
z∼{0,1}n

ε/2
[C(Gn(z)) = 1] = 1. (8)

On the other hand, by a simple counting argument, for at least half of the x’s in {0, 1}n, nKt(x) ≥
K(x) > n− 1. This implies

Pr
x∼{0,1}n

[C(x) = 0] ≥ 1

2
. (9)

Comparing Equations (8) and (9), we conclude that C is not fooled by Gn. This contradicts the pseudo-
randomness property of G.

Item 2 ⇒ Item 1: We show the contrapositive. First, it is easy to see that MnKtP ∈ PSPACENEXP.
Indeed, given (x, 1s), one can enumerate every program p and time bound t such that |p| + log t ≤ s and
use an NEXP oracle to check the following conditions:

• ∀w ∈ {0, 1}t, U(p, w) outputs x or ⊥ within t steps.

• ∃w ∈ {0, 1}t, U(p, w) outputs x within t steps.

Note that the queries made to the NEXP oracle are of size polynomial in the length of the input string
(x, 1s), since |p| + log t ≤ s. Consequently, under the assumption that NEXP = BPP, the answer to each
oracle query can be computed in BPP and therefore in polynomial space. This yields MnKtP ∈ PSPACE.
Invoking NEXP ⊆ BPP once again, we get that MnKtP ∈ BPP.

The above completes the proof of the equivalence between “NEXP ̸= BPP” and “MnKtP[nε, n− 1] ̸∈
prBPP”.

Similarly, the equivalence between “EXPNP ̸= BPP” and “MKtNPP[nε, n−1] ̸∈ prBPP” can be shown
using an infinitely-often secure pseudorandom generator G = {Gn}n∈N, where each Gn : {0, 1}n

ε

→
{0, 1}n

b

is computable in time 2O(nε) with access to an NP oracle. Again, such a pseudorandom generator
can be obtained using an argument similar to the one in the proof of Lemma 19.

6.2 Complexity of Approximating zKt Complexity

6.2.1 Proof of Theorem 5

Theorem 5. If MzKtP[nε, n− 1] ∈ prBPP for some ε > 0, then prZPEXP = prBPP.

Proof. The proof can be adapted easily from that of (Item 1 ⇒ Item 2) in Theorem 4. More precisely, assume
prZPEXP ̸= prBPP. Then, by Lemma 36, we get an infinitely-often secure pseudorandom generator that is
computable probabilistically with zero error using a small amount of advice.

Suppose, for the sake of contradiction, that MzKtP[nε, n − 1] ∈ prBPP for some ε > 0. Then, an
efficient algorithm solving MzKtP[nε, n− 1] can be used to break the aforementioned pseudorandom gen-
erator.
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6.2.2 Proof of Theorem 6

Theorem 6. MzKtP[nε, n− 1] ̸∈ prZPTIME
[
2polylog(n)

]
, for all ε > 0.

Proof. Towards a contradiction, assume that for some ε > 0 and c ≥ 1 there is a zero-error probabilistic
algorithm A running in time 2(logn)

c
that separates n-bit strings x with zKt(x) ≤ nε from those with

zKt(x) ≥ n1−ε. We make no assumption about the output behavior of A on the remaining inputs.

Lemma 40. Assume the existence of an algorithm A as above. Then there exists a constant δ > 0 for
which the following holds. For every large enough n and for every string y ∈ {0, 1}n, if rKt(y) ≤ nδ then
zKt(y) ≤ nε.

Proof. Let y be an n-bit string such that rKt(y) ≤ nδ, and let M be a program of length at most nδ that
outputs y with probability at least 2/3 when running for at most 2n

δ
steps. In short, we use the assumed

algorithm A to randomly guess a random ℓ-bit string z of length poly(N) (where N = 2n
δ
) and verify that

it encodes a hard truth table. We can then instantiate a PRG based on z that allows us to transform M into a
zero-error machine M ′ that outputs y.

In more detail, we aim to obtain a machine M ′ of length at most nε/2 that runs in time at most 2n
ε/2

,
outputs y with probability at least 2/3, and always outputs either y or ⊥. To derandomize a machine running
in time N , we employ a PRG G : {0, 1}O(logN) → {0, 1}N that fools N -size computations. The latter can
be constructed with access to a string of length ℓ = poly(N) of circuit complexity ≥ ℓΩ(1) [IW97]. In turn,
since A is a zero-error algorithm on inputs z ∈ {0, 1}ℓ with zKt(z) ≤ ℓε, it is not hard to see that if we run
A on a random input z ∈ {0, 1}ℓ, with probability at least 1/2 over the choice of z we have zKt(z) ≥ ℓ− 1,
and with probability at least 1/2 over the internal randomness of A, we have A(z) = “NO”, meaning that
A certifies that z is not a string with zKt(z) ≤ ℓε. (Crucially, no matter the internal randomness of A, it
will never output “NO” on an ℓ-bit input string of zKt complexity at most ℓε, since on such inputs it always
outputs either “YES” or “⊥”.) Since every string z ∈ {0, 1}ℓ with Kt(z) ≥ ℓε encodes a truth table of
circuit complexity at least ℓε/2 = ℓΩ(1), A can be used to generate and certify a hard truth table.

Given a hard truth table z, since M outputs x with probability at least 2/3 and Gz fools M , we have
Prw[M(Gz(w)) = x] > 1/2. Thus our zero-error machine M ′ computes as follows. First, it attempts to
guess and certify a hard truth table using A. It outputs ⊥ if it does not succeed. Otherwise, it cycles over
every seed w ∈ {0, 1}O(logN) and outputs the most common string produced via M(Gz(w)).

Note that M ′ is indeed a zero-error encoding of x. It remains to bound the running time and description
length of M ′. Its description length is bounded by the descriptions of M , A, n, and ℓ, which is at most
nδ + O(1) + O(log n) ≤ nε/2, assuming that δ ≤ ε/3. On the other hand, M runs in time at most 2n

δ
, A

on an input of length ℓ = poly(N) with N = 2n
δ

runs in time at most 2(log ℓ)
c
= 2n

2δc
, and producing all

outputs Gz(w) with w ∈ {0, 1}O(logN) takes time at most 2O(logN) = 2O(nδ). Overall, the running time
of M ′ is at most 2n

ε/2
if we take δ < ε/(4c). This completes the proof that zKt(y) ≤ nε if rKt(y) ≤ nδ,

provided that δ = δ(ε) > 0 is small enough and n is sufficiently large.

Let n be large enough. For a string y ∈ {0, 1}∗, the following implications hold:

• If rKt(y) ≤ nδ, then zKt(y) ≤ nε.

• If rKt(y) ≥ n− 1, then zKt(y) ≥ n− 1.

The first implication follows from Lemma 40, while the second implication uses that rKt(y) ≤ zKt(y).
As a consequence, the algorithm A decides MrKtP[nδ, n − 1]. In particular, we have MrKtP[nδ, n − 1] ∈
prBPTIME[npoly(logn)]. However, this contradicts the unconditional lower bound for MrKtP[nδ, n − 1]
established in [Oli19], which shows that this promise problem cannot be solved by a probabilistic algorithm
that runs in quasi-polynomial time.
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Definition 41 (KNt [AKRR11]). For x ∈ {0, 1}∗, define

KNt(x) ≜ min
p∈{0,1}∗, t∈N

{|p|+ ⌈log t⌉ | ∀i ≤ n+ 1, V (p, i, b) runs in time t and accepts iff xi = b},

where V is a fixed universal non-deterministic Turing machine.

For completeness, we observe here that the following equivalence holds.

Proposition 42. For every x ∈ {0, 1}∗, we have

nKt(x) = KNt(x)±O(log |x|).

Proof. Let x ∈ {0, 1}n and s ≜ KNt(x). First, we show that nKt(x) ≤ s+O(log n).
Let p be a non-deterministic program and t a time bound such that |p|+ ⌈log t⌉ = s, and V (p, i, b) runs

in time t and accepts if and only if xi = b, for all i ≤ n+1. We view V as a deterministic algorithm that has
access to an additional tape holding the “guess” string. That is, for all i ≤ n+ 1, there exists w∗

i ∈ {0, 1}t
such that V (p, i, xi;w

∗
i ) accepts within t steps, and for all wi ∈ {0, 1}t, V (p, i,¬xi;wi) rejects within t

steps.
Consider the following procedure for outputting x non-deterministically:

Given a guess w, we view it as (y, w1, w2, . . . , wn), where y ∈ {0, 1}n and each wi ∈ {0, 1}t
for some t. We then check whether V (p, i, yi;wi) accepts for all i ∈ [n]. If so, we output y;
otherwise, we output ⊥.

We first argue correctness. Consider the “correct” guess w ≜ (x,w∗
1, w

∗
2, . . . , w

∗
n). It is easy to see, by

the property of p, that the above procedure will output x when given w. Also, note that for any guess of the
form (y, w1, w2, . . . , wn), the procedure will only output y or ⊥, and if y ̸= x, then, again by the property
of p, the procedure will output ⊥ because in this case V (p, i, yi;wi) will reject for at least one i ∈ [n].

Also, note that given the program p and the number n, the above procedure can be implemented to run
in time t · poly(n). This implies

nKt(x) ≤ |p|+O(log n) + log(t · poly(n)) ≤ s+O(log n),

as desired.
Now let x ∈ {0, 1}n and s ≜ nKt(x). Next, we show that KNt(x) ≤ s+O(log n).
Let p be a program and t a time bound such that |p|+ ⌈log t⌉ = s and the following conditions hold:

• ∀w ∈ {0, 1}t, U(p, w) outputs x or ⊥ within t steps,

• ∃w ∈ {0, 1}t, U(p, w) outputs x within t steps,

where U is a deterministic universal Turing machine.
We describe the following non-deterministic procedure:

On an input (i, b) and a guess string w, we run U(p;w) to obtain a string x. Accept if and only
if xi = b.

For an input (i, b), if b = xi, then there exists some guess w ∈ {0, 1}t such that U(p;w) outputs x, and
the above will accept. On the other hand, if b ̸= xi, then since U(p;w) only outputs x or ⊥ for all guesses
w ∈ {0, 1}t, the above will reject.

Also, note that the above procedure can be implemented to run in time t · poly(n). This yields

KNt(x) ≤ |p|+O(log n) + log(t · poly(n)) ≤ s+O(log n),

as desired.
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