
Algorithms and Lower Bounds for de Morgan Formulas of

Low-Communication Leaf Gates

Valentine Kabanets∗ Sajin Koroth† Zhenjian Lu‡

Dimitrios Myrisiotis§ Igor C. Oliveira¶

February 18, 2020

The class FORMULA[s] ◦ G consists of Boolean functions computable by size-s de Morgan
formulas whose leaves are any Boolean functions from a class G. We give lower bounds and
(SAT, Learning, and PRG) algorithms for FORMULA[n1.99] ◦ G, for classes G of functions with
low communication complexity. Let R(k)(G) be the maximum k-party number-on-forehead
randomized communication complexity of a function in G. Among other results, we show that:

• The Generalized Inner Product function GIPk
n cannot be computed in FORMULA[s] ◦ G on

more than 1/2 + ε fraction of inputs for

s = o

(
n2(

k · 4k ·R(k)(G) · log(n/ε) · log(1/ε)
)2
)
.

This significantly extends the lower bounds against bipartite formulas obtained by [Tal17].
As a corollary, we get an average-case lower bound for GIPk

n against FORMULA[n1.99] ◦
PTFk−1, i.e., sub-quadratic-size de Morgan formulas with degree-(k − 1) PTF (polynomial
threshold function) gates at the bottom. Previously, only sub-linear lower bounds were
known [Nis94, Vio15] for circuits with PTF gates.

• There is a PRG of seed length n/2 + O
(√
s ·R(2)(G) · log(s/ε) · log(1/ε)

)
that ε-fools

FORMULA[s] ◦ G. For the special case of FORMULA[s] ◦ LTF, i.e., size-s formulas with
LTF (linear threshold function) gates at the bottom, we get the better seed length
O
(
n1/2 · s1/4 · log(n) · log(n/ε)

)
. In particular, this provides the first non-trivial PRG

(with seed length o(n)) for intersections of n half-spaces in the regime where ε ≤ 1/n,
complementing a recent result of [OST19].

• There exists a randomized 2n−t-time #SAT algorithm for FORMULA[s] ◦ G, where

t = Ω

(
n

√
s · log2(s) ·R(2)(G)

)1/2

.

In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99] ◦ LTF.

• The Minimum Circuit Size Problem is not in FORMULA[n1.99] ◦ XOR; thereby making
progress on hardness magnification, in connection with results from [OPS19, CJW19].
On the algorithmic side, we show that the concept class FORMULA[n1.99] ◦ XOR can be
PAC-learned in time 2O(n/ logn).
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1 Introduction

A (de Morgan) Boolean formula over {0, 1}-valued input variables x1, . . . , xn is a binary tree
whose internal nodes are labelled by AND or OR gates, and whose leaves are marked with a variable or
its negation. The power of Boolean formulas has been intensively investigated since the early years of
complexity theory (see, e.g., [Sub61, Nec66, Khr71, And87, PZ93, IN93, H̊as98, Tal14, DM18]). The
techniques underlying these complexity-theoretic results have also enabled algorithmic developments.
These include learning algorithms [Rei11b, ST17], satisfiability algorithms (cf. [Tal15]), compression
algorithms [CKK+15], and the construction of pseudorandom generators [IMZ12] for Boolean
formulas of different sizes. But despite many decades of research, the current non-trivial algorithms
and lower bounds apply only to formulas of less than cubic size, and understanding larger formulas
remains a major open problem in circuit complexity.

In many scenarios, however, understanding smaller formulas whose leaves are replaced by certain
functions would also be very useful. Motivated by several recent works, we initiate a systematic
study of the FORMULA ◦ G model, i.e., Boolean formulas whose leaves are labelled by an arbitrary
function from a fixed class G. This model unifies and generalizes a variety of models that have been
previously studied in the literature:

– Oliveira, Pich, and Santhanam [OPS19] show that obtaining a refined understanding of formulas
of size n1+ε over parity (XOR) gates would have significant consequences in complexity theory.
Note that de Morgan formulas of size n3+ε can simulate such devices. Therefore, a better
understanding of the FORMULA ◦ G model even when G = XOR is necessary before we are
able to analyze super-cubic size formulas.1

– Tal [Tal17] obtains almost quadratic lower bounds for the model of bipartite formulas, where
there is a fixed partition of the input variables into x1, . . . , xn and y1, . . . , yn, and a formula leaf
can compute an arbitrary function over either ~x or ~y. This model was originally investigated
by Pudlák, Rödl, and Savický [PRS88], where it was referred to as graph complexity. The
model is also equivalent to PSPACE-protocols in communication complexity (cf. [GPW18]).

– Abboud and Bringmann [AB18] consider formulas where the leaves are threshold gates whose
input wires can be arbitrary functions applied to either the first or the second half of the
input. This extension of bipartite formulas is denoted by F2 in [AB18]. Their work establishes
connections between faster F2-SAT algorithms, the complexity of problems in P such as
Longest Common Subsequence and the Fréchet Distance Problem, and circuit lower bounds.

– Polytopes (i.e. intersection of half-spaces), which corresponds to G being the family of linear-
threshold functions, and the formula contains only AND gates as internal gates. The construct-
ing of PRGs for this model has received significant attention in the literature (see [OST19]
and references therein).

We obtain in a unified way several new results for the FORMULA ◦ G model, for natural classes
G of functions which include parities, linear (and polynomial) threshold functions, and indeed many
other functions of interest. In particular, we show that this perspective leads to stronger lower
bounds, general satisfiability algorithms, and better pseudorandom generators for a broad class of
functions.

1We remark that even a single layer of XOR gates can compute powerful primitives, such as error-correcting codes
and hash functions.

3



1.1 Results

We now describe in detail our main results and how they contrast to previous works. Our
techniques will be discussed in Section 1.2, while a few open problems are mentioned in Section 1.3.

We let FORMULA[s] ◦ G denote the set of Boolean functions computed by formulas containing at
most s leaves, where each leaf computes according to some function in G. The set of parity functions
and their negations will be denoted by XOR.

We use the following notation for communication complexity. For a Boolean function f : {0, 1}n →
{0, 1}, we let D(f) be the two-party deterministic communication complexity of f , where each party
is given an input of n/2 bits. Similarly, for a Boolean function g : {0, 1}n → {0, 1}, we denote by

R
(k)
δ (g) the communication cost of the best k-party number-on-forehead (NOF) communication

protocol that computes g with probability at least 1 − δ on every input, where the probability
is taken over the random choices of the protocol. For simplicity, we might omit the superscript

(k) from R
(k)
δ (g) when k = 2. One of our results will also consider k-party number-in-hand (NIH)

protocols, and this will be clearly indicated in order to avoid confusion. We always assume a
canonical partition of the input coordinates in all statements involving k-party communication
complexity, unless stated otherwise. We generalize these definitions for a class of functions G in the

natural way. For instance, we let R
(k)
δ (G) = maxg∈G R

(k)
δ (g).

Our results refer to standard notions in the literature, but in order to fix notation, Section 2
formally defines communication protocols, Boolean formulas, and other notions relevant in this
work. We refer to the textbooks [KN97] and [Juk12] for more information about communication
complexity and Boolean formulas, respectively. To put our results into context, here we only briefly
review a few known upper bounds on the communication complexity of certain classes G.

Parities (XOR) and Bipartite Formulas. Clearly, the deterministic two-party communication
complexity of any parity function is at most 2, since to agree on the output it is enough for the
players to exchange the parity of their relevant input bits. Moreover, note that the bipartite formula
model discussed above precisely corresponds to formulas whose leaves are computed by a two-party
protocol of communication cost at most 1.

Halfspaces and Polynomial Threshold Functions (PTFs). Recall that a halfspace, also
known as a Linear Threshold Function (LTF), is a Boolean function of the form sign(

∑n
i ai · xi − b),

where each ai, b ∈ R and x ∈ {0, 1}n, and that a degree-d PTF is its natural generalization where
degree-d monomials are allowed. It is known that if g(x1, . . . , xn) is a halfspace, then its randomized

two-party communication complexity, namely R
(2)
δ (g), satisfies R

(2)
δ (g) = O(log(n) + log(1/δ))

[Nis94]. On the other hand, if g(x1, . . . , xn) is a degree-d PTF, then R
(d+1)
δ (g) = O

(
(d log d)(d log n+

log(1/δ))
)

[Nis94, Vio15].

Degree-d Polynomials over GF(2). It is well known that a degree-d GF(2)-polynomial admits
a (d+ 1)-party deterministic protocol of communication cost d+ 1 under any variable partition,
since in the number-on-forehead model each monomial is entirely seen by some player. In particular,

the Inner Product function IPn(x, y) =
∑

i xi · yi (mod 2) satisfies R
(3)
1/3(IPn) = O(1).

4



1.1.1 Lower bounds

Prior to this work, the only known lower bound against FORMULA ◦ XOR or bipartite formulas
was the recent result of [Tal17] showing that IPn is hard (even on average) against nearly sub-
quadratic formulas. In contrast, we obtain a significantly stronger result and establish lower bounds
for different Boolean functions. We define such functions next.

GIPkn. The Generalized Inner Product function GIPkn : {0, 1}n → {0, 1} is defined as

GIPkn

(
x(1), x(2), . . . , x(k)

)
=

n/k∑
j=1

k∧
i=1

x
(i)
j (mod 2),

where x(i) ∈ {0, 1}n/k for each i ∈ [k].

MKtP. In the Minimum Kt Problem, where Kt refers to Levin’s time-bounded Kolmogorov
complexity2, we are given a string x ∈ {0, 1}n and a string 1`. We accept (x, 1`) if and only if
Kt(x) ≤ `.

MCSP. In the Minimum Circuit Size Problem, we are given as input the description of a Boolean
function f : {0, 1}logn → {0, 1} (represented as an n-bit string), and a string 1`. We accept (f, 1`) if
and only the circuit complexity of f is at most `.

Theorem 1 (Lower bounds). The following unconditional lower bounds hold:

1. If GIPkn is (1/2 + ε)-close under the uniform distribution to a function in FORMULA[s] ◦ G,
then

s = Ω

 n2

k2 · 16k ·
(
R

(k)
ε/(2n2)

(G) + log n
)2 · log2(1/ε)

 .

2. If MKtP ∈ FORMULA[s] ◦ G, then

s = Ω̃

 n2

k2 · 16k ·R(k)
1/3(G)

 .

3. If MCSP ∈ FORMULA[s] ◦ XOR, then s = Ω̃(n2), where Ω̃ hides inverse polylog(n) factors.

Observe that, while [Tal17] showed that the Inner Product function IPn is hard against sub-
quadratic bipartite formulas, Theorem 1 Item 1 yields lower bounds against formulas whose leaves
can compute bounded-degree PTFs and GF(2)-polynomials, including IPn. PTF circuits were
previously studied by Nisan [Nis94], who obtained an almost linear Ωd(n

1−o(1)) gate complexity
lower bound against circuits with degree-d PTF gates. Recently, [KKL17] gave a super-linear wire
complexity lower bound for constant-depth circuits with constant-degree PTF gates. However, it

2For a string x ∈ {0, 1}∗, Kt(x) denotes the minimum value |M |+ log t taken over M and t, where M is a machine
that prints x when it computes for t steps, and |M | is the description length of M according to a fixed universal
machine U .

5



was open whether we can prove lower bounds against any circuit model that can incorporate a linear
number of PTF gates. In fact, it was open before this work to show a super-linear gate complexity
lower bound against AND ◦ PTF.

Let us now comment on the relevance of Items 2 and 3. Both MCSP and MKtP are believed to
be computationally much harder than GIPkn. However, it is more difficult to analyze these problems
compared to GIPkn because the latter is mathematically “structured,” while the former problems do
not seem to be susceptible to typical algebraic, combinatorial, and analytic techniques.

More interestingly, MCSP and MKtP play an important role in the theory of hardness magnifi-
cation (see [OPS19, CJW19]). In particular, if one could show that MCSP restricted to an input
parameter ` ≤ no(1) is not in FORMULA[n1+ε] ◦ XOR for some ε > 0, then it would follow that NP
cannot be computed by Boolean formulas of size nc, where c ∈ N is arbitrary. Theorem 1 makes
partial progress on this direction by establishing the first lower bounds for these problems in the
FORMULA ◦ G model. (We note that the proof of Theorem 1 Item 3 requires instances where the
parameter ` is nΩ(1).)

1.1.2 Pseudorandom generators

We also get pseudorandom generators (PRGs) against FORMULA ◦ G for various classes of
functions G. Recall that a PRG against a class of functions C is a function G mapping short
Boolean strings (seeds) to longer Boolean strings, so that every function in C accepts G’s output on
a uniformly random seed with about the same probability as that for an actual uniformly random
string. More formally, G : {0, 1}` → {0, 1}n is a PRG that ε-fools C if for every Boolean function
h : {0, 1}n → {0, 1} in C, we have∣∣∣∣ Pr

z∈{0,1}`
[h(G(z)) = 1]− Pr

x∈{0,1}n
[h(x) = 1]

∣∣∣∣ ≤ ε.

Furthermore, we require G to run in deterministic time poly(n) on an input string z ∈ {0, 1}`. The
parameter ` = `(n) is called the seed length of the PRG and is the main quantity to be minimized
when constructing PRGs.

There exists a PRG that fools formulas of size s and that has a seed of length s1/3+o(1) [IMZ12].
In particular, there are non-trivial PRGs for n-variate formulas of size nearly n3. Unfortunately,
such PRGs cannot be used to fool even linear size formulas over parity functions, since the naive
simulation of these enhanced formulas by standard Boolean formulas requires size n3. Moreover,
it is not hard to see that this simulation is optimal: Andreev’s function, which is hard against
formulas of nearly cubic size (cf. [H̊as98]), can be easily computed in FORMULA[O(n)]◦XOR. Given
that a crucial idea in the construction of the PRG in [IMZ12] (shrinkage under restrictions) comes
from this lower bound proof, new techniques are needed in order to approach the problem in the
FORMULA ◦ XOR model.

More generally, extending a computational model for which strong PRGs are known to allow
parities at the bottom layer can cause significant difficulties. A well-known example is AC0 circuits
and their extension to AC0-XOR. While the former class admits PRGs of poly-logarithmic seed length
(see e.g. [ST19]), the most efficient PRG construction for the latter has seed length (1− o(1)) · n
[FSUV13]. Consequently, designing PRGs of seed length ≤ (1−Ω(1)) · n can already be a challenge.
We are not aware of previous results on PRGs for FORMULA ◦ G for any non-trivial class G.
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By combining ideas from circuit complexity and communication complexity, we construct PRGs
of various seed lengths for FORMULA ◦ G, where G ranges from the class of parity functions to the
much larger class of functions of bounded randomized k-party communication complexity.

Theorem 2 (Pseudorandom generators). Let G be a class of n-bits functions. Then,

1. In the context of parity functions, there is a PRG that ε-fools FORMULA[s] ◦ XOR of seed
length

` = O
(√
s · log(s) · log(1/ε) + log(n)

)
.

2. In the context of two-party randomized communication complexity, there is a PRG that ε-fools
FORMULA[s] ◦ G of seed length

` = n/2 +O
(√

s ·
(
R

(2)
ε/(6s)(G) + log(s)

)
· log(1/ε)

)
.

More generally, for every k(n) ≥ 2, let G be the class of functions that have k-party number-in-

hand (NIH) (ε/6s)-error randomized communication protocols of cost at most R
(k-NIH)
ε/(6s) . There

exists a PRG that ε-fools FORMULA[s] ◦ G with seed length

` = n/k +O
(√

s ·
(
R

(k-NIH)
ε/(6s) + log(s)

)
· log(1/ε) + log(k)

)
· log(k).

3. In the setting of k-party NOF randomized communication complexity, there is a PRG that
ε-fools FORMULA[s] ◦ G of seed length

` = n− n

O
(√

s · k · 4k ·
(
R

(k)
ε/(2s)(G) + log(n)

)
· log(n/ε)

) .
A few comments are in order. Under a standard connection between PRGs and lower bounds (see

e.g. [Kab02]), improving the dependence on s in the seed length for FORMULA[s] ◦ XOR (Theorem
2 Item 1) would require the proof of super-quadratic lower bounds against FORMULA ◦ XOR. We
discuss this problem in more detail in Section 1.3. Note that the additive term n/2 is necessary in
Theorem 2 Item 2, since the model computes in particular every Boolean function on the first n/2
input variables (i.e. a protocol of communication cost 1). Similarly, ` ≥ (1− 1/k) · n in Theorem 2
Item 3. Removing the exponential dependence on k would also require advances in state-of-the-art
lower bounds for multiparty communication complexity.

Theorem 2 Item 2 has an interesting implication for fooling a well-studied class of functions:
intersections of halfspaces.3 Note that an intersection of halfspaces is precisely a polytope, or
equivalently, the set of solutions of a 0-1 integer linear program. Such objects have found applications
in many fields, including optimization and high-dimensional geometry. After a long sequence of
works on the construction of PRGs for bounded-weight halfspaces, (unrestricted) halfspaces, and
generalizations of these classes,4 the following results are known for the intersection of m halfspaces
over n input variables. Gopalan, O’Donnell, Wu, and Zuckerman [GOWZ10] gave a PRG for this
class for error ε with seed length

O
(
m · log(m/ε) + log n) · log(m/ε)

)
.

3Clearly, the intersection of s functions can be computed by an enhanced formula of size s+ 1.
4We refer to the recent reference [OST19] for an extensive review of the literature in this area.
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Note that the seed length of their PRG becomes trivial if the number of halfspaces is linear in n.
More recently, O’Donnell, Servedio and Tan [OST19] constructed a PRG with seed length

poly(log(m), 1/ε) · log(n).

Their PRG has a much better dependence on m, but it cannot be used in the small error regime.
For example, the seed length becomes trivial if ε = 1/n. In particular, before this work it was open
to construct a non-trivial PRG for the following natural setting of parameters (cf. [OST19, Section
1.2]): intersection of n halfspaces with error ε = 1/n.

We obtain the following consequence of Theorem 2 Item 2, which follows from a result of Viola
[Vio15] on the k-party number-in-hand randomized communication complexity of a halfspace.

Corollary 3 (Fooling intersections of halfspaces in the low-error regime). For every n,m ∈ N and
ε > 0, there is a pseudorandom generator with seed length

O
(
n1/2 ·m1/4 · log(n) · log(n/ε)

)
.

that ε-fools the class of intersections of m halfspaces over {0, 1}n.

We note that the PRG from Theorem 2 Item 3 can fool, even in the exponentially small error
regime, not only intersections of halfspaces, but also small formulas over bounded-degree PTFs.

Finally, Theorem 2 Item 2 yields the first non-trivial PRG for formulas over symmetric functions.
Let SYM denote the class of symmetric Boolean functions on any number of input variables.

Corollary 4 (Fooling sub-quadratic formulas over symmetric gates). For every n, s ∈ N and ε > 0,
there is a pseudorandom generator with seed length

O
(
n1/2 · s1/4 · log(n) · log(1/ε)

)
.

that ε-fools n-variate Boolean functions in FORMULA[s] ◦ SYM.

Prior to this work, Chen and Wang [CW19] proved that the number of satisfying assignments of
an n-variate formula of size s over symmetric gates can be approximately counted to an additive
error term ≤ ε · 2n in deterministic time exp(n1/2 · s1/4+o(1)

√
(log(n) + log(s))), where ε > 0 is an

arbitrary constant. While their upper bound is achieved by a white-box algorithm, Corollary 4
provides a (black-box) PRG for the same task.

1.1.3 Satisfiability algorithms

In the #SAT problem for a computational model C, we are given as input the description of
a computational device D(x1, . . . , xn) from C, and the goal is to count the number of satisfying
assignments for D. This generalizes the SAT problem for C, where it is sufficient to decide whether
D is satisfiable by some assignment.

In this section, we show that #SAT algorithms can be designed for a broad class of functions.
We consider the FORMULA◦G model for classes G that admit two-party communication protocols of
bounded cost. We establish a general result in this context which can be used to obtain algorithms
for previously studied classes of Boolean circuits.

To put our #SAT algorithms for FORMULA ◦ G into context, we first mention relevant related
work on the satisfiability of Boolean formulas. Recall that in the very restricted setting of CNF
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formulas, known algorithms run (in the worst-case) in time 2n−o(n) when the input formulas can
have a super-linear number of clauses (cf. [DH09]). On the other hand, for the class of general
formulas, there is a better-than-brute-force algorithm for formulas of size almost n3. In more detail,
for any ε > 0, there is a deterministic #SAT algorithm for FORMULA[n3−ε] that runs in time

2n−n
Ω(ε)

[Tal15]. No results are known for formulas of cubic size and beyond, and for the reasons
explained in Section 1.1.2, the algorithm from [Tal15] cannot even be applied to FORMULA ◦ XOR.

Before stating our results, we discuss the input encoding in the #SAT problem for FORMULA◦G.
The top formula F is represented in some canonical way, while for each leaf ` of F , the input string
contains the description of a protocol Π` computing a function in G. Our results are robust to the
encoding employed for Π`. Recall that a protocol for a two-party function is specified by a protocol
tree and a sequence of functions, where each function is associated with some internal node of the
tree and depends on n/2 input bits. Since a protocol of communication cost o(n) has a protocol tree
containing at most 2o(n) nodes, it can be specified by a string of length 2n/2+o(n). Our algorithms
will run in time closer to 2n, and using a fully explicit input representation for the protocols is
not an issue. Another possibility for the input representation is to use “computational efficient”
protocols. Informally, the next bit messages of such protocols can be computed in polynomial time
from the current transcript of the protocol and a player input. An advantage of this representation
is that an input to our #SAT problem can be succinctly represented. We observe that these input
representations can be generalized to randomized two-party protocols in natural ways. We refer to
Section 2 for a formal presentation.

We obtain non-trivial satisfiability algorithms assuming upper bounds on the two-party deter-
ministic and randomized communication complexities of functions in G.

Theorem 5 (Satisfiability algorithms). The following results hold.

1. There is a deterministic #SAT algorithm for FORMULA[s] ◦ G that runs in time

2n−t, where t = Ω

(
n

√
s · log2(s) ·D(G)

)
.

2. There is a randomized #SAT algorithm for FORMULA[s] ◦ G that runs in time

2n−t, where t = Ω

(
n

√
s · log2(s) ·R1/3(G)

)1/2

.

Theorem 5 readily provides algorithms for many circuit classes. For instance, since one can
effectively describe a randomized communication protocol for linear threshold functions [Nis94,
Vio15], the algorithm from Theorem 5 Item 2 can be used to count the number of satisfying
assignments of Boolean devices from FORMULA[n1.99] ◦ LTF.

Corollary 6 (#SAT algorithm for formulas of linear threshold functions). There is a randomized
#SAT algorithm for FORMULA[s] ◦ LTF that runs in time

2n−t, where t = Ω

(
n

√
s · log2(s) · log(n)

)1/2

.
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In connection with Corollary 6, prior to this work essentially two lines of research have been
pursued. #SAT and/or SAT algorithms were known for bounded-depth circuits of almost-linear
size whose gates can compute LTFs or sparse PTFs (see [KL18] and references therein), and for
sub-exponential size ACC0 circuits with two layers of LTFs at the bottom, assuming a sub-quadratic
number of them in the layer next to the input variables (see [ACW16] for this result and further
related work). Corollary 6 seems to provide the first non-trivial SAT algorithm that operates with
unbounded-depth Boolean devices containing a layer with a sub-quadratic number of LTFs.

Theorem 5 can be seen as a generalization of several approaches to designing SAT algorithms
appearing in the literature, which often employ ad-hoc constructions to convert bottlenecks in the
computation of devices from a class C into non-trivial SAT algorithms for C. We observe that, before
this work, [PW10] had made a connection between faster SAT algorithms for CNFs and the 3-party
communication complexity of a specific function. Their setting is different though: it seems to
work only for CNFs, and they rely on conjectured upper bounds on the communication complexity
of a particular problem. More recently, [CW19] employed quantum communication protocols to
design approximate counting algorithms for several problems.5 In comparison to previous works, to
our knowledge Theorem 5 is the first unconditional result that yields faster #SAT algorithms via
communication complexity in a generic way.6

1.1.4 Learning algorithms

We describe a learning algorithm for the FORMULA ◦ XOR class in Leslie Valiant’s challenging
PAC-learning model [Val84]. Recall that a (PAC) learning algorithm for a class of functions C has
access to labelled examples (x, f(x)) from an unknown function f ∈ C, where x is sampled according
to some (also unknown) distribution D. The goal of the learner is to output, with high probability
over its internal randomness and over the choice of random examples (measured by a confidence
parameter δ), a hypothesis h that is close to f under D (measured by an error parameter ε). We
refer to [KV94] for more information about this learning model, and to Section 2 for its standard
formalization.

It is known that formulas of size s can be PAC-learned in time 2Õ(
√
s) [Rei11b]. Therefore,

formulas of almost quadratic size can be non-trivially learned from random samples of an arbitrary
distribution. A bit more formally, we say that a learning algorithm is non-trivial if it runs in time
2n/nω(1), i.e., noticeably faster than the trivial brute-force algorithm that takes time 2n · poly(n).
Obtaining non-trivial learning algorithms for various circuit classes is closely connected to the
problem of proving explicit lower bounds against the class [OS17] (see also [ST17] for a systematic
investigation of such algorithms). We are not aware of the existence of non-trivial learning algorithms
for super-quadratic size formulas. However, it seems likely that such algorithms exist at least for
formulas of near cubic size. As explained in Section 1.1.2, this would still be insufficient for the
learnability of classes such as (linear size) FORMULA ◦ XOR.

We explore structural properties of FORMULA ◦ XOR employed in previous results and boosting
techniques from learning theory to show that sub-quadratic size devices from this class can be
PAC-learned in time 2O(n/ logn).

5Recall that approximately counting satisfying assignments is substantially easier than solving #SAT, for which
the fastest known algorithms run in time 2(1−o(1))n.

6It has been brought to our attention that Avishay Tal has independently discovered a SAT algorithm for bipartite
formulas of sub-quadratic size (see the discussion in [AB18, Page 7]), which corresponds to a particular case of
Theorem 5.
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Theorem 7 (PAC-learning FORMULA ◦ XOR in sub-exponential time). For every constant γ > 0,
there is an algorithm that PAC learns the class of n-variate Boolean functions FORMULA[n2−γ ]◦XOR
to accuracy ε and with confidence δ in time poly

(
2n/ logn, 1/ε, log(1/δ)

)
.

Note that a sub-exponential running time cannot be achieved for FORMULA◦G when we consider
the communication complexity of G. Again, the class is too large, for the same reason discussed in
Section 1.1.2. It might still be possible to design a non-trivial learning algorithm in this case, but
this would possibly require the introduction of new lower bound techniques for FORMULA ◦ XOR.

In contrast to the algorithm mentioned above that learns (standard) formulas of size s ≤ n2−o(1)

in time 2Õ(
√
s), the algorithm from Theorem 7 does not learn smaller formulas over parities in time

faster than 2O(n/ logn). We discuss this in more detail in Sections 1.2 and 1.3.
Finally, we mention a connection to cryptography that provides a conditional upper bound on

the size of FORMULA ◦ XOR circuits that can be learned in time 2o(n). It is well known that if
a circuit class C can compute pseudorandom functions (or some variants of this notion), then it
cannot be learned in various learning models (see e.g. [KV94]). It has been recently conjectured
that depth-two MOD3 ◦ XOR circuits of linear size can compute weak pseudorandom functions of
exponential security [BIP+18, Conjecture 3.7]. If this conjecture holds, then such circuits cannot
be learned in time 2o(n). Since MOD3 gates over a linear number of input wires can be simulated
by formulas of size at most O(n2.8) [Ser17], under this cryptographic assumption it is not possible
to learn FORMULA[n2.8] ◦ XOR in time 2o(n), even if the learner only needs to succeed under the
uniform distribution.

1.2 Techniques

In order to explain our techniques, we focus for the most part on the design of PRGs for
FORMULA ◦ G when G is of bounded two-party randomized communication complexity (a particular
case of Theorem 2 Item 2). This proof makes use of various ingredients employed in other results.
After sketching this argument, we say a few words about our strongest lower bound (Theorem 1
Item 1) and the satisfiability and learning algorithms (Theorems 5 and 7, respectively).

We build on a powerful result showing that any small de Morgan formula can be approximated
pointwise by a low-degree polynomial:

(A) For every formula F (y1, . . . , ym) of size s, there is a polynomial p(y1, . . . , ym) ∈ R[y1, . . . , ym]
of degree O(

√
s) such that |F (a)− p(a)| ≤ 1/10 on every a ∈ {0, 1}m.

The only known proof of this result [Rei11b] relies on a sequence of works [BBC+01, LLS06,
HLS07, FGG08, Rei09, ACR+10, RS12] on quantum query complexity, generalizing Grover’s search
algorithm for the OR predicate [Gro96] to arbitrary formulas. The starting point of many of our
results is a consequence of (A) which is implicit in the work of Tal [Tal17].

(B) Let D be a distribution over {0, 1}m, and F ∈ FORMULA[s] ◦ G. Then, for every function f ,

if Pr
x∼D

[F (x) = f(x)] ≥ 1/2 + ε then Pr
x∼D

[h(x) = f(x)] ≥ 1/2 + exp(−t)

for some function h which is the XOR of at most t functions in G, where t = Θ̃(
√
s · log(1/ε)).

Intuitively, if we could understand well enough the XOR of any small collection of functions in
G, then we can translate this into results for FORMULA[s] ◦ G, as long as s � n2. We adapt the
techniques behind (B) to provide a general approach to constructing PRGs against FORMULA ◦ G:
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Main PRG Lemma. In order for a distribution D to ε-fool the class FORMULA[s]◦G, it is enough
for it to exp(−t)-fool the class XORt · G, where t = Θ̃(

√
s · log(1/ε)).

Recall that, in Theorem 2 Item 2, we consider a class G of functions that admit two-party randomized

protocols of cost R = R
(2)
ε/6s(G). It is easy to see that the XOR of any t functions from G is a

function that can be computed by a protocol of cost at most t ·R. Thus the lemma above shows
that it is sufficient to fool, to exponentially small error, a class of functions of bounded two-party
randomized communication complexity. Moreover, since a randomized protocol can be written as
a convex combination of deterministic protocols, it is possible to prove that fooling functions of
bounded deterministic communication complexity is enough.

Pseudorandom generators in the two-party communication model have been known since
[INW94]. Their construction exploits that the Boolean matrix associated with a function of small
communication cost can be partitioned into a not too large number of monochromatic rectangles.
We provide in Appendix A.2 a slightly modified and self-contained construction based on explicit
extractors. It achieves the following parameters: There is an explicit PRG that δ-fools any n-bit
function of two-party communication cost D and that has seed length n/2 + O(D + log(1/δ)).
This PRG has non-trivial seed length even when the error is exponentially small, as required by
our techniques. One issue here is that the INW PRG was only shown to fool functions with low
deterministic communication complexity. To obtain our PRGs for FORMULA ◦ G when G admits
low-cost randomized protocols, we first extend the analysis of the INW PRG to show that it also
fools functions with low randomized communication complexity. Combining this construction with
the aforementioned discussion completes the proof of Theorem 2 Item 2.

The argument just sketched reduces the construction of PRGs for FORMULA ◦ G when functions
in G admit low-cost randomized protocols to the analysis of PRGs for functions that admit relatively
low-cost deterministic protocols. Our lower bound proof for GIPkn in Theorem 1 Item 1 proceeds in
a similar fashion. We combine statement (B) described above with other ideas to show:

Transfer Lemma (Informal). If a function correlates with some small formula whose leaf gates
have low-cost randomized k-party protocols, then it also non-trivially correlates with some function
that has relatively low-cost deterministic k-party protocols.

Given this result, we are able to rely on a strong average-case lower bound for GIPkn against k-party
deterministic protocols from [BNS92] to conclude that GIPkn is hard for FORMULA ◦ G.

Our #SAT algorithms combine the polynomial representation of the top formula provided by
(A), for which we show that such a polynomial can be obtained explicitly, with a decomposition
of the Boolean matrix at each leaf that is induced by a corresponding low-cost randomized or
deterministic two-party protocol. A careful combination of these two representations allows us to
adapt a standard technique employed in the design of non-trivial SAT algorithms (fast rectangular
matrix multiplication) to obtain non-trivial savings in the running time.

Finally, our learning algorithm for FORMULA ◦ XOR is a consequence of statement (B) above
coupled with standard tools from learning theory. In a bit more detail, since a parity of parities is just
another parity function, (B) implies that, under any distribution, every function in FORMULA[n1.99]◦
XOR is weakly correlated with some parity function. Using the agnostic learning algorithm for
parity functions of [KMV08], it is possible to weakly learn FORMULA[n1.99]◦XOR in time 2O(n/ logn).
This weak learner can then be transformed into a (strong) PAC learner using standard boosting
techniques [Fre90], with only a polynomial blow-up over its running time.
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1.3 Concluding remarks

The main message of our results is that the computational power of a subquadratic-size top
formula is not significantly enhanced by leaf gates of low communication complexity. We believe that
the idea of decomposing a Boolean device into a computational part and a layer of communication
protocols will find further applications in lower bound proofs and algorithm design.

One of our main open problems is to discover a method that can analyze FORMULA[s] ◦ G when
s� n2. For instance, is it possible to adapt existing techniques to show an explicit lower bound
against FORMULA[n2.01] ◦ G, or achieving this is just as hard as breaking the cubic barrier for
formula lower bounds? Results in this direction would be interesting even for G = XOR.

Finally, we would like to mention a few questions connected to our results and their applications.
Is it possible to combine the techniques behind Corollary 3 and [OST19] to design a PRG of seed
length no(1) and error ε = 1/n for the intersection of n halfspaces? Can we design a satisfiability
algorithm for formulas over k-party number-on-forehead communication protocols? Is it possible to

learn FORMULA[s] ◦ XOR in time 2Õ(
√
s)? (The learning algorithm for formulas from [Rei11b] relies

on techniques from [KKMS08], and it is unclear how to extend them to the case of FORMULA◦XOR.)

1.4 Organization

Theorem 1 Item 1 is proved in Section 3, while Items 2 and 3 rely on our PRG constructions
and are deferred to Section 4. The latter describes a general approach to constructing PRGs
for FORMULA ◦ G. It includes the proof of Theorem 2 and other applications. Our satisfiability
algorithms (Theorem 5) appear in Section 5. Finally, Section 6 discusses learning results for
FORMULA ◦ XOR and contains a proof of Theorem 7.

2 Preliminaries

2.1 Notation

Let n ∈ N; we denote {1, . . . , n} by [n], and denote by Un the uniform distribution over {0, 1}n.
We use Õ(·) (and Ω̃(·)) to hide polylogarithmic factors. That is, for any f : N→ N, we have that
Õ(f(n)) = O(f(n) · polylog(f(n))).

In this paper, we will mainly use {−1, 1} as the Boolean basis. In some parts of this paper, we
will use the {0, 1} basis for the simplicity of the presentation. This will be specified in corresponding
sections.

2.2 De Morgan formulas and extensions

Definition 8. An n-variate de Morgan formula is a directed rooted tree; its non-leaf vertices
(henceforth, internal gates) take labels from {AND,OR,NOT} = {∧,∨,¬} and its leaves (henceforth,
variable gates) take labels from the set of variables {x1, . . . , xn}. Each internal gate has bounded
in-degree (henceforth, fan-in); the NOT gate in particular has fan-in 1 and every variable gate has
fan-in 0. The size of a de Morgan formula is the number of its leaf gates.

In this work, we denote by FORMULA[s] the class of Boolean functions computable by size-s de
Morgan formulas. Let G denote some class of Boolean functions; then, we denote by FORMULA[s]◦G
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the class of functions computable by some size-s de Morgan formula where its leaves are labelled by
functions in G.

2.3 Approximating polynomials

Definition 9 (Point-wise approximation). For a Boolean function f : {−1, 1}n → {−1, 1}, we say
that the function f̃ : {−1, 1}n → R ε-approximates f if for every z ∈ {−1, 1}n,∣∣∣f(z)− f̃(z)

∣∣∣ ≤ ε.
We will need the following powerful result for the approximating degree of de Morgan formulas.

Theorem 10 ([Rei11b], see also [BNRdW07]). Let s > 0 be an integer and 0 < ε < 1. Any
de Morgan formula F : {−1, 1}n → {−1, 1} of size s has a ε-approximating polynomial of degree
d = O(

√
s · log(1/ε)). That is, there exists a degree-d polynomial p : {−1, 1}n → R over the reals

such that for every z ∈ {−1, 1}n,
|p(z)− F (z)| ≤ ε.

Note that Theorem 10 still holds if we use {0, 1} as the Boolean basis.

2.4 Communication complexity

We use standard definitions from communication complexity. In this paper we consider the stan-
dard two party model of Yao and its generalizations to multiparty setting. We denote deterministic
communication complexity of a Boolean function by D(f) in the two party setting. We refer to
[KN97] for standard definitions from communication complexity.

Definition 11. Let f : {0, 1}n → {0, 1} be a Boolean function. The communication matrix of f ,
namely Mf , is a 2n/2 × 2n/2 matrix defined by (Mf )x,y := f(x, y).

Definition 12. A rectangle is a set of the form A × B, for A,B ⊆ {0, 1}n. A monochromatic
rectangle is a rectangle S such that for all pairs (x, y) ∈ S the value f(x, y) is the same.

Lemma 13. Let Π be a protocol that computes f : {0, 1}n → {0, 1} with at most D bits of
communication. Then, Π induces a partition of Mf into at most 2D monochromatic rectangles.

Given a protocol, its transcript is the sequence of bits communicated.

Lemma 14. For every transcript z of some communication protocol, the set of inputs (x, y) that
generate z is a rectangle.

Below, we recount the definitions of two multiparty communication models used in this work,
namely the number-on-forehead and the number-in-hand models.

Definition 15 (“Number-on-forehead” communication model; informal). In the k-party “number-on-

forehead” communication model, there are k players and k strings x1, . . . , xk ∈ {0, 1}n/k and player
i gets all the strings except for xi. The players are interested in computing a value f(x1, . . . , xk),
where f : {0, 1}n → {0, 1} is some fixed function. We denote by D(k)(f) the number of bits that
must be exchanged by the best possible number on forehead protocol solving f .
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We also use the following weaker communication model.

Definition 16 (“Number-in-hand” communication model; informal). In the k-party “number-in-

hand” communication model, there are k players and k strings x1, . . . , xk ∈ {0, 1}n/k and player i gets
only xi. The players are interested in computing a value f(x1, . . . , xk), where f : {0, 1}n → {0, 1} is
some fixed function. We denote by D(k-NIH)(f) the number of bits that must be exchanged by the
best possible communication protocol.

Note that D(k-NIH)(f) ≤ (1− 1/k) ·n+1, for any n-variate Boolean function f , as if k−1 players
write on the blackboard their string, then the player that did not reveal her input may compute
f(x1, . . . , xk) on her own and then publish it.

For the communication models mentioned above, there are also bounded-error randomized

versions, denoted by Rδ, R
(k)
δ , and R

(k-NIH)
δ , respectively, where 0 < δ < 1 is an upper bound on the

error probability of the protocol. In this setting, the players have access to some shared random
string, say r, and the aforementioned error probability of the protocol is considered over the possible
choices of r. Moreover, we require the error to be at most δ on each fixed choice of inputs.

We can extend the definitions of the communication complexity measures, defined above, to
classes of Boolean functions, in a natural way. That is, for any communication complexity measure

M ∈
{
D,D(k), D(k-NIH), Rδ, R

(k)
δ , R

(k-NIH)
δ

}
and for any class of Boolean functions G, we may define

M(G) := max
g∈G

M(g) .

We note that throughout this paper, we denote by n the number of input bits for the function
regardless the communication models. In the k-party communication setting (either NOF or NIH),
we assume without loss of generality that n is divisible by k.

2.5 Pseudorandomness

A PRG against a class of functions C is a deterministic procedure G mapping short Boolean
strings (seeds) to longer Boolean strings, so that G’s output “looks random” to every function in C.

Definition 17 (Pseudorandom generators). Let G : {−1, 1}` → {−1, 1}n be a function, C be a class
of Boolean functions, and 0 < ε < 1. We say that G is a pseudorandom generator of seed length `
that ε-fools C if, for every function f ∈ C, it is the case that∣∣∣∣∣ E

z∼{−1,1}`
[f(G(z))]− E

x∼{−1,1}n
[f(x)]

∣∣∣∣∣ ≤ ε.
A PRG G outputting n bits is called explicit if G can be computed in poly(n) time. All PRGs

stated in this paper are explicit.

2.6 Learning

For a function f : {0, 1}n → {0, 1} and a distribution D supported over {0, 1}n, we denote by
EX(f,D) a randomized oracle that outputs independent identically distributed labelled examples of
the form (x, f(x)), where x ∼ D.
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Definition 18 (PAC learning model [Val84]). Let C be a class of Boolean functions. We say that a
randomized algorithm A learns C if, when A is given oracle access to EX(f,D) and inputs 1n, ε, and
δ, the following holds. For every n-variate function f ∈ C, distribution D supported over {0, 1}n,
and real-valued parameters ε > 0 and δ > 0, AEX(f,D)(1n, ε, δ) outputs with probability at least 1− δ
over its internal randomness and the randomness of the example oracle EX(f,D) a description of a
hypothesis h : {0, 1}n → {0, 1} such that

Pr
x∼D

[f(x) = h(x)] ≥ 1− ε.

The sample complexity of a learning algorithm is the maximum number of random examples from
EX(f,D) requested during its execution.

3 Lower bounds

In this section, we prove an average-case lower bound for the generalized inner product function
against FORMULA◦G, where G is the set of functions that have low-cost randomized communication
protocols in the number-on-forehead setting. This corresponds to Item 1 of Theorem 1. Items 2 and
3 rely on our PRG constructions, and the proofs are deferred to Section 4.

Theorem 19. For any integer k ≥ 2, s > 0 and any class of functions G, let C : {−1, 1}n → {−1, 1}
be a function in FORMULA[s] ◦ G such that

Pr
x∼{−1,1}n

[
C(x) = GIPkn(x)

]
≥ 1/2 + ε.

Then

s = Ω

 n2

k2 · 16k ·
(
R

(k)
ε/(2n2)

(G) + log n
)2
· log2(1/ε)

 .

We need a couple useful lemmas from [Tal16], whose proofs are presented in Appendix A.1
(Lemma 50 and Lemma 51) for completeness.

Lemma 20 ([Tal16]). Let D be a distribution over {−1, 1}n, and let f, C : {−1, 1}n → {−1, 1} be
such that

Pr
x∼D

[C(x) = f(x)] ≥ 1/2 + ε.

Let C̃ : {−1, 1}n → R be a ε-approximating function of C, i.e., for every x ∈ {−1, 1}n, |C(x) −
C̃(x)| ≤ ε. Then,

E
x∼D

[C̃(x) · f(x)] ≥ ε.

Lemma 21 ([Tal16]). Let D be a distribution over {−1, 1}n and let G be a class of functions. For
f : {−1, 1}n → {−1, 1}, suppose that D : {−1, 1}n → {−1, 1} ∈ FORMULA[s] ◦ G is such that

Pr
x∼D

[D(x) = f(x)] ≥ 1/2 + ε0.

Then there exists some h : {−1, 1}n → {−1, 1} ∈ XORO(
√
s·log(1/ε0)) ◦ G such that

E
x∼D

[h(x) · f(x)] ≥ 1

sO(
√
s·log(1/ε0))

.
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We also need the following communication-complexity lower bound for GIP.

Theorem 22 ([BNS92, Theorem 2]). For any k ≥ 2, any function that computes GIPkn on more
than 1/2 + δ fraction of the inputs (over uniformly random inputs) must have k-party deterministic
communication complexity at least Ω

(
n/(k · 4k)− log(1/δ)

)
.

We first show that if a function correlates with some small formula, whose leaves are functions
with low randomized communication complexity, then it also correlates non-trivially with some
function of relatively low deterministic communication complexity.

Lemma 23. For any distribution D over {−1, 1}n, and any class of functions G, let f : {−1, 1}n →
{−1, 1} and C : {−1, 1}n → {−1, 1} ∈ FORMULA[s] ◦ G be such that

Pr
x∼D

[C(x) = f(x)] ≥ 1/2 + ε.

Then there exists a function h, with k-party deterministic communication complexity at most

O
(
R

(k)
ε/(2s)(G) ·

√
s · log(1/ε)

)
,

such that
Pr
x∼D

[h(x) = f(x)] ≥ 1/2 + 1/sO(
√
s·log(1/ε)).

Proof. Let C = F (g1, g2 . . . , gs) be the function in FORMULA[s] ◦ G, where F is a formula and
g1, g2, . . . , gs are leaf functions from the class G. For each gi, consider a k-party randomized protocol

Πi of cost at most R = R
(k)
ε/(2s)(G) that has an error ε/(2s). Now consider the following function

C̃(x) := E
Π1,Π2,...,Πs

[D(x)] ,

where
D(x) := F (Π1(x),Π2(x), . . . ,Πs(x)).

Note that for any fixed choice of (Π1,Π2, . . . ,Πs), D is a formula whose leaves are functions with
deterministic communication complexity at most R. Next, we show the following.

Claim 24. The function C̃ ε-approximates C.

Proof of Claim 24. First note that since each Πi is a (ε/(2s))-error randomized protocol, by taking
the union bound over the s leaf functions, we have that for every input x ∈ {−1, 1}n,

Pr
Π1,Π2,...,Πs

[Π1(x) = g1(x) ∧Π2(x) = g2(x) ∧ · · · ∧Πs(x) = gs(x)] ≥ 1− ε/2.

Denote by E the event Π1(x) = g1(x) ∧ Π2(x) = g2(x) ∧ · · · ∧ Πs(x) = gs(x). We have for every
x ∈ {−1, 1}n,

C̃(x) = E
Π1,Π2,...,Πs

[D(x)]

= E [D(x) | E ] ·Pr[E ] + E [D(x) | ¬E ] ·Pr[¬E ]

= C(x) ·Pr[E ] + E [D(x) | ¬E ] ·Pr[¬E ].
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On the one hand, we have

C̃(x) = C(x) ·Pr[E ] + E [D(x) | ¬E ] ·Pr[¬E ] ≤ C(x) + ε/2.

On the other hand, we get

C̃(x) = C(x) ·Pr[E ] + E [D(x) | ¬E ] ·Pr[¬E ] ≥ C(x) · (1− ε/2) + (−1) · (ε/2) ≥ C(x)− ε.

This completes the proof of the claim.

Now by Claim 24 and Lemma 20, we have

E
x∼D

[C̃(x) · f(x)] ≥ ε. (1)

By the definition of C̃, Equation (1) implies that there exists some D, which is a formula whose
leaves are functions with deterministic communication complexity at most R, such that

E
x∼D

[D(x) · f(x)] ≥ ε,

which implies
Pr
x∼D

[D(x) = f(x)] ≥ 1/2 + ε/2.

Then by Lemma 21, there exists a function h, which can be expressed as the XOR of at most
O(
√
s · log(1/ε)) leaf functions in D, such that

E
x∼D

[h(x) · f(x)] ≥ 1

sO(
√
s·log(1/ε))

,

which again implies

Pr
x∼D

[h(x) = f(x)] ≥ 1

2
+

1

sO(
√
s·log(1/ε))

.

Finally, note that the k-party deterministic communication complexity of h is at most

O(R ·
√
s · log(1/ε)),

where R = R
(k)
ε/(2s)(G).

We are now ready to show Theorem 19.

Proof of Theorem 19. Consider Lemma 23 with f being GIPkn and D being the uniform distribution.
Consider Theorem 22 with δ = 1/sO(

√
s·log(1/ε)). We have

O
(
R

(k)
ε/(2s)(G) ·

√
s · log(1/ε)

)
≥ n/(k4k)−O

(√
s · log(s) · log(1/ε))

)
,

which implies

s ≥ Ω

 n2

k2 · 16k ·
(
R

(k)
ε/(2n2)

(G) + log n
)2
· log2(1/ε)

 .
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4 Pseudorandom generators

Some of our PRGs are obtained from a general framework that allows us to reduce the task of
fooling FORMULA◦G to the task of fooling the class of functions which are the parity or conjunction
of few functions from G.

4.1 The general framework

We show that in order to get a PRG for the class of subquadratic-size formulas with leaf gates
in G, it suffices to get a PRG for very simple sublinear-size formulas: either XOR ◦ G or AND ◦ G.

Theorem 25 (PRG for FORMULA ◦ G from PRG for XOR ◦ G or AND ◦ G). Let G be a class of
gates on n bits. For any integer s > 0 and any 0 < ε < 1, there exists a constant c > 0 such

that the following holds. If a distribution D over {−1, 1}n
(

2−c·
√
s·log(s)·log(1/ε)

)
-fools the XOR

(parity) or the AND (conjunction) of c ·
√
s · log(1/ε) arbitrary functions from G, then D also ε-fools

FORMULA[s] ◦ G.

Proof. We first show the case where D fools the parity of a few functions from G. The proof can be
easily adapted to the case of conjunction.

Let C = F (g1, g2 . . . , gs) be a function in FORMULA[s]◦G, where F is a formula, and g1, g2, . . . , gs
are functions from the class G. Let U be the uniform distribution over {−1, 1}n. We need to show

E[C(D)]
ε
≈ E[C(U)]. (2)

Let p be a (ε/3)-approximating polynomial for F given by Theorem 10. Note that the degree of p is

d = O(
√
s · log(1/ε)).

Let us replace F , the formula part of C, with p and let

C̃ := p(g1, g2 . . . , gs).

Since C̃ point-wisely approximates C, we have

E[C̃(U)]
ε/3
≈ E[C(U)],

and

E[C̃(D)]
ε/3
≈ E[C(D)].

Then to show Equation (2), it suffices to show

E[C̃(D)]
ε/3
≈ E[C̃(U)].

We have

E
x∼D

[C̃(x)] = E
x∼D

 ∑
S⊆[s]:
|S|≤d

p̂(S) ·
∏
i∈S

gi(x)
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=
∑
S⊆[s]:
|S|≤d

p̂(S) · E
x∼D

[∏
i∈S

gi(x)

]
. (3)

Now note that for each S ⊆ [s],
∏
i∈S gi(x) computes the XOR of at most d functions from G. Using

the fact the distribution D
(
δ = 1/2c·

√
s·log(s)·log(1/ε)

)
-fools the XOR of any d functions from G, we

get

E
x∼D

[C̃(x)] =
∑
S⊆[s]:
|S|≤d

p̂(S) · E
x∼D

[∏
i∈S

gi(x)

]

=
∑
S⊆[s]:
|S|≤d

p̂(S) ·

(
E
x∼U

[∏
i∈S

gi(x)

]
+ δS

)
(where |δS | ≤ δ)

=
∑
S⊆[s]:
|S|≤d

(
p̂(S) · E

x∼U

[∏
i∈S

gi(x)

]
+ p̂(S) · δS

)

=
∑
S⊆[s]:
|S|≤d

p̂(S) · E
x∼U

[∏
i∈S

gi(x)

]
+
∑
S⊆[s]:
|S|≤d

p̂(S) · δS

= E
x∼U

[C̃(x)] +
∑
S⊆[s]:
|S|≤d

p̂(S) · δS .

It remains to show ∣∣∣∣∣∣∣∣
∑
S⊆[s]:
|S|≤d

p̂(S) · δS

∣∣∣∣∣∣∣∣ ≤ ε/3.
Note that because p(z) ∈ [1− ε/3, 1 + ε/3] for every z ∈ {−1, 1}s, we have

|p̂(S)| =

∣∣∣∣∣ E
z∼{−1,1}s

[
p(z) ·

∏
i∈S

zi

]∣∣∣∣∣ ≤ 1 + ε/3 < 2.

Then, ∣∣∣∣∣∣∣∣
∑
S⊆[s]:
|S|≤d

p̂(S) · δS

∣∣∣∣∣∣∣∣ ≤
∑
S⊆[s]:
|S|≤d

|p̂(S)| · |δS | ≤ δ ·
∑
S⊆[s]:
|S|≤d

|p̂(S)| ≤ δ · sO(
√
s·log(1/ε)) ≤ ε/3,

where the last inequality holds for some sufficiently large constant c.
To show the case of conjunction, we can write the approximating polynomial as the sum of all

degree-d monomials, each of which is the AND of at most d variables. One way to do this is to use
the domain {0, 1} instead of {−1, 1} in the above argument. We need to show that the coefficients
in this case still have small magnitude.
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Claim 26. Let p : {−1, 1}n → R be a degree-d polynomial of the form

p(x) =
∑
S⊆[n]:
|S|≤d

p̂(S) ·
∏
i∈S

xi,

and let q : {0, 1}n → R be the corresponding polynomial of p over the domain {0, 1}n, of the form

q(y) =
∑
T⊆[n]:
|T |≤d

q̂(T ) ·
∏
i∈T

yi.

Then,

|q|1 =
∑
T⊆[n]:
|T |≤d

|q̂(T )| ≤ nO(d) · max
S⊆[n]:
|S|≤d

|p̂(S)|.

Proof. We have

q(y1, y2, . . . , yn) = p(1− 2y1, 1− 2y2, . . . , 1− 2yn)

=
∑
S⊆[n]:
|S|≤d

p̂(S) ·
∏
i∈S

(1− 2yi)

=
∑
S⊆[n]:
|S|≤d

p̂(S) ·

 ∑
`∈{0,1}|S|

∏
j∈S:
`j=1

−2yj


=
∑
S⊆[n]:
|S|≤d

∑
`∈{0,1}|S|

p̂(S) · (−2)|`| ·
∏
j∈S:
`j=1

yj . (where |`| =
∑|S|

i=1 `i)

For a pair (S, `) where S ⊆ [n], |S| ≤ d and ` ∈ {0, 1}|S|, let us define the polynomial q(S,`) as

q(S,`)(y) = p̂(S) · (−2)|`| ·
∏
j∈S:
`j=1

yj .

Note that there are at most nd · 2d many pairs of such (S, `)’s and for each (S, `), we have

|q(S,`)|1 =
∣∣∣p̂(S) · (−2)|`|

∣∣∣ ≤ 2d · |p̂(S)|.

Finally we have

|q|1 =

∣∣∣∣∣∣
∑
(S,`)

q(S,`)

∣∣∣∣∣∣
1

≤
∑
(S,`)

|q(S,`)|1 ≤ nd · 2d · 2d · max
S⊆[n]:
|S|≤d

|p̂(S)|,

as desired. � (Claim 26)

This completes the proof of Theorem 25. � (Theorem 25)
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4.2 Formulas of low-communication functions in the number-in-hand setting

In this subsection, we will use {0, 1} as the Boolean basis.

Theorem 27. For any integers k ≥ 2, s > 0 and any 0 < ε < 1, let G be the class of functions that
have k-party number-in-hand (ε/6s)-error randomized communication protocols of cost at most R.
There exists a PRG that ε-fools FORMULA[s] ◦ G with seed length

n/k +O
(√
s · (R+ log(s)) · log(1/ε) + log(k)

)
· log(k).

We need the following PRG that fools single functions with low communication complexity in
the number-in-hand model. The proof is presented in Appendix A.2 (Theorem 52) for completeness.

Theorem 28 ([ASWZ96, INW94]). For any k ≥ 2, there exists a PRG that δ-fools any n-bits
functions with k-party number-in-hand deterministic communication complexity of at most D′, with
seed length

n/k +O
(
D′ + log(1/δ) + log(k)

)
· log(k).

Next, we show a PRG for FORMULA ◦ G, where G is the class of functions with low-cost
communication protocols in the number-in-hand setting. We first show for the case of deterministic
protocols.

Theorem 29. For any integers k ≥ 2 and s > 0, let G be the class of functions whose k-party
number-in-hand deterministic communication complexity are at most D. There is a PRG that ε-fools
FORMULA[s] ◦ G of size s with seed length

n/k +O
(√
s · log(1/ε) · (D + log(s)) + log(k)

)
· log(k).

Proof. By Theorem 25, it suffices to show a PRG that
(
δ = 1/2c·

√
s·log(s)·log(1/ε)

)
-fools every function

that is the XOR of t = c ·
√
s · log(1/ε) arbitrary functions from G. Note that such a function

has deterministic communication complexity at most D′ = t ·D. Then Theorem 29 follows from
Theorem 28.

We now establish the randomized case.

Proof of Theorem 27. Let C be a function in FORMULA[s] ◦ G. For each of the leaf functions in C,
consider a k-party number-in-hand randomized protocol of cost at most R that has an error at most
ε/(6s). By taking a union bound over the s leaf functions and by viewing a randomized protocol as
a distribution of deterministic protocols (as shown in the proof of Claim 24), we get the following
which is a (point-wisely) (ε/3)-approximating function for C:

C̃(x) :=
∑
i

pi ·Di(x),

where each pi ∈ [0, 1] is some probability density value (so
∑

i pi = 1), and each Di is a formula
whose leaves are functions with deterministic communication complexity at most R. Then to ε-fool
C, it suffices to (ε/3)-fool its (ε/3)-approximating function C̃. Also, since C̃ is a convex combination
of the Di’s, it suffices to (ε/3)-fools all the Di’s. We will do this using the PRG form Theorem 29.
We get that there exists a PRG that (ε/3)-fools each Di with seed length

n/k +O
(√
s · (R+ log(s)) · log(1/ε) + log(k)

)
· log(k),

as desired.
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4.3 Applications: Fooling formulas of SYMs, LTFs, XORs, and AC0 circuits

4.3.1 FORMULA ◦ SYM and FORMULA ◦ LTF

Here, we show how the PRG in Theorem 27 implies PRGs for FORMULA ◦LTF and FORMULA ◦
SYM.

Theorem 30. For any size s > 0 and 0 < ε < 1, there exists a PRG that ε-fools FORMULA[s]◦LTF
with seed length

O
(
n1/2 · s1/4 · log(n) · log(n/ε)

)
.

For FORMULA[s] ◦ SYM, the seed length is

O
(
n1/2 · s1/4 · log(n) · log(1/ε)

)
.

We need the fact that the class of LTF has low communication complexity in the number-in-hand
model. Consider the following k-party SUM-GREATERm problem where the i-th party holds a
m-bit number zi in hand and they want to determine whether

∑k
i=1 zi > θ, where θ is a fixed

number known to all the parties. Nisan [Nis94] gave an efficient randomized protocol (with public
randomness) for this problem.

Theorem 31 ([Nis94]7). Let m > 0 be an integer. For any integer 2 ≤ k ≤ mO(1), and any
0 < δ < 1, there exists a δ-error randomized protocol of cost O(k · log(m) · log(m/δ)) for the k-party
SUM-GREATERm problem.

By Theorem 31 and the fact that every linear threshold function on n bits has a representation
such that the weights are O(n log(n)) integers [MTT61], we get the following.

Corollary 32. For every k ≥ 2 and 0 < δ < 1, the k-party number-in-hand δ-error randomized
communication complexity of LTF is O(k · log(n) · log(n/δ)).

Proof of Theorem 30. By Corollary 32 and Theorem 27, for every k ≥ 2 we get a PRG for
FORMULA ◦ LTF of seed length

n/k +O
(√
s · k · log(n) · log(ns/ε) · log(1/ε) + log(k)

)
· log(k).

By choosing

k =
n1/2

s1/4 · log(n) · log(n/ε)
,

the claimed seed length follows from a simple calculation.
For FORMULA ◦ SYM, note that every n-bit symmetric function has a deterministic k-party

number-in-hand communication protocol of cost at most k · log(n). Then the rest can be shown
using a similar argument as above (by choosing k = n1/2/

(
s1/4 · log(n)

)
).

7Viola [Vio15] gave a δ-error randomized protocol for the k-party SUM-GREATERm problem of cost O(k · log(k) ·
log(m/δ)), which is better than Nisan’s protocol when k = mo(1).
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4.3.2 FORMULA ◦ XOR

For the case of FORMULA ◦ XOR, we get a PRG with better seed length.

Theorem 33. For any size s > 0 and 0 < ε < 1, there exists a PRG that ε-fools FORMULA[s]◦XOR
with seed length

O
(√
s · log(s) · log(1/ε) + log(n)

)
.

Proof. By Theorem 25, to fool FORMULA[s] ◦ G, it suffices to
(
δ = 1/2O(

√
s·log(s)·log(1/ε))

)
-fool the

XOR of a few functions from G, where G in this case is the set of all XOR functions. Note that
the XOR of any set of XOR functions simply computes some XOR function. Therefore, we can use
small-bias distribution, which fools every XOR function, to fool FORMULA[s] ◦ XOR. Finally, note
that there are known constructions for δ-bias distributions that use O(log(n/δ)) random bits (see
e.g. [AGHP92]).

Using the “locality” of this PRG for FORMULA ◦ XOR, we get a lower bound for MCSP against
subquadratic-size formulas of XORs.

Theorem 34. For every integer s > 0, if MCSP on N-bit can be computed by some function in
FORMULA[s] ◦ XOR, then s = Ω̃(N2).

Proof sketch. There is a standard construction of δ-bias distribution that is local (see e.g. [AGHP92,
Construction 3] and [CKLM19, Fact 7]) in the following sense: there exists a circuit of size at most
Õ(log(n/δ) · log(n)) such that given a seed of length O(log(n/δ)) and a index j ∈ [n], outputs the
j-th bit of the distribution. Local PRGs imply MCSP lower bounds (see [CKLM19, Section 3]).

4.3.3 FORMULA ◦ AC0

Another application of Theorem 25 is to take G to be the set all functions that can be computed
by small constant-depth circuits (AC0). Note the state-of-the-art PRG against size-M depth-d AC0

has a seed length of logd+O(1)(Mn) · log(1/ε) [ST19]. Below, let AC0
d,M denote the class of depth-d

circuits of size at most M .

Theorem 35. For any size s,m > 0 and 0 < ε < 1, there exists a PRG that ε-fools FORMULA ◦
AC0

d,M of size s with seed length

logd+O(1)(Mn) ·
√
s · log(s) · log(1/ε).

Moreover, by inspecting the construction of PRG in [ST19], it is not difficult to see that the
PRG is also local; there exists a circuit of size at most λ = logd+O(1)(Mn) · log(1/ε) such that given
a seed of length O logd+O(1)(Mn) · log(1/ε) and a index j ∈ [n], outputs the j-th bit of the PRG.
As a result, we get MCSP lower bounds from the this PRG.

Theorem 36. For every s, d,M ∈ N, if MCSP on N-bit can be computed by some function in
FORMULA[s] ◦ AC0

d,M , then

s ≥ N2/ log2d+O(1)(Mn).

24



4.4 Formulas of low number-on-forehead communication leaf gates

In this section, we show a PRG with mild seed length for formulas of functions with low
multi-party number-on-forehead communication complexity.

Theorem 37. Let G be a class of n-bits functions. For any size s > 0, there exists a PRG that
ε-fools FORMULA[s] ◦ G, with seed length

n− n

O
(√

s · k · 4k ·
(
R

(k)
ε/(2s)(G) + log(n)

)
· log(n/ε)

) .
The PRG is constructed using the hardness vs. randomness paradigm.

4.4.1 Hardness based PRGs

We show how to construct the PRG using the average-case hardness result for formulas of
functions with low multi-party communication complexity (Theorem 19). We start with some
notations. For x ∈ {−1, 1}m and an integer k such that k divides m, we consider a partition of x

into k equal-sized consecutive blocks and write x = x(1), x(2), . . . , x(k), where x(i) ∈ {−1, 1}m/k for
each i ∈ [k].

Lemma 38. For any integers m, t, k > 0 such that k divides m, t, let G be a class of functions on
mt+ t bits, and let G : {−1, 1}m×t → {−1, 1}mt+t be

G(x1, x2, . . . , xt)

=
(
x

(i)
1 , x

(i)
2 , . . . , x

(i)
t ,GIP

k
m

(
x(i−1)·(t/k)+1

)
,GIPkm

(
x(i−1)·(t/k)+2

)
, . . . ,GIPkm

(
xi·(t/k)+1

))
i∈[k]

,

where x1, x2, . . . , xt ∈ {−1, 1}m. Then G is a PRG that (t · ε)-fools FORMULA ◦ G of size

s = Ω

 m2

k2 · 16k ·
(
R

(k)
ε/(2m2)

(G) + logm
)2
· log2(1/ε)

 .

Proof. The high level idea is as follows. We argue that if there is a FORMULA ◦ G of the claimed
size that breaks the PRG, then there is a FORMULA ◦ G′ of the same size that computes GIP on m
bits, where G′ has a k-party communication complexity that is at most that of G with respect to the
m-bit input, and hence contradicts the FORMULA ◦ G′ complexity of the generalized inner product
function. The resulting formula is obtained by fixing some input bits of the original FORMULA ◦ G
which breaks the PRG.

We use a hybrid argument. First consider the distribution given by G, where we replace each
GIP(xj) (j ∈ [t]) with a uniformly random bit; let us denote those random bits as Uj for j ∈ [t] (note
that this is just the uniform distribution). Then for each j ∈ [t], define Hj to be the distribution
that we substitute back GIP(x1),GIP(x2), . . . ,GIP(xj) for the corresponding uniform bits in the
previous distribution.

For the sake of contradiction, suppose there exists a FORMULA ◦ G C of size s such that

|Pr[C(Ht) = 1]−Pr[F (H0) = 1]| > t · ε.
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By the triangle inequality, there exists a 1 ≤ j ≤ k such that

|Pr[C(Hj) = 1]−Pr[C(Hj−1) = 1]| > ε.

Then by averaging, there exist some fixings of x1, . . . , xj−1, xj+1, . . . , xt and Uj+1, . . . , Ut to C such
that the above inequality still holds. Let us denote by C ′ the circuit obtained by C after such fixings
and assume without loss of generality (k − 1)t/k ≤ j ≤ t. Then we have∣∣∣Pr

[
C ′
(
x

(1)
j , x

(2)
j , . . . , x

(k)
j ,GIP(xj)

)
= 1
]
−Pr

[
C ′
(
x

(1)
j , x

(2)
j , . . . , x

(k)
j , Uj

)
= 1
]∣∣∣ > ε. (4)

By a standard “unpredictability implies pseudorandomness” argument [Yao82], we can show that
there is some circuit C ′′, obtained from C ′ by fixing some value for the last bit, that computes the
generalized inner product function on m bits with probability greater than 1/2 + ε over uniformly
random inputs. Note that the size of C ′′ is the same as C ′ (hence also C) , and also C ′′ can be

computed by some FORMULA ◦ G′, where R
(k)
δ (G′) ≤ R(k)

δ (G) for every δ. This contradicts hardness
of GIP for such circuits (Theorem 19).

We are now ready to prove Theorem 37.

Proof of Theorem 37. Consider Lemma 38. Let n = mt + t, and we have m =
(
n
t − 1

)
. Then

Lemma 38 gives a PRG that ε-fools FORMULA ◦ G of size

s = Ω

 m2

k2 · 16k ·
(
R

(k)
ε/(2m2)

(G) + logm
)2
· log2(t/ε)


≥ Ω

((n
t

)2
/

(
k2 · 16k ·

(
R

(k)
ε/(2n2)

(G) + log n
)2
· log2(n/ε)

))
,

which yields

t ≥ Ω

 n
√
s · k · 4k ·

(
R

(k)
ε/(2n2)

(G) + log n
)
· log(n/ε)

 .

Note that the seed length in this case is n− t.

4.4.2 MKtP lower bounds

The PRG in Theorem 37 is sufficient to give an MKtP lower bound for formulas of functions
with low multi-party communication complexity.

Theorem 39. For any integer s > 0 and any class of N -bit function G, if MKtP on N -bit can be
computed by some function FORMULA[s] ◦ G, then

s =
N2

k2 · 16k ·R(k)
1/3(G) · polylog(N)

.
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Proof. Let C be a function in FORMULA ◦ G of size less than

N2

k2 · 16k ·R(k)
1/3(G) · logc(N)

where c > 0 is some sufficiently large constant. By Theorem 37, we have that there is a PRG that
(1/3)-fools C and its seed length is

N − polylog(N).

Also, since the PRG is polynomial-time computable, we get that for every seed, the output of the
PRG has Kt complexity at most θ = N − polylog(N). However, consider the MKtP function with a
threshold parameter θ; this function is not fooled by such a PRG, since it accepts every output of
the PRG and rejects a uniformly random string with high probability.

5 Satisfiability algorithms

In this section, we will use {0, 1} as the Boolean basis.

5.1 Computational efficient communication protocols

Definition 40 (Computational efficient communication protocols). Let t : N × N → N. We say
that a two-party communication protocol is t-efficient if for each of the parties, given an input x
and some previously sent messages π ∈ {0, 1}∗, the next message to send can be computed in time
t(|x|, |π|) (⊥ is being output if there is no next message). We say that such a protocol is explicit if
t(|x|, |π|) = 2o(|x|+|π|).

Lemma 41. Let f : {0, 1}n → 1 and let Π be a t-efficient communication protocol for f with commu-
nication cost at most D. Then the protocol tree of Π can be output in time O

(
D · t(n/2, D) · 2n · 2D

)
.

That is, there exists an algorithm that outputs a list of all (partial and full) transcripts of length at
most D and the rectangles associated with each of the transcripts.

Proof. It suffices to show that, given an input x ∈ {0, 1}n/2 and a transcript ` ∈ {0, 1}≤D, we can
decide whether x belongs to the rectangle indexed by ` in time D · t(n/2, D). Suppose x is the
input for Alice (resp. Bob), and we want to decide whether x belongs to the rectangle indexed
by π. We can carry out the communication task by simulating the behavior of Alice (resp. Bob)
using the protocol Π and simulating Bob’s (resp. Alice’s) behavior using the transcript π, and
check whether the messages sent by Alice (resp. Bob) is consistent with the transcript π. This
takes time at most D · t(n/2, D). To construct the tree, we do the above for every (partial and full)

transcript π ∈ {0, 1}≤D and every input x ∈ {0, 1}n/2 for Alice (resp. Bob). The total running time
is O

(
D · t(n/2, D) · 2n · 2D

)
.

For a protocol Π, we denote by Leaves(Π) the set of full transcripts of Π.

Remark. We note that, in the white-box context of the satisfiability problem, there is no need
to assume a canonical partition of the input variables among the players. For instance, a helpful
partition can either be given as part of the input, or computed by the algorithm. As a consequence,
in instantiations of Theorem 5 for a particular circuit class C, it is sufficient to be able to convert
the input circuit from C into some device from FORMULA ◦ G for which protocols of bounded
communication cost can be described.
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5.2 Explicit approximating polynomials for formulas

From Theorem 10, we know that every size-s formula has a degree-O(
√
s) polynomial that

point-wisely approximates it. In our SAT algorithms, we will need to explicitly construct such an
approximating polynomial given a formula. One way to do this is to use an efficient quantum
query algorithm for formulas. It is known that a quantum query algorithm for a function f using at
most T queries implies an approximating polynomial for f of degree at most 2T [BBC+01], and by
classically simulating such an quantum algorithm, one can show that the approximating polynomial
can be obtained in time that is polynomial in the number of its monomials, in addition to the time
for the classical simulation. For our task, we can use the result of Reichardt [Rei11a] which showed
an efficient quantum algorithm for evaluating size-s formulas with O (

√
s · log s) queries8. Here, we

present an alternate way to construct approximating polynomials for de Morgan formulas which rely
only on the existence of such polynomials, without requiring an efficient quantum query algorithm.
This “black-box” approach was suggested to us by an anonymous reviewer.

We first need the following structural lemma for formulas.

Lemma 42 ([IMZ12, Tal14]). For every integer s > 0, there exists an algorithm such that given a
size-s de Morgan formula F , runs in poly(s) time and outputs a top formula F ′ with O(

√
s) leaves

and each leaf of F ′ is a sub-formula with O(
√
s) input leaves.

Lemma 43. For any integer s > 0 and any 0 < ε < 1, there exists an algorithm of running time

sO(
√
s·log(s)·log(1/ε)) such that given a de Morgan formula F of size s, outputs an ε-approximating

polynomial of degree O(
√
s · log(s) · log(1/ε)) for F . That is, the algorithm outputs a multi-linear

polynomial (as sum of monomials) over the reals such that for every x ∈ {0, 1}n,

|p(x)− F (x)| ≤ ε.

Proof. We first note that it suffices to construct a (1/3)-approximating polynomial for F with degree
D = O(

√
s·log(s)). This is because given a (1/3)-approximating polynomial one can obtain explicitly

an ε-approximating polynomial of degree D · O(log(1/ε)), by feeding O(1/ε) copies of the (1/3)-
approximating polynomial to the polynomial computing MAJORITY on O(1/ε) bits [BNRdW07]
(see also [Tal14, Appendix B]).

We first invoke Lemma 42 on F to obtain a top formula F ′ with t = O(
√
s) leaves, each of which

is a sub-formula of size O(
√
s). We construct a (1/20)-approximating (multi-linear) polynomial P for

the top formula F ′, which has degree d1 = O(s1/4) by Theorem 10. Note that P can be constructed
in time 2O(

√
s) because F ′ has at most O(

√
s) leaves. Next, for each of the t sub-formulas, denoted

as F1, F2, . . . , Ft, we construct a (1/(20t))-approximating polynomial. Note that these polynomials
have degree d1 = O(s1/4 · log(s)) and can be constructed in time 2O(

√
s). Let’s denote these t

polynomials as Q1, Q2, . . . , Qt. Now for each Qi (i ∈ [t]), we define

qi(x) =
Qi(x) + 1/(20t)

1 + 1/(10t)
.

The final approximating polynomial for F is given as

p(x) = P (q1(x), q2(x), . . . , qt(x)) .

8It is also known that there exists a quantum query algorithm for evaluating size-s formulas with O (
√
s)

queries [Rei11b], which implies the existence of an approximating polynomial for size-s formulas of degree O (
√
s) (see

Theorem 10). However, because this algorithm is not known to be efficient, it is unclear whether such an approximating
polynomial can be constructed efficiently with respect to the number of monomials.
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Note that p has degree d1 · d2 = O(
√
s · log(s)) and can be constructed (as sum of monomials) in

time sO(
√
s·log(s)). It remains to show that p (1/3)-approximates F .

For 0 ≤ q ≤ 1, let Nq be the distribution over {0, 1} such that Pry∼Nq [y = 1] = q. Then for an
fixed input x ∈ {0, 1}s, we have

p(x) = E
yi∼Nqi(x)

[P (y1, y2, . . . , yt)]. (5)

Let E be the event that yi = Fi(x) for all i ∈ [t]. Note that

δ := Pr
yi∼Nqi(x)

[¬E ] ≤ 1/10. (6)

To see Equation (6), note that for every i ∈ [t], if Fi(x) = 0, then 0 ≤ qi(x) ≤ 1/(10t), which implies

Pr
yi∼Nqi(x)

[yi 6= Fi(x)] ≤ 1/(10t).

Similar for the case when Fi(x) = 1 (which implies 1 − 1/(10t) < qi(x) ≤ 1). Then Equation (6)
follows from a union bound. Now we can re-write Equation (5) as

p(x) = E[P (y1, y2, . . . , yt) | E ] ·Pr[E ] + E[P (y1, y2, . . . , yt) | ¬E ] ·Pr[¬E ]

=
(
F ′(F1(x), F2(x), ·Ft(x))± 1/20

)
· (1− δ) + E[P (y1, y2, . . . , yt) | ¬E ] · δ.

Note that P (y) ∈ [−1/(20t), 1 + 1/(20t)] for every y ∈ {0, 1}t, and that δ ≤ 1/10. A simple
calculation shows that

p(x) = F ′(F1(x), F2(x), . . . , Ft(x))± 1

3
,

as desired.

5.3 The #SAT algorithm

In this subsection, we present our #SAT algorithm.

Theorem 44. For any integer s > 0, there exists a deterministic #SAT algorithm for FORMULA[s]◦
G, where G is the class of functions with explicit two-party deterministic protocols of communication
cost at most D, that runs in time

2
n− n√

s·log2(s)·D .

In the case G is the class of functions with explicit randomized protocols of communication cost at
most R, there exists an analogous randomized algorithm with a running time

2
n−
(

n√
s·log2(s)·R

)1/2

.

The algorithm is based on the framework for designing satisfiability algorithms developed by
Williams [Wil14]. The idea is to transform a given circuit into a “sparse polynomial” and solve
satisfiability by evaluating the polynomial on all points in a faster-than-brute-force manner.

We first need the following fast matrix multiplication algorithm for “narrow” matrices.

Theorem 45 ([Cop82]). Multiplication of an N ×N .172 matrix with an N .172 ×N matrix can be
done in O(N2 log2N) arithmetic operations over any field.
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For an even number n > 0, and x ∈ {0, 1}n, we denote by xL (resp. xR) the first half of x and

xR ∈ {0, 1}n/2 the second half. We now prove Theorem 44.

Proof of Theorem 44. We first prove the deterministic case.
Let C = F (g1, g2 . . . , gs) be a device in FORMULA ◦ G where F is a formula and g1, g2, . . . , gs

are functions that have a explicit communication protocol of cost at most D. The first step is to
output the protocol tree for each gi (i ∈ [s]). Since each gi has explicit protocol of cost at most D,
by Lemma 41, these protocol trees can be output in time s · 2n/2+D+o(n) ≤ 2n/1.9 (here we assume
D = o(n) otherwise the theorem holds trivially).

Let n′ be an integer whose value is determined later. Let T be a set of n′ variables such that T
contains n′/2 variables from the first half of the n variables and the rest are from the second half.

For a partial assignment z ∈ {0, 1}n
′

to T , denote by Cz the restricted function of C where the
variables in T are fixed according to z. To count the number of satisfying assignments of C, we
need to compute the following quantity:∑

x∈{0,1}n−n′

∑
z∈{0,1}n′

Cz(x). (7)

Now consider
Q(x) =

∑
z∈{0,1}n′

Cz(x).

We will try to obtain the value of Q(x) for every x ∈ {0, 1}n−n
′
, in time about 2n−n

′
, which will

allow us to compute the quantity in Equation (7) in time O(2n−n
′
) by summing Q(x) over all the x’s.

We do this by first transforming Q into an approximating polynomial with not-too-many monomials,
and each monomial is a product of functions that only rely on either the first or the second half
of x. With such a polynomial, we can perform fast multipoint evaluation using the fast matrix
multiplication algorithm in Theorem 45.

For each z ∈ {0, 1}n
′
, we view the formula Cz as F (g1

z , g
2
z , . . . , g

s
z), where F is the de Morgan

formula part of Cz and g1
z , g

2
z , . . . , g

s
z are the leaf gates. Let us now replace F by a ε-approximating

polynomial p, where ε = 1/
(

3 · 2n′
)

, using Lemma 43. Note that the degree of p is at most

d ≤ O(
√
s · log(s) · log(1/ε)) ≤ O(

√
s · log(s) · n′).

Now consider the following

Q′(x) =
∑

z∈{0,1}n′
p(g1

z(x), g2
z(x), . . . , gsz(x)).

First, note that by the value that we’ve chosen for the approximating error ε, we have that, for
every x, ∣∣Q′(x)−Q(x)

∣∣ ≤ 2n
′ · ε = 1/3.

In other words, given Q′(x), we can recover the value of Q(x), which is supposed to be an integer.
Next, we perform fast multipoint evaluation on Q′. First of all, we re-write Q′ as follows:

Q′(x) =
∑

z∈{0,1}n′

∑
S⊆[s]:
|S|≤d

p̂(S) ·
∏
i∈S

giz(x). (8)
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Now let Πi be the protocol of gi, we can re-write giz as follows:

giz(x) =
∑

πi∈Leaves(Πi)

αi
(
zLxL, πi

)
· βi

(
zRxR, πi

)
, (9)

where αi
(
zLxL, πi

)
(resp. βi

(
zRxR, πi

)
) is 1 if and only if

(
zLxL

)
(resp.

(
zRxR

)
) belongs to the

rectangle indexed by πi and the function value of that rectangle is 1. Note that for each i ∈ [s],
given the pre-computed protocol tree of the Πi, α

i and βi can be computed in polynomial time (for
example, using binary search). After plugging Equation (9) into Equation (8) for every i ∈ [s] and
rearranging, we get

Q′(x) =
∑

z∈{0,1}n′

∑
S⊆[s]:
|S|≤d

∑
~π=(πi)i∈S :

πi∈Leaves(Πi)

p̂(S) ·
∏
i∈S

αi
(
zLxL, πi

)
·
∏
i∈S

βi
(
zRxR, πi

)
. (10)

Note that Q′ can be expressed as the sum of at most m terms, where

m ≤ 2n
′ · sO(

√
s·log(s)·n′) · 2O(

√
s·log(s)·n′·D) ≤ 2O(

√
s·log2(s)·D·n′).

Note that given Lemma 43, we can obtain Q′ in time

2O(
√
s·log2(s)·D·n′). (11)

Next, we construct a 2(n−n′)/2 ×m matrix A and a m× 2(n−n′)/2 matrix B as follows:

AxL,(z,S,~π) = p̂(S) ·
∏
i∈S

αi
(
zLxL, πi

)
,

and
B(z,S,~π),xR =

∏
i∈S

βi
(
zRxR, πi

)
.

It is easy to see that for each x ∈ {0, 1}n−n
′
,

Q′(x) = (A ·B)xL,xR .

We now want to compute A ·B. Therefore, we want m ≤ 2.172(n−n′)/2 so that computing A ·B can
be done in time Õ(2n−n

′
) using Theorem 45. For this we can set n′ to be

n′ =
n

c ·
√
s · log2(s) ·D

,

where c > 0 is some sufficiently large constant. Together with the running time in Equation (11),
The total running time of the algorithm is therefore

2
n− n√

s·log2(s)·D .

For the randomized case, for each gi (i ∈ [s]), we consider a randomized protocol Πi that has
error ε′ ≤ 1/(3 · s · 2n′), and replace gi with a randomly picked protocol from Πi, so we can say that
for every x ∈ n− n′, the algorithm computes Q(x) (or Q′(x)) with probability at least 2/3 (via a
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union bound over all the gi’s and a union bound over all the z’s in {0, 1}n
′
). Then we can repeat the

above algorithm poly(n) times and obtain Q(x) for all x ∈ {0, 1}n−n
′

correctly with high probability.
Note that the error of any randomized protocol with communication complexity R can be reduced
to ε′ by blowing up the communication complexity by a factor of O(log(1/ε′)). In this case the, (as
we are considering longer transcripts) the number of terms in Q′ (as in Equation (10)) will be

2O(
√
s·log2(s)·R·(n′)2),

and we need to set accordingly

n′ = Ω

(
n

√
s · log2(s) ·R

)1/2

,

which gives the claimed running time for the randomized case.

In fact, using the ideas above we can also get a randomized #SAT algorithm for the more
expressive class FORMULA ◦ AC0

d,M ◦ G, where AC0
d,M is the class of depth-d size-M circuits and

G is the class of functions that have low-communication complexity9, by combining with the fact
that AC0 circuits have low-degree probabilistic polynomials over the reals (a probabilistic polynomial
of a function f is a distribution on polynomials such that for every input x, a randomly picked
polynomial from the distribution agrees with f on the input x). More specifically, we have the
following.

Theorem 46. For any integers s, d,M > 0, there exists a randomized #SAT algorithm for
FORMULA[s] ◦ AC0

d,M ◦ G, where G is the class of functions with explicit two-party determinis-
tic protocols of communication cost at most D, the algorithm outputs the number of satisfying
assignments in time

2
n−
(

n
√
s·log2(s)·(logM)O(d)·D

)1/2

.

In the case G is the class of functions with explicit randomized protocols of communication cost at
most R, there exists an analogous randomized algorithm with a running time

2
n−
(

n
√
s·log2(s)·(logM)O(d)·R

)1/3

.

Proof sketch. We show the case where G has low randomized communication complexity. Let

• ε1 = 1/
(

3 · 2n′
)

,

• ε2 = 1/
(

6 · s · 2n′
)

and

• ε3 = 1/
(

6 ·M · 2n′
)

.

9Here we define the size of a AC0
d,M circuit to be the number of wires. Note that a circuit in FORMULA ◦AC0

d,M ◦ G
can have M functions from G at the bottom.
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As in the proof of Theorem 44, we can replace the formula part of FORMULA[s] ◦ AC0
d,M ◦ G with a

ε1-approximating polynomial of degree

O(
√
s · log(s) · log(1/ε1)) = O(

√
s · log(s) · n′).

Then we replace the AC0
d,M circuit with a randomly picked polynomial from a ε2-error probabilistic

polynomial. By [HS19], such a probabilistic polynomial is constructive and has degree at most

(logM)O(d) · log(1/ε2) = (logM)O(d) · (n′ + log(s)).

Finally, we replace each of the bottom functions, which is from G, with a randomly picked protocol
from a randomized protocol with error ε3, and hence has cost at most

R ·O(log(1/ε3)) = O(R · (n′ + log(M))).

As a result, we can express Q′ as a polynomial with at most

2O(
√
s·log2(s)·(logM)O(d)·R·(n′)3)

monomials, whose variables are functions that depend on either the first half or the second half of
x. Note that with our choices of ε2 and ε3, for every x ∈ {0, 1}n−n

′
, the algorithm computes Q(x)

correctly that with probability at least 2/3 (by union bounds). By the same reasoning as in the
proof of Theorem 44, we get a randomized #SAT algorithm with running time

2
n−
(

n
√
s·log2(s)·(logM)O(d)·R

)1/3

,

as desired.

It is worth noting that unlike Theorem 44, the algorithm in Theorem 46 is randomized even if G
is the class of functions with low deterministic communication complexity, because of the use of
probabilistic polynomials for the AC0 circuits.

6 Learning algorithms

In this section, we prove the following learning result for the FORMULA ◦ XOR model.

Theorem 47. For every constant γ > 0, there is an algorithm that PAC learns the class of
n-variate Boolean functions FORMULA[n2−γ ] ◦ XOR to accuracy ε and with confidence δ in time
poly

(
2n/ logn, 1/ε, log(1/δ)

)
.

We first review some useful results that pertain to agnostically learning parities as well as
boosting of learning algorithms.
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6.1 Agnostically learning parities and boosting

For a parameter n ≥ 1, let ∆ be a distribution on labelled examples (x, y) supported over
{0, 1}n × {0, 1}, and assume that for each x there is at most one y such that (x, y) ∈ Support(∆).
For a function h : {0, 1}n → {0, 1}, we denote by err∆(h) the error of h under this distribution:

err
∆

(h) = Pr
(x,y)∼∆

[h(x) 6= y] .

Similarly, for a class of functions C, we let opt∆(C) be the error of the best function in the class:

opt
∆

(C) = min
h∈C

err
∆

(h) .

We will need a result established by Kalai, Mansour, and Verbin [KMV08], which gives a non-trivial
time agnostic learning algorithm for the class of parities.

Lemma 48 ([KMV08]). Let XOR be the class of parity functions on n variables. Then, for any
constant ζ > 0, there is a randomized learning algorithm W such that, for every parameter n ≥ 1
and distribution ∆ over labelled examples, when W is given access to independent samples from ∆
it outputs with high probability a circuit computing a hypothesis h : {0, 1}n → {0, 1} such that

err
∆

(h) ≤ opt
∆

(XOR) + 2−n
1−ζ
.

The sample complexity and running time of W is 2O(n/ logn).

Recall that a boosting procedure for learning algorithms transforms a weak learner that outputs
a hypothesis that is just weakly correlated with the unknown function into a (strong) PAC learning
algorithm for the same class (i.e., a learner in the sense of Definition 18). We refer for instance to
[KV94] for more information about boosting in learning theory. We shall make use of the following
boosting result by Freund [Fre90].

Lemma 49 ([Fre90]). Let W be a (weak) learner for a class C that runs in time t(n) and outputs
(under any distribution) a hypothesis of error up to 1/2−β, for some constructive function β(n) > 0.
Then, there exists a PAC learning algorithm for C that runs in time poly(n, t, 1/ε, 1/β, log(1/δ)).

6.2 PAC-learning small formulas of parities

We are ready to show that sub-quadratic size formulas over parity functions can be learned
in time 2O(n/ logn). First, we argue that Lemma 48 provides a weak learner that works under any
distribution D supported over {0, 1}n. This will follow from Lemma 21, which shows that any
function in FORMULA[s] ◦ XOR is correlated with some parity function with respect to D. We then
obtain a standard PAC learner via the boosting procedure from Lemma 49.

Proof of Theorem 47. Let C = FORMULA ◦XOR, where s = n2−γ for some constant γ > 0. For any
function f ∈ FORMULA[s] ◦ XOR and distribution D supported over {0, 1}n, Lemma 21 shows that
there exists a parity function χ = χ(f,D) such that

Pr
x∼D

[f(x) = χ(x)] ≥ 1

2
+

1

2n1−λ ,
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for some λ = λ(γ) > 0 independent of n, under the assumption that n is sufficiently large.
Let ∆ = ∆(D, f) be the distribution over labelled examples induced by D and f . Note that
opt∆(XOR) ≤ 1/2 − exp(n1−λ). Consequently, by invoking Lemma 48 with parameter ζ = λ, it
follows that FORMULA[n2−γ ] ◦ XOR can be learned under an arbitrary distribution to error β(n) ≤
1/2− exp(n1−Ω(1)) in time t(n) = 2O(n/ logn). Consequently, we can obtain a PAC learner algorithm
for FORMULA[n2−γ ] ◦ XOR via Lemma 49 that runs in time poly(n, t(n), 1/ε, 1/β, log(1/δ)) =
poly(2n/ logn, 1/ε, log(1/δ)).
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A Proofs of useful lemmas

A.1 Useful lemmas for formulas

The proofs in this section are essentially the same as that of [Tal16].
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Lemma 50 ([Tal16], Lemma 20 restated). Let D be a distribution over {−1, 1}n, and let f, C : {−1, 1}n →
{−1, 1} be such that

Pr
x∼D

[C(x) = f(x)] ≥ 1/2 + ε.

Let C̃ : {−1, 1}n → R be a ε-approximating function of C, i.e., for every x ∈ {−1, 1}n, |C(x) −
C̃(x)| ≤ ε. Then,

E
x∼D

[C̃(x) · f(x)] ≥ ε.

Proof. Note that since C̃ ε-approximate C, we have for every x ∈ {−1, 1}n

C̃ · C(x) ≥ 1− ε,

and
C̃ · (1− C(x)) ≥ −1− ε.

Then,

E
x∼D

[C̃(x) · f(x)] = E
x∼D

[C̃(x) · f(x) | C(x) = f(x)] · Pr
x∼D

[C(x) = f(x)]

+ E
x∼D

[C̃(x) · f(x) | C(x) 6= f(x)] · Pr
x∼D

[C(x) 6= f(x)]

≥ (1− ε) · Pr
x∼D

[C(x) = f(x)] + (−1− ε) ·
(

1− Pr
x∼D

[C(x) = f(x)]

)
= 2 · Pr

x∼D
[C(x) = f(x)]− 1− ε

≥ 2 · (1/2 + ε)− 1− ε ≥ ε,

as desired.

Lemma 51 ([Tal16], Lemma 21 restated). Let D be a distribution over {−1, 1}n and let G be a class
of functions. For f : {−1, 1}n → {−1, 1}, suppose that D : {−1, 1}n → {−1, 1} ∈ FORMULA[s] ◦ G
is such that

Pr
x∼D

[D(x) = f(x)] ≥ 1/2 + ε0.

Then there exists some h : {−1, 1}n → {−1, 1} ∈ XORO(
√
s·log(1/ε0)) ◦ G such that

E
x∼D

[h(x) · f(x)] ≥ 1

sO(
√
s·log(1/ε0))

.

Proof. Let
D = F (g1, g2 . . . , gs)

be a device in FORMULA ◦ G where F is a formula and g1, g2, . . . , gs are function from G.
Let p : {−1, 1}s → R be a ε0-approximating polynomial for F of degree d = O(

√
s · log(1/ε0)).

Note that we can write
p(z) =

∑
S⊆[s]:
|S|≤d

p̂(S) ·
∏
i∈S

zi.
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Also, for each S ⊆ [s], we have

|p̂(S)| =

∣∣∣∣∣ E
z∈{−1,1}s

[p(z) ·
∏
i∈S

zi]

∣∣∣∣∣ ≤ 1 + ε0.

Now let
D̃ := p(g1, g2 . . . , gs).

Note that D̃ is a ε0-approximating function for D. Therefore, by Lemma 50, we have

ε0 ≤ E
x∼D

[D(x) · f(x)]

= E
x∼D


∑
S⊆[s]:
|S|≤d

p̂(S) ·
∏
i∈S

gi

 · f(x)


=
∑
S⊆[s]:
|S|≤d

p̂(S) · E
x∼D

[∏
i∈S

gi · f(x)

]

≤
∑
S⊆[s]:
|S|≤d

(1 + ε0) ·

∣∣∣∣∣ E
x∼D

[∏
i∈S

gi · f(x)

]∣∣∣∣∣ .
The above equation is the sum of at most sO(d) summands. Therefore, there exists some S ⊆ [s]
such that ∣∣∣∣∣ E

x∼D

[∏
i∈S

gi · f(x)

]∣∣∣∣∣ ≥ ε0

(1 + ε0) · sO(d)
≥ 1

sO(
√
s·log(1/ε0))

,

which implies that there exists some h, such that either h =
∏
i∈S gi or h = −

∏
i∈S gi, and

E
x∼D

[h(x) · f(x)] ≥ 1

sO(
√
s·log(1/ε0))

.

Finally, note that such h can be expressed as the XOR of at most d functions from G.

A.2 PRG for low-communication functions in the number-in-hand setting

In this subsection, we show how to fool functions with low communication complexity in the
number-in-hand model.

Theorem 52 ([ASWZ96, INW94], Theorem 28 restated). For any k ≥ 2, there exists a PRG that
δ-fools any n-bits functions with k-party number-in-hand deterministic communication complexity
at most D′, with seed length

n/k +O
(
D′ + log(1/δ) + log(k)

)
· log(k).

The PRG in Theorem 28 is based on the PRG by Impagliazzo, Nisan and Wigderson [INW94]
that is used to derandomize “network algorithms” and space-bounded computation. We will need
to use randomness extractors, which we review below.
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Definition 53 (Min-entropy). Let X be a random variable. The min-entropy of X, denoted by
H∞(X), is the largest real number k such that Pr[X = x] ≤ 2−k for every x in the range of X. If
X is a distribution over {−1, 1}ℵ with H∞(X) ≥ k, then X is called a (ℵ, k)-source.

Definition 54 (Extractors). A function Ext: {−1, 1}ℵ×{−1, 1}d → {−1, 1}m is an (k, ε)-extractor
if, for any (ℵ, k)-source X, and any test T : {−1, 1}m → {−1, 1}, it is the case that

|Pr[T (Ext(X,Ud)X) = 1]−Pr[T (Um) = 1]| ≤ ε.

Theorem 55 ([Vad12, Theorem 6.22]). For any integer m,κ > 0 and 0 < δ′ < 0, there exists an
explicit (κ, δ′) extractor Ext: {0, 1}m × {0, 1}d → {0, 1}m with d = O(m− k + log(1/δ′)).

We are now ready to show Theorem 28.

Proof of Theorem 28. We first describe the construction of the PRG. In fact, we will construct a
sequence of PRGs G0, G1, . . . , Glog(k). We begin by specifying the parameters of these PRGs. Let
t = log(k), and let

d = O
(
D′ + log(1/δ) + t

)
.

For i = 0, 1, . . . , t, let

• r0 = n/k,

• ri = ri−1 + d.

Note that we have ri = n/k + i · d. Also, let

Exti : {0, 1}ri × {0, 1}d → {0, 1}ri

be a (κi, δ
′)-extractor from Theorem 55, where

κi = ri −D′ − 2t− log(1/δ)

and
δ′ = δ/

(
3t · 2D′

)
.

Note that the seed length of the extractors is d = O (D′ + log(1/δ) + t). Finally, defineGi : {0, 1}ri →
{0, 1}n/2

t−i
recursively as follows

• G0(a) = a, where a ∈ {0, 1}n/k.

• Gi(a, z) = Gi−1(a) ◦Gi−1(Exti−1(a, z)), where a ∈ {0, 1}ri−1 and z ∈ {0, 1}d.

We will show that Gt : {0, 1}rt=n/k+t·d → {0, 1}n fools any functions f with k-party number-in-hand
deterministic communication complexity at most D′. First, note that such f can be written as

f(x1, x2, . . . , xk) =

2D
′∑

i=1

h
(i)
1 (x1) · h(i)

2 (x2) · . . . · h(i)
k (xk),

for some h
(i)
j : {0, 1}n/k → {0, 1} (i ∈

[
2D
′
]
, j ∈ [k]). Therefore, to show that the PRG Gt δ-fool f ,

it suffices to show that Gt

(
δ/2D

′
)

-fools every function g of the form

g(x1, x2, . . . , xk) = h1(x1) · h2(x2) · . . . · hk(xk).

More specifically we show the following.
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Claim 56. For every k ≥ 2 and 0 ≤ i ≤ t, the generator Gi defined above
(
3i · δ′

)
-fools every

function gi : {0, 1}n/2
t−i
→ {0, 1} of the form

gi(x1, x2, . . . , xk/2t−i) = h1(x1) · h2(x2) · . . . · hk/2t−i(xk/2t−i),

where x1, x2, . . . , xk/2t−i ∈ {0, 1}
n/k.

Proof. The proof is by induction on i. The base case is i = 0, which is trivial given the definition
of G0. Now suppose the claim holds for i− 1, we show the case for i. This is done using a hybrid
argument. Consider the following four distributions

• D1 = Un/2t−i ,

• D2 = Un/2t−i+1 ◦Gi−1(Uri−1),

• D3 = Gi−1(Uri−1) ◦Gi−1(U ′ri−1
) (U and U ′ are two independent uniform distributions),

• D4 = Gi(Uri).

We want show show that
|E[gi(D1)]−E[gi(D4)]| ≤ 3i · δ′.

By the triangle inequality, it suffices to show that

|E[gi(D1)]−E[gi(D2)]|+ |E[gi(D2)]−E[gi(D3)]|+ |E[gi(D3)]−E[gi(D4)]| ≤ 3i · δ′. (12)

We show Equation (12) by upper bounding each of the three summands.

First summand. We show that

|E[gi(D1)]−E[gi(D2)]| ≤ 3i−1 · δ′. (13)

Let us re-write gi as

gi(x1, x2, . . . , xk/2t−i) = hL(x1, x2, . . . , xk/2t−i+1) · hR(xk/2t−i+1+1, xk/2t−i+1+2, . . . , xk/2t−i),

where

hL(y) :=

k/2t−i+1∏
j=1

hi(y) and hR(y) :=

k/2t−1∏
j=k/2t−i+1

hi(y).

Then,

E[gi(D2)] = E
[
hL(Un/2t−i+1) · hR(Gi−1(Uri−1))

]
= E

[
hL(Un/2t−i+1)

]
·E
[
hR(Gi−1(Uri−1))

]
= E

[
hL(Un/2t−i+1)

]
·
(
E
[
hR(Un/2t−i+1)

]
± 3i−1 · δ′

)
(By the induction hypothesis)

= E
[
hL(Un/2t−i+1)

]
·E
[
hR(Un/2t−i+1)

]
± 3i−1 · δ′

= E[gi(D1)]± 3i−1 · δ′,

as desired.
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Second summand. By a similar argument, it can be shown that

|E[gi(D2)]−E[gi(D3)]| ≤ 3i−1 · δ′. (14)

We omit the details here.

Third summand. We show that

|E[gi(D3)]−E[gi(D4)]| ≤ δ′. (15)

We have

E[gi(D4)] = E[gi(Gi(Uri))]

= E
[
hL(Gi−1(X)) · hR(Gi−1(Exti−1(X,Z)))

]
(where X ∼ {0, 1}ri−1 and Z ∼ {0, 1}d)

= E[A(X) ·B(Exti−1(X,Z))] (where A(·) = hL(Gi−1(·)) and B(·) = hR(Gi−1(·)))
= E[B(Exti−1(X,Z)) | A(X) = 1] ·Pr[A(X) = 1].

Similarly, we get
E[gi(D3)] = E[B(Uri−1) | A(X) = 1] ·Pr[A(X) = 1].

As a result, we have

|E[gi(D4)]−E[gi(D3)]|
=
∣∣(E[B(Exti−1(X,Z)) | A(X) = 1]−E[B(Uri−1) | A(X) = 1]

)
·Pr[A(X) = 1]

∣∣ . (16)

On the one hand, if Pr[A(X) = 1] ≤ δ′, then Equation (16) is at most δ′. On the other hand, if
Pr[A(X) = 1] > δ′, then

H∞(X | A(X) = 1) > ri−1 − log(1/δ′) > ri−1 −D′ − 2t− log(1/δ) = κi−1.

Then by the fact that Exti−1 is a (κi−1, δ
′)-extractor, we have∣∣E[B(Exti−1(X,Z)) | A(X) = 1]−E[B(Uri−1) | A(X) = 1]

∣∣ ≤ δ′.
Therefore, Equation (16) is at most δ′ and this complete the proof of Equation (15). Finally, note
that Equation (12) follows from Equation (13), Equation (14) and Equation (15). This completes
the proof of Claim 56. � (Claim 56)

Given Claim 56, Theorem 28 now follows by letting i = t. � (Theorem 28)
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