
Constructing Hard Functions from Learning Algorithms

Adam Klivans
klivans@cs.utexas.edu

Pravesh Kothari
kothari@cs.utexas.edu

Igor C. Oliveira∗

oliveira@cs.columbia.edu

September 6, 2013

Abstract

Fortnow and Klivans proved the following relationship between efficient learning algorithms
and circuit lower bounds: if a class C ⊆ P/poly of Boolean circuits is exactly learnable with
membership and equivalence queries in polynomial-time, then EXPNP * C (the class EXPNP was
subsequently improved to EXP by Hitchcock and Harkins). In this paper, we improve on these
results and show

• If C is exactly learnable with membership and equivalence queries in polynomial-time, then
DTIME(nω(1)) 6⊆ C. We obtain even stronger consequences if the class C is learnable in the
mistake-bounded model, in which case we prove an average-case hardness result against C.

• If C is learnable in polynomial time in the PAC model then PSPACE * C, unless PSPACE ⊆
BPP. Removing this extra assumption from the statement of the theorem would provide
an unconditional proof that PSPACE * BPP.

• If C is efficiently learnable in the Correlational Statistical Query (CSQ) model, we show that
there exists an explicit function f that is average-case hard for circuits in C. This result
provides stronger average-case hardness guarantees than those obtained by SQ-dimension
arguments (Blum et al. 1993). We also obtain a non-constructive extension of this result
to the stronger Statistical Query (SQ) model.

Similar results hold in the case where the learning algorithm runs in subexponential time.
Our proofs regarding exact and mistake-bounded learning are simple and self-contained, yield

explicit hard functions, and show how to use mistake-bounded learners to “diagonalize” over
families of polynomial-size circuits. Our consequences for PAC learning lead to new proofs of
Karp-Lipton-style collapse results, and the lower bounds from SQ learning make use of recent
work relating combinatorial discrepancy to the existence of hard-on-average functions.

∗Supported in part by NSF grants CCF-0915929 and CCF-1115703.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 129 (2013)

1 Introduction

Understanding the computational complexity of learning circuit classes continues to be an
important area of study in theoretical computer science. For example, recent work of Gentry
and Halevi [GH11] makes use of results on the complexity of learning depth-3 arithmetic circuits
[KS09] to construct improved homomorphic encryption schemes. More generally, the relationship
between the complexity of learning circuits and cryptography has been extensively studied over
the last twenty years (e.g., [Val84] and [KV94a]).

Less is known regarding the relationship between learning circuit classes and proving circuit
lower bounds. Historically, circuit lower bounds for a class C typically precede the design of a
learning algorithm for C. Some intuition for this fact is that circuit lower bounds usually reveal
important structural properties of these circuit classes, allowing them to be learned in some
non-trivial way.

Fortnow and Klivans [FK09] were the first to codify this intuition and prove formally that
efficient learning algorithms (in a variety of models) for a circuit class C yield circuit lower bounds
against C. Their result reduces the task of proving circuit lower bounds to the task of designing
efficient learning algorithms. They showed, for example, that a polynomial-time PAC learning
algorithm for C separates BPEXP from C. Additionally they proved that a subexponential time
exact learning algorithm separates EXPNP from C (this was subsequently improved to EXP by
Hitchcock and Harkins [HH11] using techniques from resource bounded measure). Their proof
uses a variety of classic complexity-theoretic results such as Toda’s theorem, the complexity
of the Permanent, collapse theorems (EXP ⊆ P/poly⇒ EXP = MA [BFNW93]), and hierarchy
theorems.

In this paper we prove that it is possible to derive stronger circuit lower bounds from learning
algorithms. Our results significantly improve and expand on the above initial work by Fortnow
and Klivans. In many cases our proofs are simple, self-contained, and do not use machinery from
computational complexity. We obtain these consequences in a variety of well-known learning
models: PAC, online (mistake-bounded), exact, and statistical query learning. We begin by
outlining our main results and contrasting them with previous work.

1.1 Our Results: Improved Separations for Online and Exact Learning

Our first set of results deals with learning algorithms in the online (mistake-bounded) model
of learning and Angluin’s model of exact learning with membership and equivalence queries.
Recall that in the mistake-bounded model of learning, a function c from some class C is fixed,
and a learner is sequentially presented with an arbitrary sequence of examples. After receiving
example xi, the learner must output its prediction for c(xi). We say that a learner succeeds
with mistake bound m if for any (possibly infinite) sequence of examples, the learner makes at
most m mistakes. The time-complexity T (n, s) of the learner is the amount of time taken when
presented with an example of length n and when c has size at most s. We prove the following
theorem relating mistake-bounded learning to circuit lower bounds:

Theorem 1. Let Cs be a non-uniform class of circuits where each c ∈ Cs has size at most s
(according to some fixed representation). If Cs is learnable in the mistake-bounded model in
time T = T (n, s) and mistake bound M = M(n, s) < 2n, then there exists an explicit function f
computable in DTIME(M · T) such that f 6∈ Cs.

Our proof actually shows that f is Ω(1/M)-far from every c ∈ C. For the class of polynomial-
size circuits, the above theorem yields new circuit lower bounds as long as the learning algorithm
has non-trivial run-time and mistake bound. If the learning algorithm is efficient (polynomial
run-time and mistake bound) we obtain the following corollary:

Corollary 2. Let C be any class of polynomial-size circuits (e.g., AC0,TC0,P/poly). If C is
efficiently learnable in the mistake-bounded model then DTIME(nω(1)) 6⊆ C.

2

With more work, we prove analogous results for Angluin’s model of exact learning with
membership and equivalence queries. In this model the learner is required to exactly learn the
target function c, and is allowed to query the value c(x) on any input x (membership query).
The learning algorithm can also check if a proposed hypothesis h is equivalent to c (equivalence
query). If this is not the case, it is presented with a counterexample w for which h(w) 6= c(w). It
is not hard to see that learnability in the mistake-bounded model implies learnability in Angluin’s
model.

Previous work due to Fortnow and Klivans [FK09] and also Hitchcock and Harkins [HH11]
proved, under a learning assumption, the existence of a hard function for polynomial-size circuits
in EXPNP and EXP, respectively. In contrast, our proof yields an explicit function that is
computable in any superpolynomial time class. Since we are able to explicitly construct hard
functions in lower (uniform) deterministic time complexity classes (recall that our learning
algorithms are assumed to be deterministic), we can prove that efficient learning algorithms
imply a full derandomization of BPP:

Corollary 3. Let C be the class of linear-size circuits. If C is efficiently exactly learnable (or
learnable in the mistake-bounded model) then P = BPP.

Our results for mistake-bounded and exact learning use the learning algorithms themselves in
non-standard ways to construct hard functions. For example, in a typical learning scenario, the
learning algorithm receives examples all of which are labelled according to some fixed function
c ∈ C. In our setting, we will run our mistake-bounded or exact learning algorithms in stages,
using different functions to provide labels for the examples in each stage. More specifically, we
will continually label new examples according to the negation of the learning algorithm’s current
hypothesis. At first glance, it would seem that no guarantees can be made about a learning
algorithm that is not given examples labelled according to a fixed function. Still, we are able to
use the learning algorithm to “fool” all potential functions that it might have to learn. At a high
level, we consider this a sort of diagonalization over all elements of C (we give more details on
this procedure in Section 3).

In contrast, the work of Fortnow and Klivans is considerably more complicated, requiring
non-trivial collapse arguments, hierarchy theorems, Toda’s theorem, and various well-known
properties of the Permanent function in order to obtain their conclusion. Hitchcock and Harkins
used betting games and ideas from resource bounded measure to obtain their improvement. As
can be seen in Section 3.2, our proof is simple, self-contained, and yields a much finer separation.
We note that the same proof was discovered independently by Impagliazzo and Kabanets [Kab13].

1.2 Our Results: Hard Functions in PSPACE

The previous set of results showed that deterministic learning algorithms in the exact
or mistake-bounded model imply hard functions computable in subexponential-time uniform
complexity classes. We also investigate the possibility of constructing hard functions in PSPACE,
given the existence of non-trivial randomized learning algorithms. We prove that unless PSPACE
lies in randomized sub-exponential time, non-trivial learning algorithms in the PAC model imply
the existence of hard functions in PSPACE. Actually, this is true even if the PAC learning
algorithm is allowed membership queries and only works under the uniform distribution:

Theorem 4. Let C be any circuit class and suppose that there exists a randomized algorithm that
PAC learns C under the uniform distribution using membership queries in time O(T (n, size(c))),
where c ∈ C is the unknown concept. Then, for any function s : N → N, at least one of the
following conditions hold:

(i) There are languages in PSPACE not computed by circuits from C of size s; or

(ii) PSPACE ⊆ BPTIME(T (n, s)).

3

In contrast, Fortnow and Klivans proved that for any circuit class C ⊆ P/poly, if C is PAC
learnable under the uniform distribution by a polynomial-time algorithm with membership
queries then BPEXP * C. Theorem 4 extends their work in the following directions: (i) we
obtain interesting consequences for PSPACE instead of BPEXP; (ii) it is possible to derive new
results for PSPACE even in the case that the learning algorithm does not run in polynomial
time; (iii) C does not need to be contained in P/poly, which means that this result can (under
the learning assumptions) be used to obtain super-polynomial lower bounds. In Section 5, we
explain how Fortnow and Klivans’s original result can be derived from Theorem 4.

Note that the second condition in the conclusion of this theorem does not depend on the
original circuit class that appears in the hypothesis. While this seems odd at first, we give a
simple proof that removing this “or” condition from the conclusion of the theorem would give us
an unconditional proof that PSPACE * BPP. In other words, proving strong theorems of the
form “learning implies circuit lower bounds” yields important uniform separations.

Theorem 4 also explains the difficulty of designing non-trivial PAC learning algorithms for
the class of polynomial-size depth-two threshold functions, also known as TC0

2. This is one of
the smallest circuit classes for which there are no known non-trivial circuit lower bounds. In
particular, it could be the case that any language in BPEXP is in TC0

2. Our result shows that
the existence of a non-trivial PAC learning algorithm for this class provides strong evidence
that PSPACE does not admit such circuits. Previous results required stronger assumptions. For
instance, the original theorem proven by Fortnow and Klivans [FK09] assumes efficient PAC
learnability, and the cryptographic hardness results of Klivans and Sherstov [KS09] do not hold
with respect to the uniform distribution or when learner is allowed membership queries.

The main idea of the proof is to rework the Fortnow and Klivans approach but use a PSPACE-
complete problem described by Trevisan and Vadhan [TV07] that is downward self-reducible
and self-correctible. In contrast, Fortnow and Klivans used the Permanent function (and its
well-known self-reducibility properties) but had to first go through a “collapse” argument to
arrive in a scenario where the Permanent is complete for PSPACE. The proof of Theorem 4 is
presented in Section 5.

We also observe that Karp-Lipton style collapse results follow easily from a relativized version
of Theorem 4 and Occam’s Razor (Blumer et al. [BEHW87]), for any complexity class with
complete problems that are both downward self-reducible and self-correctible. To the best of our
knowledge, this is the first proof of these theorems that relies on Occam’s Razor, an important
technique in computational learning theory.

1.3 Our Results: Average-Case Hard Functions from Statistical Query
Learning

Our results above show that nontrivial learning algorithms in the exact, mistake-bounded,
or PAC model yield functions that are hard to compute in the worst-case. We show that even
weak learning algorithms that use only Correlational Statistical Queries (CSQs) yield not just
circuit lower bounds but explicit functions that are hard to compute on average. Informally, a
CSQ learner is allowed to make queries of the form E[q · c] where c is the target function and q is
some fixed (polynomial-time computable) predicate. The learner then receives an estimate of
the true value of this query to within τ , a “tolerance” parameter. CSQ learning has been an
active area of study recently in computational learning theory. It is known [Fel08] that the class
of functions that are Evolvable (in the sense of Valiant[Val09]) are exactly equal to the functions
that are learnable by CSQs (we define Correlational Statistical Queries formally in Section 2.4).
We give the following consequence for CSQ learning:

Theorem 5. Let Cs be a class of Boolean concepts of size s that is learnable in the CSQ model in
time and query complexity T (n, 1/ε, 1/τ, s) where ε is the accuracy parameter and τ ≤ min(ε, 1−2ε)

4

is the tolerance parameter. Then there exists a function f ∈ DTIME(poly(T (n, 1/ε, 1/τ, s)) such
that for every c ∈ Cs, f disagrees with c on at least a τ/4 fraction of inputs.

We note that a weak average-case hardness for an explicit function (parity) can be obtained by
a simple argument based on SQ-dimension [BFJ+94]. For example, it follows from the definition
of SQ-dimension that if C has polynomial SQ-dimension any c ∈ C differs from parity on a
non-zero but negligible fraction of inputs (this is discussed in more detail in Section 7.2). Since τ
is at least an inverse polynomial, Theorem 5 yields stronger average-case hardness result against
C.

The proof of Theorem 5 uses a diagonalization trick similar to the one used for obtaining
lower bounds from online learning algorithms in order to construct a family of functions G such
that for every c ∈ C there is some g ∈ G that weakly approximates c. We can then apply recent
work due to Chattopadhyay et al. [CKK12] relating explicit low-discrepancy colorings to hard
on average functions to find an explicit function f that has low correlation with every function
in G. This will be the desired hard on average function.

For a subtle technical reason, we need additional assumptions to obtain results for the full SQ
model of learning (see Section 7.3). We leave getting rid of these assumptions as an interesting
open problem and discuss the difficulty in Section 8.

2 Preliminaries and Notation

A Boolean function (concept) maps {−1, 1}n → {−1, 1}. A family of Boolean functions
f = {fn}n∈N, where fn : {−1, 1}n → {−1, 1}, naturally corresponds to the language Lf = {x ∈
{−1, 1}n | f(x) = −1}. We use U (or Un) to denote the uniform distribution on {−1, 1}n.

We will use C = ∪n∈N Cn to denote a representation class of Boolean functions, such as DNFs,
Boolean circuits, depth-two threshold circuits, etc. The size of c ∈ C in its representation will be
denoted by size(c). For concreteness, size(c) can be assumed to be the number of bits required
to write down the representation of c. We require the representation be such that the value at
any input of any function c can be computed in deterministic time polynomial in n and the
size of the representation. We will use T for denoting time bounds, and s for denoting sizes of
representations, both of which we assume to be constructive and non-decreasing without explicit
notice.

We now set up some notation to talk about languages and representation classes.

Definition 1 (Languages and Representation Classes). For any language L ⊆ {−1, 1}∗, we
denote the restriction of L to strings of length n by Ln. For any size function s : N → N and
representation class C,

Cs = {L ⊆ {−1, 1}∗ | ∀n ∃c ∈ Cn with size(c) ≤ s such that x ∈ L⇔ c(x) = −1}.

Let P/poly[C] = ∪c>0Cn
c

. When C is the class of circuits of AND, OR and NOT gates, we denote
Cs by SIZE(s) and P/poly[C] by just P/poly.

As such each one of our results will hold for sufficiently large n and we will skip noting this
explicitly in the interest of clarity. If we need to stress that we are dealing with functions in C of
n dimensions, we will make this explicit by writing Csn for the class Cs.

To denote that an algorithm has oracle access to a function family f , we writeAf . Equivalently,
if we see the oracle as a language L, we write AL.

We now define the various learning models we will deal with in this paper. We do not require
any of our learning algorithms to be proper, that is, the hypothesis output by the algorithms
need not be from the representation classes they learn.

5

2.1 Online Mistake Bound Learning

In the mistake-bounded model of learning, a concept c from some class C is fixed, and a
learner is presented with an arbitrary sequence of examples. After receiving each example xi,
the learner must output its prediction for c(xi). The learner succeeds with mistake bound M if
for any sequence of examples, the learner makes at most M mistakes. Formally:

Definition 2 (Mistake Bound Learning). Let C be any class of Boolean functions over an
arbitrary domain X. A mistake bound learning algorithm A for C proceeds in rounds. Let c ∈ C
be the target function. In round i ≥ 1, A:

1. is presented with an example point xi ∈ X, and outputs a label A(xi).

2. is provided (by the target function oracle) with the correct label c(xi).

3. runs an update procedure.

A learns Cs with mistake bound M(n, s) and time T (n, s), if for any c ∈ Cs and any (possibly
infinite) sequence of examples from X, A makes at most M(n, s) mistakes while outputting the
labels, and the update procedure runs in time T (n, s).

2.2 Angluin’s Model of Exact Learning

Angluin’s model of exact learning [Ang88] provides the learner with more powerful access to
the target function than the Online Mistake Bound Learning Model. It can be easily shown that
any mistake bound algorithm can be translated into an exact learner in Angluin’s model while
preserving efficiency.

Let c ∈ Cs be a target function. In this model, the learning algorithm is allowed to ask two
kinds of queries about c to the target function oracle:

• Membership Queries: the learner presents a point x ∈ {−1, 1}n and the target function
oracle replies with c(x).

• Equivalence Queries: the learner presents a Boolean function h̃ : {−1, 1}n → {−1, 1} to
the oracle (represented as a circuit). If h̃ = c, the oracle responds with “yes”. Otherwise,
the oracle responds with “not equivalent”, and provides a counter example x ∈ {−1, 1}n
such that h̃(x) 6= c(x).

We can now define an exact learning algorithm for a class of Boolean functions Cs.

Definition 3 (Exact Learning in Angluin’s Model). A deterministic algorithm A exact learns a
representation class of Boolean functions Cs in time T (n, s) and queries Q(n, s) if for any target
function c ∈ Cs, A makes at most Q(n, s) membership and equivalence queries to the oracle for c
and outputs a hypothesis h : {−1, 1}n → {−1, 1} such that h(x) = c(x) for all x ∈ {−1, 1}n in
time T = T (n, s). Further, we assume that any equivalence query, h̃, is computable in time O(T)
on any input.

2.3 PAC Learning

In the most common PAC learning framework, there is an unknown concept c ∈ Cn to
be learned, and the learning algorithm receives random examples labelled consistently with c
according to some fixed but unknown distribution D over {−1, 1}n. Here we concentrate on the
stronger model in which the learner can ask membership queries (present any point x and obtain
the value of target function c(x)) about the unknown concept, and only needs to learn under the
uniform distribution. In other words, we prove circuit lower bounds from a weaker assumption,
namely, the existence of learning algorithms in a more powerful model.

6

Definition 4. Let C be any class of Boolean functions. An algorithm A PAC-learns C if for
every c ∈ C and for any ε, δ > 0, given membership query access to c, algorithm A outputs with
probability at least 1− δ over its internal randomness, a hypothesis h such that Prx∼Un [c(x) 6=
h(x)] ≤ ε.

We measure the running time of A as a function T = T (n, 1/ε, 1/δ, size(c)), and require that
h itself can be evaluated in time at most T . We say that A is efficient if T is bounded above by
a fixed polynomial in its parameters.

2.4 Statistical Query Learning

Statistical query learning, defined by Kearns et. al. [Kea98] is a natural variant of PAC-
learning when the underlying data is noisy. We start with the definition of Statistical Queries
(SQs).

Definition 5 (Statistical Query Oracles and SQs). Let C be a concept class on {−1, 1}n. For
any c ∈ C, a statistical query oracle for c of tolerance τ > 0, STAT(c, τ), takes input any
representation of a bounded function ψ : {−1, 1}n × {−1, 1} → [−1, 1] and returns v ∈ [−1, 1]
such that |Ex∼U [ψ(x, c(x))]− v| ≤ τ . A query function ψ is said to be target independent if for
every x ∈ {−1, 1}n and y ∈ {−1, 1}, ψ(x, y) = ψ(x,−y), that is ψ doesn’t depend on the target
function c.

Bshouty and Feldman ([BF02]) noted that any Statistical Query can be simulated by 2 target
independent queries and 2 correlational queries. We include their simple proof for completeness.

Proposition 6 (Bshouty and Feldman [BF02]). Any statistical query can be decomposed into
two statistical queries that are independent of the target and two correlational queries.

Proof. Let ψ be a statistical query, and let c be the target function. The result follows immediately
from the following equation:

E[ψ(x, c(x))] = E
[
ψ(x,−1)

1− c(x)

2
+ ψ(x, 1)

1 + c(x)

2

]
=

1

2
E[ψ(x, 1)c(x)]− 1

2
E[ψ(x,−1)c(x)] +

1

2
E[ψ(x, 1)] +

1

2
E[ψ(x,−1)].

The Correlational Statistical Query (CSQ) Oracle is a less powerful version of the SQ oracle
which answers only correlational queries.

Definition 6 (Correlational Statistical Query Oracle). Let C be a concept class on {−1, 1}n
and D be any distribution on {−1, 1}n. For any c ∈ C, a correlational statistical query oracle
for c of tolerance τ > 0, CSTAT(c, τ), takes input any representation of a bounded function
ψ : {−1, 1}n → [−1, 1] and returns v ∈ [−1, 1] such that |〈c, ψ〉D − v| ≤ τ .

We now define learning from SQs and CSQs. We note that CSQ learning algorithms on are
equivalent to Valiant’s [Val09] model of evolvability [Fel08].

Definition 7 (Correlational Statistical Query Learning). Let C be a representation class of
Boolean functions on {−1, 1}n. A (Correlational) Statistical Query learning algorithm A learns
Cs on the uniform distribution in time T = T (n, 1

ε ,
1
τ , s) and queries Q = Q(n, 1

ε ,
1
τ , s) if, for

any c ∈ Cs and any ε ≥ τ > 0, A makes Q queries to STAT(c, τ) (CSTAT(c, τ)) and uses at most
T time units to return a hypothesis h such that

Pr
x∼D

[h(x) 6= c(x)] ≤ ε.

A is said to be efficient if both T and Q depend polynomially on n, 1
ε ,

1
τ and s.

7

Using Proposition 6, we will assume that any SQ algorithm A learning Cs actually makes
only target independent and correlational queries. Further, we will assume that each target
independent query is a Boolean function specified by a circuit of size poly(s).

3 Mistake-Bounded and Exact Learning Algorithms En-
code Hard Functions

In this section we give a simple and direct method for constructing a hard function given a
(deterministic) mistake-bounded or exact learning algorithm. Specifically, we will show that if
Cs (here Cs equals all concepts in C of size at most s) is learnable in the Online Mistake Bound
Model [Lit88] (or the Exact Learning Model [Ang88]) with mistake bound (or number of queries
for Exact Learning) less than 2n, then there is a function computable in a uniform time class
that is not computable by any function in Cs. As a corollary, we will see that polynomial-time
(deterministic) mistake-bounded or exact learning algorithms for even linear-sized circuit classes
implies that P = BPP. Previous work relating learning algorithms to circuit lower bounds
obtained only subexponential-time simulations of BPP.

Our proof shows how to use a mistake-bounded or exact learning algorithm to “fool” every
circuit from some large class. We do this by iteratively presenting the learning algorithm labeled
examples from different functions at each iteration (typically a learning algorithm will only
succeed if it is presented with labeled examples from a function fixed in advance from within
the class). Recall that our goal here is not to obtain an accurate hypothesis, but to construct a
hard function using the learning algorithm as a (black box) subroutine. The running time of the
algorithm for evaluating the hard function on any input is dependent on the time and mistake
bound (or queries for exact learning) of the learning algorithm.

3.1 Lower Bounds from Mistake Bounds

In this section, we present our “diagonalization” trick and show that the existence of a
Mistake-Bounded learning algorithm for a class C yields an explicit hard function for C:

Theorem 7 (Mistake Bound Learning yields Lower Bounds). Let C be any class of Boolean
functions. Suppose there exists an algorithm A that learns any c ∈ C with mistake bound
M = M(n, s) and time T = T (n, s), where s = s(n). Then, for any size s such that M < 2n,
there exists a function f ∈ DTIME(M · T) such that for any c ∈ Cs, we have

Pr
x∼Un

[f(x) 6= c(x)] >
1

M + 1
− 1

2n
.

Proof. We must define function f and prove that it cannot be computed by any circuit of size
s (pseudocode for the hard function f is given in Algorithm 1). To do this, we describe f ’s
behavior on input x.

Let {−1, 1}n be partitioned into consecutive blocks in lexicographic order E1, . . . , Ek, each
of size t = M + 1 (the last block may have size smaller than t). A function ` is initialized to
equal −1. On input x, f determines j ∈ [k] such that x ∈ Ej . It then simulates learner A for
t′ = |Ej | iterations by presenting it examples from Ej in lexicographic order. Let {x1, x2, . . . , xt}
be the examples in Ej . On the ith iteration, f simulates A and presents it with example xi. The
learner responds with its prediction, A(xi). The function f sets `(xi) = −A(xi) and informs the
learner that it has made a mistake. The function f then simulates the update procedure of A by
using the “true” label of xi, namely `(xi). At the end of |Ej | iterations, f halts and outputs
f(x) = `(xi). Since x ∈ Ej , f halts in at most t iterations. Clearly f can be computed on any
input in time O(M · T).

8

Algorithm 1 Hard function f that uses mistake-bounded learner A as a subroutine

Input: x ∈ {−1, 1}n.
Output: A value in {−1, 1}.

1: Set t = M + 1, where M = M(n, s(n)), and let {−1, 1}n be partitioned into
sequential blocks E1, E2, . . . , Ek of size t, where k = d2n/te (the last block may
contain less than t points). Initialize function ` on Ej to the constant −1.

2: Find j such that x ∈ Ej . Let t′ = |Ej | (note that t′ = M + 1 for any j < k).
3: Obtain all the points in Ej and order them lexicographically as {x1, x2, · · ·xt′}.
4: Start simulating the learner A on the sequence of points {x1, x2, · · ·xt′}.
5: for i = 1 to t′ do
6: Simulate A by presenting xi and obtain prediction: A(xi).
7: Tell the learner A that it made a mistake and report true label of xi as `(xi) =

−A(xi).
8: Simulate the update procedure of A.
9: end for

10: return `(x).

Assume for a moment that for any c ∈ Cs, functions f and c differ in at least one point
in Ej whenever |Ej | = M + 1. Then if |Ej | = M + 1 for each 1 ≤ j ≤ k, we have that
Prx∼Un [h(x) 6= c(x)] = 1

M+1 . If, on the other hand, |Ek| < M + 1, then Prx∼Un [h(x) 6= c(x)] ≥
1

M+1 · (1−
|Ek|
2n) > 1

M+1 −
1

2n .
Let j < k so |Ej | = M + 1. To see why f and c differ on Ej , observe that if there exists a

c ∈ Cs consistent with ` on all the examples in Ej , then the sequence of examples {x1, . . . , xt}
and labels given to A by f are consistent with c. But we have forced the learner to make exactly
M + 1 mistakes on this sequence. This is a contradiction to the mistake bound of A. Thus, the
labeling given by ` for {x1, . . . , xt} cannot be consistent with any c ∈ Cs.

3.2 Exact Learning Yields Circuit Lower Bounds

In this section we show that the existence of an algorithm that learns a class C in Angluin’s
model of exact learning using less than 2n membership and equivalence queries implies lower
bounds against C. Learnability in mistake-bounded model implies learning in the exact model,
thus the results presented here are stronger than those stated in the previous section. On the
other hand, we do not obtain an average case hard function as we could from a mistake-bounded
algorithm. In the proof, we make use of a similar “diagonalization” trick, but there are a few
more complications involved in simulating the equivalence and membership queries.

Theorem 8 (Exact Learning yields Lower Bounds). Let C be a class of Boolean functions.
Suppose there exists an exact learning algorithm A that exact learns any target function c ∈ C in
time T = T (n, s) and < 2n equivalence and membership queries. Then there exists a function
f ∈ DTIME(T 2) such that f /∈ Cs.

Proof. As in the previous section, we describe a procedure to compute f using blackbox access
to the exact learning algorithm A. We will show that f /∈ Cs and f ∈ DTIME(T 2). Let x be
the input to f . Then f simulates the learner A and must give responses to the membership
queries and equivalence queries that A makes. The function f keeps track of the membership
queries made by A and counterexamples (in response to equivalence queries made by A) in the
set S. If A makes a membership query and asks for the label of w, and w /∈ S, f replies with −1,

9

adds w to the set S, and defines `(w) = −1. Otherwise f responds with `(w). If A makes an
equivalence query for hypothesis h̃ : {−1, 1}n → {−1, 1}, f replies with “not equivalent”, returns
counterexample y, the lexicographically first string not in S (recall that Q < 2n), and adds y to
S. In addition, f sets `(y) = −h̃(y).

If during f ’s simulation, A halts and outputs a hypothesis h, then f chooses a string y, the
lexicographically smallest string not in S, adds y to S, and sets `(y) = −h(y). This guarantees
that ` differs from h on at least one point in S. Finally, we describe what f should output on
input x. If x ∈ S, output `(x). Otherwise, output −1.

We will need the following simple claim:

Claim 1. Suppose an exact learner A for Cs, running in time T = T (n, s) that makes at most
Q = Q(n, s) < 2n queries is provided answers to all its membership and equivalence queries that
are consistent with some c ∈ Cs. Let S be the union of the set of all membership queries made by
A and the set of all counterexamples presented to A. Then, if any c′ ∈ Cs satisfies c′(x) = c(x)
for all x ∈ S then, c(x) = c′(x) for every x ∈ {−1, 1}n.

Proof of Claim. Since A is an exact learner and all the membership and equivalence queries
made by it are answered with replies consistent with c, A must halt in at most T steps after
making at most Q queries with a hypothesis h such that h(x) = c(x) for every x ∈ {−1, 1}n.
On the other hand, since c′(x) = c(x) for every x ∈ S, the answers for the membership and
equivalence queries received by A are consistent with c′ also, and thus, h(x) = c′(x) for every
x ∈ {−1, 1}n.

We will now argue that f /∈ Cs. We need the following notation: let SA be the value of S
and `A be the value of ` when f stops simulating A. Similarly, let Sf be the value of S and `f
the value of ` when f halts (recall that Sf and `f differ from SA and `A only if A returns a
hypothesis h before f stops simulating it, in which case SA ⊂ Sf and `A and `f agree on all
points in SA).

Suppose that there exists c ∈ Cs such that f(x) = c(x) for every x ∈ SA. In other words, the
replies to the queries made by the algorithm A are consistent with c. In this case, A must halt
and return a hypothesis h in at most T steps. Moreover, since A is an exact learner, h = c. By
Claim 1, c is the unique function in Cs that is consistent with f on SA. Thus, if f is computed
by some function in Cs, then f = c. But notice that, in this case, the procedure for computing f
guarantees that there exists a y ∈ Sf \ SA such that f(y) 6= h(y). This implies that f 6= c. Thus,
there is no function in Cs that computes f .

On the other hand if for every c ∈ Cs, there is some value x ∈ SA such that f(x) 6= c(x),
then we immediately conclude that f is not computed by any c ∈ Cs. In either case, we have
proved that f 6∈ Cs.

The function f can simulate A in time O(T). Since A makes at most T equivalence queries,
each of which is computable at any point in deterministic time O(T) (Section 2.2), A spends at
most O(T 2) time answering equivalence queries. All other computations of f involve searching
for strings outside S which takes at most O(S) = O(T) time. Thus we have that f runs in time
at most O(T 2).

As a simple corollary we obtain that efficient exact learnability of C yields DTIME(nω(1)) *
P/poly[C]. We now apply the theorem above to the special case of SIZE(n) to compare our results
with [FK09] and [HH11].

Corollary 9. Suppose SIZE(n) is learnable -

• by a Mistake-Bounded Algorithm in time and mistake bound polynomial in n or

• by an Exact Learning Algorithm in time polynomial in n.

10

Then, DTIME(nω(1)) * P/poly.

Proof. By a simple padding argument, P/poly is efficiently learnable in the respective models.
Applying Theorems 7 and 8 yields the result.

For a comparison, note that [FK09] proves that if P/poly is efficiently exactly learnable in
Angluin’s model, then EXPNP * P/poly and [HH11] improve this result to obtain the conclusion
that EXP * P/poly.

4 Derandomization Consequences from Exact Learners

The improvements in our lower bounds allow us to obtain a complete derandomization of
BPP from efficient learnability of P/poly.

We will require the following celebrated result of Impagliazzo and Wigderson:

Theorem 10 (Impagliazzo and Wigderson [IW96]). If there exists L ∈ DTIME(2O(n)) and δ > 0
such that L /∈ SIZE(2δn), then P = BPP.

Previous work obtained only subexponential deterministic simulations of BPP given the
existence of efficient learning algorithms.

Corollary 11. Suppose SIZE(n) is efficiently learnable in Angluin’s model of exact learning with
membership and equivalence queries. Then P = BPP.

We only state the above corollary starting from exact learning algorithms, as mistake-bounded
learnability implies exact-learnability.

Proof. We again use a padding argument here, although we have to be a bit more explicit with
our parameters. Suppose SIZE(n) is exactly learnable in time O(nk). By padding SIZE(s) is
learnable in time O(sk). Let s = 2δn, where δ = 1

2k . The result now follows easily from Theorem
8 and Theorem 10.

We note that using similar tools from derandomization, we can show that the existence of
sub-exponential time mistake-bounded learning algorithms for polynomial size circuits implies
subexponential-time derandomization of BPP.

5 Lower Bounds from PAC Learning: Hard Functions in
PSPACE

In this section we shift gears and obtain hard functions in PSPACE from PAC learning
algorithms. Previous work [FK09] showed the existence of hard functions in BPEXP. Indeed,
here we prove that unless randomness can speed-up arbitrary space-bounded computations, any
non-trivial PAC learning algorithm for a circuit class C yields a hard function in PSPACE against
C. We begin with a few important definitions.

Definition 8 (Downward Self-Reducibility). We say that a language L is downward-self-
reducible if there is a deterministic polynomial time algorithm A such that for all x ∈ {−1, 1}n,
ALn−1(x) = L(x). In other words, A efficiently computes L(x) on any input x of size n when
given oracle access to a procedure that computes L on inputs of size n− 1.

Definition 9 (Self-Correctibility). We say that a language L is α(n)-self-correctible if there is
a probabilistic polynomial time algorithm A such that, for any Boolean function c : {−1, 1}n →
{−1, 1} that disagrees with Ln on at most an α(n)-fraction of the inputs of size n, we have
Pr[Ac(x) = L(x)] ≥ 2/3 for any x ∈ {−1, 1}n.

11

Using an appropriate arithmetization of quantified Boolean formulas, Trevisan and Vadhan
[TV07] proved that there exists a PSPACE-complete language that is both downward-self-
reducible and self-correctible. Actually, by employing better self-correction techniques introduced
by Gemmel and Sudan [GS92] and a standard composition with the Hadamard error-correcting
code, it follows from their construction that [Vad12]:

Proposition 12. There exists a PSPACE-complete language LPSPACE that is both downward-self-
reducible and α-self-correctible, where α = 1/100.

Finally, for any language O, we denote by BPTIME(T (n))O the class of languages that can
be computed by probabilistic algorithms that have oracle access to O and run in time O(T (n)).

Theorem 13 (PAC Learning yields Lower Bounds). Let C be any concept class and suppose
that there exists an algorithm that PAC learns any c ∈ Cs under the uniform distribution using
membership queries when given access to an oracle O1 in time T (n, 1/ε, log 1/δ, s). Let L? be a
language that is both downward-self-reducible and α(n)-self-correctible. Then, at least one of the
following conditions hold:

(i) L? /∈ Cs; or

(ii) L? ∈ BPTIME(poly(T (n, 1/α(n), log n, s)))O.

The proof of this result follows the same high-level approach employed by Fortnow and Klivans
[FK09], which we sketch next. Suppose for simplicity that we have an efficient PAC learning
algorithm for C that does not depend on any oracle O, and that L? ∈ P/poly[C] (otherwise
there is nothing to prove). Note that in order to prove Theorem 13, it is enough to show
that L? ∈ BPP. This can be obtained by combining the learning algorithm for C with the
downward-self-reducibility and self-correctibility of L?. Roughly speaking, we “learn” how to
compute L? on all inputs of size at most n starting from inputs of constant size, which can
be easily computed by a truth-table. Assuming that we know how to compute L?k with high
probability on every input, we can compute L?k+1 with high probability as follows. Simulate
the learning algorithm with unknown concept c = L?k+1. Answer membership queries using
downward-self-reducibility and the procedure for L?k obtained by induction. The learner outputs
a hypothesis h for c = L?k+1 that is close to L?k+1. Now use the self-correctibility of L? together
with c to obtain an algorithm that computes L?k+1 on every input with high probability. Observe
that each stage can be computed efficiently from our assumptions. After n stages, we obtain a
randomized algorithm that computes L? on any input of size n, which completes the proof that
L? ∈ BPP. For completeness, we present the full proof of Theorem 13 in Appendix A.
The next corollary is immediate by taking O to be the empty language in the statement of
Theorem 13.

Corollary 14. Let C be any concept class and suppose that there exists an algorithm that
PAC learns any c ∈ Cs under the uniform distribution using membership queries in time
T (n, 1/ε, log 1/δ, s). Also, let LPSPACE be the PSPACE-complete language given by Proposition 12.
Then, at least one of the following conditions hold:

(i) LPSPACE /∈ Cs; or

(ii) LPSPACE ∈ BPTIME(poly(T (n,O(1), log n, s))).

For instance, for efficient PAC learning algorithms we have the following:

Corollary 15. Let C be any concept class and suppose that there exists a polynomial-time
algorithm that PAC learns C under the uniform distribution using membership queries. Then, at
least one of the following conditions hold:

(i) PSPACE * P/poly[C]; or

1We stress that the learner can ask both membership queries about the unknown concept and queries to oracle O.

12

(ii) PSPACE ⊆ BPP.

Corollary 15 implies the original result of Fortnow and Klivans: if PSPACE ⊆ BPP, a simple
padding argument gives EXPSPACE ⊆ BPEXP, and it is not hard to prove by diagonalization
that EXPSPACE requires circuits of size Ω(2n/n). Thus, under efficient PAC learnability of
C, it follows that either PSPACE * P/poly[C] or BPEXP requires circuits of size Ω(2n/n). In
particular, this implies that BPEXP * P/poly[C].

Note that the second condition in the conclusion above does not depend on the class C
that appears in the hypothesis. We observe next that removing this “or” condition from the
conclusion of Corollary 15 would give us an unconditional proof that PSPACE 6= BPP. To see
this, suppose the following result is valid:

If C is PAC-learnable in polynomial-time then PSPACE * P/poly[C] (?)

Let C be the class of Boolean circuits, i.e., P/poly[C] = P/poly. Let P/poly-PAC-learnable
denote that C is PAC learnable in polynomial time. We prove that both P/poly-PAC-learnable
and its negation ¬P/poly-PAC-learnable imply BPP 6= PSPACE. First, if P/poly-PAC-learnable
then it follows from (?) that PSPACE * P/poly. Since BPP ⊆ P/poly (Adleman [Adl78]), this
implies BPP 6= PSPACE. On the other hand, suppose we have ¬P/poly-PAC-learnable. To show
that that BPP 6= PSPACE, it is sufficient to prove that if BPP = PSPACE then C is efficiently
PAC-learnable. Using PSPACE ⊆ BPP, we can find a efficiently find a hypothesis consistent
with the labeled examples with high probability and a well known result (Occam’s Razor, see
Proposition 16 below) now implies PAC-learning.

6 A new way to prove Karp-Lipton Collapse Theorems

In this section we show that Proposition 16 (Occam’s Razor) together with Theorem 13 (PAC
learning yields circuit lower bound) can be used to prove Karp-Lipton style collapse theorems
(Karp and Lipton [KL80]). Recall that these theorems state that if some circuit lower bound does
not hold then there is a unexpected collapse involving uniform complexity classes. These results
are usually stated with respect to P/poly. The most famous Karp-Lipton Theorem says that
if NP ⊆ P/poly then PH = Σp

2, i.e., the polynomial time hierarchy collapses to its second level.
Similar theorems are known for different complexity classes. To prove more refined results, we
use SIZE(l(n)) to denote the class of languages with circuits of size O(l(n)). For concreteness, we
give a proof for PSPACE. However, it is clear that the same argument works for any complexity
class containing complete problems that are both downward-self-reducible and self-correctible,
such as #P. To the best of our knowledge, these are the first proofs of these theorems that rely
on Occam’s Razor.

We start by stating the Occam’s Razor technique [BEHW87].

Proposition 16 (Occam’s Razor Principle). Let C be any representation class and s : N→ N
be an arbitrary constructive function. Suppose there exists an algorithm B that, given any set of
m ≥ 1

ε

(
s+ log 1

δ

)
uniformly distributed random examples labelled according to some unknown

concept c ∈ Csn, outputs a hypothesis h ∈ Cs that is consistent with this set of examples. Then B
is a PAC learning algorithm for C. In other words, the hypothesis h outputted by B is ε-close to
c with probability at least 1− δ.

Proposition 17. Let C be an arbitrary concept class and s′ : N→ N be any constructive function
with s′(n) ≥ n. If LPSPACE ∈ Cs

′(n) then LPSPACE ∈ BPTIME(poly(s′(n)))NP.

Proof. For any concept class C, there exists an algorithm B that uses an NP oracle and is able
to learn any concept c ∈ C in time T (n, 1/ε, log 1/δ, size(c)) = poly(n, 1/ε, log 1/δ, size(c)). This
algorithm simply draws m = 1

ε

(
size(c) + log 1

δ

)
random examples labelled according to c and

uses its NP oracle together with a standard search to decision reduction to find a hypothesis

13

h ∈ Csize(c) that is consistent with all examples. By Occam’s Razor (Proposition 16), B is a PAC
learning algorithm for C.

Let L? = LPSPACE, O = NP, and s = s′(n) in the statement of Theorem 13. It follows that ei-
ther LPSPACE /∈ Cs

′(n) or LPSPACE ∈ BPTIME(poly(T (n,O(1), log n, s′)))NP = BPTIME(poly(s′(n)))NP.
The result then follows from the assumption that LPSPACE ∈ Cs

′(n).

Corollary 18. If LPSPACE ∈ SIZE(l(n)) then LPSPACE ∈ BPTIME(poly(l(n)))NP.

Corollary 19. If PSPACE ⊆ P/poly then PSPACE ⊆ BPPNP.

We remark that this is not a new result. It is known that if PSPACE ⊆ P/poly then
PSPACE ⊆ MA, and MA ⊆ ZPPNP ⊆ BPPNP (Goldreich and Zuckerman [GZ11]).

Following the terminology of Trevisan and Vadhan [TV07], one may interpret our results
as a new way to prove “super Karp-Lipton” theorems for PSPACE. For instance, if there
exists a polynomial-time learning algorithm for TC0

2, it follows that PSPACE ⊆ TC0
2 implies

PSPACE = BPP.

7 SQ Learning Yields Circuit Lower Bounds

In this section we show that efficient SQ learning algorithms for a class C of circuits yield
circuit lower bounds. We will first show that efficient CSQ algorithms yield explicit average case
hard functions and then go on to obtain a non-constructive lower bound from an SQ learning
algorithm.

7.1 Preliminaries

Definition 10 (Inner Product). For any functions f, g mapping {−1, 1}n into {−1, 1}, we
denote the inner product of f and g with respect to Un by 〈f, g〉. The inner product with respect
to the uniform distribution on X ⊆ {−1, 1}n, UX , is denoted by 〈f, g〉X .

Definition 11 (Hamming Distance). For any two Boolean functions f, g mapping {−1, 1}n
into {−1, 1}, the hamming distance between f and g denoted by dist(f, g) = 1

2n |{x ∈ {−1, 1}n |
f(x) 6= g(x)}|. Observe that dist(f, g) = 1

2 (1− |〈f, g〉|). Hamming distance is a metric on the
space of Boolean functions on {−1, 1}n.

We will now define discrepancy of a bounded function class [Cha00, Mat99, PA95]. The
definition we present here (and used in [CKK12]) is a natural generalization of the standard
definition of discrepancy to classes of bounded functions.

Definition 12 (Discrepancy of a Class of Bounded Functions). Let C be a class of bounded
functions mapping a finite set X into [−1, 1] and let χ : X → {−1, 1} be a coloring of X. The
discrepancy of χ with respect to a function c ∈ C is defined as χ(c) =

∑
x:c(x)≥0 χ(x) · c(x). The

discrepancy of χ with respect to the class C on X is defined as disc[X, C](χ) = maxc∈C |χ(c)|.

A uniformly random coloring is, not surprisingly, a low discrepancy coloring. The proof is
a direct application of the Chernoff-Hoeffding Bounds. Further, this procedure to construct a
low-discrepancy coloring can be derandomized [Siv02].

Lemma 20 (Deterministic Construction of Low Discrepancy Coloring [Siv02]). Let C be a class
of bounded functions on X with |C| = m. There exists a deterministic algorithm running in time
poly(m, |X|) that produces a coloring with discrepancy at most

√
4|X| log 4m for C.

There is a simple connection between a low discrepancy coloring χ for C on X and average
case hardness of χ for C observed in [CKK12].

14

Proposition 21 (Low Discrepancy ⇒ Average Case Hard Function). Let C be a class of
bounded functions mapping X into [−1, 1]. Let −C = {−c : c ∈ C} denote the class of all negated
functions from C. If χ : X → {−1, 1} is a coloring of X with discrepancy at most ε|X| with
respect to C ∪ −C then |〈χ, c〉UX | ≤ 2ε for each c ∈ C on X.

Proof. Let c ∈ C. Since χ has discrepancy at most ε|X| with respect to c and −c, we have:
|
∑

x∈X
c(x)≥0

χ(x) · c(x)| ≤ ε|X| and |
∑

x∈X
c(x)≤0

χ(x) · c(x)| ≤ ε|X|. Thus, |〈χ, c〉UX | = |Ex∼UX [χ(x) ·

c(x)]|

≤ 1
|X|

(
|
∑

x∈X
c(x)≥0

χ(x) · c(x)|+ |
∑

x∈X
c(x)≤0

χ(x) · c(x)|
)
≤ 1
|X| (ε|X|+ ε|X|) = 2ε.

7.2 CSQ Learning Yields Lower Bounds

To show that CSQ learning algorithms yield circuit lower bounds, we use a learning algorithm
A for C, to construct a small set of functions G such that each function in C is non-trivially
correlated with some function in G. This construction is well known and has been employed in
other contexts [Fel08]:

Lemma 22 (Small Weakly Correlating set from CSQ Algorithm). Let C be a representation
class of Boolean functions on {−1, 1}n. Suppose for some ε, τ such that 1

2 > ε ≥ τ > 0 and
τ ≤ 1 − 2ε, Cs is learnable on the uniform distribution in the CSQ model by an algorithm A
running in time T = T (n, 1

ε ,
1
τ , s) while making at most Q = Q(n, 1

ε ,
1
τ , s) correlational queries

of tolerance τ . Then, there exists a set G of at most Q + 1 functions mapping {−1, 1}n into
[−1, 1] such that, for every c ∈ Cs, there exist a g ∈ G such that |〈g, c〉| ≥ τ . Moreover, such a
set G can be recovered by an algorithm running in deterministic time T .

Proof. We will simulate the CSQ oracle for A and simulate the learning algorithm to construct
the set of functions G.

Simulate the CSQ algorithm A for Cs. Each time the algorithm makes a correlational query
to the CSQ oracle, return 0. Stop the simulation if A runs for T steps or makes Q queries. Let
g1, g2, · · · , gk be the queries made by the algorithm we stop simulating A. Then, k ≤ Q. If A
returns a hypothesis h. Let G = {gi | 1 ≤ i ≤ k}∪{h}. If A doesn’t return any hypothesis, there
must not be any function in Cs consistent with our answers for the CSQs which immediately
yields that for every c ∈ Cs, there exists a gi for i ∈ [k] such that |〈c, gi〉| > τ . Now suppose A
returns an hypothesis h.

We now verify that G satisfies the required conditions stated in the theorem statement. Let
c ∈ Cs. One of the following two conditions has to be true:

1. |〈c, gi〉| ≤ τ for each 1 ≤ i ≤ k.
In this case, observe that the answers returned to the algorithm while simulating the CSQ
oracle are consistent with the target function c within the tolerance bound of τ . Thus,
Prx∼U [h(x) 6= c(x)] ≤ ε or |〈c, h〉| ≥ 1− 2ε ≥ τ .

2. There exists a j, 1 ≤ j ≤ k such that |〈gj , c〉| ≥ τ . In this case we are immediately done
since gj ∈ G.

We now show that CSQ learning algorithms yield circuit lower bounds.

Theorem 23 (CSQ Learning Yields Circuit Lower Bounds). Let C be a representation class
of Boolean functions on {−1, 1}n. Let ε, τ be any parameters satisfying 1

2 > ε and τ ≤
min {ε, 1− 2ε}. Suppose there exists an algorithm A that runs in time T = T (n, 1

ε ,
1
τ , s)

that learns Cs on the uniform distribution in the CSQ model to accuracy 1 − ε by at most

15

Q = Q(n, 1
ε ,

1
τ , s) ≤ poly(τ) · 22n

queries, each of tolerance τ . Then, there exists a Boolean func-
tion (family) f ∈ DTIME(T + poly(Q, 1

τ)) such that for every c ∈ Cs, Prx∼U [f(x) 6= c(x)] ≥ τ
4 .

The intuitive idea is that we can use Lemma 22 to construct the set G of size ≤ Q + 1.
Running deterministic discrepancy minimization algorithm (Lemma 20) on G ∪ −G yields a
function f that has low correlation with every function in G (using Proposition 21). The fact
that every function in Cs is non-trivially correlated with some function in G is then invoked to
argue that f should be far from Cs.

Remark 1. The theorem holds for any ε < 1/2 and thus even a weak learning algorithm for Cs
that uses only CSQs yields lower bounds against Cs.

Algorithm 2 Hard Function f that uses CSQ learner A as a subroutine

Input: x ∈ {−1, 1}n Output: A value in {−1, 1}.
1: Use learner A to obtain the set G of size at most Q + 1 of weakly correlating

functions for Cs.
2: Let {−1, 1}n be partitioned into consecutive blocks in lexicographic order
E1, E2, · · · , Ek each of size t (the last block may be of smaller size).

3: Determine j such that x ∈ Ej . Recover all the points in Ej .
4: Run deterministic discrepancy minimization on the class G∪−G and domain Ej to

obtain a function fj : Ej → {−1, 1}.
5: Return fj(x).

Proof. We need to describe a procedure to compute f using blackbox access to the CSQ learning
algorithm A. We will show that f is far from Cs and f ∈ DTIME(T + poly(Q)). Let x be
the input to f . First, construct G, the set of weakly correlating functions by simulating the
learning algorithm for Cs using Lemma 22. Notice that since the CSQ algorithm doesn’t use any
randomness of its own, the procedure produces a fixed set G in any run of the algorithm. Let

{−1, 1}n into consecutive blocks E1, E2, · · ·Ek each of size t = d 64 log 2|G|
τ2 e ≤ d64 log 4Q

τ2 e (the last
block Ek may be smaller). f first finds out j such that x ∈ Ej . It then runs the deterministic
discrepancy minimization algorithm (Lemma 20) on the class G ∪ −G and domain Ej . Suppose
fj : Ej → {−1, 1}n is the function returned by the algorithm. f outputs fj(x). By using

Proposition 21, we observe that for every g ∈ G and for every j < k, |〈fj , g〉Ej
| ≤ 2

√
4 log 4Q

t ≤
τ/4.

Fix any j ∈ [k]. Notice that for any x ∈ Ej , the algorithm runs the discrepancy minimization
on the same class G ∪ −G and on the same domain Ej , thus constructing the same function fj
each time. Thus, for each x ∈ {−1, 1}n, f(x) = fj(x) whenever x ∈ Ej .

Thus, |〈fj , g〉Ej
| ≤ τ/4. Now for each g,

|〈f, g〉| = |
k∑
j=1

|Ej |
2n
〈fj , g〉Ej

| ≤ τ

2
· (
k−1∑
j=1

|Ej |
2n

) + 1 · t
2n

<
τ

2
+

1

2n
· d64 log 4Q

τ2
e ≤ τ/2,

(since Q ≤ 22n · poly(τ)).
To show the average case hardness of f for Cs, fix any c ∈ Cs. Let gc ∈ G such that

|〈c, gc〉| ≥ τ , but |〈f, gc〉| ≤ τ
2 . Since by changing a single coordinate in the 2n-dimensional vector

representing function c we can only change the value of 〈c, gc〉 by ±2/2n, it must be the case that

16

c and f differ in at least a τ/4 fraction of the inputs. In other words, Prx∼U [f(x) 6= c(x)] ≥ τ
4 , as

desired. Finally, observe that the value of f at any x ∈ {−1, 1}n can be evaluated in deterministic
time poly(|G|, 1

τ) = poly(|Q|, 1
τ). This completes the proof.

Note that since the class of all parity functions requires 2Ω(n) SQs to learn [Kea98], we
immediately obtain that if C is efficiently SQ learnable then C cannot compute some parity. Thus
any efficient SQ learnability of a class C immediately yields a worst case lower bound. Such
an argument can actually be extended to obtain even a weak average case lower bound. This
is based on the characterization of CSQ learning by the SQ Dimension studied in [BFJ+94].
The SQ dimension of a class C on the uniform distribution is the largest number d such that
there exist functions c1, c2, · · · cd ∈ C, such that for every i 6= j, |〈ci, cj〉| ≤ 1

d3 . Kearns et. al.
characterized the query complexity of the best SQ algorithm that learns C on U to be within
a polynomial factor of the SQ dimension of C on U . The following proposition shows that
efficient CSQ learnability of C by CSQs of tolerance τ implies that there is a parity which is
1− 1/nω(1)-hard for P/poly[C].

Compare this to Theorem 23 which shows that there is a function computable in super
polynomial time and is τ/4-hard for P/poly[C] from the same assumption.

Lemma 24. Suppose Cs, a representation class of Boolean functions of size at most s, is
learnable to an accuracy of 1/3 by CSQs of tolerance τ (lower bounded by an inverse polynomial
in n) in time T (n, s) upper bounded by some polynomial in n, s where c is the target function.
Then, there exists a parity χS, |S| = O(log s

logn), such that Prx∼U [χS(x) 6= c(x)] ≥ 1
n|S|

for every

c ∈ Cs. Consequently for every k = ω(1), there exists a parity that cannot be computed on at
least 1

nk fraction of the inputs by any function in P/poly[C]

Proof. Suppose Cs is learnable by a CSQ algorithm to accuracy of 1/3 in time T (n, s). Then
the SQ dimension of Cs on the uniform distribution is bounded above by T (n, s).

For some k, that we will fix later, consider the set of all parities over subsets of at most k
variables out of n variables.

Suppose for each T ⊆ [n] such that |T | ≤ k, there exists a cT ∈ P/poly[C] such that
|〈cT , χT 〉| > 1− 1

nk . Consider |〈cT , cR〉| = 2(1−dist(cT , cR)) for some T,R such that |T |, |R| ≤ k.
Then, by triangle inequality (for Hamming distance), dist(χT , χR) ≤ dist(χT , cT)+dist(cT , cR)+
dist(cR, χR). Using orthogonality of distinct parities, dist(cT , cR) ≥ 1 − 2 · (1

2 −
1

2nk) = 1
nk

yielding, |〈cT , cR〉| < 1− (1− 1
nk) = 1

nk . This yields that the set {cT | |T | ≤ k} forms a set of

nk functions that satisfy |〈cT , cR〉| ≤ 1
nk for every T 6= R of size k, or that the SQ dimension of

P/poly[C] is at least nk.
Now, choose a large enough constant k, such that nk > T (n, s) to obtain a contradiction

yielding that some parity on k variables cannot be correlated with any c ∈ Cs by more than
1− 1

nk .

Remark 2. Observe that from the proof above, one can only obtain the conclusion that some
parity differs from every c ∈ P/poly[C] on a negligible fraction (inverse super-polynomial) of
inputs.

7.3 SQ Learning Yields Circuit Lower Bounds

In this section we prove that it is possible to obtain strong average-case hardness results from
the existence of an algorithm that learns using statistical queries. Formally, we will show that if
we can learn a class C in the statistical query model, then either there is an explicit function f
that is average-case hard for C, or P#P * P.

We have seen in the proof of Theorem 23 that a learning algorithm that uses only correlational
queries yields an explicit average case hard function. Since the target independent queries do

17

not depend on the target function, a deterministic algorithm to compute such queries will
immediately give us the same conclusion starting from SQ algorithms. However, answering a
target independent query involves estimating the expectation of a function specified by some
Boolean circuit, and no efficient deterministic algorithm is known for this task. We explain why
our proof technique cannot accommodate randomized learning algorithms in Section 8.

Here, we show that we can indeed prove that SQ algorithms yield lower bound, but our proof
here will not be constructive as in the case of CSQ algorithms. Each target independent query
asks the oracle an estimate for the expectation of a function, given by some circuit. Thus a
#P oracle is enough to answer such queries exactly. (Recall that #P is the class of counting
problems associated with NP-relations.)

The main result of this section follows from Proposition 6 and a slight modification of the
argument used in the proof of Theorem 23.

Theorem 25 (SQ Learning Yields Circuit Lower Bounds). Let C be a representation class
of Boolean functions on {−1, 1}n. Let ε, τ satisfy ε < 1/2 and τ ≤ min {ε, 1− 2ε}. Suppose
there exists an algorithm A that runs in time T = T (n, 1

ε ,
1
τ , s) that learns Cs over the uniform

distribution to an accuracy of 1 − ε using at most Q = Q(n, 1
ε ,

1
τ , s) SQs, each of tolerance τ .

Then, at least one of the following conditions hold:

• There exists a function (family) f ∈ DTIME(poly(T,Q, 1/τ)) such that for every c ∈ Cs,
we have

Pr[c(x) 6= f(x)] ≥ τ/4,

• or P#P * P.

Proof. If P#P * P, we are done. Assume P#P ⊆ P. Thus, we have an efficient deterministic
procedure to answer target independent queries. We now follow the proof of Theorem 23, relying
on Proposition 6. Observe that if we show that the conclusion of Lemma 22 follows even from
an SQ (instead of CSQ) algorithm, we are done, as the rest of the proof of Theorem 23 does not
use A. To show the conclusion of Lemma 22 starting from an SQ algorithm, we describe how to
obtain a set G of almost orthogonal functions. As in the original proof, to every correlational
query asked by A, f replies with 0. We use the efficient algorithm granted by our assumption to
answer target independent queries (each one is specified by some poly(s) size circuit) within τ .
Let g1, g2, · · · , gk be the correlational queries made by algorithm A before it returns a hypothesis
h, and define as before G = {gi | 1 ≤ i ≤ k} ∪ {h}. The same argument used in the proof of
Lemma 22 applies to G, and the result follows.

Remark 3. By using more powerful results it is possible to replace #P by smaller complexity
classes. In other words, the same argument works for any complexity class that allows us to
answer the target independent queries. We omit the details.

It is known that if P = NP then EXP requires circuits of exponential size2. Therefore, we
have unconditionally that either P#P * P or EXP requires large circuits. Comparing this result
with our theorem, we observe that under efficient learnability Theorem 25 implies that either
P#P * P or P contains functions that are average-case hard for C.

8 Directions for Further Work

In this paper we showed that the existence of deterministic mistake-bounded or exact learning
algorithms yield lower bounds as long as the mistake-bound (or queries, respectively) is less

2If P = NP then PH collapses to P. Using a padding argument, it follows that the exponential time hierarchy
collapses to EXP, which implies that this class contains functions of exponential circuit complexity by Kannan’s
theorem.

18

than the trivial bound of 2n. Further, our proofs for these classes work even when the learning
algorithms are allowed access to arbitrary oracles. Thus, obtaining a new learning algorithm for a
circuit class can be a method to prove new lower bounds against it. An analogous approach was
used by Williams [Wil10, Wil11] to obtain new circuit lower bounds from improved satisfiability
algorithms.

Note, however, that our techniques do not yield an explicit lower bound starting from
randomized learning algorithms. In order to construct a hard function, we must simulate a
learning algorithm as a subroutine. If the behavior of the learning algorithm (on a fixed input) is
not deterministic (due to say the learning algorithm’s internal randomness) then our simulation
is not fixed and so may give different output values starting from the same input. Thus, such
learning algorithms will not yield a function.

This is also the underlying difficulty in simulating a general SQ (as opposed to CSQ) algorithm,
as the SQ algorithm may ask for an estimate to Ex[g(x)] for an arbitrary (polynomial-time
computable) predicate. In the CSQ model, we can appeal to Lemma 15 and deterministically
obtain a fixed set of approximating functions.

We show that PAC learning algorithms yield a conditional lower bound (depending on whether
PSPACE computations can be sped up by the use of randomness or not). On the other hand,
Fortnow and Klivans [FK09] show that efficient PAC-learnability of a class C yields that BPEXP
does not have polynomial size circuits from C. Thus, another open question is to extend this line
of work and obtain the same conclusion involving BPSUBEXP instead of BPEXP. As explained
above, our “diagonalization” trick to prove lower bounds breaks down in this case, as these
algorithms use internal randomness.

Acknowledgements

Igor would like to thank Rocco Servedio for encouraging him to work on the relation between
learning and circuit lower bounds.

References

[Adl78] L. Adleman. Two theorems on random polynomial time. In 19th Annual Symposium
on Foundations of Computer Science, pages 75–83. IEEE, 1978.

[Ang88] D. Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.

[BEHW87] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.
Occam’s razor. Inf. Process. Lett., 24(6):377–380, 1987.

[BF02] N.H. Bshouty and V. Feldman. On using extended statistical queries to avoid
membership queries. The Journal of Machine Learning Research, 2:359–395, 2002.

[BFJ+94] Avrim Blum, Merrick L. Furst, Jeffrey C. Jackson, Michael J. Kearns, Yishay
Mansour, and Steven Rudich. Weakly learning dnf and characterizing statistical
query learning using fourier analysis. In STOC, pages 253–262, 1994.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexpo-
nential time simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3:307–318, 1993.

[Cha00] Bernard Chazelle. The discrepancy method: randomness and complexity. Cambridge
University Press, New York, NY, USA, 2000.

[CKK12] E. Chattopadhyay, A. Klivans, and P. Kothari. An explicit VC-theorem for low-
degree polynomials. In Anupam Gupta, Klaus Jansen, José D. P. Rolim, and Rocco A.
Servedio, editors, APPROX-RANDOM, volume 7408 of Lecture Notes in Computer
Science, pages 495–504. Springer, 2012.

19

[Fel08] Vitaly Feldman. Evolvability from learning algorithms. In STOC, pages 619–628,
2008.

[FK09] Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit
lower bounds. J. Comput. Syst. Sci., 75(1):27–36, 2009.

[GH11] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing
using depth-3 arithmetic circuits. In Rafail Ostrovsky, editor, FOCS, pages 107–109.
IEEE, 2011.

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Inf.
Process. Lett., 43(4):169–174, 1992.

[GZ11] Oded Goldreich and David Zuckerman. Another proof that BPP ⊆ PH (and more).
In Studies in Complexity and Cryptography, pages 40–53. 2011.

[HH11] R. Harkins and J. Hitchcock. Exact learning algorithms, betting games, and circuit
lower bounds. Automata, Languages and Programming, pages 416–423, 2011.

[IW96] Russell Impagliazzo and Avi Wigderson. P = BPP unless E has sub-exponential
circuits: Derandomizing the XOR lemma (preliminary version). In Proceedings of
the 29th STOC, pages 220–229. ACM Press, 1996.

[Kab13] Valentine Kabanets. Private communication, 2013.

[Kea98] Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. Journal
of the ACM, 45(6):983–1006, 1998. Prelim. ver. in Proc. of STOC’93 .

[KL80] Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and
uniform complexity classes. In STOC, pages 302–309, 1980.

[KS09] Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning
intersections of halfspaces. J. Comput. Syst. Sci., 75(1):2–12, 2009.

[KV94a] M. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean formulae
and finite automata. JACM: Journal of the ACM, 41, 1994.

[KV94b] Michael J. Kearns and Umesh V. Vazirani. An introduction to computational learning
theory. MIT Press, Cambridge, MA, USA, 1994.

[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. In Machine Learning, pages 285–318, 1988.

[Mat99] Jiri Matousek. Geometric Discrepancy: An Illustrated Guide (Algorithms and
Combinatorics). Springer, 1 edition, 1999.

[PA95] Janos Pach and Pankaj Agrawal. Combinatorial Geometry. Wiley-Interscience,
October 1995.

[Siv02] D. Sivakumar. Algorithmic derandomization via complexity theory. In IEEE
Conference on Computational Complexity, 2002.

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity
via uniform reductions. Computational Complexity, 16(4):331–364, 2007.

[Vad12] Salil P. Vadhan. Personal communication, 2012.

[Val84] Leslie G. Valiant. A theory of the learnable. In STOC, pages 436–445, 1984.

[Val09] Leslie G. Valiant. Evolvability. J. ACM, 56(1), 2009.

[Wil10] R. Williams. Improving exhaustive search implies superpolynomial lower bounds. In
Proceedings of the 42nd ACM symposium on Theory of computing, pages 231–240.
ACM, 2010.

[Wil11] R. Williams. Non-uniform acc circuit lower bounds. In Computational Complexity
(CCC), 2011 IEEE 26th Annual Conference on, pages 115–125. IEEE, 2011.

20

A Proof that PAC Learning Yields Circuit Lower Bounds

Here we provide the complete proof of Theorem 13. We state it again for convenience.

Theorem (Theorem 13). Let C be any concept class and suppose that there exists an algorithm
that PAC learns C under the uniform distribution using membership queries when given access
to an oracle O in time T (n, 1/ε, log 1/δ, size(c)). Let L? be a language that is both downward-
self-reducible and α(n)-self-correctible. Then, for any constructive function s : N→ N, at least
one of the following conditions hold:

(i) L? /∈ Cs; or

(ii) L? ∈ BPTIME(poly(T (n, 1/α(n), log n, s)))O.

Proof. If L? /∈ Cs then there is nothing to prove. Assume therefore that L? ∈ Cs. In other
words, there exists a constant n0 such that, for every n > n0, there is a concept cn ∈ Csn such
that L?n = cn. Let d(n) be a non-decreasing polynomial that upper bounds the number of
downward queries necessary to compute L? on any input of size n given access to a routine
that computes L? on inputs of size n− 1. Since L? is self-correctible, there exists an efficient
reduction such that, if we can compute L?n correctly on at least a (1 − α(n))-fraction of the
inputs, then we can compute it correctly on every input of size n with probability at least 2/3.
Finally, let Learner be an algorithm that, when given access to oracle O, is able to learn C in time
T (n, 1/ε, log 1/δ, size(c)), where size(c) is an upper bound on the size of the unknown concept.

We need to prove that L? ∈ BPTIME(poly(T (n, 1/α(n), log n, s)))O. Given an input x of size
n, we use Learner and the special properties of language L? to “learn” how to compute L? on
every instance of size at most n. More specifically, for any integer k, given a procedure Ak that
decides L? on any instance of size k (with high probability), we use Learner together with the
downward-self-reducibility of L? and the fact that this language is self-correctible to obtain a
procedure Ak+1 that decides L? on any instance of size k + 1 (with high probability).

The execution of the algorithm for L? proceed as follows. First, it starts with a procedure
An0

that can be implemented by a lookup-table algorithm (recall that n0 is a constant). Now
we explain in more details how to go from, say, An0

to An0+1. We simulate Learner pretending
that the unknown concept is cn0+1 = L?n0+1. If at some point the learning algorithm queries
the value of cn0+1(w) on some input w of size n0 + 1, we use An0 together with the downward-
self-reducibility property of L? to provide an appropriate answer. If Learner queries its oracle
O, we provide the answer using our own oracle O. After finishing its computation, the learning
algorithm outputs a deterministic hypothesis hn0+1 that is ε-close to cn0+1 with high probability.
We use the fact that L? is self-correctible to obtain from hn0+1 a procedure Ãn0+1 that is correct
on every input of size n0 + 1 with probability at least 2/3. Finally, using standard amplification
techniques, it is possible to get from Ãn0+1 a procedure An0+1 that is correct on every input
with high probability. By repeating this process at most n stages, we obtain a procedure An and
output An(x). Let A be the algorithm that runs as described. The formal description of A is
presented next.

First we argue that A computes L?(x) correctly with high probability, then we upper bound
its running time.

Claim 2. For any input x, A outputs L?(x) with probability at least 2/3.

Proof. Note that, for each stage k, A fails to obtain a good routine Ak only if:

• At least one the at most tn · d(n) downward queries answered by Ak−1 is incorrect. It
follows by a union bound that this happens with probability at most tn · d(n) · γ = 1/20n.

• Algorithm Learner does not output a good hypothesis. This also happens with probability
at most δ = 1/20n.

21

Algorithm 3 Description of Algorithm A that computes a hard function using PAC learner

Input: A string x of size n (and oracle access to O).
Output: The value L?(x) (with high probability).

1: Start with a “lookup-table” routine An0 that computes L correctly on all inputs of size
n0.

2: for k = n0 + 1 to n do
3: Run Learner with parameters k, ε = α(n), δ = 1/20n, and size(c) = s(k) (here we

use the fact that s(·) is constructible). Whenever Learner asks for the value ck(w) of
some example w of size k, use routine Ak−1 and the downward self-reducibility of L? to
compute a guess for ck(x) = L(x). Since A has oracle access to O, any query to this
oracle made by Learner can also be answered efficiently. When the learning algorithm
finishes its computation, it outputs with probability at least 1 − δ a deterministic
hypothesis hk that is ε-close to ck (note that hk does not have access to O).

4: Since ε = α(n) and L? is α(n)-self-correctible, A uses hk and the self-correctibility
of L? to get a routine Ãk such that for any input w of size k, Ãk(w) = L?(w) with
probability at least 2/3. By running Ãk at most O(log 1/γ) times and taking a majority
vote, it follows from standard Chernoff bounds that we obtain a routine Ak that is
incorrect on any input with probability at most γ. We set γ = 1/(20tnd(n)n), where
tn = T (n, 1/α(n), log 20n, s).

5: end for
6: return An(x).

Overall, for each stage k, we fail to obtain a good algorithm Ak with probability no more
than 1/10n. Since there are at most n stages, An fails to compute L?(x) with probability at
most 1/10 + γ ≤ 1/3.

Claim 3. Given oracle access to O, algorithm A runs in randomized time poly(T (n, 1/α(n), log n, s))).

Proof. First we upper bound the running time of each procedure Ak. Observe that Ak uses Ãk,
which is obtained from hk. Recall that the running time of hk is bounded by the running time
of Learner, which is at most t(k, 1/α(n), log 20n, s(k)) ≤ T (n, 1/α(n), log 20n, s) = tn, since both
s(·) and t(·) are non-decreasing3. Further, to obtain Ãk we use the self-correctibility of L?, which
is implemented by a polynomial-time reduction. In other words, Ãk runs in time O(tan) for some
constant a. Finally, the amplification step that is used when we go from Ãk to Ak only needs
to run Ãk for O(log 1/γ) = O(log(20tn · d(n) · n)) times, which implies that the overall time
complexity of Ak, for any 1 ≤ k ≤ n, is upper bounded by O(tan · log(20tn · d(n) · n)) = O(tbn) for
some constant b (recall that d(·) is a polynomial).

Now we upper bound the overall running time of algorithm A. Each stage k consists of
simulating algorithm Learner for at most t(k, 1/α(n), log 20n, s(k)) ≤ tn steps. In the worst-case,
each step may involve a membership query to the unknown concept, which translates to at most
d(n) downward queries to Ak−1. Since Ak−1 runs in time O(tbn), the overall time complexity
of each stage is at most O(tn · d(n) · tbn) = O(tcn) for some constant c. There are no more

3We have implicitly used the standard fact that any PAC learning algorithm can be efficiently converted into an
algorithm that has a logarithmic dependence on 1/δ. A proof of this result can be found on Kearns and Vazirani
[KV94b] textbook.

22

than n stages. It follows that, given oracle access to O, algorithm A runs in randomized time
poly(T (n, 1/α(n), log n, s))).

23

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

