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Abstract

We show that for several natural problems of interest, complexity lower bounds that are
barely non-trivial imply super-polynomial or even exponential lower bounds in strong computa-
tional models. We term this phenomenon “hardness magnification”. Our examples of hardness
magnification include:

1. Let MCSP[s] be the decision problem whose YES instances are truth tables of functions
with circuit complexity at most s(n). We show that if MCSP[2

√
n] cannot be solved on

average with zero error by formulas of linear (or even sub-linear) size, then NP does not have
polynomial-size formulas. In contrast, Hirahara and Santhanam [HS17] recently showed
that MCSP[2

√
n] cannot be solved in the worst case by formulas of nearly quadratic size.

2. If there is a c > 0 such that for each positive integer d there is an ε > 0 such that the
problem of checking if an n-vertex graph in the adjacency matrix representation has a
vertex cover of size (log n)c cannot be solved by depth-d AC0 circuits of size m1+ε, where
m = Θ(n2), then NP does not have polynomial-size formulas.

3. Let (α, β)-MCSP[s] be the promise problem whose YES instances are truth tables of func-
tions that are α-approximable by a circuit of size s(n), and whose NO instances are truth
tables of functions that are not β-approximable by a circuit of size s(n). We show that
for arbitrary 1/2 < β < α ≤ 1, if (α, β)-MCSP[2

√
n] cannot be solved by randomized

algorithms with random access to the input running in sublinear time, then NP 6⊆ BPP.

4. If for each probabilistic quasi-linear time machine M using poly-logarithmic many random
bits that is claimed to solve Satisfiability, there is a deterministic polynomial-time machine
that on infinitely many input lengths n either identifies a satisfiable instance of bitlength n
on which M does not accept with high probability or an unsatisfiable instance of bitlength
n on which M does not reject with high probability, then NEXP 6= BPP.

5. Given functions s, c : N → N where s ≥ c, let MKtP[c, s] be the promise problem whose
YES instances are strings of Kt complexity [Lev84] at most c(N) and NO instances are
strings of Kt complexity greater than s(N). We show that if there is a δ > 0 such that
for each ε > 0, MKtP[Nε, Nε + 5 log(N)] requires Boolean circuits of size N1+δ, then
EXP 6⊆ SIZE(poly).

For each of the cases of magnification above, we observe that standard hardness assumptions
imply much stronger lower bounds for these problems than we require for magnification.

We further explore magnification as an avenue to proving strong lower bounds, and argue
that magnification circumvents the “natural proofs” barrier of Razborov and Rudich [RR97].
Examining some standard proof techniques, we find that they fall just short of proving lower
bounds via magnification. As one of our main open problems, we ask whether there are other
meta-mathematical barriers to proving lower bounds that rule out approaches combining mag-
nification with known techniques.
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1 Introduction

1.1 Overview

It is a truth universally acknowledged that the state of the art in complexity lower bounds is
very primitive indeed. The main open problems in complexity theory, such as NP vs. P and EXP
vs. SIZE(poly) ask about super-polynomial lower bounds against strong computational models. In
contrast, the lower bounds we can actually show for explicit problems are either for weak models
such as constant-depth circuits [Ajt83, FSS84] and monotone circuits [Raz85], or are weak in
magnitude, such as the 5n circuit size lower bound [IM02] or sub-cubic formula size lower bound
for Andreev’s function [H̊as98]. Despite decades of effort, the frontier of complexity lower bounds
tends to advance very slowly or not at all. Advances often require substantially new ideas, such
as the algorithmic paradigm introduced by Williams [Wil13] and used to show [Wil14] that NEXP
does not have polynomial-size constant-depth circuits with composite modular gates.

Is the lack of progress on lower bounds due to our own lack of imagination, or is there an
inherent difficulty? Some evidence for the inherent difficulty of the problem is given by meta-
mathematical barriers such as the relativization barrier [BGS75], natural proofs barrier [RR97] and
algebrization barrier [AW09]. These barriers seek to understand and explain the limits of various
classes of techniques for proving lower bounds.

The natural proofs barrier, in particular, suggests a certain dichotomy between “weak” circuit
classes such as AC0 circuits of sub-exponential size, AC0[p] (for prime p) circuits of sub-exponential
size, branching programs of sub-quadratic size and Boolean formulas of sub-cubic size on the one
hand,1 and “strong” circuit classes such as Boolean circuits of polynomial size or Boolean formulas
of polynomial size which are believed to be able to implement pseudo-random functions (see e.g.
[BR17]). For weak circuit classes, we already have lower bounds via current techniques using
“naturalizing” proofs. For strong circuit classes, which are the ones that primarily interest us, lower
bounds are believed to be far out of our reach, as there are not even good candidate techniques
for proving such lower bounds. There are certain liminal classes such as ACC0 and TC0 circuits of
depth 2 which don’t yet fit clearly into this dichotomy, but by and large the dichotomy seems to
capture current beliefs about the hardness of proving lower bounds.

We argue that this gap between weak and strong classes is somewhat illusory, or at the very
least depends on the specific problems for which we try to show lower bounds. For various natural
problems of interest, and for a range of computational models, we show that lower bounds against
weak circuit classes imply lower bounds for strong circuit classes. We term this phenomenon
“hardness magnification”.

Hardness magnification in computational complexity is related to the somewhat recent work of
Allender and Koucký [AK10], who showed how to amplify lower bounds for NC1 against constant-
depth circuit classes from size n1+ε for fixed ε > 0 to super-polynomial size using self-reducibility.
However, while their work is focused on lower bounds for “strongly self-reducible” problems in
NC, our results are much broader, addressing problems such as SAT for which their techniques do
not seem to yield interesting consequences, and also addressing a greater variety of computational
models such as general Boolean circuits, Boolean formulas, branching programs, sub-linear time
algorithms, etc. Moreover, while the lower bounds they “amplify” are not known to hold for any
explicit problems, the lower bounds from which we show magnification are in many cases known for

1We refer to a textbook such as [Juk12] for an exposition of these circuit classes and corresponding lower bounds.
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explicit problems – just not for the specific problems we consider.2 (We discuss additional related
work in Section 1.3.)

On the other hand, a form of hardness magnification has been recently observed by Müller and
Pich [MP17, Proposition 4.14] in the context of proof complexity. In more detail, their argument
establishes that barely non-trivial lower bounds for bounded-depth Frege systems for certain tau-
tologies of interest imply super-polynomial lower bounds for Frege systems.3 The interesting aspect
of this result compared to [AK10] is that lower bounds against bounded-depth Frege systems are
known (but not for the same tautologies). Moreover, the tautologies from [MP17] have been studied
in the past, and lower bounds in weaker proof systems have been obtained for the same class of
tautologies. While our results are incomparable to their work in proof complexity, it served as a
source of inspiration for our investigations.

The general template for our results is as follows. We consider various natural problems Q that
are believed to be hard. For each such problem Q, we show:

(a) An implication from a weak lower bound for Q (i.e., a lower bound that is weak in magnitude
and/or against a weak model) to a strong lower bound for a problem in NP or EXP.

(b) Under a standard hardness hypothesis, the weak lower bound for Q (and indeed a stronger
lower bound) does hold. Thus magnification is a sound approach to proving strong lower
bounds under standard hardness hypotheses.

(c) The weak lower bound is “barely non-trivial”, in that a trivial lower bound that is only
slightly smaller can be shown to hold. Moreover, in several cases, the weak bound is known
for some explicit problem, just not for the problem Q we consider.

The details of the magnification results depend on the problems Q we consider and on the
involved computational models. To establish magnification as a fairly general phenomenon, we
consider a range of such problems:

• Variants of the Minimum Circuit Size Problem (MCSP), where the input is the truth table
of a Boolean function and the question is whether the function has small circuits.

• Variants of the Minimum Kt Complexity Problem (MKtP), where the input is a string and
the question is if the string has low Kt complexity, where Kt complexity is Levin’s notion of
Kolmogorov time bounded complexity.

• The Vertex Cover problem.

• Satisfiability (3-SAT).

Our most interesting magnification results are for “meta-computational” problems such as
MCSP, MKtP and SAT, where the instance of the problem itself encodes a computation. This
re-inforces the message of several works in complexity theory (e.g., [NW94, RR97, Wil13]) that
understanding the complexity of meta-computational problems is closely associated with making
progress on complexity lower bounds.

2Note that some researchers [Wil18] do not see compelling evidence that the weak lower bounds required by
Allender and Koucký [AK10] hold.

3The result is not stated in this way, but the proof shows that weak lower bounds are sufficient.
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Our results can be interpreted in different ways. For an optimist, they might give hope that
strong lower bounds are achievable. First, the weak lower bounds from which we magnify are in
several cases already known for explicit problems, so it’s “merely” a question of showing similar
lower bounds for the problems we consider. Second, approaches via magnification appear to avoid
the natural proofs barrier to proving lower bounds. Recall that the natural proofs barrier [RR97]
rules out circuit lower bounds given by dense and constructible properties that are useful against
the circuit class, modulo standard cryptographic assumptions. Even if the weak lower bound that is
required for magnification is shown via a natural property, the magnification step seems to destroy
the density of the corresponding property, as magnification only seems to hold for certain special
structured problems and not for generic ones. The argument here is similar to the argument of
Allender and Koucký [AK10, Section 8] that “amplifying lower bounds via self-reducibility” evades
the natural proofs barrier.

For the pessimist, magnification might simply be an indication that natural proofs and other
barriers do not capture all obstacles to proving circuit lower bounds. In this view, magnification
is simply an invitation to refine and extend our meta-mathematical understanding of circuit lower
bounds so that we have compelling explanations of why lower bounds via magnification would be
hard to achieve.

We see this as a win-win situation: either strong lower bounds can be shown via magnification,
or magnification and similar phenomena will motivate us to gain a better understanding of the
limitations of lower bound techniques.

1.2 Results and techniques

This section describes in more detail our main results and techniques. We often use a concrete
choice of parameters to simplify the exposition. More general versions of these statements appear
in the main body of the paper.

A magnification phenomenon around quasi-linear size lower bounds. We say that a
function f : {0, 1}n → {0, 1} is γ-approximable by a boolean circuit C if Prx[f(x) = C(x)] ≥ γ,
where x ∼ {0, 1}n. Let (α, β)-MCSP[s] be the promise problem whose YES instances are truth
tables of functions that are α-approximable by a circuit of size s(n), and whose NO instances are
truth tables of functions that are not β-approximable by a circuit of size s(n). We use N = 2n to
denote the input length of (α, β)-MCSP[s], and consider the problem with α = 1 and β = 1 − δ,
where δ = δ(n) > 0 is a parameter that measures the gap between YES and NO instances of
(1, 1− δ)-MCSP[s].

We use Formula[t] to denote the set of functions that can be computed by Boolean formulas of
size at most t. Our first result can be stated as follows.

Theorem 1. Let δ : N → R and consider the problem (1, 1 − δ)-MCSP[s]. The following results
hold.

(i) Let s(n) = nk and δ(n) = n−k, where k ∈ N. If (1, 1− δ)-MCSP[s] /∈ Formula[N · (logN)O(1)]
then there is L ∈ NP over m-bit inputs such that L /∈ Formula[poly(m)].

(ii) For the same choice of parameters, if (1, 1 − δ)-MCSP[s] /∈ Formula[N1+ε] for some ε > 0,

then there is L ∈ NP over m-bit inputs and δ > 0 such that L /∈ Formula[2m
δ
].

5



(iii) Let s(n) = 2o(n) and δ(n) = 2−o(n). if (1, 1 − δ)-MCSP[s] /∈ Formula[N1+ε] for some ε > 0,
then there is L ∈ NP over m-bit inputs such that L /∈ Formula[poly(m)].

Theorem 1 is a consequence of a more general result presented in Section 3.1. It magnifies
super-linear size formula lower bounds between N · poly(logN) and N1+ε to much stronger lower
bounds against formulas for a function in NP. As a consequence, minor improvements in lower
bounds for (1, 1− δ)-MCSP[s] around the linear-size regime would have major implications in our
understanding of formula lower bounds for explicit problems.

Note that Theorem 1 asks for barely super-linear formula size lower bounds. We observe that
there are no known algorithms for (1, 1− δ)-MCSP[s] over N -bit inputs running in time 2o(s(n)). In
particular, for δ > 1/2 it is not known how to solve this problem in time polynomial over the input
length N for any n � s(n) � 2o(n). Under standard cryptographic assumptions, it is possible to
use the theory of natural proofs [RR97] to prove that (1, 1 − δ)-MCSP[s] cannot be computed by
circuits of polynomial size if s(n) = nk and k is sufficiently large (Proposition 19).

Let AC0
d[t] denote depth-d AC0 circuits of size t. We establish the following additional hardness

magnification result.

Theorem 2. Suppose there exists k ≥ 1 such that for every d ≥ 1 there is εd > 0 such that
(1, (1− δ))-MCSP[s] /∈ AC0

d[N
1+εd ], where s(n) = nk and δ(n) = n−k. Then NP * NC1.

This result can be seen as an analogue in circuit complexity of the hardness magnification
phenomenon observed in proof complexity by Müller and Pich [MP17, Proposition 4.14].

Perhaps intriguingly, much stronger formula size lower bounds are known for problems consid-
erably simpler than (1, 1− δ)-MCSP[s]. For instance, it is well-known that the parity function over
N input variables requires formulas of size Ω(N2), and there are several techniques able to prove
strong lower bounds against AC0 circuits. Can we use these existing approaches to establish lower
bounds for (1, 1− δ)-MCSP[s]?

We sketch in Appendix Section C how known results and techniques imply the following lower
bounds. Let 1/2 ≤ γ < 1 be an arbitrary constant. Then, for some choice of s(n) = 2Θ(nγ) and
δ(n) = 2−n+Θ(nγ), we have (1, 1 − δ)-MCSP[s] /∈ Formula[N2−o(1)]. Note that this lower bound is
not good enough for hardness magnification (i.e., Theorem 1) because the parameter δ(n) is not
large enough. On the other hand, we note that if s(n) = nω(1) and δ < 1/2 is fixed, then for every
d ≥ 1 and every ` ≥ 1 we have (1, 1− δ)-MCSP[s] /∈ AC0

d[N
`]. Observe that this lower bound is not

good enough for hardness magnification (i.e., Theorem 2) because the parameter s(n) is too large.
We briefly discuss the techniques behind the proof of Theorem 1, which is not technically

involved but requires certain crucial insights. The argument is by contrapositive, so we assume
that every problem in NP on m input bits has formulas of bounded size. In order to solve (1, 1−δ)-
MCSP[s] by almost-linear size formulas, we proceed as follows. We take a projection of the input
truth table on a certain number of random locations, and define a “compressed” language L in NP
over m input bits, where m ≈ s(n)/δ(n)� N = 2n, which captures a succinct version of the initial
problem. Using the gap parameter δ, it is possible to show that if the input truth table admits
small circuits, so does its random projection. On the other hand, a probabilistic argument proves
that if the input truth table cannot be approximated by small circuits, then with high probability
the projected truth table does not admit small approximating circuits. This allows us to employ
small formulas for L to solve the original problem. However, this argument is probabilistic, and the
reduction sketched before is randomized. In order to get almost-linear size formulas for (1, 1− δ)-
MCSP[s], we derandomize this construction in an elementary but careful way using non-uniform
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formulas. While the formulas for L have small size as a function of m when compared to N , the
non-constructive derandomization argument is responsible for the almost-linear size bounds (in N)
for the formulas obtained for (1, 1− δ)-MCSP[s].

We observe that the argument is inspired in part by Occam’s Razor, an idea from learning
theory (see e.g. [KV94]). The details are in Section 3.1, where the proof of Theorem 2 is also
presented.

Results similar to Theorem 1 can be proved with respect to boolean circuits and indeed for a
variety of boolean devices. The main advantage of presenting these ideas in the context of formula
complexity is because for formulas there are non-trivial polynomial lower bounds for several explicit
problems, and a large number of techniques have been developed for establishing such lower bounds
(cf. the discussion in Section 5).4

Kt Complexity and lower bounds for EXP. Note that the previously considered problem con-
cerns the average-case complexity of strings, viewed as truth tables. We show next a magnification
result for a computational problem related to the worst-case complexity of strings.

Let U be a fixed universal machine. For a non-empty string x ∈ {0, 1}∗, Kt(x) is the minimum
over |p|+ log(t) such that U(p) outputs x within t steps. Given functions s, c : N→ N where s ≥ c,
let MKtP[c, s] be the promise problem over N -bit inputs whose YES instances are strings of Kt
complexity [Lev84] at most c(N) and NO instances are strings of Kt complexity greater than s(N).

Let SIZE[t] denote the class of boolean circuits of size at most t. We establish the following
result.

Theorem 3. If there is a fixed δ > 0 such that for each ε > 0, MKtP[N ε, N ε + 5 log(N)] does not
have circuits of size N1+δ, then EXP 6⊆ SIZE(poly).

It is not hard to see that MKtP[N ε, N ε + 5 log(N)] ∈ EXP. Moreover, results from [ABK+06]
show that this problem is hard for EXP under non-uniform reductions. In particular, if EXP does
not have polynomial size circuits, neither does this problem. This allows us to get the following
equivalence as a consequence.

Corollary 4. MKtP[N ε, N ε + 5 log(N)] has polynomial-size circuits for each ε > 0 iff for all δ > 0
there is an ε > 0 such that MKtP[N ε, N ε + 5 log(N)] has circuits of size N1+δ.

In terms of techniques, the proof of Theorem 3 adapts the ideas behind Theorem 1 and combines
them with a new ingredient: highly efficient error-correcting codes that can be encoded and decoded
by algorithms of quasi-linear complexity [Spi96]. Such error-correcting codes can be used together
with the notion of Kt complexity to reduce the proof of Theorem 3 to a scenario that is similar
to the one in the proof of Theorem 1. An important distinction is that we reduce to a certain
compressed language that is in EXP instead of NP, and the argument uses boolean circuits instead
of boolean formulas.

Theorem 3 and Corollary 4 are proved in Section 3.2.

Magnification from sub-linear average-case lower bounds. The results discussed above
require lower bounds that are super-linear in the number N of input bits. Our next theorem shows
that in some settings hardness magnification also follows from sub-linear lower bounds.

4In some computational models, we can work with a two-sided version (α, β)-MCSP[s] instead of (1, 1−δ)-MCSP[s].
The only issue here is the complexity of the non-uniform derandomization.
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Let MCSP[s] be the (standard) Minimum Circuit Size Problem over N -bit inputs whose YES
instances are truth tables of functions with circuit complexity at most s(n). We consider the most
natural notion of average-case complexity for MCSP over the uniform distribution, as introduced by
[HS17]. A (zero-error) average-case algorithm or device A for MCSP[s] is a deterministic procedure
that always outputs a value in {0, 1, “?”}, and that satisfies the following conditions: (1) A is never
incorrect; and (2) Prx[A(x) 6= “?”] ≥ 1/2. (The constant 1/2 is arbitrary.) In other words, the
procedure provides a 0/1 answer for a non-trivial fraction of input truth tables, and never makes a
mistake.

Theorem 5. If MCSP[2
√
n] on N -bit inputs cannot be solved on average with zero error by formulas

of size o(N), then NP does not have polynomial size formulas.

It is not hard to show that MCSP[s] is not in SIZE[poly(N)] on average under standard cryp-
tographic assumptions. Indeed, as observed in [HS17], the existence of average-case algorithms for
MCSP is equivalent to the existence of natural proofs.

This magnification result is in sharp contrast to a recent lower bound from [HS17] showing
that MCSP[2

√
n] cannot be solved in the worst case by formulas of nearly quadratic size. As a

consequence, there is a dramatic distinction between establishing worst-case super-linear lower
bounds and establishing average-case sub-linear lower bounds for MCSP. Also note that much
stronger N3−o(1) average-case formula size lower bounds are known for explicit problems [KRT17].

The proof Theorem 5 is elementary, and is reminiscent of an idea used in the proof of the main
result from [RR97]. Our new conceptual insight is in exploring this argument from the perspective
of hardness magnification. This and other related results are discussed in Section 3.3, and we refer
to that section for more details.

Sub-linear randomized lower bounds and NP vs. BPP. Our next result in the sub-linear
regime is with respect to worst-case probabilistic computations. We say that a randomized algo-
rithm A computes a function f if on every input x, Pr[A(x) = f(x)] ≥ 2/3. For the definition
of (sub-linear) randomized computation, we take any uniform model of computation that allows
random-access to the input string.

Recall the definition of the problem (α, β)-MCSP[s] introduced above. We show the following
magnification result in the setting of sub-linear randomized computations.

Theorem 6. Let 1/2 < β < α ≤ 1 be constants, c ∈ N, and s(n) ≤ 2n
γ
, where γ < 1. If there

is ε > 0 such that (α, β)-MCSP[s] on N -bit inputs cannot be computed by a (two-sided error)
randomized algorithm running in time 2(logN)1−ε

, then NP * BPP.

We note that stronger lower bounds are known against randomized computations with random-
access to the input string for other (explicit) computational problems. Indeed, any reasonable model
of computation of this form can be simulated by (non-uniform) randomized branching programs. If
the original randomized algorithm uses time T and memory S, so does the corresponding distribu-
tion of deterministic branching programs (i.e., the longest path has length ≤ T and there are ≤ 2S

nodes in any branching program in the support of the distribution). In [BSSV03, Corollary 6.7], it
is proved that an explicit N -bit boolean function in P requires two-sided error randomized branch-
ing programs running in super-linear time T (N) = ω(N) if the number of nodes in the branching

program is ≤ 2N
1−Ω(1)

. This lower bound is much stronger than the one required in Theorem 6.
The proof of Theorem 6 is along the lines of the random projection argument sketched for the

proof of Theorem 1. We refer the reader to Section 3.4.
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Vertex Cover and Magnification. The results discussed before concerned meta-computational
problems such as MCSP and its variants. We discuss now a hardness magnification result for Vertex
Cover, a well-known graph-theoretic problem in NP.

Recall that in the Vertex-Cover problem, the input is a pair (G,w), where G ∈ {0, 1}(
n
2) encodes

the adjacency matrix of an undirected n-vertex graph G = (V,E), and w ∈ {0, 1}logn encodes in
binary an integer parameter k ≥ 0. The pair (G,w) is a positive instance of Vertex-Cover if there
exists S ⊆ V , |S| ≤ k, such that every e = {u, v} ∈ E intersects S. Similarly, for k = k(n) we
let k-Vertex-Cover be the same computational problem with the exception that the parameter k is
fixed in advance and is not part of the input. We use m = Θ(n2) to denote the total input length
of an instance of k-Vertex-Cover on n-vertex graphs.

Theorem 7. Let k(n) = (log n)C , where C ∈ N is arbitrary. If for every d ≥ 1 there exists ε > 0
such that k-Vertex-Cover /∈ AC0

d[m
1+ε], then NP * NC1.

Under ETH, k-Vertex-Cover cannot be solved in time 2o(k) · poly(m) ([IPZ01]; see e.g. [DF13,
Theorem 29.5.9]). Therefore, it is plausible that k-Vertex-Cover is not in P if k = ω(log n). Moreover,
using the NP-completeness of Vertex-Cover and a simple translation argument, for any ε > 0
there is a constant C such that if k = (log n)C , then k-Vertex-Cover is not in P unless CNF-
SAT ∈ DTIME[2n

ε
]. Consequently, while Theorem 7 asks for a barely non-trivial lower bound in a

very weak circuit model, standard assumptions imply much stronger results.
For larger k(n), we can establish a connection to time-space trade-off results (see e.g. [FLvMV05,

Wil07]). The next statement assumes a model where the algorithm has random-access to the input
string. This is compatible with existing time-space trade-offs. For concreteness, one can use Turing
Machines with a read-only input tape, a constant number of working tapes, and a special tape used
to address the input string. Recall that DTISP[t(n), s(n)] denotes the class of languages that can
be decided by an algorithm that simultaneously runs in time O(t(n)) and space O(s(n)).

Theorem 8. Let k(n) = no(1). If there exists ε > 0 such that k-Vertex-Cover /∈ DTISP[m1+ε,mo(1)],
where the input is an n-vertex graph represented by an adjacency matrix of bit length m = Θ(n2),
then P 6= NP.

The reader familiar with time-space trade-offs might recall that it is known unconditionally that
the Vertex Cover problem is not in DTISP[m1.8,mo(1)] (see e.g. [Wil07]). However, such statement
has two important differences in comparison to Theorem 8. First, the input encoding is different.
Existing lower bounds employ a list of vertices followed by a list of edges. Secondly, the parameter
k(n) is much closer to n.

The techniques employed in the proof of these two results explore a connection to kernelization,
a widely-investigated method from parameterized complexity (see e.g. [DF13]). Recall that a ker-
nelizable (parameterized) problem can be reduced in polynomial time to a much smaller instance
of itself, where the new input size m′ can be upper bounded by a function of k. It is well-known
that k-Vertex-Cover is kernelizable. We explore this idea from the point of view of hardness magni-
fication. Indeed, while kernelizablity has been used mainly algorithmically, our insight here is that
an extremely efficient implementation has consequences for lower bounds.

In order to explain the approach, we sketch some high-level ideas used in the proof of Theorem
7. The result is established in the contrapositive. In other words, under the assumption that
NP ⊆ NC1, we must compute k-Vertex-Cover using almost-linear size constant-depth circuits. Let
T be a kernelization routine for k-Vertex-Cover which maps inputs represented by m bits and
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with a parameter k to an instance of Vertex-Cover whose size is poly(k). Since by assumption
NP is contained in NC1, standard results imply that NP can be computed by sub-exponential
size circuits of sufficiently large constant depth. Consequently, using that Vertex-Cover ∈ NP and
k(n) = (log n)C , we can solve the new instance obtained via kernelization by constant-depth circuits
of size at most m (where m = Θ(n2) is the original input length). Our argument would be complete
if we could also implement the routine T using almost-linear size AC0 circuits. This part of the
argument requires low-level implementations, and relies on fairly efficient computations that can
be done by such circuits with a sub-linear number of (unbounded fan-in) gates.

Theorems 7 and 8 are formally established in Section 4.1.

Nontrivial lower bounds for Satisfiability and NEXP vs. BPP. Our last hardness magni-
fication example holds for the standard formulation of the 3-SAT problem. However, unlike the
earlier results which magnify from worst-case or average-case lower bounds, the main result in this
section magnifies from lower bounds against polynomial-time refuters, a notion defined by Kabanets
[Kab01].

Intuitively, the theorem says that if any probabilistic quasi-linear time algorithm for SAT can
be efficiently refuted in the sense that there is a polynomial-time algorithm that infinitely often
produces either YES instances on which the algorithm does not accept with high probability or
NO instances for which the algorithm does not reject with high probability, then NEXP is different
from BPP. The antecedent here is a “mild” lower bound against quasi-linear time algorithms,
while the consequent is a more significant lower bound against any polynomial-time algorithm, but
for a larger class. While the requirement to prove a lower bound against refuters might appear
much stronger than the requirement to prove a worst-case lower bound, the work of [GST07] (see
also [Ats06]) shows that these requirements are essentially equivalent when the refuter has more
resources than the algorithm, as in our case. The reason we are unable to relax our requirement to
a worst-case lower bound is that it is important in our argument that the refuter is deterministic
while the algorithm is allowed to be randomised.

We use |φ| to denote the bitlength complexity of a 3-SAT formula φ.

Theorem 9. Suppose that for every probabilistic machine M that on inputs of length m halts in
time m·polylog(m) and uses polylog(m) many random bits, there is a deterministic polynomial-time
machine N such that for infinitely many m, N(1m) outputs a 3-CNF formula φm where |φm| = m
for which either φm is satisfiable and M(φm) rejects with probability > 1/m or φm is unsatisfiable
and M(φm) accepts with probability > 1/m. Then NEXP * BPP.

Modulo the use of refuters, Theorem 9 provides a bridge between two frontiers in complexity
theory: establishing non-trivial lower bounds for Satisfiability against unrestricted algorithms, and
understanding the power of randomness in computation. Note that much stronger running time
lower bounds are know for Satisfiability in the standard sense (i.e., without refuters), but they
only hold under the assumption that the algorithm uses a sub-linear amount of memory (see
e.g. [FLvMV05, Wil07]).

This is our most technically demanding proof. In terms of results, the argument relies on efficient
versions of the PCP theorem where the reduction runs in quasi-linear time, and on the Easy Witness
Lemma of [IKW02]. Other concepts that play a role are the notion of Kt complexity discussed above,
a related notion of KT Kolmogorov complexity introduced by [All01], and a random projection of
clauses that defines a randomized reduction to a certain compressed satisfiability problem. Instead
of presenting a high-level exposition of the proof, we discuss some analogies with the proof of
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Theorem 1, which motivated our main ideas. (The argument sketched below assumes background
in complexity theory.)

The proof of Theorem 9 is also by contrapositive. Suppose that NEXP = BPP. Recall that for
Theorem 1 we considered a version of the MCSP problem with a gap between positive and negative
instances. One should think of each clause of the 3-SAT instance φ as an entry in the input truth
table for (1, 1 − δ)-MCSP[s]. If we were able to create a gap between positive (satisfiable) and
negative (unsatisfiable) instances of 3-SAT, we could try to exploit some of the ideas employed in
the MCSP context. Under this analogy, this turns out to be precisely what is granted by the PCP
theorem. (We use a very efficient version of the PCP theorem that does not affect our barely super-
linear complexity requirements.) Assume from now on that we need to solve 3-SAT on instances
with a gap: YES instances are satisfiable, while in any NO instance at most a (1 − ε)-fraction of
the clauses can be simultaneously satisfied.

For the next step of the analogy, the reader should relate circuits to assignments, and small
circuits to assignments that are encoded by strings of low complexity. From this perspective, a
random projection in the context of (1, 1− δ)-MCSP[s] corresponds here to a random projection of
input clauses. Similarly to the proof of Theorem 1, we reduce the problem to a certain compressed
language L over smaller input strings, and use the complexity collapse to solve L very efficiently.
There is however a crucial difference: while in the (1, 1 − δ)-MCSP[s] setting we only had to care
about potential small circuits computing the input truth table, for 3-SAT we care about all possible
satisfying assignments, and not only about those of “low complexity”. In order to address this, the
Easy Witness Lemma and the notion of refuters play a fundamental role.

The high-level idea is that the refuter either produces (1) a unsatisfiable formula; (2) a satisfiable
formula that admits a satisfying assignment of low complexity; or (3) a satisfiable formula such
that every satisfying assignment has high complexity. Since we are arguing in the contrapositive,
we need to claim that no refuter succeeds. By carefully designing the compressed/sketched version
of the 3-SAT problem used in our reduction, it is possible to rule out cases (1) and (2) using an
analysis that is similar to the proof of Theorem 1. On the other hand, in the remaining case (3)
we get that the (deterministic) refuter produces a sequence of infinitely many formulas that are
satisfiable but do not admit satisfying assignments of low-complexity. By appropriately defining
the notions of complexity involved in the argument, we are able to explore this refuter to define
a language in NEXP that does not admit succinct witnesses in the sense of [IKW02]. By their
Easy Witness Lemma, this implies (in particular) that NEXP 6= BPP, which contradicts our initial
assumption.

A detailed exposition of the proof of Theorem 9 appears in Section 4.2.

We defer the discussion of some concrete directions and open problems to Section 5.

1.3 Further remarks and related work

Artificial Constructions. The magnification theorems presented in the previous section hold
for several natural problems. We note that in the deterministic worst-case setting more dramatic
magnification theorems can be established for problems that are defined in an artificial way. In
particular, under plausible hardness assumptions, there are explicit problems over n-bit inputs
that are not in P, but showing that they require circuits of size (1 + ε)n in the worst-case implies
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NP * SIZE[2n
o(1)

].5 Unfortunately, this does not offer a better approach to lower bounds. We
are not aware of a magnification result from C · n size lower bounds for problems of practical or
theoretical interest, where C is a constant (in the deterministic worst-case setting).

Terminology. A few comments on the “magnification” terminology are in order. As opposed
to other similar names considered in the literature, we use this notation to refer to results where
a lower bound that is small in value with respect to a certain measure is magnified to a lower
bound of larger value with respect to the same complexity measure. In some cases, our results
also “escalate” to a more expressive computational model, such as in Theorems 2 and 7 (this phe-
nomenon is observed in the so-called “lifting” theorems from communication complexity and proof
complexity). Hardness magnification is in particular different from standard hardness “amplifica-
tion” results such as the well-known XOR Lemma and its variants (where average-case hardness is
amplified, but size bounds slightly decrease). Due to these distinctions, we believe that the term
“magnification” describes our set of results in a more appropriate way.

Related work on magnification. In addition to the papers [AK10] and [MP17] mentioned above,
we are aware of three other works showing magnification theorems in our sense.

Srinivasan [Sri03] considered the problem of n1−o(1)-approximating the size of the maximum
clique in a graph, and showed that barely super-linear lower bounds against randomized algorithms
imply separations such as NP * BPP. We refer to his work for several variants of this result. In
terms of techniques, Srinivasan’s proof also uses random projections, though the technical details
are different compared for instance to our Theorem 1. A drawback of his magnification theorem is
that it seems to be very hard to prove unconditional lower bounds for this approximating problem,
not to mention the difficulty of analysing the corresponding computational model. To our knowl-
edge, [Sri03] was the first to show a magnification phenomenon for a natural problem previously
considered in the literature.

Motivated by [AK10], Lipton and Williams [LW13] established a magnification result for the
Circuit Evaluation Problem in the context of almost-linear time and sub-linear space algorithms
(similar in spirit to Theorem 8, but with different parameters). In contrast, their result offers an
approach to separating P from NC. The proof uses different ideas compared to our Theorem 8, and
we refer to their work for more details and related results.

More recently, [CILM18] (see also [HWY11]) established a magnification theorem in non-
commutative arithmetic circuit complexity. Interestingly, their results show the existence of a
generic magnification phenomenon in this setting, where any explicit lower bound can be magni-
fied. The argument seems to explore non-commutativity in a fundamental way.

2 Preliminaries

2.1 Basic definitions

Let Fn be the family of all boolean functions f : {0, 1}n → {0, 1}, and F = {Fn}n. We can
represent Boolean functions as strings via the truth table mapping. Given a Boolean function
f ∈ Fn, tt(f) is the 2n-bit string which represents the truth table of f in the standard way,
and conversely, given a string y ∈ {0, 1}2n , fn(y) is the Boolean function in Fn whose truth

5This can be shown, for instance, using a padding argument and assuming ETH (Exponential Time Hypothesis).
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table is represented by y. For convenience, a boolean function f is often identified with the set
f−1(1) ⊆ {0, 1}n.

Let C = {Cn}n∈N be a class of Boolean functions, where each Cn ⊆ Fn. Given a language

L ⊆ {0, 1}∗, we write L ∈ C if for every large enough n we have that Ln
def
= {0, 1}n ∩ L is in

Cn. Often we will abuse notation and view C as a class of Boolean circuits. We use number of
gates to measure circuit size. We denote by Cd[s] the set of C-circuits of size at most s = s(n)
and depth at most d = d(n). As usual, we say that a uniform complexity class Γ is contained in
C[poly(n)] if for every L ∈ Γ there exists k ≥ 1 such that L ∈ C[nk]. We say that C is typical if
C ∈ {AC0,AC0[p],ACC0,TC0,NC1,Formula,Circuit}. We sometimes use SIZE[s] to refer to boolean
circuits of size at most s.

We will use a few different variants of the Minimum Circuit Size Problem in our results. We
refer to Section A for definitions.

2.2 Notions of Kolmogorov Complexity

For the next definitions, we fix a computational model with random-access to the input string.
Indeed, whenever we consider almost linear time computations we refer to algorithms that can
access their input bits in an efficient way. The particular details of the computational model
are not so relevant, since we won’t distinguish polylogarithmic factors in the context of uniform
computations.

Definition 10. Let U be a universal machine. For any string x ∈ {0, 1}∗, Kt(x) is the minimum
over |p|+ log(t) such that U(p) outputs x within t steps.

Definition 11. Let U be a universal machine. For any string x ∈ {0, 1}∗, KT (x) is the minimum
over |p|+t such that U(p, i) = xi in at most t steps for each i, 1 ≤ i ≤ |x|, and moreover U(p, i) =⊥
for all i > |x|.

The following inequality is Proposition 1 in [All01], where KT-complexity was introduced.

Proposition 12 ([All01]). For all x ∈ {0, 1}∗, Kt(x) ≤ 3KT (x).

2.3 Technical results

We state below some technical results that will be used in different proofs.

Lemma 13 (Concentration Bound; cf. [J LR00, Theorem 2.1]). Let X ∼ Bin(m, p) and λ = mp.
For any t ≥ 0,

Pr[|X − E[X]| ≥ t] ≤ exp

(
− t2

2(λ+ t/3)

)
.

Lemma 14 (Folklore; cf. [AHM+08, Lemma 8.1]). Let {Cn}, n ∈ N be a sequence of fan-in two
Boolean circuits over n input variables and of depth D = O(log n), and let d ≥ 2 be a constant.

There is a sequence {Dn} of depth-d AC0 circuits of size 2n
O(1/(d−1))

such that for each n ∈ N, Dn

computes the same Boolean function as Cn.
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3 Hardness Magnification for MCSP and Related Problems

3.1 Non-uniform formula lower bounds

We use number of leaves to measure formula size, and let Formula[s] denote the set of functions
computed by formulas of size at most s. We assume negations appear at the input leaves only, and
that constants 0 and 1 are available in addition to the input literals. We will need the following
standard result.

Proposition 15 (Bound on the Number of Circuits). Let s ≥ n and n ≥ c, where c is a large
enough constant. There are at most 23s log s different circuits on n input variables of size at most s.

Proof. Since s ≥ n, each (fan-in two) circuit of this size can be represented by a boolean string of
length ≤ 3s log s that lists its collection of wires and gate types.

Recall that for string w ∈ {0, 1}N and N = 2n, we use fn(w) : {0, 1}n → {0, 1} to denote the
boolean function encoded by w.

Lemma 16 (Magnification Lemma for Formulas). Let s : N→ N and δ : N→ [0, 1/2) be construc-
tive functions, where s(n) ≥ n. Consider the promise problem Π[s, δ] = (1, 1 − δ)-MCSP[s], where
for every N = 2n,

Πyes
N = {y ∈ {0, 1}N | ∃ circuit of size ≤ s(n) that computes fn(y)}

Πno
N = {y ∈ {0, 1}N | @ circuit of size ≤ s(n) that (1− δ(n))-approximates fn(y)}.

Then, for every function ` : N→ N, if Π[s, δ] cannot be computed by formulas of size N · `(n), then
there is a sequence {fm(n)}n≥1 of m(n)-bit functions in NP that cannot be computed by formulas of
size ≤ `(n), where m(n) = Θ((n · s(n) · log s(n))/δ(n)).

Proof. We consider the computational problem Succinct-Π[s, t], defined next. This is essentially
Succinct-MCSP (Section A), but in order to be formal we make the input encoding fully explicit.
The input instances are of the form 〈1n, 1s(n), (x1, b1), . . . , (xt(n), bt(n))〉, where xi ∈ {0, 1}n and
bi ∈ {0, 1}, i ∈ [t(n)]. Any instance of this form can be encoded by a string of length exactly
m(n) = n+ 1 + s(n) + 1 + t(n) · (n+ 1). The function Succinct-Π[s, t] : {0, 1}∗ → {0, 1} evaluates
to 1 on an input string if and only if it is of the form above and there exists a circuit C over n
input variables and of size at most s such that C(xi) = bi for all i ∈ [t(n)]. Note that the problem
is in NP as a function of its total input length m, provided that s and t are constructive functions.

From now on, let t(n)
def
= (3s(n) log s(n))/δ(n). Assume there exists a sequence {Fm(n)}n≥1 of

formulas of size `(n) computing Succinct-Π[s, t], where Fm(n) : {0, 1}m(n) → {0, 1}. Recall that
N(n) = 2n. We construct randomized formulas EN that separate Πyes

N and Πno
N . More precisely,

each formula EN : {0, 1}N × {0, 1}n·t(n) → {0, 1} will satisfy the following conditions:

If w ∈ Πyes
N =⇒ Pr

y
[EN (w,y) = 1] = 1, (1)

If w ∈ Πno
N =⇒ Pr

y
[EN (w,y) = 1] < 1/2. (2)

Each formula EN computes as follows. It interprets its random input y as a sequence of t(n)
strings y1, . . . , yt(n) ∈ {0, 1}n. From such strings and the input string w ∈ {0, 1}N , EN produces an

instance zw,y ∈ {0, 1}m(n) of Succinct-Π[s, t] given by

zw,y
def
= 〈1n, 1s(n), (y1, (fn(w))(y1)), . . . , (yt(n), (fn(w))(yt(n)))〉,
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where (fn(w))(yi) is the value of the function represented by w on the input yi, i.e., the bit of w
indexed by y1. Finally, the formula EN outputs Fm(n)(zw,y).

We argue next that conditions (1) and (2) are satisfied by EN . If w ∈ Πyes
N , then w is computed

by some circuit C of size at most s(n). Consequently, for every choice y of the random string y, C
is also consistent with the input pairs encoded by zw,y. It follows that EN (w, y) = Fm(n)(zw,y) = 1.
On the other hand, let w ∈ Πno

N be a negative instance, and fix an arbitrary circuit C on n input
variables and of size at most s(n). Since Prx[C(x) 6= (fn(w))(x)] ≥ δ(n), it follows that the
probability that C agrees with fn(w) on t(n) independent random inputs y1, . . . ,yt(n) is less than

(1− δ(n))t(n) ≤ e−δ(n)t(n) ≤ e−3s(n) log(s(n)), using our choice of t(n). Therefore, by a union bound
on the number of circuits of size at most s(n) (Proposition 15), it follows that condition (2) is also
satisfied.

Our next step is a derandomization of the formulas EN using a standard argument. Let GN be
the formula that computes the conjunction of N independent copies of EN . In other words,

GN : {0, 1}N × ({0, 1}n·t(n))N → {0, 1} and GN (w, y(1), . . . , y(N))
def
=

N∧
i=1

EN (w, y(i)).

Clearly, GN (w, ~y) accepts a string w ∈ Πyes
N with probability 1. On the other hand, it accepts

a string w ∈ Πno
N with probability strictly less than 2−N . Fix α ∈ {0, 1}N ·(n·t(n)) to be a string

that correctly derandomizes GN on inputs from Πyes
N ∪ Πno

N ⊆ {0, 1}N , and let G?N be a formula
computing the corresponding function G?N : {0, 1}N → {0, 1}.

In order to complete the proof, it is enough to upper bound the formula size of G?N . Recall that
Fm(n) has formula size `(n). Each component EN (w, y(i)) of G?N has been fixed to EN (w,α(i)),

where α(i) ∈ {0, 1}n·t(n) denotes the i-th section of the string α. Therefore, it is enough to replace
the leaves of the formula Fm(n) by constants and appropriate literals formed from w in order to

compute EN (w,α(i)). It follows that each EN (w,α(i)) can be computed by a formula of size at
most `(n). Consequently, G?N can be computed by a formula containing at most N ·`(n) leaves.

Note that in the proof above we used in a crucial way that G?N does not need to compute
addressing functions to perform the projection. This would result in larger formulas.

Below we instantiate Lemma 16 with some representative settings of parameters.

Theorem 17 (Magnification of Weak Formula Lower Bounds). For convenience, let Π[s, δ] =
(1, 1− δ)-MCSP[s]. The following implications hold.

(i) Let s(n) = nk and δ(n) = n−k, where k ∈ N. If Π[s, δ] /∈ Formula[N · (logN)O(1)] then there
is L ∈ NP over m-bit inputs such that L /∈ Formula[poly(m)].

(ii) For the same choice of parameters, if Π[s, δ] /∈ Formula[N1+ε] for some ε > 0, then there is

L ∈ NP over m-bit inputs and δ > 0 such that L /∈ Formula[2m
δ
].

(iii) Let s(n) = 2o(n) and δ(n) = 2−o(n). if Π[s, δ] /∈ Formula[N1+ε] for some ε > 0, then there is
L ∈ NP over m-bit inputs such that L /∈ Formula[poly(m)].

Proof. Immediate from Lemma 16.

Let AC0
d[M ] denote the class of unbounded fan-in depth-d size-M circuits. The next result shows

that even very weak bounded-depth circuit lower bounds imply super-polynomial formula-size lower
bounds.

15



Theorem 18 (Formula Lower Bounds from Weak AC0 Lower Bounds). Suppose there exists k ≥ 1
such that for every d ≥ 1 there is εd > 0 such that (1, 1−δ)-MCSP[s] /∈ AC0

d[N
1+εd ], where s(n) = nk

and δ(n) = n−k. Then NP * NC1.

Proof Sketch. We employ the same approach and notation of Lemma 16. Suppose that NP ⊆ NC1,
and let {Fm} be a family of polynomial size formulas for the corresponding problem Succinct-
Π[s, t]. Take d′ ∈ N large enough so that each Fm can be computed by a depth-d′ circuit of size,
say, 2O(

√
n) (Lemma 14). Note that a fixed d′ independent of n with this property must exist, since

for our choice of parameters each formula Fm has poly(n) input variables. Proceeding exactly as in
the proof of Lemma 16 but using bounded-depth circuits instead of formulas, we get that for some
d ∈ N, Π[s, δ] can be computed by depth-d circuits of size N1+o(1). This completes the proof.

We can show under standard cryptographic assumptions and an appropriate choice of param-
eters that Π is hard even for polynomial size circuits. The next proposition follows ideas and
notation from [RR97].

Proposition 19 (Conditional Hardness of Π). Suppose there exists a polynomial time one-way
function f : {0, 1}∗ → {0, 1}∗ secure against circuits of size 2n

ε
, where ε > 0. Then, if k ∈ N is

large enough, Π[nk, 1/3] = (1, 2/3)-MCSP[nk] cannot be computed by circuits of size NO(1).

Proof Sketch. We use an idea from [RR97]. Under the existence of exponentially hard one-way
functions, there exists a family {Fw}w∈{0,1}poly(n) of pseudorandom functions with Fw : {0, 1}n →
{0, 1} computable by circuits of size nc that is secure against non-uniform oracle circuits of size
2n

γ
, for some c ∈ N and γ > 0. However, if Π[nk, 1/3] can be computed by circuits of size NO(1)

for every k ∈ N, it is possible to distinguish {Fw} from random functions, as described below.
Let {DN,k}N be a sequence of circuitsDN,k : {0, 1}N → {0, 1} of size≤ N ` computing Π[nk, 1/3],

where N(n) = 2n. We construct an oracle distinguisher against {Fw}. Let m = nγ/2, and consider
DM,k for M = 2m and a large enough k. We view DM,k as an oracle circuit D̃M,k for functions
in {0, 1}n → {0, 1} by replacing its M -bit input string by oracle calls corresponding to the oracle

input locations x1n−n
γ/2

, where x ∈ {0, 1}nγ/2 . Observe that, for large n, D̃M,k has size at most

2n
γ
, since DM,k has size M ` ≤ 2`·n

γ/2
.

We claim that D̃M,k distinguishes {Fw} from random with constant probability. First, note that

if g : {0, 1}n → {0, 1} is a random function, then g′ : {0, 1}nγ/2 → {0, 1} given by g′(x) = g(x1n−n
γ/2

)
is also a random function. Since a random function cannot be non-trivially approximated by
polynomial size circuits, it follows that g′ ∈ Πno

M [mk, 1/3]. In particular, D̃M,k outputs 0 on g with
probability ≥ 1 − o(1), given that this oracle circuit was constructed from a circuit DM,k that
computes Π[mk, 1/3] over M -bit inputs. On the other hand, for an oracle function coming from

{Fw}, observe that the restriction of any function Fw : {0, 1}n → {0, 1} to F ′w(x) = Fw(x1n−n
γ/2

)
is a function over m input variables and of circuit complexity at most mO(c/γ). Thus, for a large
enough k, F ′w ∈ Πyes

M [mk, 1/3]. In turn, we get that D̃M,k outputs 1 on Fw with probability 1. This
contradicts the security of {Fw}, and completes the proof.

Is (1, 1 − δ)-MCSP[s] harder than natural properties? While Proposition 19 provides evidence
of the hardness of (1, 1− δ)-MCSP[s] via natural properties, we give in Section B an example of a
consequence of the easiness of (1, 1− δ)-MCSP-C[s] that does not seem to follow from the existence
of a natural property against C-circuits of size s.

We refer to Section C for some lower bounds related to the magnification results discussed in
this section.
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3.2 Non-uniform circuit lower bounds

In this section, we describe results showing that slightly better than super-linear circuit lower
bounds imply separations such as P 6= NP. Indeed, substantially stronger separations can be
obtained by improving circuit lower bounds from n · (log n)k to n1+ε, where n is the number of
input bits.

In the case of boolean circuits, we can employ a two-sided variant of the Approximate MCSP
problem (see Appendix A).6 The main advantage is that its hardness might be easier to establish.
For simplicity, we state the result for a particular choice of parameters.

Theorem 20 (Magnification of Weak Circuit Lower Bounds in NP). Let s : N→ N, where s(n) ≥ n,
and let 1/2 < β < α ≤ 1 be arbitrary constants. Further, let Π[s, α, β] = (α, β)-MCSP[s]. Then,

(i) Suppose there exists sub-exponentially secure one-way functions. Then there is k? ≥ 1 such
that for s(n) = nk

?
, Π on N -bit inputs requires circuits of size Nω(1). Unconditionally, Π

requires circuits of size Ω(N).

(ii) Let s(n) = nk
?
. If Π on inputs of length N cannot be computed by circuits of size N ·

(logN)O(1), then NP * SIZE[poly(n)].

(iii) Similarly, if Π is not computable by circuits of size N · 2(logN)o(1)
, then NP * SIZE[2n

o(1)
].

Proof Sketch. The argument in (i) showing that Π requires super-polynomial size circuits under a
cryptographic assumption is similar to the proof of Proposition 19. On the other hand, in order
to show that Π unconditionally requires circuits of size Ω(N), it is enough to use an adversarial
argument. Indeed, a circuit of size s depends on at most 2s input variables. One can then fix these
inputs and apply the idea from the proof of Lemma 51.

For the proof of (ii), the strategy is analogous to the proof of Lemma 16. A crucial difference is
that we reduce Π[s, α, β] to Approximate Succinct MCSP (Appendix A). In terms of parameters, we
consider the gap γ = α−β, and use (α′, β′)-Succinct-MCSP[t], where t = Θ̃(nk

?
), α′ = β+γ/2+γ/10,

and β′ = β+ γ/2− γ/10. The analysis of the correctness of the reduction in Lemma 16 is replaced
here by a similar analysis that relies on a concentration bound (Lemma 13).7 Finally, for the
derandomization step, we use a threshold gate instead of a conjunction. The crucial point is that
circuits, as opposed to formulas, can compute majority gates over M input variables using O(M)
gates (cf. [Weg87]).

Finally, the proof of (iii) is entirely analogous, and the only difference is over the choice of
parameters.

Note that a generalization of Theorem 20 in the sense of Lemma 16 also holds. Consequently, un-
derstanding the circuit complexity of (α, β)-MCSP around the almost-linear-size complexity regime
would have major consequences for complexity theory.

Our next results show that weak circuit lower bounds for the problem of approximating the Kt
complexity of a string to within a small additive term imply super-polynomial circuit size lower
bounds for EXP. While these results are for a larger class, they have the advantage they hold for
the problem of approximating the Kt complexity of a string to within a small additive term. This is

6In the case of formulas, we were not able to use this formulation because it is unclear to us whether an approximate
majority function on n input bits can be computed by formulas of size Õ(n).

7For more details, see the proof of Theorem 31 in Section 3.4.
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a problem about the worst-case complexity of a string rather than its average-case complexity, and
moreover the problem we consider is known [ABK+06] to be hard for EXP under polynomial-size
reductions.

We will use Spielman’s construction [Spi96] of error-correcting codes of constant rate and dis-
tance that are very efficiently encodable and decodable.8

Theorem 21 ([Spi96]). There is a family of error correcting codes of constant rate and relative
distance that can be encoded, decoded and inverted by algorithms running in quasi-linear time.
Moreover, encoding can be done by circuits of linear size.

Now we are ready to state and prove our theorem.

Theorem 22 (Magnification of Weak Circuit Lower Bounds in EXP). If there is a fixed δ > 0
such that for each ε > 0, MKtP[N ε, N ε + 5 log(N)] does not have circuits of size N1+δ, then
EXP 6⊆ SIZE(poly).

Proof. We show the contrapositive. Assume EXP ⊆ SIZE(poly). We show that for all δ > 0, there
is ε > 0 such that MKtP[N ε, N ε + 5 log(N)] has circuits of size N1+δ.

Let E be the linear-time encodable and decodable error correcting code given by Theorem 21.
Let C > 1 and γ > 0 be constants such that E maps N bits to CN bits and has relative distance
2γ.

We show how to construct circuits of size N1+δ for the problem MKtP[N ε, N ε + 5 log(N)], for
any ε small enough.

Given an input w for the problem MKtP[N ε, N ε + 5 log(N)], we first apply the error-correcting
code E to get z = E(w). Note that this can be implemented by a circuit of linear size, by the
assumption on complexity of the encoder.

We claim that for large enough N , if Kt(w) ≤ N ε, then Kt(z) ≤ N ε + 2 log(N), and if
Kt(w) > N ε+5 log(N), then Kt(z′) > N ε+3 log(N) for any z′ such that |z′| = |z| and ∆(z, z′) < γ,
where ∆(z, z′) is the relative Hamming distance between z and z′.

To see the first part of the claim, let p be a program and t a time bound such that U(p) = w in
at most t steps, and such that |p|+log(t) ≤ N ε. Consider the program p′ that first runs p and then
runs the quasilinear-time algorithm for E on the output of p. We have that |p′| = |p|+ O(1), and
U(p′) = z in at most t′ steps, where t′ = t+O(N polylog(N)). Hence we have log(t′) = log(t)+(1+
o(1)) log(N), and hence Kt(z) ≤ |p′|+ log(t′) = |p|+ log(t) + (1 + o(1)) log(N) ≤ Kt(w) + 2 log(N)
for N large enough.

To see the second part of the claim, suppose to the contrary that there is z′ such that Kt(z′) ≤
N ε + 3 log(N), and moreover ∆(z, z′) < γ. Let p be a program and t be a time bound such that
U(p) = z′ in at most t steps, and such that |p|+log(t) ≤ N ε+3 log(N). We define a new program p′

and time bound t′ such that U(p′) = w in at most t′ steps and |p′|+log(t′) ≤ N ε+5 log(N) for large
enough N , which yields a contradiction to the assumption on Kt complexity of w. The program
p′ first runs the program p to generate z′, and then runs the quasilinear-time decoding procedure
to generate the nearest codeword, which is z since ∆(z, z′) < γ. It then runs the quasilinear-time

8Technically, Spielman’s result requires a polynomial-time pre-processing computation that produces the nearly-
linear time encoding and decoding routines. This does not affect the size of the (non-uniform) circuit used for encoding.
In any case, the use of uniform polynomial-time routines for encoding and decoding in the proof of Theorem 22 only
affects the constant C = 5 appearing in the statement, and we observe that more recent (folklore) constructions can
be used that do not require such polynomial time pre-processing (Venkatesan Guruswami, private communication).
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inversion procedure on z to produce w. We have that |p′| = |p|+O(1), and moreover the time taken
by U(p′) is at most t+O(N polylog(N)). Hence, using the same calculation as in the previous para,
we have that Kt(w) ≤ Kt(z′) + 2 log(N). which implies Kt(w) ≤ N ε + 5 log(N) – a contradiction.

Define the auxiliary language L as follows. An input y = < a, 1b, (i1, b1) . . . (ir, br) > belongs
to L (where a and b are positive integers) if each ij , 1 ≤ j ≤ r is of length dlog(a)e, and if there
is a string z of length a such that Kt(z) ≤ b and for each j, 1 ≤ j ≤ r, zij = bj . L is decidable in
exponential time as we can exhaustively search all strings of length a with Kt complexity at most
b and check if there is one which has the specified values at the corresponding bit positions in time
poly(2b, a, r). Since EXP ⊆ SIZE(poly) by assumption, L has polynomial-size circuits. Assume wlog
that L has circuits of size O(nk) for some constant k, where n is the total input length.

We now give a low-complexity reduction from MKtP[N ε, N ε+5 log(N)] to L by computing z from
w and then applying the following sampling procedure. We sample uniformly and independently
r = N2ε indices i1 . . . ir ∈ [CN ]. We form the string y = < CN, 1N

ε+2 log(N), (i1, zi1) . . . (ir, zir) >.
We claim that with high probability over the randomness of the reduction procedure, if w is a YES
instance of MKtP[N ε, N ε + 5 log(N)], then y ∈ L, and if w is a NO instance, then y 6∈ L.

The claim about YES instances can be seen to hold with probability 1 as follows. If w is a
YES instance, we have that Kt(z) ≤ N ε + 2 log(N). In this case, z is a string of length CN with
Kt(z) ≤ N ε + 2 log(N) such that z has the specified values at the specified bit positions, regardless
of the positions that are sampled by the reduction.

For the claim about NO instances, as previously established, we have that Kt(z′) > N ε +
3 log(N) for any z′ such that |z′| = |z| and ∆(z, z′) < γ. Now consider any string z′′ of length CN
such that Kt(z′′) ≤ N ε + 2 log(N). For such a string z′′, for each j, 1 ≤ j ≤ r, the probability
that z′′ij = zij is at most 1− γ. Hence the probability that z′′ agrees with z at all the specified bit

positions is at most (1− γ)r ≤ 2−Ω(2Nε). By a union bound over z′′ with Kt(z′′) ≤ N ε + 2 log(N),
the probability that there exists a string z′′ with Kt complexity at most N ε + 2 log(N) which is
consistent with the values at the specified bit positions is exponentially small in N ε. Hence with
high probability, y is a NO instance.

We construct small circuits for MKtP[N ε, N ε + 5 log(N)] as follows. Our construction uses
randomness but we then show how to eliminate the randomness. We first apply the error-correcting
code E to the input w to obtain a string z – this part of the computation can be done in quasi-
linear size using the guarantee from Theorem 21. We then compute the instance y for the auxiliary
language L by random sampling and simulate the O(nk) size circuit for L on y, accepting iff the
circuit accepts. The random sampling step can be implemented in quasi-linear size, and the input
length n of y is O(N2ε polylog(N)), and hence for ε < δ/3k, the total size of the randomised circuit
for MKtP[N ε, N ε + 5 log(N)] is at most N1+δ for N large enough.

A naive derandomisation of these randomised circuits using Adleman’s trick would incur an
additional factor of N in the circuit size, but we can do better by taking advantage of the structure
of our reduction. The trick is to use carefully chosen random circuits (where the randomness is in
the structure of the circuit rather than in auxiliary inputs to it) rather than randomised circuits.
Note that the random sampling step can be implemented by a random circuit which projects r
randomly chosen co-ordinates of z together with their associated indices – this can be done in size
O(N2ε · polylog(N)). Now consider such a random projection done 10N times independently to
produce instances y1, y2 . . . y10N of L. The circuit for L is simulated on each such input and the
AND of all these results is output as the final answer. This random circuit has size at most N1+δ

for ε chosen small enough, and the error on any instance is less than 2−N , hence by a union bound,
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there exists a way of doing these 10N projections that yields a deterministic circuit solving the
problem correctly on all instances, and having the same size.

Theorem 22 shows that even barely super-linear circuit lower bounds for the problem about Kt
complexity we consider would have significant implications, i.e., a super-polynomial circuit lower
bound for EXP. On the other hand, under the standard hardness assumption that EXP does not
have polynomial size circuits, our problem does not have polynomial size circuits either. This follows
from the hardness of the problem under polynomial-size reductions for each ε > 0 [ABK+06]. We
get the following equivalence as a consequence.

Corollary 23. MKtP[N ε, N ε+5 log(N)] has polynomial-size circuits for each ε > 0 iff for all δ > 0
there is an ε > 0 such that MKtP[N ε, N ε + 5 log(N)] has circuits of size N1+δ.

Theorem 22 magnifies a weak circuit lower bound to a strong one. We can additionally show
that, in some cases, a weak slightly non-uniform lower bound can be magnified to a strong non-
uniform lower bound, i.e., hardness magnification is both with respect to the size of the bound and
the uniformity of the algorithm. We choose a variant of the MKtP problem with a slightly different
parameter setting to emphasize the magnification with respect to uniformity.

Theorem 24. If for each d > 0, MKtP[log(N)d, log(N)d + 5 log(N)] is not in BPTIME(N ·
polylog(N))/ polylog(N), then EXP 6⊆ SIZE(poly).

Proof Sketch. We implement the same proof strategy as in the proof of Theorem 22, except for the
following differences. Our Kt complexity parameter is smaller and hence we compress to a much
smaller instance y of the auxiliary language L, of size polylog(N). Rather than solving y using a
circuit, we supply a poly-size circuit y for inputs of the appropriate polylogarithmic input length
as advice to the probabilistic quasi-linear time procedure which does the compression. The advice
is used to solve the compressed instance.

Using our assumption that EXP ⊆ SIZE(poly), poly-size circuits exist for the auxiliary language
L, and hence there is a correct advice string for the probabilistic quasi-linear algorithm sketched
above.

We note that using a scaled-down version of the EXP-hardness result [ABK+06] for MKtP, if
EXP does not have sub-exponential size circuits, then MKtP[log(N)d, log(N)d + 5 log(N)] does not
have polynomial-size circuits for large enough d. The assumption which we magnify in Theorem 24
is much weaker, in that it only assumes hardness for slightly non-uniform probabilistic quasi-linear
time algorithms with bounded error.

3.3 Magnification from sub-linear average-case lower bounds

In this section we will prove Theorem 5 and other related statements. Indeed, Theorem 5 is
just a particular instantiation of the results presented in this section. We start with the following
observations.

Proposition 25. For every choice of the parameter functions s and t, Succinct-MCSP-C[s, t] ∈ NP.
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Proof. First, assume that 1s(n) is also part of the input for this problem. Then a circuit of size
≤ s can be guessed and verified in time poly(n, s(n), t(n)), which is polynomial in the total input
length. However, in the definition of Succinct-MCSP[s, t], the parameters s and t are fixed and not
part of the input. If s(n)� t(n) · n, then by a brute-force construction there is always a circuit of
size at most O(t(n) ·n) that correctly labels the input pairs. Therefore, the only non-trivial case is
when s(n) = O(t(n) · n). But in this case a circuit can be guessed and verified in nondeterministic
polynomial time. It follows that Succinct-MCSP-C[s, t] ∈ NP for every choice of s and t.

Lemma 26. Let n ≤ s(n) ≤ 2o(n) and t(n) = 4s(n) log s(n). Let I be a random collection of
t(n) pairs of the form (xi, bi), where each bi ∼ {0, 1}, and all xi are fixed but distinct elements of
{0, 1}n. Then, for every n sufficiently large,

Pr
I

[ There is a circuit of size ≤ s(n) consistent with I ] < 2−n.

Proof. Using that s(n) ≥ n, there are at most 23s(n) log s(n) circuits of size at most s(n) over n input
variables (Proposition 15). For each circuit D of this form, the probability that D agrees with
every pair in I is precisely 2−t(n) = 2−4s(n) log s(n). Consequently, by a union bound and using that
s(n) ≥ n, the aforementioned probability is at most 23s(n) log s(n))−t(n) < 2−n.

Recall the definition of solving MCSP on average informally discussed in Section 1.2, and
formally defined in Section A.

Theorem 27 (Magnification from sub-linear average-case lower bounds for MCSP). Let C be a
typical circuit class, and consider MCSP[s] for a size parameter n ≤ s(n) ≤ 2o(n). Assume that
there exists δ > 0 such that solving MCSP[s] on average on N -bit inputs requires C-circuits of size
Ω(N δ). Then there is a language L in NP such that L on inputs of length m = Θ(n · s(n) · log s(n))
requires C-circuits of size `(m) = 2Ω(n).

Proof. We take L as Succinct-MCSP[s, t], where t = B ·s log s and B is a sufficiently large constant.
By Proposition 25, L is in NP. Suppose towards a contradiction that L on inputs of total length
m (as in the statement) can be computed by C-circuits of size 2o(n) = No(1). Let {Dm}m be a
sequence of such circuits. We argue below that it is possible to use these circuits to solve MCSP[s]
on average.

In order to achieve that, we describe a family {Cn}n of C-circuits that compute as follows. Let
N = 2n be the input length for an instance of MCSP[s]. Given y ∈ {0, 1}2n , Cn on input y produces
a string that encodes n and a list of pairs (wi, bi), where i ∈ [t(n)], wi is the i-th n-bit string in
lexicographic order, and bi is the corresponding entry in the truth table y. Cn then feeds these
inputs to the corresponding circuit Dm, and outputs 0 if Dm outputs 0, and outputs “?” otherwise.
This completes the description of each circuit Cn.

First, we claim that Cn never makes a mistake. Indeed, Cn always outputs a value in {0, “?”},
and if Cn outputs 0, by construction it follows that a projection of the input truth table does not
admit circuits of size s. Obviously, in this case the truth table y does not admit circuits of size s.

Finally, we argue that Cn outputs “?” with a very small probability. Indeed, since t(n) ≥
4s(n) log s(n) and n ≤ s(n) ≤ 2o(n), over a random input y ∼ {0, 1}2n Lemma 26 shows that most
collections {(wi, bi) | i ∈ [t(n)]} generated by Cn during the reduction will not be consistent with
any circuit of size at most s(n). By construction, Cn outputs 0 on such input truth tables. This
completes the proof of Theorem 27.
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We can derive an immediate consequence from this result.

Corollary 28. If there exists c ≥ 1 such that MCSP[nc] is hard on average for circuits of size Nγ,

where γ > 0, then NP * SIZE[2n
o(1)

].

The next result shows that even sub-linear AC0 lower bounds for a certain range of the size
parameter s would have major consequences in complexity theory.

Corollary 29. Assume there is c ≥ 1 and γ > 0 such that MCSP[nc] is not computable by AC0[Nγ ]
circuits on average. Then NP * NC1.

Proof. It is enough to observe that the reduction employed in the proof of Theorem 27 can be easily
computed in AC0, and that by Lemma 14, if NP ⊆ NC1 then for every language L ∈ NP and ε > 0
there exists d ∈ N such that L can be computed by depth-d circuits of size at most O(2n

ε
).

These results further motivate the investigation of the complexity of MCSP in very weak com-
putational models. For instance, for formula size and under a different regime of parameters, the
same technique yields the following connection.

Corollary 30. Let s(n) = 2n
γ
, where 0 < γ < 1. If MCSP[s(n)] on N -bit inputs cannot be

computed on average by formulas of size No(1), then there is a language L ∈ NP that over m-bit
inputs requires formulas of size 2Ω((logm)1/γ) for infinitely many values of m.

Proof. The result is also immediate from Theorem 27 using that m = Θ(2n
γ · n1+γ) for the choice

of s(n), which gives n = Θ((logm)1/γ).

3.4 Magnification from sub-linear randomized lower bounds

We fix a uniform randomized model of computation which allows random-access to the input
string. In other words, in one time unit it is possible to retrieve the bit stored in the i-th input
cell, assuming the corresponding address is written on an appropriate index tape or register. The
particular details of the model are not important for our result, and any computational model that
allows random-access to the input and probabilistic computations is sufficient.9 For concreteness,
we say that a randomized algorithm A computes a function f if on every input x, Pr[A(x) =
f(x)] ≥ 2/3.

Theorem 31 (Magnification of sub-linear randomized lower bounds). Let 1/2 < β < α ≤ 1 be
constants, c ∈ N, and s(n) ≤ 2n

γ
, where γ < 1. If there is ε > 0 such that (α, β)-MCSP[s] on N -bit

inputs cannot be computed by a (two-sided error) randomized algorithm running in time 2(logN)1−ε
,

then NP * BPP.

Proof Sketch. We establish the contrapositive. Let f ∈ {0, 1}N be a valid input to (α, β)-MCSP[s].
We view this N -bit input string as the function f : {0, 1}n → {0, 1}, where N = 2n. Our randomized
algorithm A projects f at t = Θα,β(s log s) random input locations x1, . . . ,xt ∈ {0, 1}n, producing
an instance of (α′, β′)-Succinct-MCSP[s], where α′ = β + γ/2 + γ/10, β′ = β + γ/2 − γ/10, and
γ = α − β. If NP ⊆ BPP, there is a randomized algorithm B that runs in polynomial time and
correctly solves (α′, β′)-Succinct-MCSP[s]. Since t ≤ 2(logN)1−Ω(1)

due to the upper bound on s(n)

9For definiteness, assume that the random string is stored on a (read-once) one-way tape.
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and N = 2n, B runs in time ≤ 2(logN)1−Ω(1)
. A simply outputs the answer of B on the instance

produced by the random projection.
Clearly, A runs in randomized time upper bounded by ≤ 2(logN)1−Ω(1)

, since we assume a
computational model with random-access to the input string. If there is a circuit C of size s that
agrees with f on a α fraction of the inputs, then by a concentration bound (Lemma 13) a projection
of f over t random inputs admits a circuit (i.e. C) of size s that agrees with f on at least a α′ < α
fraction of the samples. Therefore, with high probability A is correct on f , since B is a randomized
algorithm that correctly computes (α′, β′)-Succinct-MCSP[s]. On the other hand, assume that no
circuit C of size s agrees with f on more than a β fraction of the input strings. Then, for any
fixed circuit D of size s, the probability over the random projection that D agrees with more than
a β′ > β fraction of the t samples is ≤ exp(−Θ(t)). By a union bound over the number of size-s
circuits (Proposition 15) and by our choice of t as a function of s, α, and β, it follows that with
high probability over the random projection, no such circuit agrees with more than a β′ fraction of
the samples. Using once again the correctness of B, it follows that A is correct on f .

4 Magnification for NP-complete Problems

4.1 Magnification for Vertex Cover

In this Section, we explore a connection between hardness magnification and kernelization, a
well-know technique from parameterized complexity (see e.g. [DF13]). We restrict our results to
one representative example.

Definition 32 (The Vertex Cover Problem). In the Vertex-Cover problem, the input is a pair (G,w),

where G ∈ {0, 1}(
n
2) encodes the adjacency matrix of an undirected n-vertex graph G = (V,E), and

w ∈ {0, 1}logn encodes in binary an integer parameter k ≥ 0. The pair (G,w) is a positive instance
of Vertex-Cover if there exists S ⊆ V , |S| ≤ k, such that every e = {u, v} ∈ E intersects S.
Similarly, for k = k(n) we let k-Vertex-Cover be the same computational problem with the exception
that the parameter k is fixed in advance and is not part of the input.

We use m = Θ(n2) to denote the total input length of an instance of k-Vertex-Cover or Vertex-
Cover on n-vertex graphs.

We briefly recall some known results about these problems. It is known that k-Vertex-Cover can
be solved in time ck · poly(m), where c < 2 (see e.g. [CKX10]). Moreover, under ETH this problem
cannot be solved in time 2o(k) · poly(m) ([IPZ01]; see e.g. [DF13, Theorem 29.5.9]). Therefore,
it is plausible that k-Vertex-Cover is not in P if k = ω(log n). On the other hand, using the NP-
completeness of Vertex-Cover and a simple translation argument, if k = (log n)C for a large constant
C ≥ 1, then k-Vertex-Cover is not in P unless CNF-SAT ∈ DTIME[2n

ε
], where ε = ε(C).

Theorem 33 (Hardness Magnification via Kernelization). Let k(n) = (log n)C , where C ∈ N
is arbitrary. If for every d ≥ 1 there exists ε > 0 such that k-Vertex-Cover /∈ AC0

d[m
1+ε], then

NP * NC1.

In order to prove this result, we need the following construction. For a boolean string x, let |x|1
be the number of 1s in x.

Lemma 34 (AC0 circuits for small thresholds [HWWY94, Theorem 7]). Let Tn` : {0, 1}n → {0, 1}
be the function where Tn` (x) = 1 if and only if |x|1 ≤ `. Let ` ≤ (log n)d, where d ∈ N. Then Tn`
can be computed by an AC0 circuit of depth d+O(1) that contains no(1) gates.
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Proof of Theorem 33. First, we recall a standard kernelization/decision procedure for k-Vertex-
Cover that takes an input G and either produces the correct answer, or outputs a pair (G′, k′),
where the number of vertices of the new graph G′ is upper bounded by 2k2, k′ ≤ k, and such that
G admits a cover set S ⊆ V (G) of size k if and only if G′ admits a cover set S′ ⊆ V (G′) of size k′.
Note that while the input graph G is an instance of k-Vertex-Cover, the output is either the correct
answer or a pair of strings describing an instance of Vertex-Cover.

This procedure computes as follows. Let T = {v ∈ G | degG(v) > k}. If |T | > k, reject.
Otherwise, let V − = V \ T , and G− = G[V −], the subgraph of G induced by V −. Now let G′ be
the graph obtained by deleting all isolated vertices in G−, and let k′ = k − |T |. If |V (G′)| > 2k2,
reject. Otherwise, output (G′, k′). This completes the description of the procedure.

It is not hard to prove that this procedure never rejects a graph G that admits a set cover of
size k, and that for every input graph G that is not rejected, G admits a set cover of size k if and
only if G′ admits a set cover of size k′. Indeed, if a set cover for G of size k exists, then every vertex
in T must be in the cover. On the other hand, since no vertex in G′ is isolated, it must contain at
least V (G′)/2 edges. At the same time, each vertex of G′ has degree at most k, which implies that
a subset S′ ⊆ V (G′) of size k′ can cover at most kk′ ≤ k2 edges. Consequently, if |V (G′)| > 2k2

the input graph G can be safely rejected. It follows that whenever the input instance G is not
rejected by the procedure, it is correctly reduced to an instance of Vertex-Cover whose size (number
of vertices) is at most 2k2 and whose associated parameter k′ ≤ k. (For related references and for
a less concise exposition, we refer to any standard textbook in parameterized complexity.)

In order to prove the result, we will use Lemma 34 to implement this reduction via bounded-
depth circuits of size m1+o(1). We then employ the assumption that NP ⊆ NC1 and an additional
trick (Lemma 14) to solve Vertex-Cover on graphs of size ≤ 2k2 in a very efficient way (as a function
of m, the initial input size). Altogether, this will provide us with a bounded-depth circuit D of
size m1+o(1) for k-Vertex-Cover, which completes the proof of the contrapositive formulation of the
theorem. More details follow.

Our circuit D computes as follows. Let G be an input graph on n vertices represented by its
adjacency matrix, and k = (log n)C be fixed. Recall that the total input length is m = Θ(n2).

1. First, D computes a vector α ∈ {0, 1}n where αi = 1 if and only if degG(vi) > k. If |α|1 > k, D
outputs 0. (α corresponds to the set T in the discussion above.)

Note that each αi can be computed in parallel by a constant-depth circuit of size no(1) whose
existence follows from Lemma 34. Similarly, |α|1 can be tested by such circuits.

2. D computes a vector β ∈ {0, 1}n where βi = 1 if and only if degG−(vi) = 0, where G− = G[V −]
and V − = V \ T . (β captures the set of isolated vertices in the discussion above.)

Clearly, this vector can be computed by a multi-output AC0 circuit of size O(m) using the input
graph G and α.

3. Let γ ∈ {0, 1}n be given by γi = ¬(αi∨βi). (This vector encodes V (G′) in the discussion above.)
D outputs 0 if |γ|1 > 2k2. Otherwise, D computes k′ = k − |α|1, represented in binary.

Again, |γ|1 can be tested in constant-depth using no(1) gates via Lemma 34 thanks to the value
of k. In order to compute k′, observe that this is a string on O(log log n) bits, since it takes an
integer value in the interval [0, (log n)C ]. Since k is fixed and the value of |α|1 is at most k by Item
1, D can guess and check all possible values of |α|1 in parallel (via Lemma 34), then produce a
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correct representation of k′. Therefore, it is clear that this step can also be done in constant-depth
and by a circuit size at most O(m).

4. D uses γ and the input graph G to compute the adjacency matrix of G′, a graph that contains
exactly 2k2 vertices. Together with Item 4, this produces an output pair (G′, k′) (This is similar to
the discussion above, except that for convenience we pad G′ to a graph on 2k2 vertices.)

This can be done as follows. The extra vertices of G′ will have degree zero. In order to compute
G′[i, j], where i 6= j ∈ [1, 2k2], D guesses in parallel for every a, b ∈ [n] whether va is the i-th non-
zero entry of γ and vb is the j-th non-zero entry of γ. For every fixed choice of a and b, this is done
by appropriate circuits derived from Lemma 34. If there is a match, D inspects the input graph G
and outputs 1 for G′[i, j] if and only if {va, vb} ∈ E(G). As a consequence, for every choice of i and
j, the bit G′[i, j] can be computed by a constant-depth circuit of size at most n2 · no(1) ≤ m2+o(1).
Since there are 2k2 ≤ (log n)O(1) such pairs, and each bit of G′ can be computed in parallel, the
entire computation can be done in constant-depth and using at most m2+o(1) gates.

5. Assume NP ⊆ NC1, and let Et be a circuit of depth O(log t) that solves Vertex-Cover over
t-vertex graphs. D simulates E` in constant-depth and outputs E`(G

′, k′), where ` = Θ(k2).

We claim that this simulation can be computed by a constant-depth circuit of size O(m2). In-
deed, by Lemma 14, E` can be computed by depth-d circuits of size at most exp(`O(1/(d−1))). Since
` = O(k2) = O((log n)2C), by taking d to be a constant sufficiently larger than 2C, we get that E`
can be simulated in constant-depth by a circuit of size at most O(n) ≤ O(m2).

Overall, it follows that if NP ⊆ NC1 then k-Vertex-Cover can be computed by constant-depth
circuits of size m1+o(1) whenever k ≤ (log n)O(1). This completes the proof of Theorem 33.

For larger k(n), we can establish a connection to time-space trade-off results. We assume a
computational model where the algorithm has random-access to the input string. (For concreteness,
one can use Turing Machines with a read-only input tape, a constant number of working tapes, and
a special tape used to address the input string.) Recall that DTISP[t(n), s(n)] denotes the class of
languages that can be decided by an algorithm that simultaneously run in time O(t(n)) and space
O(s(n)).

Theorem 35 (Magnification from Time-Space Trade-offs). Let k(n) = no(1). If there exists ε > 0
such that k-Vertex-Cover /∈ DTISP[m1+ε,mo(1)], where the input is an n-vertex graph represented
by an adjacency matrix of bit length m = Θ(n2), then P 6= NP.

Proof Sketch. Again, we establish the contrapositive. First, we verify that the reduction behind the
proof of Theorem 33 can be implemented by an algorithm running in time m1+ε and space mo(1), for
k(n) = no(1). Then, we solve the resulting instance of Vertex-Cover of size ` = poly(k) in polynomial
time under the assumption that NP ⊆ P. Since an algorithm running in time polynomial in ` also
uses space polynomial in `, and ` = mo(1), it follows that k-Vertex-Cover ∈ DTISP[m1+ε,mo(1)].

Recall that m = Θ(n2). To show that the reduction can be computed in DTISP[m1+ε,mo(1)],
we need to proceed in a slightly different way. In particular, the algorithm does not have enough
space to store the vectors α, β, and γ. (However, it has enough space to store the adjacency matrix
produced by the reduction.) We follow in part the notation of the proof of Theorem 33, highlighting
the relevant modifications.
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Instead of computing these vectors as in steps 1, 2, and 3, the algorithm produces a list of
poly(k) vertices encoding γ (the sparsity of γ is a function of k). This list is stored on a fixed
working tape of the algorithm, and it is not hard to see that it can be computed within the
complexity bounds using random-access to the input string. (As opposed to AC0, we can count in
logarithmic space and almost linear time.) From such a list it is possible to output on a different
tape the adjacency matrix of the graph G′ from step 4. This completes the proof.

4.2 Magnification for SAT

In this section, we show a magnification result for SAT. In contrast to other results, here we
magnify from lower bounds against polynomial-time refuters, a notion defined by Kabanets [Kab01].
We assume a computational model with random access to the input string.

The proof relies on efficient versions of the PCP theorem where the reduction runs in quasi-linear
time.

Theorem 36 ([BGH+06, BS08, Din07]). For some constant ε > 0, there is a function f computable
in time O(m polylog(m)) and a function g computable in polynomial time such that:

1. If φ is a satisfiable 3-CNF, f(φ) is a satisfiable 3-CNF.

2. If φ is an unsatisfiable 3-CNF, then at most a (1 − ε) fraction of clauses of f(φ) are simul-
taneously satisfiable.

3. If φ is a satisfiable 3-CNF and w is a satisfying assignment to φ, then g(φ,w) is a satisfying
assignment to f(φ).

We also need the Easy Witness Lemma of [IKW02]. The lemma is usually stated in terms of
witnesses of YES instances having small circuit complexity when interpreted as truth tables, but
we find it more convenient to use an equivalent formulation in terms of KT complexity.

Lemma 37 ([IKW02]). Let L ∈ NEXP be any language, and let R be a polyomial-time computable

relation such that x ∈ L iff there is a string y, |y| = 2|x|
k

such that R(x, y) = 1, where k is a fixed

constant. If NEXP ⊆ SIZE(poly), then for each x ∈ L, there is y, |y| = 2|x|
k

such that R(x, y) = 1
and KT (y) = poly(|x|).

We are now ready to state and prove the theorem.

Theorem 38 (Magnification for SAT). Suppose that for every probabilistic machine M halting in
time mpolylog(m) and using polylog(m) many random bits, there is a deterministic polynomial-
time machine N such that for infinitely many m, N(1m) outputs a 3-CNF formula φm, |φm| = m
for which either φm is satisfiable and M(φm) rejects with probability > 1/m or φm is unsatisfiable
and M(φm) accepts with probability > 1/m. Then NEXP 6= BPP.

Proof. Assume, for the sake of contradiction, that NEXP = BPP. Let c be a constant such that
NTIME(2n) ⊆ BPTIME(nc) – the existence of such a constant c follows from NEXP = BPP using the
fact that there is a language complete for NTIME(2n) under deterministic linear-time reductions.

We describe a probabilistic machine M that attempts to solve 3-SAT, and show that any
deterministic polynomial-time refuter for M yields a contradiction.
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Let φ be a 3-CNF formula with |φ| = m (we always use |φ| to denote the bitlength of φ in a
standard representation) and q variables. Let k = log(m)a, where a is a constant to be determined
later. M behaves as follows on φ. It applies the reduction f from Theorem 36 to φ to produce a
3-CNF formula φ′. Since f runs in time O(mpolylog(m)), we have that |φ′| = O(mpolylog(m)).
M then samples k2 clauses from φ′ independently and uniformly at random, and forms their
conjunction φ′′. Note that not all variables in φ′ will appear in φ′′ if k2 is much smaller than q –
the variables retain their original indices in φ′′.

Define an auxiliary language L′ as follows. Consider an input w = (ψ, 1`, q′), where ψ is a 3-
CNF formula such that all indices of variables appearing in ψ belong to [q′] and ` and q′ are positive
integers with ` ≤ q′ ≤ 2`. This string belongs to L′ if and only if there is a string w′ ∈ {0, 1}q′

such that Kt(w′) ≤ ` and w′ satisfies ψ when interpreted as a Boolean assignment to variables with
indices in [q′]. L′ can be solved in deterministic time 2O(`)|ψ|polylog(|ψ|) simply by enumerating all
strings of length q′ with Kt complexity at most `, which can be done in time 2O(`), and checking for
each one if it is a satisfying assignment of ψ. Each such check can be done in time |ψ| polylog(|ψ|).
In particular, L′ ∈ DTIME(2O(n)), where n is the total length of the input to L′, and hence by
assumption L′ ∈ BPTIME(nc). Let M ′ be a probabilistic machine deciding L′ with error 2−n.

M simulates M ′ on input (φ′′, 12k, q′), where q′ is the number of variables in φ′, accepting if
M ′ accepts and rejecting if M ′ rejects. The total time taken by M is O(mpolylog(m)), since
applying the reduction f takes time mpolylog(m) and the simulation of the machine M ′ takes
time poly(k) = polylog(m). Thus M is a probabilistic machine running in time mpolylog(m) that
attempts to solve 3-SAT. In addition, it is easy to see that M employs at most poly-logarithmic
many random bits, given our choice of k and the input length on which the machine M ′ is invoked.
We would like to show that any deterministic polynomial-time refuter for M , i.e., any deterministic
polynomial-time machine that infinitely often outputs an instance φ on which M does not give the
correct answer with high probability, can be used to derive a contradiction.

Indeed, suppose there is such a polynomial-time machine N , that for infinitely many m on input
1m, outputs a formula φm such that either φm is satisfiable and M rejects φm with probability
> 1/m, or φm is unsatisfiable and M accepts φm with probability > 1/m.

Note that each formula φm output by N on input 1m has Kt complexity O(log(m)) (when
interpreted as a string). The reason is that the code for the machine N together with the standard
log(m)-bit description of the number m can be used as a program p to generate φm; moreover the
generation is accomplished in time t = poly(m). Recall that the Kt complexity of the string φm
is the minimum over |p| + log(t) such that the universal machine U generates φm from p within t
steps. In our case, we have |p| = O(log(m)) and t = poly(m), hence the Kt complexity of φm is
O(log(m)).

We will argue that for any input φm, |φm| = m such that Kt(φm) = O(log(m)), the machine
M solves φm correctly if φm is unsatisfiable, and also solves φm correctly if φm is satisfiable and
has a satisfying assignment w such that Kt(w) ≤ k. We will then use these two facts to derive a
contradiction to the existence of the refuter N .

We first argue that M solves φm correctly if φm is unsatisfiable, when |φm| = m and Kt(φm) =
O(log(m)). Let φ′ be the 3-CNF produced by M from applying the reduction f to φm and φ′′

be the 3-CNF produced by then randomly sampling k2 clauses and taking their conjunction. We
argue that with overwhelmingly high probability, φ′′ does not have a satisfying assignment w′ such
that Kt(w′) ≤ 2k.

Indeed, we have that for any fixed assignment y to the variables of φ′, y satisfies at most a (1−ε)
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fraction of the clauses of φ′, where ε is the constant given by Theorem 36. Thus the probability
that y satisfies a randomly sampled clause is at most (1− ε). It follows that the probability that y
satisfies all k2 randomly sampled clauses occurring in φ′′ is at most (1 − ε)k2

= 2−Ω(k2), since the
clauses are sampled independently and uniformly at random.

Now, by a union bound over all assignments w′ such that Kt(w′) ≤ 2k, we have that the
probability that there exists such a w′ satisfying all clauses in φ′′ is at most 22k2−Ω(k2) = 2−Ω(k2).
Hence with probability at least 1 − 2−Ω(k2) over the internal randomness of the machine M , the
formula φ′′ has no satisfying assignment w′ such that Kt(w′) ≤ 2k. Note that for every such φ′′, by
correctness of the machine M ′, we have that M ′ rejects with probability at least 1−2−n, where n is
the length of the input to M ′. This probability is at least 1− 2−k, hence by using Bayes’ theorem,
we have that with probability at least 1 − 2−Ω(k) > 1 − 1/m (for a chosen sufficiently large), M
rejects as claimed.

We next argue that M solves φm correctly if φm is satisfiable and has a satisfying assignment w
such that Kt(w) ≤ k. Consider such a formula φm. The ordered pair < φm, w > has Kt complexity
at most k +O(log(m)) by sub-additivity of Kt complexity, which is at most 1.5k for large enough
m when a is chosen to be greater than 1.

Now consider the formula φ′ produced by applying the reduction f to φm. By Theorem 36,
g(φm, w) is a satisfying assignment to φ′. Since (φm, w) has Kt complexity at most 1.5k, and since
g runs in poly(m) time, we have that the Kt complexity of w′ = g(φm, w) is at most 2k, for large
enough m and when a is chosen to be greater than 1. Note that since w′ satisfies φ′, it also satisfies
each sub-sampled formula φ′′. Hence M ′ is always simulated on a positive instance of L′, regardless
of the internal randomness of L, and consequently M accepts with probability greater than 1−1/m,
using the correctness of M ′.

Thus the only case where M does not solve φm correctly with error < 1/m is when φm is
satisfiable and does not have a satisying assignment of Kt complexity at most k. We will show
that this case leads to a contradiction. We sketch the definition of a relation R(u, y) as follows.
The first input u is viewed as a pair (D,x), where D is a machine, and x is a number. We assume
that the sizes of D and x are roughly logm, where Θ̃(m) is the total input length expected by R
on a valid input pair (u, y). The relation R accepts its input pair (u, y) iff D(1x) when executed
for mO(logm) steps outputs a formula φx such that φx(y) = 1. Note that R is an NEXP-verifier.
Consequently, by Lemma 37 and using the assumption that NEXP = BPP ⊆ SIZE(poly), there is
a constant b such that for every u = (D,x), if D(1x) outputs a satisfiable formula φx during its
computation then there is a satisfying assignment y for φx such that KT (y) ≤ log(m)b. But now
using Proposition 12 and choosing a > b, if fix the input D to be the code of the refuter, we have
a contradiction to the assumption that there are infinitely many m for which φm is satisfiable and
does not have a satisfying assignment of Kt complexity at most k.

By adjusting parameters in the proof, we can get quasi-polynomial or even stronger lower
bounds in the consequent, but there is an inherent tradeoff which prevents us from ruling out the
possibility that NEXP is contained in probabilistic sub-exponential time.

5 Directions and open problems

We list below some questions and directions motivated by our results:
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1. Formula lower bounds. There are several techniques known to yield super-linear size formula
lower bounds (e.g. [Tal17], [DM16, GMWW17], [Juk12, Chapter 6], [Dun88, Chapter 4], [Weg87,
Chapter 8]), and an obvious direction (see Theorem 17 (iii)) is to try to adapt them to (1, 1− δ)-
MCSP[s]. A necessary step is to use the technique to prove lower bounds against the standard
MCSP[s] problem, as done by [HS17]. Similarly, one can try to prove super-linear bounded-depth
lower bounds for (1, 1 − δ)-MCSP[s], a direction motivated by Theorem 18.10 While there are
techniques tailored to such results (cf. Section C for three examples), it seems unlikely that they
can be combined with magnification without substantial new ideas.

Perhaps a more reasonable goal is to prove super-linear lower bounds that, while not strong
enough for hardness magnification, are at least compatible with the parameters s(n) and δ(n)
required for magnification. In particular, with respect to formulas and bounded-depth circuits,
we pose the challenge of establishing a ω(N) lower bound. (Note that we have established even
stronger bounds in Sections C.1 and C.2, but for values of s(n) and δ(n) that do not seem to be
enough for magnification.)

2. Barriers for magnification-based lower bounds? Another pressing question is whether
there are barriers such as natural proofs [RR97] for this technique. A related discussion appears in
[AK10, Section 8]. It seems that the magnification approach in its general form is not naturalizable.

3. Relations between MCSP and Approximate MCSP. Is there a reduction from MCSP to
Approximate MCSP (see Section A for definitions) for an interesting regime of parameters? This
is a relevant direction due to existing lower bounds for MCSP (cf. Section C.1).

4. The complexity of k-Vertex-Cover. Investigate the computational complexity of this
problem in weak circuit models in the regime where logn ≤ k ≤ poly(log n), as suggested by
Theorem 33. (Note that there has been progress in understanding the circuit complexity of other
parameterized graph problems such as k-Clique [Ros10], when k is small.) Another related direction
is to improve existing time-space trade-offs, in connection to Theorem 35.

5. Magnification of existing lower bounds? Our results follow a general strategy of reducing
a problem of size n to a smaller instance of another explicit problem. The reduction is computed in
a very efficient way, measured according to the computational model. Can we follow this strategy
to magnify existing lower bounds in computational models such as formulas and bounded-depth
circuits? Note that compression lower bounds in the sense of [CS12, OS15] can be interpreted
as “barriers” to magnification. But in boolean devices such as formulas, monotone circuits, and
circuits of linear size compression is less understood, and magnification of existing lower bounds
might perhaps be feasible.
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We are grateful to Jan Kraj́ıček, Ján Pich and Ninad Rajgopal for helpful discussions and
comments.

10Note however that the regime of s is different in the corresponding magnification results.

29



References

[ABK+06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef
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A Variants of the Minimum Circuit Size Problem

We consider the following versions of the Minimum Circuit Size Problem (MCSP).

Definition 39 (Parameterized MCSP). Let C be a circuit class, and s : N → N be a function.
The Minimimum Circuit Size Problem for C with a fixed parameter s, abbreviated as MCSP-C[s],
is defined as follows:

• Input. A string y ∈ {0, 1}2n, where n ∈ N (inputs not of this form are rejected).

• Question. Does fn(y) have C-circuits of size at most s(n)?

In our notation, N = 2n is always the input length of an instance of MCSP-C[s]. Therefore, a
polynomial time algorithm for this problem is an algorithm that runs in time 2O(n).
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Definition 40 (Succinct MCSP). Let s : N → N and t : N → N be functions. The Succinct
Minimimum Circuit Size Problem for C with fixed parameters s and t, abbreviated as Succinct-
MCSP-C[s, t], is defined as follows:

• Input. n ∈ N, and a list of t(n) pairs (wi, bi), where each wi ∈ {0, 1}n and bi ∈ {0, 1}.

• Question. Is there a C-circuit D of size at most s(n) such that D(wi) = bi for each i ∈ [t(n)]?

We also introduce approximate versions of MCSP and Succinct-MCSP. We say that a circuit ψ
γ-approximates a function f if Prx[ψ(x) = f(x)] ≥ γ.

Definition 41 (Approximate MCSP). Let C be a circuit class, s : N → N, and α, β : N →
(1/2, 1], where α(n) > β(n) for all n. We let (α, β)-MCSP-C[s] denote the following promise
problem:

• Yes instances. A string y ∈ {0, 1}2n that can be α-approximated by a C-circuit of size ≤ s.

• No instances. A string y ∈ {0, 1}2n that cannot be β-approximated by a C-circuit of size ≤ s.

Definition 42 (Approximate Succinct MCSP). Let C be a circuit class, s : N → N, and
α, β : N → (1/2, 1], where α(n) > β(n) for all n. We let (α, β)-Succinct-MCSP-C[s] denote the
following promise problem:

• Yes instances. n ∈ N and a list of t(n) pairs (wi, bi), where each wi ∈ {0, 1}n and bi ∈ {0, 1}.
There exists a C-circuit of size ≤ s that correctly classifies ≥ α · t(n) of these pairs.

• No instances. n ∈ N and a list of t(n) pairs (wi, bi), where each wi ∈ {0, 1}n and bi ∈ {0, 1}.
Every C-circuit of size ≤ s correctly classifies ≤ β · t(n) of these pairs.

Definition 43 (Average-case MCSP [HS17]). We say that MCSP-C[s] is computed on average
by a device D (an algorithm or a family of circuits) if for every large enough n, the following holds:

• D is never incorrect. For each y ∈ {0, 1}2n, D(y) ∈ {MCSP-C[s](y),“ ?”}.

• D rarely outputs “ ?”. Prz∼{0,1}2n [D(z) ∈ {0, 1}] ≥ 1− 1/n.

We say that MCSP-C[s] is average-case hard for a class of devices A if no D ∈ A computes MCSP-
C[s] on average.

We assume that the parameter functions s, t, s′, α, and β appearing in our statements are time-
constructible. We often omit the circuit class C when C = Circuit, i.e., when the computational
problem refers to general boolean circuits.

Definition 44 (Gap MKtP). Given functions s, c : N → N where s ≥ c, MKtP[c, s] is the
promise problem whose YES instances are strings of Kt complexity at most c(N) and NO instances
are strings of Kt complexity greater than s(N), where N is the length of the input string.

We say that R = {Rn}n∈N is a combinatorial property (of boolean functions) if Rn ⊆ Fn for all
n. We use LR to denote the language of truth-tables of functions in R. Formally, LR = {y | y =
tt(f) for some f ∈ Rn and n ∈ N}.
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Definition 45 (Natural Properties [RR97]). Let R = {Rn} be a combinatorial property, C a
circuit class, and D a (uniform or non-uniform) complexity class. We say that R is a D-natural
property useful against C[s(n)] if there is n0 ∈ N such that the following holds:

(i) Constructivity. LR ∈ D.

(ii) Density. For every n ≥ n0, Prf∼Fn [f ∈ Rn] ≥ 1/2.

(iii) Usefulness. For every n ≥ n0, we have Rn ∩ Cn[s(n)] = ∅.

It has been observed that the density parameter in the definition above can be amplified using
a straightforward reduction (cf. [CIKK16, Lemma 2.7]). In addition, as noticed by [HS17], natural
properties and average-case MCSP are equivalent notions.

B (α, β)-MCSP-C[s] versus Natural Properties Against C[s]

We give an example of a consequence of the easiness of (α, β)-MCSP-C[s] that does not seem to
follow from a natural property with corresponding parameters. For concreteness, our parameters
in the statement below correspond to α = 1, β = 9/10, s = 2n

1/d
, and C = AC0 circuits of depth

d. Under this choice, there are natural properties against C-circuits of size s [RR97]. On the other
hand, we observe that:

Proposition 46. Let δ = 1/10. For every fixed d ≥ 2, the following holds. If (1, 1 − δ)-

MCSP-AC0
d[2

n1/d
] ∈ P, then there exists a natural property against AC0

d[2
n/2] computable in quasi-

polynomial time.

Proof. To define the natural property, first pad the input truth-table on n input bits to a truth-table
over m = (n/2)d input bits, then invoke the corresponding (1, 1 − δ)-MCSP algorithm on truth-
tables of size M = 2m, negating the output. In a bit more detail, the function f : {0, 1}n → {0, 1}
is mapped to a function g : {0, 1}m → {0, 1} such that g(xy) = f(x), where |x| = n and |y| = m−n.

Running the initial algorithm on the function g takes time poly(M) = 2O(nd) = Npoly(logN).

If f ∈ AC0
d[2

n/2], then the m-bit boolean function g ∈ AC0
d[2

m1/d
]. On the other hand, if f is

a random function, with high probability any circuit of size 2(3/4)·n agrees with f on at most a
(1/2) + o(1) fraction of inputs. If the corresponding function g could be (1− δ)-approximated by a

depth-d circuit C of size 2m
1/d

= 2n/2, then some restriction of the y-variables of C must (1 − δ)-
approximate f , which is impossible for a typical f . This implies that the algorithm described above
computes a natural property against AC0

d[2
n/2].

Even for d = 3, the power of depth-d circuits of size 2n/2 remains largely unknown, and it is
consistent with current knowledge that NP ⊆ AC0

d[2
n/2]. For this reason, it seems unlikely that

the natural property provided by Proposition 46 can be obtained from existing natural properties.
(The issue with the reduction above lies on the relaxed density requirement of a natural property:
most functions f might produce a function g outside the dense set.)

C Unconditional Lower Bounds

Motivated by Theorems 17 and 18 and Proposition 19, we describe some related lower bounds.
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C.1 Lower bounds for good s but bad δ (with respect to Theorem 17)

For convenience, throughout this section we let Π[s, δ] = (1, 1−δ)-MCSP[s]. We recall a formula
lower bound obtained by Hirahara and Santhanam [HS17]. Their result can be stated as follows.

Theorem 47 (A Near-Quadratic Formula Lower Bound [HS17]). There exist functions δ(n) > 0,
ε(n)→ 0, and a constant λ ∈ (0, 1) for which the following holds:

Π[s, δ] /∈ Formula[N2−ε(n)],

where s(n) = 2n
λ
.11

Proof. In [HS17] a near-quadratic formula size lower bound is established for the standard MCSP
problem for an appropriate choice of the parameter s(n). Note that MCSP is nothing else than
Π[s(n), δ(n)] for 0 < δ(n) < 2−n.

In this section, we give the proof of a slightly stronger form of Theorem 47 with parameters
s(n) = 2O(nγ) and δ(n) = 2−n+Θ(nγ), where 1/2 ≤ γ < 1 is an arbitrary constant. (It is possible
to establish a more general result with stronger parameters. The crucial point of our exposition is
that one can prove a near-quadratic formula lower bound for s(n) = 2o(n).)

Let ρ : [N ] → {0, 1, ∗} be a restriction, and ρ be a random restriction, i.e., a distribution of
restrictions. We say that ρ is p-regular if Pr[ρ(i) = ∗] = p and Pr[ρ(i) = 0] = Pr[ρ(i) = 1] =
(1 − p)/2 for every i ∈ [N ]. In addition, ρ is k-wise independent if any k coordinates of ρ are
independent.

Proposition 48 (Succinct Random Restrictions (cf. [IMZ12, Vad12])). There exist explicit p-
regular k-wise independent random restrictions ρ distributed over ρ : [N ]→ {0, 1, ∗} samplable with
O(k log(N) log(1/p)) bits. Furthermore, each coordinate of the random restriction can be computed
in time polynomial in the number of random bits.

Let N = 2n. Given a function F : {0, 1}N → {0, 1} and a restriction ρ : [N ] → {0, 1, ∗}, we let
F �ρ be the function in {0, 1}ρ−1(∗) → {0, 1} obtained in the natural way from F and ρ.

For convenience, we use L(F ) to denote the size (number of leaves) of the smallest formula that
computes a function F .

The next result allows us to shrink the size of a formula using a pseudorandom restriction.
This restriction can be obtained by a composition of restrictions, which reduces the amount of
randomness and the corresponding circuit complexity of the final restriction.

Proposition 49 (Shrinkage for Pseudorandom Restrictions (cf. [IMZ12, HS17])). Let F : {0, 1}N →
{0, 1}, q = p1/r for an integer r ≥ 1, and L(F )·p2 ≥ 1. Moreover, let Rrp,k be a distribution obtained
by the composition of r independent q-regular k-wise independent random restrictions supported over
[N ]→ {0, 1, ∗}, where k = q−2. Then,

Eσ∼Rrp,k [L(F �σ)] ≤ crp2L(F ),

where c ≥ 1 is an absolute constant.

We will also need the following results.

11The near-quadratic formula lower bound from [HS17] is stated with a different regime for the parameter s(n).
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Fact 50 (Average-Case Hardness). Let An ⊆ {0, 1}n and n ≤ s(n) ≤ 2n/n2. There exists a
constant B ≥ 1 such that for every large enough n, if |An| ≥ B · s(n) log s(n), then there is a
function hn : An → {0, 1} such that no circuit C of size at most s(n) satisfies Pra∼An [C(a) =
hn(a)] ≥ 1/2 + 1/100.

Proof. Let h : An → {0, 1} be a random function. Using the size of An and a concentration bound,
h is computed by a fixed circuit C with probability greater than 1/2 + 1/100 over the choice of
a ∼ A with probability at most exp(−D · s(n) log s(n)), for a large enough constant D = D(B) ≥ 4
independent of n. The result now follows by a union bound using Proposition 15.

Lemma 51 (Adaptation of Lemma 27 from [HS17]). Let ρ : [N ] → {0, 1, ∗} be a restriction com-
puted by a circuit Cρ of size t(n) ≥ n, where N = 2n and Cρ : {0, 1}n → {0, 1}2 (two bits are used
to encode a value in {0, 1, ∗}). Let F : {0, 1}N → {0, 1}, and suppose that L(F �ρ) = M . Finally,
let

V = ρ−1(∗), s(n) = 10 · t(n), δ(n) = (1/3)(|V | −M)2−n.

There exists an absolute constant B ≥ 1 such that if |V | −M ≥ B · s(n) log s(n), then F does not
compute Π[s(n), δ(n)].

Proof. Under these assumptions, we define instances wy ∈ Πyes
N and wn ∈ Πno

N such that F (wy) =
F (wn). Below, we identify N and {0, 1}n. Since L(F �ρ) = M , F �ρ depends on at most M input
coordinates (indexed by elements in V ). Let W ⊆ V ⊆ [N ] be this set of coordinates.

– wy ∈ {0, 1}N is obtained from Cρ by additionally setting each ∗-output of this circuit (encoded
as a two-bit string) to 0. Note that wy viewed as a boolean function is computed by a circuit of
size at most 10 · t(n) ≤ s(n). Therefore, wy ∈ Πyes

N .

– wn ∈ {0, 1}N is defined to be a function f : {0, 1}n → {0, 1} that agrees with Cρ over {0, 1}n \V ,
evaluates to 0 on W , and otherwise computes as a fixed function h : V \W → {0, 1} with the fol-
lowing property: no circuit of size s(n) computes h correctly on more than a (1/2 + 1/100)-fraction
of the inputs in V \W . Since |V \W | ≥ |V |−M ≥ B ·s(n) log s(n), a function h with this property
exists by Fact 50. The hardness of wn over V \W and our choice of δ(n) imply that wn ∈ Πno

N .

Finally, using (1) that F restricted to ρ depends only on variables from W , and (2) the definition
of the inputs wy ∈ Πyes

N and wn ∈ Πno
N , it follows that F (wy) = F (wn). This completes the proof

that F does not compute Π[s(n), δ(n)].

We proceed with the proof of Theorem 47. Fix an arbitrary constant 1/2 ≤ γ < 1. Now let

N
def
= 2n, p

def
= 2Cpn

γ
/N, q

def
= p1/r, k

def
= q−2, r

def
= Crn

γ ,

where Cr ≥ 1 is a large enough constant, and Cp > Cr is also a sufficiently large constant.

Lemma 52 (Concentration Bound for |σ−1(∗)|). Let k ≥ 2. Then, for σ ∼ Rrp,k with parameters

as above, we have Pr[|σ−1(∗)| ≥ pN/2] ≥ 1/2.

Proof. Note that σ is p-regular and pairwise independent. The result follows from Chebyshev’s
using mean µ = pN , variance σ2 = Np(1− p), and the value of p.
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Using Proposition 48, it is possible to sample a random restriction σ as in the statement of
Proposition 49 where each σ : [N ]→ {0, 1, ∗} in the support of σ has circuit complexity at most

t(n) ≤ poly(r, k, logN, log(1/q)) ≤ poly(n, k) ≤ 2n
1−γ ≤ 2n

γ
,

where in the last two inequalities we used the definition of k and the assumptions on the constants
Cp, Cr, and γ.

Toward a contradiction, let F : {0, 1}N → {0, 1} be a formula of size L(f) that computes
Π[s(n), δ(n)], where L(F ) · p2 = 1 (note that L(F ) = N2−o(1)), and let

s(n)
def
= 10 · t(n), δ(n)

def
= (1/3)(pN/2−M)2−n, M

def
= 10 · crp2L(F ),

for a constant c ≥ 1 as in Proposition 49. Using Proposition 49 and Markov’s inequality, Lemma
52, and a union bound, there is a fixed restriction ρ : [N ]→ {0, 1, ∗} for which the following holds:

• For V
def
= ρ−1(∗), we have |V | ≥ pN/2;

• ρ is computed by a circuit Cρ : {0, 1}n → {0, 1}2 of size at most t(n) ≤ 2n
γ
;

• L(F �ρ) ≤ M .

Using these parameters in the statement of Lemma 51, it is easy to check that |V | − M �
B · s(n) log(s(n)). Consequently, Lemma 51 implies that Π[s, δ] requires formulas of size N2−o(1).
Since our parameters satisfy s(n) = 2O(nγ) and δ(n) = 2−n+Θ(nγ), this completes the proof.

Limitations of the Hirahara-Santhanam Lower Bound Technique. Unfortunately, without
further modifications, the approach described in this section is not sufficient for obtaining new
formula lower bounds (via Lemma 16). Intuitively, the reason is that the probability parameter p
must be small enough so that the initial formula simplifies after a pseudorandom restriction. At
the same time, the parameter δ must be large enough so that there is a reasonable gap between
positive and negative instances in Lemma 51, allowing Lemma 16 to be invoked with nontrivial
parameters. However, since p and δ are connected, these are conflicting requirements.

We formalize this argument next. For convenience, we make the following simplifying assump-
tions.

– In Lemma 16, we get an `(n) formula-size lower bound a function over s(n)/δ(n) input bits.
– The expectation in Proposition 49 is bounded by p2L(F ).
– In Lemma 51, δ(n) = (|V | −M)2−n, and the final condition is simply |V | −M ≥ s(n) log s(n).
– Lemma 13: The composed restriction σ from Proposition 49 satisfies |V | = |σ−1(∗)| = pN .

Under these assumptions, in order to prove a formula lower bound of the form md for an m-
bit boolean function using Lemma 16, where d > 1, we need to have `(n) ≥ (s(n)/δ(n))d. Since
|V | = pN = p2n, in order to prove a lower bound using Lemma 51, we must take δ(n) ≤ p (i.e.,
p controls the fraction of ∗’s, and if δ(n) > p, there is not enough room to create a negative
instance of Π[·, δ] in the proof of Lemma 51). Now in the statement of Proposition 49, we need
p small enough to shrink the initial formula F of size N · `(n) to a restricted formula F �ρ such
that L(F �ρ) = M and |V | −M ≥ s(n) log s(n) (Lemma 51). Consequently, M ≤ |V | ≤ pN . This
requires p2L(F ) = p2N`(n) to be at most M ≤ pN , which in turn forces p2N(s(n)/δ(n))d ≤ pN ,
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using the lower bound on `(n). We get from this inequality that p ≤ (δ(n)/s(n))d. Now recall that
δ(n) ≤ p in order for the approach to work, which gives δ(n) ≤ (δ(n)/s(n))d, where d > 1 and
of course s(n) > 1 (in order to simplify the statement of Lemma 16 and make it nontrivial, the
stronger assumption s(n) ≥ n is employed there). Finally, it follows that the latter inequality is
false, since δ(n) < 1.

C.2 Lower bounds for good δ but bad s (with respect to Theorem 18)

For convenience, throughout this section we let Π[s, δ] = (1, 1 − δ)-MCSP[s]. We explore two
approaches to lower bounds in connection with Theorem 18. First, we use the technique of deter-
ministic restrictions [CR96] to prove the following result.

Theorem 53 (Small-Depth Lower Bounds for Large s(n)). Let s(n) = 2(1−o(1))n and δ = 1/2− λ,
where λ > 0 is fixed but arbitrarily small. Then for every d ≥ 1 there is ε > 0 such that Π[s, δ] /∈
AC0

d[N
1+ε].

We use the following lemma, which allows us to trivialize a very small constant-depth circuit
by fixing only a few input variables.

Lemma 54 (Deterministic Restriction Lemma [CR96]). Let C be a circuit over N input variables
of size S and depth d, and let αd = 4−d. Then there is a restriction ρ : [N ]→ {0, 1, ∗} that fixes at
most 5 · S1−αd inputs such that C �ρ is constant.

Proof of Theorem 53. Suppose there is a sequence {DN} of depth-d circuits of size N1+εd that
compute Π[s, δ], where εd is any small enough positive constant such that (1 + εd)(1 − αd) < 1.
Let ρ be a restriction that fixes less than N1−Ω(1) input variables such that DN �ρ is constant, as
given by Lemma 54 and our choice of parameters. To complete the proof, we construct inputs
wy, wn ∈ {0, 1}N extending the restriction ρ such that wy ∈ Πyes

N and wn ∈ Πno
N .

For wy, we fix every ∗-coordinate of ρ to 0. Since |ρ−1(1)| ≤ N1−Ω(1), it is clear that wy encodes a
function that can be computed by a circuit (or even a DNF) of size at most N1−Ω(1) ·poly(n) ≤ s(n).
Consequently, wy ∈ Πyes

N .
On the other hand, let wn ∈ {0, 1}N be a uniformly random completion of ρ. Then, since

|ρ−1(∗)| ≥ (1 − o(1))N , a standard argument using a union bound and Lemma 13 shows that
almost surely every circuit of size s(n) computes fn(wn) correctly on at most (1/2 + o(1))2n input
strings. By fixing wn to be any string with this property, we get wn ∈ Πno

N .

Note that, as opposed to Theorem 47, here δ is a (rather large) constant. Neither of these
results can be used for hardness magnification, but the reason is different in each case. In Theorem
47, the relative distance δ is prohibitively small, while in Theorem 53 it is the size bound that is
prohibitively large.

Succinct restrictions, uniformity, and unconditional lower bounds. We note that the
lower bound described in Section C.1 and the proof of Theorem 53 follow the same idea of finding
a restriction of bounded circuit complexity that simplifies a formula or a bounded-depth circuit,
respectively. Is there a P-uniform (in 1N ) sequence of bounded-depth circuits CN over N -input
variables and of size N1+ε that cannot be made constant by a restriction ρN : [N ] → {0, 1, ∗} of
circuit complexity s(n) ≤ poly(n) and with |ρ−1(∗)| = Ω(N)?
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By dropping the complexity requirement, the corresponding restrictions exist (Lemma 54). One
can define from such a uniform sequence of circuits an NEXP-verifier (over inputs of the form 1n)
that does not admit succinct (polynomial-size) witnesses, in the formal sense of [IKW02, Wil16].
In particular, the existence of uniform circuits as above implies that NEXP * P/poly. Therefore,
showing that the magnification approach via Theorem 18 cannot lead to new unconditional lower
bounds is connected to the existence of non-constructive sequences of circuits that do not admit
succinct restrictions.

It is possible to improve the parameters in Theorem 53 using a different approach. We rely
on the construction of pseudorandom functions [Nis91] that can be computed by slightly super-
polynomial size circuits and that are secure against AC0 circuits of arbitrary fixed depth.12 A
related and perhaps more direct point of view is that the result follows from the fact that there are
no AC0-natural proofs against AC0[2] circuits of super-polynomial size [RR97].

Theorem 55 (Small-Depth Lower Bounds for Medium s(n)). Let s(n) = nω(1) and δ = 1/2 − λ,
where λ > 0 is fixed but arbitrarily small. Then for every d ≥ 1 and every ` ≥ 1 we have
Π[s, δ] /∈ AC0

d[N
`].

Proof Sketch. It is enough to observe that any circuit computing a total function that agrees with
Π[s, δ] = (1, 1 − δ)-MCSP[s] defines a natural property useful against size-s circuits. The result
then follows immediately from [RR97, Theorem 4.3].

This result is much closer to the parameters in Theorem 18, but still insufficient for lower
bounds.

12To be more precise, these are actually implicitly computable PRGs, and not PRFs in the usual cryptographic
sense. The difference is that the corresponding distinguishers are allowed to run in time polynomial in the size of the
output string, while in the (cryptographic) PRF setting a distinguisher typically has oracle access to the function
and runs in sub-linear time in the size of the truth table.
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