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Abstract

Different techniques have been used to prove several transference theorems of the form “non-
trivial algorithms for a circuit class C yield circuit lower bounds against C”. In this survey we
revisit many of these results. We discuss how circuit lower bounds can be obtained from deran-
domization, compression, learning, and satisfiability algorithms. We also cover the connection
between circuit lower bounds and useful properties, a notion that turns out to be fundamental
in the context of these transference theorems. Along the way, we obtain a few new results,
simplify several proofs, and show connections involving different frameworks. We hope that our
presentation will serve as a self-contained introduction for those interested in pursuing research
in this area.
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1 Introduction

This survey deals with two fundamental problems in theoretical computer science: the design of
nontrivial algorithms for difficult computational tasks, and the search for unconditional proofs
that some natural computational problems are inherently hard (more specifically, do not admit
polynomial size circuits).

Perhaps surprisingly, these problems are deeply related. For instance, it follows from the work of
Karp and Lipton [KL80] (attributed to Meyer) that if 3-SAT admits a polynomial time algorithm,
then there are problems solved in exponential time that cannot be computed by polynomial size
circuits. On the other hand, it is known that constructive proofs of circuit lower bounds lead
to algorithms breaking exponentially hard pseudorandom generators that are conjectured to exist
(Razborov and Rudich [RR97]).

The last decade has produced several additional transference theorems1 of this form, under
many different algorithmic frameworks. For instance, the existence of subexponential time learning
algorithms for a class of functions C leads to circuit lower bounds against C (Fortnow and Klivans
[FK09]). In a different domain, it is known that the design of subexponential time deterministic
algorithms for problems with efficient randomized algorithms implies circuit lower bounds that
have eluded researchers for decades (Kabanets and Impagliazzo [KI04]). More recently, it has been
shown that new circuit lower bounds can be obtained from efficient compression algorithms (Chen
et al. [CKK+13]), not to mention the connection between satisfiability algorithms and circuit
lower bounds (Williams [Wil10], [Wil11], [Wil13b]). Several additional results have appeared in
the literature ([KvMS12], [AvM11], [AAB+10], [AGHK11], [HH11], [KKO13], among others). For
a gentle introduction to some of these connections, see Santhanam [San12].

These results are interesting for several reasons. For instance, as far as we know, there may
be an efficient compression scheme that works well for any string possessing some structure, or
circuits of polynomial size can be learned in quasipolynomial time by a very complicated learning
algorithm. Nevertheless, the transference theorems discussed before show that even if complicated
tasks like these are actually easy, some natural computational problems are inherently hard (even
for non-uniform algorithms).

How could one prove (unconditionally) that a natural computational problem is hard? How
would a mathematical proof of such result look like? This is one of the most fascinating questions
of contemporary mathematics, and it is related to deep problems about algorithms, combinatorics,
and mathematical logic (cf. Kraj́ıcek [Kra95], Immerman [Imm99], Cook and Nguyen [CN10]).

It turns out that the connection between algorithms and circuit lower bounds (“transference
theorems”) can be used to prove new circuit lower bounds that had resisted the use of more di-
rect approaches for decades. Let C be a class of circuits, such as AC0,TC0,NC1, etc. We say
that a satisfiability algorithm for C is nontrivial if it runs in time time 2n/s(n), for some func-
tion s(n) � poly(n). Building on work done by many researchers, Williams ([Wil11], [Wil10])
proved the following transference theorem: the existence of a nontrivial C-SAT algorithm implies
NEXP * C[poly]. In other words, faster satisfiability algorithms lead to languages computed in
nondeterminstic exponential time that cannot be computed by polynomial size circuits from C.

Most importantly, by designing a new ACC-SAT algorithm, Williams [Wil11] was able to obtain
a circuit lower bound for the circuit class ACC.2 Moreover, this is the only known proof of this result.

1In other words, these theorems show that one can transform an algorithmic result into a circuit lower bound, i.e.,
they allow us to transfer a result from one area to another.

2This is the class of languages computed by polynomial size constant-depth circuits consisting of AND, OR, NOT
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Other approaches that have been proposed are also based on the design of new ACC algorithms
(Chen et al. [CKK+13]). While his result is still weak compared to the main open problems in
circuit complexity and complexity theory in general, it is a landmark in our understanding of the
connection between nontrivial algorithms and the existence of hard computational problems.

Can we extend this technique to prove stronger circuit lower bounds? Is there any connection
between Williams’ transference theorem and other similar results discussed before? This survey
is motivated by these questions. We break the presentation into two parts. The first part is a
fast-paced introduction to some known results connecting algorithms to circuit lower bounds. The
second part of this survey presents complete proofs for most of these theorems, along with some
extensions that may be of independent interest. Of course we are not able to cover every result
that relates algorithms to circuit lower bounds, but we tried to describe representative results from
many areas.

We stress that we focus on generic connections between faster algorithms and circuit lower
bounds, instead of particular techniques that have found applications in both areas (Fourier rep-
resentation of boolean functions [LMN93], satisfiability coding lemma [PPZ99], random restriction
method [CKK+13], etc.). For the reader with basic background in complexity theory, our presen-
tation is essentially self-contained.

1.1 A summary of some known results

1.1.1 Satisfiability algorithms and circuit lower bounds

The connection between algorithms for hard problems and circuit lower bounds has been known for
decades. More precisely, a collapse theorem attributed to Meyer [KL80] states that if EXP ⊆ P/poly
then EXP = Σp

2 (recall this is the second level of PH, the polynomial time hierarchy). On the other
hand, it is not hard to prove that if P = NP then P = Σp

2 = PH. Together, the assumptions that
there are efficient algorithms for NP-complete problems and that every problem in EXP admits
polynomial size circuits lead to P = EXP, a contradiction to the deterministic time hierarchy
theorem. In other words, if there exists efficient algorithms for 3-SAT, it must be the case that
EXP * P/poly.3 Similar transference results can be obtained from the assumption that there are

subexponential time algorithms for 3-SAT (i.e., with running time 2n
o(1)

).
The existence of such algorithms is a very strong assumption. The best known algorithms for

k-SAT run in time 2n(1−δ(k)), for some fixed constant δ(k) > 0 that goes to zero as k goes to
infinity (cf. Dantsin and Hirsch [DH09]). These algorithms offer an exponential improvement over
the trivial running time Õ(2n). If we only require the running time to be faster than exhaustive
search (“nontrivial”), then improved algorithms are known for many interesting circuit classes (see
for instance [San10], [CKK+13], [ST13], [IPS12], [BIS12], [IMP12]). For an introduction to some
of these algorithms, see Schneider [Sch13].

It makes sense therefore to consider more refined versions of the transference theorem for satis-
fiability algorithms. This is precisely the first result in this direction obtained by Williams [Wil10]:
the existence of nontrivial algorithms deciding the satisfiability of polynomial size circuits is enough
to imply NEXP * P/poly. Unfortunately, P/poly is a very broad class, and the algorithms men-
tioned before do not work or have trivial running time on such circuits.

and MODm gates (for a fixed integer m ∈ N). Every gate other than NOT is allowed to have unbounded fan-in.
3Using the fact that P = PH implies the collapse of the exponential time hierarchy to EXP, an even stronger

consequence can be obtained. We omit the details.
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In follow up work, Williams [Wil11] extended his techniques from [Wil10] to prove a more
general result that holds for most circuit classes.

Proposition 1.1 (“SAT algorithms yield circuit lower bounds, I” [Wil11]).
Let C be a class of circuit families that is closed under composition (the composition of two circuits
from C is also in C) and contains AC0. There is a k > 0 such that, if satisfiability of C-circuits with
n variables and nc size can be solved in O(2n/nk) time for every c, then NEXP * C[poly(n)].

In addition, he provided a nontrivial algorithm for ACC[2n
δ
] (the class of ACC circuits of size

2n
δ
), where δ = δ(d,m) > 0 depends on the depth of the circuit and the modulo gate. Altogether,

these results imply the following circuit lower bound.

Corollary 1.2. NEXP * ACC.

Subsequent work of Williams [Wil13b] has extended these techniques to prove the following
stronger transference theorem, which provides better circuit lower bounds4.

Proposition 1.3 (“SAT algorithms yield circuit lower bounds, II” [Wil13b]).
Let C be a class of circuit families that is closed under composition and contains AC0. There is
a k > 0 such that, if satisfiability of C-circuits with n variables and nlog

c n size can be solved in
O(2n/nk) time for every c, then NE ∩ i.o.coNE * C[nlogn].

Besides, the following strengthening of Corollary 1.2 is proven in the same paper (the first
statement is implicit in his proof).

Corollary 1.4. E * ACC[nlogn] or Quasi-NP ∩ i.o.Quasi-coNP * ACC[nlogn]. In particular, NE ∩
i.o.coNE * ACC[nlogn].

The proof of these transference theorems has been simplified since then. In Santhanam and
Williams [SW12], self-reduction (cf. Allender and Koucký [AK10]) is used to obtain an equivalent
circuit from a smaller circuit class given an arbitrary NC1 circuit (under some assumptions). This
simplifies one of the main technical lemmas from [Wil11].

1.1.2 Constructivity and circuit lower bounds

There are three significant barriers to circuit lower bound proofs: relativization (Baker, Gill, and
Solovay [BGS75]), natural proofs (Razborov and Rudich [RR97]), and algebrization (Aaronson and
Wigderson [AW09]). Roughly speaking, these barriers can be interpreted as follows: some proof
methods are too general, and if a lower bound can be obtained by one of such techniques alone,
then we get a contradiction to some known result or a widely believed conjecture5. As explained
by Williams [Wil11], his lower bound proof combines several methods used in modern complexity
theory, and each one avoids a particular barrier6.

It was proven by Razborov and Rudich that most of the circuit lower bound proofs known at
the time proceeded (at least implicitly) as follows. There is a circuit class C (say, AC0) that one

4We use NE ∩ i.o.coNE instead of NE ∩ coNE in the statement of Proposition 1.3 because the proof described in
[Wil13b] requires this extra condition [Wil13a].

5These barriers can also be interpreted as independence results for some formal theories ([AIV92], [Raz95],
[IKK09]).

6We stress however that there is no widely believed conjecture that leads to pseudorandom function families in
ACC, and this is an interesting open problem. As far as we know, there may exist a natural proof that P * ACC.
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wants to separate from a complexity class Γ (say, P). In order to do that, one defines a property
P of boolean functions (i.e., a subset of all boolean functions), and prove that no function in C
satisfies P, while there exists some hard function h ∈ Γ for which P(h) = 1 (in this case, we say
that P is useful against C). For instance, every AC0 function simplifies after an appropriate random
restriction ([FSS84], [Yao85], [H̊as87]), while the parity function is still as hard as before.

As it turns out, for the property P defined in these proofs, there is an efficient algorithm A
(with respect to the size of the truth-table of f) that is able to decide whether P(f) = 1. Such
properties are referred to as constructive properties. In addition, it is usually the case that a random
function satisfies P with non-negligible probability (P satisfies the denseness condition). These two
conditions imply that A can be used to distinguish a function in C from a random function. Put
another way, if there exists a proof of this form that Γ * C, then there is no pseudorandom function
family in C.

However, if some number-theoretic problems are exponentially hard on average (an assumption
believed to be true by many researchers), then there are pseudorandom functions in circuit classes
as small as TC0

4 (Naor and Reingold [NR04], Krause and Lucks [KL01]). As a consequence, such
proofs (dubbed natural proofs in [RR97]) are not expected to prove separations for more expressive
circuit classes. Unfortunately, most (if not all) known combinatorial proofs of circuit lower bounds
implicitly define such properties, and this explains the lack of significant progress obtained so far
for more general classes of circuits using these techniques only. The interested reader is referred to
Chow [Cho11] and Rudich [Rud97] for further developments.

As a consequence, any circuit lower bound proof for more expressive classes must violate either
the denseness or the constructivity condition. Williams [Wil13b] shed light into this problem, by
proving that any separation of the form NEXP * C is actually equivalent to exhibiting a constructive
property P that is useful against C.

Proposition 1.5 (“Constructivity is unavoidable”, informal [Wil13b]).
Let C be a typical circuit class. Then NEXP * C if and only if there exists a constructive property
P that is useful against C.

In other words, any lower bound proof against NEXP implies the existence of a property that
is both useful and constructive, but not necessarily dense. As we explain later in the text, P is
actually computed with a small amount of advice. We clarify this point in Section 1.2.2, where we
discuss some additional results about useful properties and circuit lower bounds.

1.1.3 Additional transference theorems

As alluded to earlier, several additional transference theorems of the form “faster algorithms yield
circuit lower bounds” have been discovered. In this section we describe some of these results in more
detail. We focus on learning algorithms, derandomization, and algorithms for string compression.

Derandomization. There is a strong connection between the existence of pseudorandom generators
and circuit lower bounds (see [Kab02], [Uma03]). Nevertheless, while there is evidence that pseu-
dorandom generators are necessary in order to derandomize probabilistic algorithms (Goldreich
[Gol11]), i.e. to prove that P = BPP, this is still open.

On the other hand, for the larger randomized complexity class MA, it is known that any de-
randomization (such as MA ⊆ NSUBEXP) implies superpolynomial circuit lower bounds for NEXP
(Impagliazzo, Kabanets and Wigderson [IKW02]). Subsequent work of Kabanets and Impagliazzo
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[KI04] shows that even the derandomization of a single, specific problem in BPP leads to some
circuit lower bounds. More precisely, let PIT be the language consisting of all arithmetic circuits
that compute the zero polynomial over Z, and PERM be the problem of computing the permanent
of integer matrices. We use SIZE[poly] to denote the set of languages computed by polynomial
size boolean circuits. Similarly, let ASIZE[poly] be the family of languages computed by arithmetic
circuits of polynomial size over Z.

Proposition 1.6 (“Derandomization yields circuit lower bounds” [KI04]).
If PIT ∈ NSUBEXP, then at least one of the following results hold:

(i) NEXP * SIZE[poly]; or

(ii) PERM * ASIZE[poly].

Aaronson and van Melkebeek [AvM11] proved a parameterized version of the result, in addition
to showing that NEXP ∩ coNEXP can be used in place of NEXP. Another extension appears in
Kinne, van Melkebeek and Shaltiel [KvMS12].

Learning algorithms. Fortnow and Klivans [FK09] were the first to exhibit a formal connection
between learning algorithms and circuit lower bounds. Recall that a learning algorithm A is given
restricted access to a fixed but arbitrary function f from a class of functions C, and it should output
a hypothesis h that is as close to f as possible. Distinct learning models provide difference access
mechanisms to f , and impose specific requirements over h (h should be close to f , h ≡ f , etc.) and
A (learner is randomized, deterministic, etc).

An exact learning algorithm is a deterministic algorithm that has access to a membership query
oracle MQf and an equivalence query oracle EQf , and it is required to output a hypothesis h which
agrees with f over all inputs7.

Proposition 1.7 (“Learning yields circuit lower bounds” [FK09]).
Let C be a circuit class. If there exists a subexponential time exact learning algorithm for C, then
ENP * C.

The original proof of Proposition 1.7 relies on many complexity theoretic results. Subsequent
work done by Harkins and Hitchcock [HH11] strengthened the conclusion to EXP * C. Finally,
Klivans, Kothari and Oliveira [KKO13] used a very simple argument to prove the essentially optimal
result that exact learning algorithms for C[s(n)] running in time t(n) lead to a circuit lower bound
of the form DTIME[poly(t(n))] * C[s(n)].8

For randomized learning algorithms, much weaker results are known (a formal definition of the
model is discussed in Section 5.3). For instance, efficient PAC learning algorithms are known to
lead to circuit lower bounds against BPEXP, the exponential time analogue of BPP [FK09]. A
slightly stronger result was obtained by Klivans et al. [KKO13], but the underlying techniques do
not provide interesting results for randomized subexponential time algorithms. It is an interesting
open problem to obtain such extension.

7On input x ∈ {0, 1}n, MQf (x) returns f(x). On input a circuit c, EQf outputs “yes” if c ≡ f , otherwise it
outputs an arbitrary input z such that c(z) 6= f(z).

8The same result was obtained independently by Russell Impagliazzo and Valentine Kabanets [Kab13].
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Truth-table compression. More recently, Chen et al. [CKK+13] considered the problem of designing
efficient algorithms that obtain nontrivial compression of strings representing truth-tables from a
circuit class C. In other words, given a string tt(fn) ∈ {0, 1}N , where fn : {0, 1}n → {0, 1} is a
function from C ⊆ P/poly and N = 2n, a compression algorithm should run in time poly(N) and
output a circuit C over n inputs and size � 2n/n such that tt(C) = tt(f). In the same paper,
they observed that several circuit lower bounds proofs relying on the method of random restrictions
yield efficient compression algorithms. On the other hand, they obtained the following transference
theorem.

Proposition 1.8 (“Compression leads to circuit lower bounds” [CKK+13]).
Let C be a circuit class. Suppose that for every c ∈ N there is a deterministic polynomial-time
algorithm that compresses a given truth table of an n-variate boolean function f ∈ C[nc] to an
equivalent circuit of size o(2n/n). Then NEXP * C.

It follows from Proposition 1.8 that designing a compression algorithm for ACC would provide
an alternative proof of Corollary 1.2. This is left as an interesting open problem by [CKK+13].

1.2 A guide to the results discussed in this survey

1.2.1 Lower bounds from satisfiability algorithms for low depth circuits

Let TC0
2 denote the class of polynomial size circuits of depth two with gates corresponding to

arbitrary linear threshold functions. As far as we know, it may be the case that NEXP ⊆ TC0
2. It

makes sense therefore to see if the techniques used in the proof of Corollary 1.2 can be helpful in
obtaining a separation against bounded-depth circuit classes of this form.

A more refined version of Proposition 1.1 discussed in [Wil11] shows that circuit lower bounds
for circuits of depth d follow from satisfiability algorithms for depth 2d+O(1). We observe here that
it is possible to obtain a tight transference theorem for satisfiability algorithms for constant-depth
circuits. Let Cd be a circuit class consisting of circuits of depth d, and g be an arbitrary function.
We write g[k] ◦ Cd to denote the class of functions computed by circuits of depth d + 1 consisting
of a top layer gate g of fan-in k that is fed by k circuits from Cd.

Theorem 1.9 (“SAT algorithms for depth d+ 2 yield circuit lower bounds for depth d”).
Let C be a reasonable circuit class. If there exists a nontrivial satisfiability algorithm for AND[3] ◦
OR[2] ◦ Cd[poly], then NEXP * Cd[poly].

We define reasonable circuit classes in Section 2. This result can be obtained through a sim-
ple extension of the original technique used by Williams [Wil10]. In particular, our presentation
avoids the technical details from [Wil11]. A similar theorem is described in Jahanjou, Miles and
Viola [JMV13], but the argument they use is more involved. The proof of Theorem 1.9 and some
additional remarks are presented in Section 3.

1.2.2 Useful properties and circuit lower bounds

We discuss in more detail the relation between circuit lower bounds and useful properties (Propo-
sition 1.5). Useful properties play a fundamental concept in the context of transference theorems,
as explained in the next section.

For a uniform complexity class Γ (such as P, NP, etc), we say that a property of boolean
functions P is a Γ-property if it can be decided in Γ. We use Γ/s(m) to denote the corresponding
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complexity class with advice of size s(m), where m is the size of the input. Recall that a property
is useful against C if it distinguishes some hard function from all functions in C (a formal definition
is presented in Section 2).

First we observe that nondeterminism is of no use in the context of useful properties, which is
a somewhat surprising result. The proof of this fact relies on some ideas introduced by Williams
[Wil13b].

Theorem 1.10 (“NP-property yields P-property”).
Let C be a circuit class. If there exists a NP-property that is useful against C[poly], then there is a
P-property that is useful against C[poly].

Now we discuss in more detail the connection discovered by Williams (Proposition 1.5) between
constructive useful properties (P-properties under our notation) and circuit lower bounds. It turns
out that the statement of Proposition 1.5 requires a broader definition, one for which the algorithm
deciding the property is allowed inputs of arbitrary size instead of size N = 2n, where n ∈ N.
Put another way, the algorithm receives any string as input, and is allowed to parse its input
size as 2n + k. Now it is free to interpret k as an advice string of length logN . We clarify this
issue here, and observe that Theorem 1.10 together with standard techniques imply the following
characterization of NEXP circuit lower bounds.9

Theorem 1.11 (“Equivalence between NEXP lower bounds and useful properties”).
Let C be a circuit class. Then NEXP * C[poly] if and only if there exists a P/ logN -property that
is useful against C[poly].

It makes sense therefore to investigate whether there exists an equivalence between useful prop-
erties computed without advice and circuit lower bounds. The following result holds.

Theorem 1.12 (“NE ∩ coNE lower bounds and useful properties”).
Let C be a circuit class. The following holds:

(i) If NE ∩ coNE * C[poly] then there is a P-property that is useful against C[poly].

(ii) If for every c ∈ N there exists a P-property that is useful against C[nlogc n], then NE∩i.o.coNE *
C[nlogn].

One direction follows from Theorem 1.10, while the other is implicit in Williams [Wil13b]. Given
these results, the following conjecture seems plausible.

Conjecture 1.13 (“Equivalence between NE ∩ coNE lower bounds and useful properties?”).
Let C be a circuit class. Then NE ∩ coNE * C[poly] if and only if there exists a P-property that is
useful against C[poly].

We discuss how this conjecture relates to Williams’ program for circuit lower bounds in Section
4.1. The results for useful properties are discussed in Section 1.2.2 of the survey.

9We stress that in this survey any algorithm that decides a property of boolean functions works over strings of
length N = 2n, where n ∈ N.
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1.2.3 Applications

It is possible to use the results mentioned in the previous sections to prove the propositions stated in
Section 1.1.3. In particular, several transference theorems are in fact connected, and improvements
in one framework propagates to other results.

The first application that we discuss is for compression algorithms, as investigated by Chen
et al. [CKK+13]. Observe that Proposition 1.8 shows circuit lower bounds for NEXP from exact
compression of truth-tables of polynomial size circuits. As mentioned in the same paper, their result
can be extended to show that even lossy compression algorithms lead to circuit lower bounds. We
flesh out the details here.

We say that a circuit class C admits lossy compression algorithms if there exists an efficient
algorithm A (over inputs of size N = 2n) that when given as input a truth-table tt(f) from C,
where f : {0, 1}n → {0, 1}, outputs a circuit C of size o(2n/n) such that Prx[C(x) = f(x)] ≥ .51.
A more general definition is discussed in Section 5.1.

Theorem 1.14 (“Circuit lower bounds from lossy compression”).
Let C be a circuit class. The following results hold.

(i) If for every c ∈ N there exists a lossy compression algorithm for C[nc], then NEXP *
C[poly(n)].

(ii) If for every c ∈ N there exists a lossy compression algorithm for C[nlogc n], then NE∩i.o.coNE *
C[nlogn].

In other words, any efficient algorithm for lossy compression of strings is either trivial on
infinitely many input strings represented by truth-tables from TC0

2 (i.e., does not provide a lossy
encoding of significantly smaller size), or a new circuit lower bound follows. This result can be
obtained as an easy application of Theorem 1.11, and its proof is presented in Section 5.1.

Next we observe that Proposition 1.6 (“derandomization yield circuit lower bounds”) follows
from the transference theorem for satisfiability. More precisely, Theorem 1.9 extends to slightly
more general algorithms, an observation that we discuss in more detail in Section 3.1. Using this
generalization, it is possible to prove that if Proposition 1.6 is false, then a contradiction can be
obtained. This proof is presented in Section 5.2.

In the context of learning algorithms, some extensions of the main result of Fortnow and Klivans
[FK09] for exact learning (Proposition 1.7) follow easily from results for useful properties (Theorems
1.11 and 1.12). In addition, it is not hard to show that even subexponential time randomized
learning leads to useful properties decided by efficient randomized algorithms.

Theorem 1.15 (“Useful properties and learning algorithms”).
Let C = C[poly] be a circuit class. If there exists a subexponential time randomized PAC learning
algorithm for C, then there exists a (promise)coRP-property that is useful against C.

These transference theorems can be obtained by interpreting learning algorithms as lossy com-
pression schemes, or by relying directly on Theorems 1.11 and 1.12. These results are discussed in
more detail in Section 5.3.

Overall, these observations show that an improvement of a transference theorem in one frame-
work leads to similar improvements in other frameworks. For instance, a proof of Conjecture 1.13
implies many interesting results of the form “nontrivial algorithms yield circuit lower bounds”.
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More precisely, it immediately implies new transference theorems for both (lossy) compression
and satisfiability algorithms, and an alternative proof of the extension of Proposition 1.6 obtained
by Aaronson and van Melkebeek [AvM11]. Moreover, a direct improvement of the transference
theorems for satisfiability is likely to imply a similar strengthening of Proposition 1.6.

1.2.4 An overview of the results

For convenience of the reader, Figure 1 summarizes the relations between algorithms and circuit
lower bounds discussed in this survey.

Lossy Compression

Useful Properties

Learning

DerandomizationSatisfiability

Circuit Lower Bounds

Algorithms

Algorithms

Figure 1: Bold arrows represent transference theorems, while a dotted arrow from A to B indicates that an
improvement of the transference theorem for A implies a similar improvement of the transference theorem
for B.

2 Preliminaries and Notation

We assume familiarity with basic notions from computational complexity theory. The reader is
referred to Arora and Barak [AB09] and Goldreich [Gol08] for more details. For convenience, we
postpone some definitions that are specific to a particular section of the paper to that corresponding
section.

A boolean function is any function hn : {0, 1}n → {0, 1}, for some fixed n ∈ N. We say that h
is a family of boolean functions if h = {hn}n∈N. Any family of functions corresponds to a language
L ⊆ {0, 1}∗, and vice versa. For a language L, we use Ln to denote L ∩ {0, 1}n.

We will use Γ to denote uniform complexity classes such as P, coRP and NP. Sometimes we
will extend these complexity classes to the corresponding classes with advice of size s(m), where m
is the input size. In this case, we use Γ/s(m). A language L is in i.o.Γ if there exists L′ ∈ Γ such
that Ln = L′n for infinitely many values of n.

Following [Wil13b], we say that a circuit class C is typical if C ∈ {AC0,ACC,TC0,NC1,P/poly}.
The results stated for typical classes hold for more general circuit classes. We use SIZE[s(n)] to
denote the family of functions computed by circuits of size s(n). Similarly, ASIZE[s(n)] denotes
the family of functions computed by arithmetic circuits of size s(n). Although each circuit class
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corresponds to a set of languages, we may abuse notation and say that a given circuit D is from
C. In general, for any circuit class C, let Cd[s(n)] be the family of functions computed by circuits
from C of depth d and size s(n), where the size of a circuit is the number of gates in the circuit.
If for convenience we omit s(n), assume the circuits are of polynomial size. For instance, TC0

2[n
2]

corresponds to the class of languages computed by circuits of depth-two with O(n2) gates, each
one corresponding to some linear threshold function. All circuit classes considered here are non-
uniform. If we mention a circuit D of size s(n) without attributing it to a specific circuit class,
assume it is composed of AND, OR and NOT gates of fan-in at most two.

In order to prove a tight transference theorem for some circuit classes, we make the following
definition.

Definition 2.1. A circuit class C is reasonable if:

(i) The constant zero function f : {0, 1}n → {0, 1} with f(x) = 0 for every input x is in C.

(ii) For every function g ∈ C, the function ḡ = NOT(g) is in C, i.e., C is closed under comple-
mentation. In addition, there is an efficient algorithm that, given the description of a circuit
computing g, outputs a circuit from C of the same size computing ḡ.

(iii) The gates of circuits from C may have direct access to constant inputs 0 and 1 in addition to
the input variables and their negations10.

(iv) Any language in C[poly(n)] is in P/poly.

The results that are stated for reasonable classes hold for more general circuit classes, but for
simplicity we stick with this definition. In any case, most circuit classes are reasonable (in the sense
of Definition 2.1), including AC0, TC0

2, NC
1, P/poly, etc.

We say that a deterministic algorithm is nontrivial if it runs in time 2n/nω(1). We may use this
terminology to talk about nondeterministic and randomized algorithms with similar time bounds.

The following folklore result shows that to prove a circuit lower bound for P it is enough to
obtain a circuit lower bound for the non-uniform class P/poly.

Lemma 2.2. Let Cd[poly(n)] be a reasonable circuit class. If P ⊆ Cd[poly(n)], then for every b ∈ N
there exists a t ∈ N such that every boolean circuit over n inputs of size nb admits an equivalent
circuit from Cd of size nt.

Proof. Assume that P ⊆ Cd[poly(n)]. Consider the following problem:

Circuit-Evalb = {〈E, x〉 : E is a circuit on n variables of size ≤ nb and E(x) = 1}

Clearly, Circuit-Evalb is in P (for any fixed b), and thus there exists t such that Circuit-Evalb ∈ Cd[nt].
In other words, there exists a sequence {Dn}n∈N of circuits from Cd of size O(nt) that computes
Circuit-Evalb.

Let En : {0, 1}n → {0, 1} be a function over n boolean variables computed by a circuit of size
at most nb. We can hardwire the description of En inside circuit Dn (recall that C is reasonable,
and that this operation does not increase the depth of the circuit). The resulting circuit is in Cd,
has size at most nt, and it computes En by definition of Dn.

The next definition will play an important role in many results discussed later.

10This allows us to hardwire some values without increasing the depth of the circuit.
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Definition 2.3 (Properties that are useful against C [Wil13b]). A property of boolean functions is
a subset of the set of all boolean functions. For a typical circuit class C, a property P is said to be
useful against C if, for all k, there are infinitely many positive integers n such that

• P(fn) is true for at least one function fn : {0, 1}n → {0, 1}, and

• P(gn) is false for all functions gn : {0, 1}n → {0, 1} that admit circuits from C[nk].

We say that P is a Γ-property if, given the truth-table tt(fn) ∈ {0, 1}N (where N = 2n) of any
boolean function fn : {0, 1}n → {0, 1}, P(fn) can be decided in complexity class Γ. In other words,
the language

LP = {w ∈ {0, 1}N | w = tt(fn) for some function fn : {0, 1}n → {0, 1} with P(fn) = 1}

is in Γ.

A useful property distinguishes some “hard” function from all easy ones. This is weaker than
the notion of natural properties studied by [RR97], which also requires P to be dense, i.e., P(f) = 1
for a non-negligible fraction of functions.

Recall that a verifier V for a language L ∈ NTIME[t(n)] satisfies the following properties:

• V (x,w) runs in deterministic time O(t(n)), where n = |x|.

• x ∈ L if and only if there exists w ∈ {0, 1}O(t(n)) such that V (x,w) = 1.

If L ∈ NEXP and V is a verifier for L running in time 2n
O(1)

, we say that V is a NEXP-verifier for
L. Similarly, we may talk about NE-verifiers running in time 2O(n).

Definition 2.4. Let C be a typical circuit class. We say that a NEXP-verifier V for a language
L ∈ NEXP admits witness circuits from C[s(n)] if for all x ∈ L, there exists a circuit C ∈ C[s(n)]
such that V (x, tt(C)) = 1.

Proposition 2.5 (Impagliazzo et al. [IKW02], Williams [Wil11]). Let C be a typical circuit class.
If NEXP ⊂ C then for any language L ∈ NEXP and every NEXP-verifier V for L, there exists c ∈ N
such that V admits witness circuits from C[nc].

Definition 2.6. Given functions f, g : {0, 1}n → {0, 1} and δ > 0, we say that g computes f with
advantage δ if

Pr
x∈R{0,1}n

[f(x) = g(x)] ≥ 1

2
+ δ.

The results for learning algorithms and lossy compression rely on the following fact.

Lemma 2.7 (“Random functions are hard to approximate”).
There exists a constant α > 0 such that for any sufficiently large n, there exists a function h :
{0, 1}n → {0, 1} that cannot be computed with advantage δ > 0 by any circuit of size α · 2nδ2/n.

Proof. Fix any circuit C : {0, 1}n → {0, 1}. Using the Chernoff-Hoeffding bound, we get that
the probability that C computes a random function r : {0, 1}n → {0, 1} with advantage δ is at
most exp(−2δ2N), where N = 2n as usual. There are at most 2O(s(n) log s(n)) functions on n inputs
computed by circuits with s(n) gates. Therefore, it follows by a simple union bound that for some
α > 0, there exists a function h that is not computed with advantage δ by any circuit of size
α · 2nδ2/n.
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3 Lower bounds from SAT algorithms for low depth circuits

In this section we present the transference theorem for satisfiability algorithms. We start with the
following definition.

Definition 3.1. Let C be a circuit class. We define the computational problem Equiv-AND-C
as follows. Given the description of circuits from C computing functions f1, f2, f3 : {0, 1}n →
{0, 1}, check if AND(f1, f2)(x) = f3(x) for every x ∈ {0, 1}n. The Equiv-OR-C problem is defined
analogously.

Remark 1. Observe that if Cd is reasonable, then an algorithm for Equiv-AND-Cd can be used to
solve Cd-SAT. Moreover, the same algorithm can be used to solve Equiv-OR-C, since two functions
are equivalent if and only if their negations are equivalent (by assumption, any reasonable circuit
class is closed under negations).

The proof presented here follows closely the original argument used by Williams [Wil10], which
works for P/poly. However, we introduce a new technique that allows us to obtain an equivalent
C-circuit from a general P/poly-circuit. It simplifies the proof in [Wil11], and provides a tighter
connection between satisfiability algorithms and circuit lower bounds in the case of bounded-depth
circuits. The proof of the next lemma is partially inspired by some ideas in Rossman [Ros10].

Lemma 3.2 (“Conversion Lemma”). Let C be a reasonable circuit class, and suppose that P ⊆ C.
In addition, assume that there is a nontrivial algorithm for Equiv-AND-C. Then there exists a
nondeterministic algorithm N with the following properties. Given as input any circuit B over m
variables of size mb,

• N has at least one accepting path, and in every accepting path it outputs a circuit G from
C[mt] that is equivalent to B (where t = O(b)).

• N runs in time at most 2m

s(m) , for some superpolynomial function s(m).

Proof. Let A be an algorithm for Equiv-AND-C running in time 2m/a(m), for a superpolynomial
function a(m). We proceed as follows. Let x1, x2, . . . , xm, g1, . . . , gk for k = mb be a topological
sort of the gates of B, where each gate gi ∈ {AND,OR,NOT} has fan-in at most two. We will guess
and verify (by induction) equivalent C-circuits of size mt for each gate gi in B. Since P ⊆ C, it
follows from Lemma 2.2 that the functions computed at the internal gates of B admit such circuit.

More details follow. Suppose (by induction) that N has produced equivalent C-circuits BCi of
size at most mt for every gate gi of B, where i < ` (otherwise it has aborted already). If g` is an
AND gate with inputs gi1 , gi2 , where i1, i2 < `, N guesses a circuit BC` in C[mt] over the same input
variables, then use the Equiv-AND-C algorithm to check if AND(BCi1 , B

C
i2

) and BC` are equivalent.
N rejects if these circuits are not equivalent, otherwise it continues the computation, completing
the induction step. If g` corresponds to an OR gate, a similar computation is performed, this time
applying an algorithm for Equiv-OR-C (check Remark 1). Finally, if g` is a NOT gate, using the
fact that C is reasonable, it is possible to produce in polynomial time an equivalent C-circuit for g`
of the same size. This completes the induction step. Observe that the base case is trivial.

Note that N runs algorithm A for at most k times, i.e., a polynomial number of times. In
addition, each execution is performed over circuits from C of size O(mt). Therefore the total
running time of N is poly(m) · 2m/a(m), for some superpolynomial function a(m). Setting s(m) =
a(m)/poly(m) completes the proof of Lemma 3.2.
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In addition, we will need the following auxiliary results, whose notation we borrow from Williams
[Wil11].

Definition 3.3. The computational problem Succinct-SAT is defined as follows. Given a circuit C
over n input variables, denote by FC the instance of 3-SAT obtained by evaluating C over all inputs
in lexicographic order (i.e., FC is the 2n-bit string representing the truth-table tt(C) of C). Decide
if FC is satisfiable.

We say that FC is the decompression of C, and call C the compression of FC .

Lemma 3.4 (Tourlakis [Tou01], Fortnow et a. [FLvMV05], Williams [Wil10]). There is a fixed
constant c > 0 for which the following holds. For every L ∈ NTIME[2n] there is a polynomial time
reduction from L to Succinct-SAT that maps every input x of size n to a circuit Cx over at most
n+ c log n input variables and size O(nc), such that x ∈ L if and only if the decompressed formula
FCx is satisfiable (observe that this is a formula of size 2npoly(n)).

Definition 3.5. We say that Succinct-SAT admits succinct satisfying assignments if there exists a
constant c > 0 such that for every language L ∈ NTIME[2n] the following holds. Given any x ∈ L,
there exists some circuit Wx of polynomial size over k ≤ n + c log n input variables for which the
assignment zi = W (i) for i ∈ {1, . . . , 2k} is a satisfying assignment for FCx, where Cx is the circuit
obtained from the reduction to Succinct-SAT given by Lemma 3.4.

The following lemma is an easy consequence of Proposition 2.5.

Lemma 3.6. If NEXP ⊆ P/poly then Succinct-SAT admits succinct satisfying assignments.

We use these auxiliary results to prove the following proposition. For simplicity, we only state it
for polynomial size classes, but a parameterized version can be obtained using the same techniques.

Proposition 3.7. Let C = Cd[poly(n)] be a reasonable circuit class. If there exist a nontrivial
algorithm for Equiv-AND-C, then NEXP * C.

Proof. Let A be a nontrivial algorithm for Equiv-AND-C, and assume for the sake of a contradiction
that NEXP ⊆ C. We use these assumptions to show that every language L ∈ NTIME[2n] is in
NTIME[o(2n)], a contradiction to the nondeterministic time hierarchy theorem ([Coo73], [SFM78],
[Žák83]).

The proof relies on the fact that every language L ∈ NTIME[2n] can be efficiently reduced to
an instance of the Succinct-SAT problem (Lemma 3.4). In other words, there is a polynomial time
algorithm that maps any input x ∈ {0, 1}n to a circuit Dx on n + c log n input variables and at
most O(nc) gates such that x ∈ L if and only if the decompression Fx = tt(Dx) of Dx is satisfiable.

It follows from NEXP ⊆ C ⊆ P/poly (C is reasonable) and Lemma 3.6 that if Fx is satisfiable
then there is a satisfying assignment encoded by a circuit Ex of polynomial size over n+O(log n)
variables. Summarizing what we have so far:

x ∈ L ⇐⇒ ∃ circuit E : {0, 1}n+O(logn) → {0, 1} of size O(nd) such that Fx(tt(E)) = 1,

where Fx = tt(Dx) is a 3-CNF formula and Dx : {0, 1}n+O(logn) → {0, 1} is an arbitrary circuit
(not necessarily in C) of size O(nc) encoding this formula.

Our nontrivial algorithm for L now guesses a candidate circuit E of this form. It uses Dx and
three copies of E to build a circuit B = B(Dx, E) of size O(nb) over n+O(log n) inputs such that:
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B is satisfiable ⇐⇒ some clause Ci of Fx is not satisfiable by the assignment tt(E).

The description of B is as follows. An input y to B is interpreted as an integer i, and B uses this
index to obtain from Dx the description of the i-th clause Ci in Fx. Let z1, z2, z3 be the literals in
Ci. Circuit B uses three copies of E to obtain the boolean values of the variables corresponding to
these literals, and finally outputs 1 if and only if these values do not satisfy Ci. This last verification
can be done by a polynomial size circuit. Observe that B is not a C-circuit: Dx and E are arbitrary
circuits, these circuits are composed, and there is additional circuitry computing the final output
value of B. Overall, we obtain:

x ∈ L ⇐⇒ circuit B : {0, 1}n+O(logn) → {0, 1} is unsatisfiable. (1)

Note that all these steps can be performed in NTIME[poly(n)]. Recall that we can use Equiv-
AND-C to solve C-SAT in less than 2n steps, but B is not a circuit from C. We can assume without
loss of generality that B is a circuit of size mb (where m = n + O(log n)) consisting of AND, OR
and NOT gates of fan-in at most two.

While in Williams’ original proof there is a step that guesses and verifies an equivalent C-circuit
for Dx (and already assumes E in C[poly(n)] with some extra work), our nondeterministic algorithm
for L produces directly an equivalent C-circuit for the final circuit B. Under our assumptions,
Lemma 3.2 can be applied, and it allows the nondeterministic algorithm for L to obtain a circuit
G over m inputs from C[mt] that is equivalent to B. This step can be performed in time 2m/s(m)
for a superpolynomial function s(m). Since m = n+ O(log n), this running time is still nontrivial
in n.

Using condition (1), it follows that x ∈ L if and only if G is unsatisfiable. Finally, since C
is reasonable, we can use algorithm A to check if this is true, in which case our algorithm for L
accepts input x. Again, this is a computation that can be performed in nontrivial running time by
our assumption over A. Overall, it follows that we can decide L in NTIME[o(2n)], which completes
the proof of the theorem.

Corollary 3.8. Let C = Cd[poly(n)] be a reasonable circuit class. If there exist nontrivial satisfia-
bility algorithms for both AND[3] ◦ C and AND[2] ◦ OR[2] ◦ C, then NEXP * C.

Proof. It is enough to observe that these satisfiability algorithms can be used to solve Equiv-AND-C
in nontrivial running time (Proposition 3.7). Let f1, f2, f3 be functions from C. Then

¬EQUIV(AND(f1, f2), f3) ⇐⇒ XOR(AND(f1, f2), f3) is satisfiable. (2)

For bits a, b ∈ {0, 1}, we have XOR(a, b) ≡ OR(AND(a, b̄),AND(ā, b)). Using de Morgan’s rules and
combining gates, it is not hard to see that

XOR(AND(f1, f2), f3) ≡ OR(AND(f1, f2, f̄3),AND(OR(f̄1, f̄2), f3)).

It follows from (2) that an algorithm for ¬Equiv-AND-C should output 1 if and only if either
AND(f1, f2, f̄3) or AND(OR(f̄1, f̄2), f3) is satisfiable. Since C is reasonable, a circuit for f̄i can be
computed efficiently from a circuit for fi. Hence nontrivial algorithms for AND[3] ◦ C-SAT and
AND[2] ◦ OR[2] ◦ C-SAT can be used to solve ¬Equiv-AND-C, which completes the proof.
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3.1 A remark for the algorithm designer

It is hard to find satisfiability algorithm for expressive circuit classes even when we allow very
modest running times, such as 2n/nlogn. Here we mention a weaker assumption on the algorithmic
side that could be of practical significance11.

Definition 3.9 (“Algorithms useful for circuit lower bounds”).
Let C be a circuit class. A nondeterministic algorithm A for Equiv-AND-C is useful if the following
conditions hold:

• Every path of the (nondeterministic) computation of A either outputs “abort”, or provides
the correct answer.

• At least one path of the computation of A does not abort, and runs in time bounded by 2n/s(n)
for some superpolynomial function s(n).

Proposition 3.10. Let C = Cd[poly(n)] be a reasonable circuit class. If there exists a useful
algorithm for Equiv-AND-C then NEXP * C.

Proof. Observe that the proof of Proposition 3.7 still holds with such algorithms, provided that
we abort in any computation path that runs for more than 2n/s(n) steps. It is still the case that
x ∈ L if and only if there exists a computation path that accepts x. More precisely, if x /∈ L, even
if equivalent circuits are guessed and verified in each stage, a useful algorithm for Equiv-AND-C will
never output “yes” in the last step of the computation that checks if the final circuits is equivalent
to the zero function (i.e., it is unsatisfiable). On the other hand, for x ∈ L, it is clear from
the definition of useful algorithm that some computation path will accept in nontrivial running
time.

Observe that useful algorithms for unsatisfiability also lead to circuit lower bounds, since these
can be used in place of an Equiv-AND-C algorithm. The same is true for satisfiability algorithms,
since useful algorithms are closed under complementation. In Section 5.2 we will use Proposition
3.10 to prove that derandomization implies circuit lower bounds (Proposition 1.6).

Why is this a natural relaxation? Suppose there exists a class C such that for any circuit D in
this class, there exists some subset S ⊂ [n] of the inputs of D such that by trying all assignments to
the variables in S, we can check on average time strictly less than 2n−|S| (over the restrictions) the
satifiability of the remaining circuits. Then C admits a useful satisfiability algorithm, since the set
S can be guessed at the beginning of the execution. For the reader familiar with the satisfiability
algorithm for small threshold circuits described by Impagliazzo, Paturi and Schneider [IPS12], it
means that their algorithm gives more than what is needed for lower bounds. There the expected
running time is nontrivial over the subset of inputs to be restricted, which is a stronger guarantee.
It is sufficient that a single subset provides a nontrivial running time.

4 Useful properties and circuit lower bounds

In this section we focus on the relation between useful properties and circuit lower bounds, a
connection that was made explicit in a recent paper written by Williams [Wil13b]. We start with

11This is not the most encompassing definition, but it is a very natural one to have in mind.
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the following simple, but somewhat surprising result. Recall that an algorithm that computes a
property of boolean functions receives as input a string of size N = 2n representing the truth-table
tt(f) of a function f : {0, 1}n → {0, 1}. The following result follows from techniques introduced by
Williams [Wil13b].

Proposition 4.1 (“Useful NP-property yields useful P-property”).
Let C be a typical circuit class, and let s : N→ N be any function. If there is a NP/s(N)-property
useful against C then there is a P/s(N)-property useful against C.

Proof. First we prove the proposition without advice, then we observe that the same proof works
in the presence of advice strings as well. Let P be a NP-useful property against C. In other words,
for any fixed k, there exists an infinite subset Sk ⊆ N such that for any n ∈ Sk:

• P(fn) = 1 for at least one function fn : {0, 1}n → {0, 1}.

• P(gn) = 0 for any function gn : {0, 1}n → {0, 1} computed by circuits in C[nk].

In addition, there exists a polynomial time verifier VP : {0, 1}N × {0, 1}Nc−N → {0, 1} (where
N = 2n and c ∈ N) for LP . Put another way, for any function hn,

P(hn) = 1 ⇐⇒ ∃w ∈ {0, 1}Nc−N such that VP(tt(hn), w) = 1.

Let A = {n′ | n′ = cn, n ∈ N}. For convenience, set N ′ = 2n
′

= N + (N c − N). We define
a predicate P ′ defined on any function over n′ inputs, where n′ ∈ A (the definition of P ′ over
functions with a different number of inputs can be arbitrary). For any h′n′ : {0, 1}n′ → {0, 1}, view
its representation tt(h′n′) ∈ {0, 1}N

′
as a pair of strings (tt(hn), w), where tt(hn) ∈ {0, 1}N and

w ∈ {0, 1}Nc−N . To be more precise, let hn : {0, 1}n → {0, 1} be the restriction of h′n′ defined by
hn(x) = h′n′(x0(c−1)n), where x ∈ {0, 1}n. Finally, let

P ′(h′n′) = 1 ⇐⇒ VP(tt(hn), w) = 1.

We claim that P ′ is a P-property that is useful against C. First observe that since VP is an
efficient algorithm, P ′ can be computed in time polynomial in N ′ = |tt(h′n′)|. Fix any k ∈ N. We
need to define an infinite set S′k ⊆ A such that for every n′ ∈ S′k,

• P(f ′n′) = 1 for at least one function f ′n′ : {0, 1}n′ → {0, 1}.

• P(g′n′) = 0 for any function g′n′ : {0, 1}n′ → {0, 1} computed by circuits in C[n′k].

Let S′k = {n′ | n′ = cn, n ∈ Sk+1}. This set is infinite because so is Sk+1. Let n′ ∈ S′k. It follows
from the definition of Sk+1 that there is a function fn : {0, 1}n → {0, 1} for which P(fn) = 1.
Hence there exists w ∈ {0, 1}Nc−N such that VP(tt(fn), w) = 1. By construction, the corresponding
function f ′n′ : {0, 1}n′ → {0, 1} whose truth-table is the concatenation of the pair (fn, w) satisfies
P ′.

Finally, in order to establish the second bullet, assume for the sake of a contradiction that there
exists a function g′n′ : {0, 1}n′ → {0, 1} computed by circuits from C[n′k] for which P ′(g′n′) = 1.
Clearly, the function gn : {0, 1}n → {0, 1} defined as before by the restriction gn(x) = g′n′(x0(c−1)n)
also admits circuits from C of size n′k = (cn)k ≤ nk+1, for sufficiently large values of n. But then
P(gn) = 0, since n ∈ Sk+1. However, this contradicts the assumption that P ′(g′n′) = 1, since in this
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case there is no w ∈ {0, 1}Nc−N such that VP(tt(gn), w) = 1. In other words, for every function g′n′
with n′ ∈ S′k that is computed by circuits from C[n′k], we have P ′(g′n′) = 0.

If the original verifier works with advice strings of length s(N), then property P ′ can be decided
correctly using the same advice. However, the definition of P ′ over functions on n′ = cn inputs
is based on the definition of P over functions on n inputs. Therefore, the advice for the new
algorithm is of size s(N ′1/c), since it gets as input truth-tables of size N ′ = N c. Assuming that s(.)
is non-decreasing and c ≥ 1, it follows that P ′ can be decided with advice of size s(N ′1/c) ≤ s(N ′).
This completes the proof of Proposition 4.1.

The new useful property may not be dense, even if the original property is dense. The reason is
that there may be just a few certificates for each hard function, thus almost no function will satisfy
the newly defined property. However, if we start with an RP-natural property useful against C (i.e.,
a dense property in which every hard function has many certificates), the proof of Proposition 4.1
yields a corresponding P-natural property.

The next proposition clarifies the relation between NEXP circuit lower bounds and the existence
of properties that are useful against C. Recall that for any typical circuit class, standard arguments
can be used to prove that NEXP * C if and only if NE * C.

Proposition 4.2. Let C be a typical class. Then NEXP * C if and only if there exists a P/ logN -
property that is useful against C.

Proof. Let N = 2n as usual. First assume that NEXP * C, and let L ∈ NE\C. Let L′ = L ∪ {1n |
n ∈ N}, and notice that L′ ∈ NE\C. For every n ∈ N, let b(n) be the number of strings of size n in
L′. Observe that b(n) ∈ [1, 2n]. Therefore b(n) can be encoded by a string a(n) ∈ {0, 1}logN . Let
fn = Ln, i.e., fn(x) = 1 if and only if x ∈ L. Consider the property P such that P(g) = 1 if and
only if g = fn for some n ∈ N. We claim that P is a NP/ logN -property that is useful against C.
Let V ′ be an NE-verifier for L′ accepting witnesses of size 2cn.

Clearly, P is useful against C, because L′ /∈ C. On the other hand, the following NP-verifier
decides P when it is given the correct advice string a(n):

Verifier V for P:
On inputs tt(h) ∈ {0, 1}N and advice string z ∈ {0, 1}logN , reject if |h−1(1)| 6= z. Otherwise, guess
witnesses wx ∈ {0, 1}N

c
for every x ∈ h−1(1), and accept if and only if V ′(x,wx) = 1 for every such

x.

Clearly, when z = a(n), the only function over n inputs accepted by V is fn = Ln. In addition, V
runs in time poly(N). It follows that P is computed in NP/ logN . Therefore, there is a NP/ logN -
property that is useful against C, and Proposition 4.1 guarantees the existence of a P/ logN -property
useful against C.

Now suppose that there exists a P/ logN -property P ′ that is useful against C. We use this
assumption to define a NEXP-verifier V ′ that does not admit witness circuits of polynomial size.
Observe that it follows then from Proposition 2.5 that NEXP * C, which completes the proof our
result.

Let A′ be an algorithm running in time Nd that decides P ′ on inputs tt(f) ∈ {0, 1}N when it
is given access to an appropriate advice string a(N) ∈ {0, 1}logN , i.e, a string of size n. Consider
the following verifier.
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NEXP-verifier V ′:
On input 〈x,w〉, where x ∈ {0, 1}n and w ∈ {0, 1}N , output A′(w)/x (i.e., run A′ on input w with
advice string x).

First observe that V ′ is a NEXP-verifier. Fix any c ∈ N. We prove that V ′ does not admit witness
circuits from C[nc]. First, there are infinitely many inputs n for which P ′ correctly discriminates
a hard function hn : {0, 1}n → {0, 1} from a function in C[nc]. For any such value of n, there is a
correct advice string a(N) for which algorithm A′ computes P ′. However, whenever x = a(N), it
follows from the definition of V ′ that it only accepts certificates for x that do not correspond to
any truth-table from C[nc]. In addition, V ′ accepts at least one truth-table, by definition of P ′. As
discussed before, this completes the proof of Proposition 4.2.

One may be tempted to pose the following conjecture.

Conjecture 4.3. Let C be a typical circuit class. If there exists a P/O(logN)-property that is
useful against C, then there is a P-property that is useful against C.

We will see shortly that if a slightly more general version of this conjecture holds, then a generic
NEXP circuit lower bound can always be converted into a NE∩coNE lower bound, a rather surprising
consequence, given its generality.

Now we move to the relation between useful properties decided without advice and circuit lower
bounds.

Proposition 4.4. For any typical C, if NE∩ coNE * C then there exists a P-property that is useful
against C.

Proof. Let L ∈ NE∩ coNE\C, and let V 0 and V 1 be verifiers running in time 2O(n) for n = |x| such
that:

x ∈ L ⇐⇒ ∃wx ∈ {0, 1}2
O(n)

such that V 1(x,wx) = 1.

x /∈ L ⇐⇒ ∃wx ∈ {0, 1}2
O(n)

such that V 0(x,wx) = 1.

We view L as a family of functions f = {fn}n∈N, where f−1n (1) = Ln. Let P = {fn | n ∈ N}.
First observe that this property is useful against C, since L /∈ C. In addition, there is an efficient
verifier VP for P: on input a string tt(h) ∈ {0, 1}N representing the truth-table of a function
h : {0, 1}n → {0, 1}, guess 2n certificates yx ∈ {0, 1}N

c
, one for each x ∈ {0, 1}n, and accept if

and only if V h(x)(x, yx) = 1 for every such x. Clearly, VP is a NP-verifier for P. It follows then
from Proposition 4.1 that there exists a P-property P ′ that is useful against C, which completes
the proof.

Conversely, which consequences can we obtain from the existence of P-properties (without
advice) that are useful against C? The following result is implicit in the work of Williams [Wil13b],
and it shows that without advice even stronger consequences can be obtained (although in the
quasipolynomial size regime).

Proposition 4.5. Let C be a typical circuit class. If for every c ∈ N there exists a P-property that
is useful against C[nlogc n], then NE ∩ i.o.coNE * C[nlogn].
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We give a self-contained proof of this result in Appendix A.
Proposition 4.5 sheds some light into Conjecture 4.3. It shows that if the analogue of this

conjecture for quasipolynomial size circuits holds, then NEXP lower bounds against such circuits
can be translated into similar NE ∩ coNE circuit lower bounds (via a generalization of Proposition
4.2 to quasipolynomial size circuits).

Given the statement of Propositions 4.4 and 4.5, it is plausible to conjecture that there is a
tight correspondence between useful properties computed without advice and circuit lower bounds
for NE ∩ coNE.

Conjecture 4.6. Let C = C[poly] be a typical circuit class. Then NE ∩ coNE * C if and only if
there exists a P-property that is useful against C.

We will see in Section 5 that useful properties are powerful enough to simplify and generalize
many results of the form “nontrivial algorithms yield circuit lower bounds”. In particular, a proof
of Conjecture 4.6 would provide stronger transference theorems in different frameworks.

4.1 Satisfiability algorithms and useful properties

It is possible to formulate the main result from Section 3 as follows: the existence of nontrivial
satisfiability algorithms leads to useful properties, which in turn imply circuit lower bounds. This
can be accomplished using the fact that the nondeterministic hierarchy theorem also holds for
unary languages. In other words, if there exists a nontrivial SAT algorithm for a circuit class C,
the proof of Proposition 3.7 shows that any verifier for a hard unary language must have infinitely
many inputs that only admit certificates of high C-circuit complexity. This verifier can be used to
define a property that is useful against C: given a truth table tt(hn), check if it is a valid certificate
for the input 1n.

More specifically, satisfiability algorithms for polynomial size circuits lead to P-properties useful
against circuits of polynomial size, while algorithms for quasipolynomial size circuits lead to P-
properties useful against circuits of such size. The reader should compare the transference theorems
from [Wil11] and [Wil13b] (Propositions 1.1 and 1.3, respectively) to the statements of Propositions
4.2 and 4.5. If Conjecture 4.6 is true, the existence of nontrivial satisfiability algorithms for C[poly]
would imply that NE ∩ coNE * C[poly], a new result.

5 Applications

5.1 Lower bounds from lossy compression

In this section we prove the transference theorem obtained by Chen et al. [CKK+13], which we
state again for convenience.

Proposition 5.1 (Compression yields circuit lower bounds [CKK+13]).
Let C be a typical circuit class. Suppose that for every c ∈ N there is a deterministic polynomial-
time algorithm that compresses a given truth table of an n-variate boolean function f ∈ C[nc] to an
equivalent circuit of size o(2n/n). Then NEXP * C.

As mentioned before, it is possible to show a similar result from the existence of lossy compres-
sion algorithms.
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Definition 5.2 (Lossy compression scheme). Let C be a typical circuit class. We say that a
deterministic algorithm A is a (δ(n), s(n))-compression algorithm for C if A runs in time poly(N),
and for any fixed k ∈ N, there are infinitely many integers n for which the following holds. Given
any string tt(fn) ∈ {0, 1}N representing a function fn : {0, 1}n → {0, 1} computed by circuits in
C[nk], A outputs a circuit C on n inputs of size at most s(n) that computes fn with advantage δ(n).

Proposition 5.3 (Lossy compression yields circuit lower bounds).
Let C be a typical circuit class, and let δ(n) : N→ (0, 1/2] be an arbitrary function. If there exists
a (δ(n), o(2nδ2/n))-compression algorithm for C, then NEXP * C.

Proof. Let C be a typical circuit class. Fix any function δ = δ(n). LetA be an efficient (δ, o(2nδ2/n))-
compression algorithm for C. We use A to construct an algorithm B that implicitly defines a
property that is useful against C. The proof then follows immediately from Proposition 4.2.

We define B as follows. Given any truth table tt(f) ∈ {0, 1}N as input, apply A to tt(f) to
obtain the description of a circuit C over n inputs. If C is not a valid circuit, or it has more than
α · 2nδ2/n gates, accept. Otherwise, check if C computes f with advantage δ, and accepts tt(f) if
and only if this is not the case.

Let P be the property computed by B. We need to check that P is a P-property that is useful
against C. First, observe that B runs in time poly(N), since by assumption A is efficient, and
N = 2n. Also, B will always accept some family of hard functions, since it follows from Lemma
2.7 that for sufficiently large n there are functions that cannot be computed with advantage δ by
circuits of size less than α · 2nδ2/n. Finally, for any fixed k, it follows from the definition of lossy
compression that there are infinitely many input sizes n on which A succeeds. For all such inputs
sizes, algorithm B will correctly reject functions computed by circuits from C[nk].

This result is optimal for very small δ. More precisely, it follows from elementary Fourier
analysis of boolean functions that for every boolean function fn there is a parity function over
some subset S ⊆ [n] that computes fn with advantage Ω(2−n/2). Further, it is possible to check all
parity functions in deterministic time poly(N).

Remark 2. Similar techniques can be used to show that lossy compression of quasipolynomial size
circuits leads to circuit lower bounds for NE∩ i.o.coNE. This can be obtained through an application
of Proposition 4.5.

5.2 Derandomization, SAT algorithms and circuit lower bounds

In this section we use Williams’ framework to prove that derandomization yields circuit lower
bounds. Recall that PIT is the language consisting of all arithmetic circuits that compute the zero
polynomial over Z, and PERM is the problem of computing the permanent of integer matrices.

Our proof uses the notion of useful algorithms introduced in Definition 3.9. The following
consequence is immediate from Proposition 3.10.

Corollary 5.4. Assume that NEXP ⊆ SIZE[poly]. Then there is c ∈ N such that there is no useful
algorithm for Equiv-AND-SIZE[nc].

In addition, we will need the following auxiliary lemma.
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Lemma 5.5 (Kabanets and Impagliazzo [KI04], Aaronson and van Melkebeek [AvM11]).
There exists an efficient algorithm that takes as input an arithmetic circuit Am and an integer m,
and produces an arithmetic circuit Cm such that Am computes the permanent of m ×m matrices
matrices over Z if and only if Cm ∈ PIT.

We are now ready to give a short proof of the following result. Our argument follows the same
high-level approach employed by [KI04] and [AvM11].

Proposition 5.6 (Kabanets and Impagliazzo [KI04]).
If PIT ∈ NSUBEXP, then at least one of the following results hold:

(i) NEXP * SIZE[poly(n)]; or

(ii) PERM * ASIZE[poly(n)].

Proof. In order to derive a contradiction, assume that:

• PIT ∈ NSUBEXP;

• NEXP ⊆ SIZE[poly(n)];

• PERM ⊆ ASIZE[poly(n)].

More precisely, NEXP ⊆ SIZE[poly(n)] implies that there exists a family of circuits D = {Dn}n∈N of
size nd that solves Equiv-AND-SIZE[nc]. In addition, PERM over matrices of order m can be solved
by a family of arithmetic circuits A = {Am}m∈N of size ma (for some a ∈ N). We prove that these
assumptions contradict Corollary 5.4. We construct a useful algorithm A for Equiv-AND-SIZE[nc]
as follows.

Algorithm A:
Input: Circuits C1, C2 of size nc.

• First, A guesses a circuit Dn of size nd.

• A prepares a query to the polynomial time hierarchy12 to check if Dn solves Equiv-AND-
SIZE[nc].

• It uses Toda’s theorem [Tod91] together with the completeness of the permanent problem
[Val79] to reduce this query to a call to PERM over matrices of dimension m, where m =
poly(nd).

• Next, A guesses an arithmetic circuit Am of size ma.

• It then applies Lemma 5.5 to obtain a circuit Cm such that Am computes the permanent of
m×m matrices matrices over Z if and only if Cm ∈ PIT.

• Now A uses nondeterminism and the assumption that PIT ∈ NSUBEXP to check if Cm ∈ PIT.
It aborts otherwise.

12Observe that Dn does not solve the equivalence problem if and only if (∃C1, C2 ∃x such that C1(x) 6= C2(x) and
Dn(C1, C2) = 1) or (∃C1, C2 such that ∀x(C1(x) = C2(x)) and Dn(C1, C2) = 0).
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• It uses Am to answer the initial query, and aborts if Dn does not solve Equiv-AND-SIZE[nc].

• Finally, A uses Dn to solve Equiv-AND-SIZE[nc] on inputs C1 and C2.

Clearly, A runs in nondeterministic subexponential time. In addition, it is easy to see that it is
a useful algorithm for Equiv-AND-SIZE[nc], which completes the proof of Proposition 1.6.

Most importantly, this proof shows that any improvement over Corollary 5.4 implies a corre-
sponding improvement over Proposition 5.6. In addition, it is not hard to see that Conjecture 4.6
immediately implies the extension of Proposition 5.6 obtained by Aaronson and van Melkebeek
[AvM11]13.

5.3 Useful properties and learning algorithms

The existence of learning algorithms in many different models yields circuit lower bounds, as first
shown by Fortnow and Klivans [FK09]. In this section we discuss two frameworks for learning:
deterministic exact learning from membership and equivalence queries (Angluin [Ang87]), and ran-
domized PAC learning (Valiant [Val84]).

Exact learning algorithms. Let C be a typical circuit class. In this model, a deterministic
algorithm is given access to oracles MQf and EQf for some function f : {0, 1}n → {0, 1} in C.
There oracles are defined as follows.

MQf : Given x ∈ {0, 1}n, returns f(x).

EQf : Given a hypothesis h : {0, 1}n → {0, 1} represented as a circuit, returns 1 if h ≡ f . Otherwise,
returns an arbitrary input x ∈ {0, 1}n such that f(x) 6= h(x).

For a size function s : N → N, we say that a learning algorithm A exact learns C[s(n)] in time
t(n) if for every f ∈ C, when given access to oracles MQf and EQf , A runs in time at most t(n),
and outputs the description of a circuit C computing f . In particular, every equivalence query is
invoked on a circuit of size at most t(n), and the final hypothesis C is a circuit of size at most t(n).

Recall that one of the main results from Fortnow and Klivans [FK09] states that exact learning
a circuit class leads to circuit lower bounds against ENP (Proposition 1.7). The original proof used
by them is a clever combination of many results from complexity theory. Here we observe that it
is relatively easy to prove results of this form using the machinery of useful properties. To simplify
the argument even more, we can view learning as compression, which yields a quick proof of the
following result.

Proposition 5.7 (“Learning yields circuit lower bounds”).
Let C be a circuit class. Suppose there exists an exact learning algorithm for C[poly] that runs in
subexponential time. Then NEXP * C[poly].

13Here is a sketch of the argument. Assume that NE ∩ coNE ⊆ P/poly. Then by Conjecture 4.6 there is no P-
property useful against P/poly. However, it is possible to show that useful algorithms for satisfiability lead to useful
properties. Altogether, these assumptions imply the desired strengthening of Corollary 5.4.
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Proof. Let A be an exact learning algorithm for C. It is easy to see that given any truth-table
tt(h) ∈ {0, 1}N from C[poly], we can simulate A on input h in time 2O(n). In other words, it is
possible to provide correct answers to the membership and equivalence queries asked during A’s
computation. By assumption, the learning algorithm outputs a circuit of subexponential size that
computes h. This is therefore a valid compression algorithm for C[poly], and Proposition 5.7 follows
immediately from Proposition 5.3 with δ = 1.

In addition to its simplicity, this proof offers other advantages. The framework of useful proper-
ties is more flexible with respect to changes in the learning model. For instance, one could consider
deterministic learning algorithms using equivalence queries over subsets S ⊆ {0, 1}n encoded by
subexponential size circuits, and only require that the learning algorithm outputs a hypothesis that
is ε-close to the unknown concept. Again, Proposition 5.3 easily implies circuit lower bounds.

Next we turn our attention to randomized learning algorithms, a class of algorithms for which
theorems of the form “learning implies circuit lower bounds” are still much weaker than their de-
terministic counterpart.

Randomized PAC learning algorithms. In the PAC learning framework, there is an unknown
function f ∈ C that the learning algorithm is supposed to learn (after obtaining limited information
about f). Here we concentrate on the stronger model in which the learner can ask membership
queries, and only needs to learn under the uniform distribution14. In other words, the learner
can query the value f(x) on any input x, and should be able to obtain, with high probability, a
good approximation h for f . In general, for any function f : {0, 1}n → {0, 1} in C[s(n)], given
parameters n, ε (accuracy), δ (confidence), and an upper bound s(n) on the size of the circuit
computing f , the learning algorithm should output with probability at least 1 − δ a hypothesis h
such that Prx[f(x) 6= h(x)] ≤ ε (i.e., h is ε-close to f), where the probability is taken over all strings
x of size n under the uniform distribution. We measure the running time tA(n, 1/δ, 1/ε, s(n)) of
a learning algorithm A as a function of these parameters. As opposed to what is usually called
proper learning, the learning algorithm is allowed to output the description of any circuit of size
at most tA(.) as its final hypothesis. For simplicity, we say that an algorithm A PAC learns C if it
learns any function from C to accuracy 1/4 with probability at least 1− 1/n.

It is known that the existence of a polynomial time PAC learning algorithm for C[poly] implies
that BPEXP * C[poly] (Fortnow and Klivans [FK09]). However, the same proof provides much
weaker results for subexponential time learning, and it is an interesting open problem to show that
the existence of subexponential time PAC learning algorithms lead to similar circuit lower bounds.
The next proposition shows that this problem is related to the power of randomness in the context
of useful properties. First, we extend the definition of useful properties to promise properties.

Definition 5.8 (“Promise properties useful against C”).
A promise property of boolean functions P = (Pyes,Pno) consists of two nonempty disjoint subsets
of the set of all boolean functions. For a typical circuit class C, P is said to be useful against C if,
for all k, there are infinitely many positive integers n such that

• Pyes(f) = 1 for at least one function f : {0, 1}n → {0, 1}, and

14In other words, a transference theorem for this learning model is a stronger result. In addition, it is easy to see
that the results discussed here hold under even more powerful learning models.
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• Pno(g) = 1 for all g : {0, 1}n → {0, 1} that admits circuits from C[nk].

We say that a promise property P is a Γ-property if its corresponding promise problem LP is in
promise-Γ.

Proposition 5.9 (“Useful properties from randomized learning”).
Let C be a typical circuit class. Suppose there exists a randomized algorithm A that PAC learns
C[poly] in time 2n

o(1)
. Then there exists a (promise-coRP)-property that is useful against C.

Proof. We use a subexponential time randomized learning algorithm A for C to define a (promise)
coRP-property P that is useful against C. Consider the following randomized algorithm B. Given
the truth-table tt(fn) ∈ {0, 1}N of an arbitrary function fn : {0, 1}n → {0, 1}, it simulates the

computation of A over fn, until A outputs a circuit C of size 2n
o(1)

as its final hypothesis. Algorithm
B accepts fn if and only if C is not 1/10-close to fn.

It follows from Lemma 2.7 that for any large enough n there is a function hn that cannot be
1/10-approximated by circuits of subexponential size (for definiteness, fix some constructive size
bound). In other words, for any large n, there exists at least one function hn not in C[poly] that
is accepted with probability one. In addition, since A is a PAC learning algorithm for C, every
function in C is rejected with high probability. Clearly, B computes a promise coRP-property that
is useful against C: Pyes consists of boolean functions that cannot be approximated by circuits of
subexponential size, and Pno = C.

This result gives another example of the fundamental importance of the notion of useful prop-
erties in the context of results of the form “algorithms yield circuit lower bounds”.

6 Some broad research directions

Here is a list of problems related to the results discussed in this survey that we find particularly
interesting.

Strengthening the ACC lower bound. Williams proved that NEXP * ACC. It follows easily
from Lemma 2.2 that either P * ACC or NEXP * P/poly. Give an unconditional proof that one of
these circuit lower bounds hold.

Lossy compression of ACC and TC0
2. Design efficient lossy compression schemes for circuit

classes such as ACC or TC0
2. To the best of our knowledge, these results do not violate any widely

believed cryptographic assumption.

Satisfiability algorithms. Can we make progress on satisfiability algorithms for threshold cir-
cuits?

SAT algorithms for depth d+1 versus lower bounds against depth d. Is it possible to show
that, in general, nontrivial satisfiability algorithms for Cd+1 lead to circuit lower bounds against
Cd?
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A NE ∩ i.o.coNE lower bounds from useful properties

In this section we describe the proof of Proposition 4.5, which we state again for convenience.

Proposition. Let C be a typical circuit class. If for every c ∈ N there exists a P-property that is
useful against C[nlogc n], then NE ∩ i.o.coNE * C[nlogn].

This result is implicit in the work of Williams [Wil13b], and it consists of an interesting com-
bination of nondeterminism, a collapse theorem, a hardness vs. randomness result, and simple
diagonalization. We will need the following auxiliary results.

Lemma A.1. Let C be a typical circuit class, and assume that P ⊆ C[nlogn]. Then for every d ∈ N,

any function f : {0, 1}n → {0, 1} computed by circuits of size nlog
d n is computed by circuits from

C[nlogO(d) n].

Proof. The result follows from a parameterized version of Lemma 2.2, and the proof is similar.

Lemma A.2 (Miltersen, Vinodchandran and Watanabe [MVW99]).
Let g(n) > 2n and s(n) ≥ n be functions that are both increasing and time-constructible. There
exists a constant d ∈ N for which the following holds. If E ⊆ SIZE(s(n)) then DTIME[g(n)] ⊆
MATIME[s(d log g(n))d].

For a function h` : {0, 1}` → {0, 1}, let CC(h) be the size (number of gates) of the smallest
circuit computing h.

Proposition A.3 (Umans [Uma03]).
There is a constant k ∈ N and a function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ for which the following
holds. For every s ∈ N and boolean function h` : {0, 1}` → {0, 1} satisfying CC(h`) ≥ sk, and for
all circuits C of size at most s over s inputs,∣∣∣∣ Pr

z∈{0,1}k·`
[C(G(tt(h`), z)) = 1]− Pr

z∈{0,1}s
[C(z) = 1]

∣∣∣∣ < 1

s
.

In addition, G can be computed in poly(2`) time.

The next lemma shows that useful properties together with the lack of circuit lower bounds for
P allow us to obtain a nontrivial derandomization of Merlin-Arthur games.

Lemma A.4. Let C be a typical circuit class, and suppose that for every c ∈ N there exists a
P-property that is useful against C[nlogc n]. In addition, assume that P ⊆ C[nlogn]. Then there is an

infinite subset S ⊆ N such that for any L ∈ MATIME[nO(log3 n)], there exists a language L′ ∈ NE
such that for every n ∈ S, we have Ln = L′n. In addition, for all n /∈ S, we have L′n = ∅.

Proof. First, observe that Lemma A.1 implies that for every c ∈ N there exists a property Pc
that is useful against SIZE[nlog

c n]. Let Ac be an efficient algorithm computing Pc (we set the

value of c later). Let L ∈ MATIME[nO(log3 n)]. There exists a MA-verifier V for L running in time

s = nO(log3 n) such that

x ∈ L =⇒ ∃y ∈ {0, 1}s Pr
w∈{0,1}s

[V (x, y, w) = 1] ≥ 2

3

x /∈ L =⇒ ∀y ∈ {0, 1}s Pr
w∈{0,1}s

[V (x, y, w) = 1] ≤ 1

3
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Our nondeterministic algorithm N for L proceeds as follows. On input x ∈ {0, 1}n, it first
guesses a string y ∈ {0, 1}s, then constructs a circuit Cx,y from SIZE[s] such that for all w ∈
{0, 1}s we have Cx,y(w) = V (x, y, w). Then N guesses truth-tables tt(hm) ∈ {0, 1}M for every

m ∈ [2(logn)
5/(c+1)

, 2(log(n+1))5/(c+1)
), where M = 2m as usual. If Ac rejects all such functions, then

N rejects x. Otherwise, let h` be the first function for which Ac(h`) = 1. Since Ac computes a

useful property, s = nO(log3 n), and ` ≥ 2(logn)
5/(c+1)

, for any c ∈ N we have:

CC(h`) ≥ `log
c ` ≥ nlog

4 n � sk,

for any k ∈ N and sufficiently large n. Finally, N runs the algorithm granted by Proposition A.3
on Cx,y using h`, and accepts its input x if and only if

Pr
z∈{0,1}k·`

[Cx,y(G(tt(h`), z)) = 1] ≥ 1

2
. (3)

Observe that there exists an infinite set S ⊆ N such that for each n ∈ S and for every x ∈ {0, 1}n,
N is able to find a function h` for which CC(h`) ≥ sk, where k is the constant in the statement of
Proposition A.3. Put another way, N is correct on input sizes in S, and by construction N rejects
every other input whose input size is not in S. Also, S depends only on Pc.

The (nondeterministic) running time of N is dominated by the computation of the probability
in (3), and the time required to verify using Ac whether some hard function has been guessed.
Finally, set c = 5, and observe that for this value of c we have ` � n. It follows therefore that N
runs in time at most 2n. This completes the proof that there exists L′ ∈ NE such that for every
n ∈ S, L′n = Ln, and for all n /∈ S, we have L′n = ∅.

We are now ready to give the proof of Proposition 4.5.

Proof of Proposition 4.5. Assume that NE∩i.o.coNE ⊆ C[nlogn]. In particular, E ⊆ SIZE[nlogn]. Let

g(n) = 2n
2 logn

and s(n) = nlogn. Using Lemma A.2, we get DTIME[2n
2 logn

] ⊆ MATIME[nO(log3 n)].
Clearly, our assumptions also imply that P ⊆ C[nlogn].

Let L ∈ DTIME[2n
2 logn

]. It follows from Lemma A.4 that there exists an infinite set S ⊆ N
and a language L′ ∈ NE such that Ln = L′n for every n ∈ S. Consider L ∈ DTIME[2n

2 logn
],

the complement of L. Then, again, there exists a language L′′ ∈ NE such that for every n ∈ S,
Ln = L′′n. Clearly, L′′ ∈ coNE, and for every n ∈ S we have L′′n = Ln = L′n. In other words,
L′ ∈ NE ∩ i.o.coNE. Overall, we get

DTIME[2n
2 logn

] ⊆ i.o.(NE ∩ i.o.coNE) ⊆ i.o.C[nlogn],

where the last inclusion uses our initial assumption.
However, using a simple diagonalization argument, we can define a language L∗ ∈ DTIME[2n

2 logn
]

such that for all n ≥ n0, L∗n is not computed by circuits from C[nlogn]. This contradiction completes
the proof of Proposition 4.5.
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