Consistency of circuit lower bounds with bounded theories

Igor Carboni Oliveira

Department of Computer Science, University of Warwick.

Talk based on joint work with Jan Bydžovský (Vienna) and Jan Krajíček (Prague).

[BIRS Workshop “Proof Complexity” – January/2020]

This work was supported in part by a Royal Society University Research Fellowship.
Status of circuit lower bounds

- Interested in **unrestricted** (non-uniform) Boolean circuits.

- Proving a lower bound such as $\text{NP} \not\subseteq \text{SIZE}[n^2]$ seems out of reach.
ZPP^{NP} \not\subseteq \text{SIZE}[n^k] \ [\text{Kobler-Watanabe’90s}]

\text{MA/1} \not\subseteq \text{SIZE}[n^k] \ [\text{Santhanam’00s}]

While we have lower bounds for larger classes, there is an important issue:

Frontier 1: Lower bounds for deterministic class P

Frontier 2: Known results only hold on infinitely many input lengths.
ZPP^NP \not\subseteq \text{SIZE}[n^k] \ [\text{Kobler-Watanabe’90s}]

\text{MA}/1 \not\subseteq \text{SIZE}[n^k] \ [\text{Santhanam’00s}]

▶ Frontier 1: Lower bounds for \textbf{deterministic} class P^{NP}?
ZPP^{NP} \not\subseteq \text{SIZE}[n^k] \ [\text{Kobler-Watanabe'90s}]

\text{MA/1 \not\subseteq \text{SIZE}[n^k] \ [\text{Santhanam'00s}]}

▶ Frontier 1: Lower bounds for \textit{deterministic} class \text{P}^{NP}?

While we have lower bounds for larger classes, \textit{there is an important issue}:

▶ Frontier 2: Known results only hold on \textit{infinitely many input lengths}.
Mystery: Existence of mathematical objects of certain sizes making computations easier only around corresponding input lengths.
Mystery: Existence of mathematical objects of certain sizes making computations easier only around corresponding input lengths.

Issue not restricted to complexity lower bounds:

Sub-exponential time generation of canonical prime numbers [Oliveira-Santhamam’17].
We discussed two frontiers in complexity theory:

1. Understand relation between P^{NP} and say $\text{SIZE}[n^2]$.

2. Establish almost-everywhere circuit lower bounds.

This work investigates these challenges from the perspective of mathematical logic.
Investigating complexity through logic

- Theories in the standard framework of first-order logic.

- Investigation of complexity results that can be established under certain axioms.

Example: Does theory T prove that SAT can be solved in polynomial time?

- Complexity Theory that considers efficiency and difficulty of proving correctness.
Bounded Arithmetics

- Fragments of Peano Arithmetic (PA).

- Intended model is \(\mathbb{N} \), but numbers can encode binary strings and other objects.
Bounded Arithmetics

- Fragments of Peano Arithmetic (PA).

- Intended model is \mathbb{N}, but numbers can encode binary strings and other objects.

Example: Theory $I\Delta_0$ [Parikh’71].

$I\Delta_0$ employs the language $\mathcal{L}_{PA} = \{0, 1, +, \cdot, <\}$.

14 axioms governing these symbols, such as:

1. $\forall x \ x + 0 = x$
2. $\forall x \forall y \ x + y = y + x$
3. $\forall x \ x = 0 \lor 0 < x$

...
Induction Axioms. $I\Delta_0$ also contains the induction principle

$$
\psi(0) \land \forall x (\psi(x) \rightarrow \psi(x + 1)) \rightarrow \forall x \psi(x)
$$

for each **bounded formula** $\psi(x)$ (additional free variables are allowed in ψ).
Induction Axioms. $I\Delta_0$ also contains the induction principle

\[\psi(0) \land \forall x (\psi(x) \rightarrow \psi(x+1)) \rightarrow \forall x \psi(x) \]

for each **bounded formula** $\psi(x)$ (additional free variables are allowed in ψ).

A **bounded formula** only contains quantifiers of the form $\forall x \leq t$ and $\exists x \leq t$, where t is a term not containing x.
Bounded formulas and bounded induction

Induction Axioms. $I\Delta_0$ also contains the induction principle

$$\psi(0) \land \forall x \ (\psi(x) \rightarrow \psi(x + 1)) \rightarrow \forall x \ \psi(x)$$

for each **bounded formula** $\psi(x)$ (additional free variables are allowed in ψ).

A **bounded formula** only contains quantifiers of the form $\forall x \leq t$ and $\exists x \leq t$, where t is a term not containing x.

- Roughly, this shifts the perspective from computability to complexity theory.
Theories PV, S^1_2, and T^1_2

- [Cook’75] and [Buss’86] introduced theories more closely related to levels of PH:

Ex.: T^1_2 uses induction scheme for bounded formulas corresponding to NP-predicates.
Theories PV, S^1_2, and T^1_2

- [Cook’75] and [Buss’86] introduced theories more closely related to levels of PH:

Ex.: T^1_2 uses induction scheme for bounded formulas corresponding to NP-predicates.

- We will use language \mathcal{L}_{PV} with function symbols for all p-time algorithms.
Theories PV, S^1_2, and T^1_2

- [Cook’75] and [Buss’86] introduced theories more closely related to levels of PH:

 Ex.: T^1_2 uses induction scheme for bounded formulas corresponding to NP-predicates.

- We will use language \mathcal{L}_{PV} with function symbols for all p-time algorithms.

This does not mean that the corresponding theories prove correctness of algorithms:

$T^1_2 \vdash \forall x \ f_{AKS}(x) = 1 \leftrightarrow \text{“x is prime”}$
Theories PV, S_2^1, and T_2^1

- [Cook’75] and [Buss’86] introduced theories more closely related to levels of PH:

Ex.: T_2^1 uses induction scheme for bounded formulas corresponding to NP-predicates.

- We will use language L_{PV} with function symbols for all p-time algorithms.

This does not mean that the corresponding theories prove correctness of algorithms:

$T_2^1 \vdash \forall x \, f_{AKS}(x) = 1 \iff \text{“x is prime”}$

\[
\text{PV} \approx T_2^0 \subseteq S_2^1 \subseteq T_2^1 \subseteq S_2^2 \subseteq T_2^2 \subseteq \ldots \subseteq \bigcup_i T_2^i \approx \text{I\textDelta}_0 + \Omega_1
\]
Resources
Many complexity results have been formalized in such theories.

Cook-Levin Theorem in PV [folklore].

PCP Theorem in PV [Pich’15].

Parity $\not\in AC^0$, k-Clique $\not\in mSIZE[n^{\sqrt{k}/1000}]$ in $APC^1 \subseteq T^2_2$ [Muller-Pich’19].
Many complexity results have been formalized in such theories.

Cook-Levin Theorem in PV [folklore].

PCP Theorem in PV [Pich’15].

Parity $\notin AC^0$, k-Clique $\notin mSIZE[n^{\sqrt{k}/1000}]$ in $APC^1 \subseteq T^2_2$ [Muller-Pich’19].

Arguments often require ingenious modifications of original proofs:
not clear how to manipulate probability spaces, real-valued functions, etc.
Many complexity results have been formalized in such theories.

Cook-Levin Theorem in PV [folklore].

PCP Theorem in PV [Pich’15].

Parity $\notin AC^0$, k-Clique $\notin mSIZE[n^{\sqrt{k}/1000}]$ in $APC^1 \subseteq T_2^2$ [Muller-Pich’19].

Arguments often require ingenious modifications of original proofs:
not clear how to manipulate probability spaces, real-valued functions, etc.

Rest of the talk: Independence of complexity results from bounded arithmetic.
Using \mathcal{L}_{PV}, we can refer to circuit complexity:

$$\exists y \ (\text{Ckt}(y) \land \text{Vars}(y) = n \land \text{Size}(y) \leq 5n \land \forall x \ (|x| = n \rightarrow (\text{Eval}(y, x) = 1 \leftrightarrow \text{Parity}(x) = 1)))$$

n is the “feasibility” parameter (formally, the length of another variable N).
Unprovability and circuit complexity

- Using \mathcal{L}_{PV}, we can refer to circuit complexity:

 $$\exists y \ (\text{Ckt}(y) \land \text{Vars}(y) = n \land \text{Size}(y) \leq 5n \land \forall x \ (|x| = n \rightarrow (\text{Eval}(y, x) = 1 \leftrightarrow \text{Parity}(x) = 1)))$$

 n is the “feasibility” parameter (formally, the length of another variable N).

- Sentences can express circuit size bounds of the form n^k for a given \mathcal{L}_{PV}-formula $\varphi(x)$.
Using \mathcal{L}_{PV}, we can refer to circuit complexity:

$$\exists y \ (\text{Ckt}(y) \land \text{Vars}(y) = n \land \text{Size}(y) \leq 5n \land \forall x \ (|x| = n \rightarrow (\text{Eval}(y, x) = 1 \iff \text{Parity}(x) = 1)))$$

n is the “feasibility” parameter (formally, the length of another variable N).

Sentences can express circuit size bounds of the form n^k for a given \mathcal{L}_{PV}-formula $\varphi(x)$.

Two directions: unprovability of \textbf{LOWER} bounds and unprovability of \textbf{UPPER} bounds.
Initiated by Razborov in the nineties under a different formalization.

Motivation: Why are complexity lower bounds so difficult to prove?

Also: potential source of hard tautologies; self-referential arguments and implications.
Unprovability of circuit LOWER bounds

- Initiated by Razborov in the nineties under a different formalization.

Motivation: Why are complexity lower bounds so difficult to prove?

Also: potential source of hard tautologies; self-referential arguments and implications.

Example: Is it the case that $T_2^2 \nvdash k$-Clique $\not\in$ SIZE[$n^{\sqrt{k}/100}$]?
Unprovability of circuit LOWER bounds

Initiated by Razborov in the nineties under a different formalization.

Motivation: Why are complexity lower bounds so difficult to prove?

Also: potential source of hard tautologies; self-referential arguments and implications.

Example: Is it the case that $T_2^2 \not\prec k$-Clique \notin SIZE[$n^{\sqrt{k}/100}$]?

Extremely interesting, but not much is known in terms of unconditional unprovability results for strong theories such as PV.
Unprovability of circuit \textbf{UPPER} bounds

► We currently cannot rule out that \(\text{SAT} \in \text{SIZE}[10n] \). Can we at least show that easiness of SAT doesn’t follow from certain axioms?

\textbf{At least as interesting as previous direction:}
Unprovability of circuit UPPER bounds

We currently cannot rule out that SAT $\in \text{SIZE}[10n]$. Can we at least show that easiness of SAT doesn’t follow from certain axioms?

At least as interesting as previous direction:

1. **Necessary** before proving in the standard sense that SAT $\notin \text{SIZE}[10n]$. Rules out algorithmic approaches in a principled way.
Unprovability of circuit **UPPER** bounds

► We currently cannot rule out that \(\text{SAT} \in \text{SIZE}[10n] \). Can we at least show that easiness of SAT doesn’t follow from certain axioms?

At least as interesting as previous direction:

1. **Necessary** before proving in the standard sense that \(\text{SAT} \notin \text{SIZE}[10n] \). Rules out algorithmic approaches in a principled way.

2. **Formal evidence** that SAT is computationally hard:

 – By Godel’s completeness theorem, there is a model \(M \) of \(T \) where SAT is hard.
 – \(M \) satisfies many known results in algorithms and complexity theory.
Unprovability of circuit \textbf{UPPER} bounds

► We currently cannot rule out that SAT \in SIZE\([10n]\). Can we at least show that easiness of SAT doesn’t follow from certain axioms?

\textbf{At least as interesting as previous direction:}

1. \textbf{Necessary} before proving in the standard sense that SAT \notin SIZE\([10n]\). Rules out algorithmic approaches in a principled way.

2. \textbf{Formal evidence} that SAT is computationally hard:

 – By Godel’s completeness theorem, there is a model M of T where SAT is hard.
 – M satisfies many known results in algorithms and complexity theory.

3. \textbf{Consistency of lower bounds:} Adding to T axiom stating that SAT is hard will never lead to a contradiction. We can develop a theory where circuit lower bounds exist.
Some works on unprovability of circuit upper bounds

Cook-Krajicek, 2007: “Consequences of the provability of $\text{NP} \subseteq \text{P}/\text{poly}$”.

Initiated a systematic investigation. Conditional unprovability results.
Some works on unprovability of circuit upper bounds

Cook-Krajicek, 2007: “Consequences of the provability of $\text{NP} \subseteq \text{P/poly}$”.

Initiated a systematic investigation. Conditional unprovability results.

Krajicek-Oliveira, 2017: “Unprovability of circuit upper bounds in Cook’s theory PV”.

Established unconditionally that PV does not prove that $\text{P} \subseteq \text{SIZE}[n^k]$.

15
Some works on unprovability of circuit upper bounds

- Cook-Krajicek, 2007: “Consequences of the provability of $\text{NP} \subseteq \text{P/poly}$”.

 Initiated a systematic investigation. Conditional unprovability results.

- Krajicek-Oliveira, 2017: “Unprovability of circuit upper bounds in Cook’s theory PV”.

 Established unconditionally that PV does not prove that $\text{P} \subseteq \text{SIZE}[n^k]$.

- Bydzovsky-Muller, 2018: “Polynomial time ultrapowers and the consistency of circuit lower bounds”.

 Model-theoretic proof of a slightly stronger statement.
Weaknesses of previous results

1. We would like to show unprovability results for theories believed to be stronger than PV.
1. We would like to show unprovability results for theories believed to be stronger than PV.

2. Infinitely often versus almost everywhere results:

PV might still show that every \(L \in P \) is infinitely often in \(\text{SIZE}[n^k] \).
1. We would like to show unprovability results for theories believed to be stronger than PV.

2. Infinitely often versus almost everywhere results:

PV might still show that every $L \in P$ is infinitely often in $\text{SIZE}[n^k]$.

➤ Recall issue mentioned earlier in the talk:

We lack techniques to show hardness with respect to every large enough input length.
This work

- T_2^1 and weaker theories cannot establish circuit upper bounds of the form n^k for classes contained in P^{NP}.

- Unprovability of infinitely often upper bounds, i.e., models where hardness holds almost everywhere.

- All results are unconditional.
Our main result

Theorem 1 (Informal): For each $k \geq 1$,

\[
T_2^1 \nvdash P^{\text{NP}} \subseteq \text{i.o.SIZE}[n^k]
\]

\[
S_2^1 \nvdash \text{NP} \subseteq \text{i.o.SIZE}[n^k]
\]

\[
\text{PV} \nvdash \text{P} \subseteq \text{i.o.SIZE}[n^k]
\]
Our main result

Theorem 1 (Informal): For each $k \geq 1$,

$$T_2^1 \not\models \text{P}^{NP} \subseteq \text{i.o.SIZE}[n^k]$$

$$S_2^1 \not\models \text{NP} \subseteq \text{i.o.SIZE}[n^k]$$

$$\text{PV} \not\models \text{P} \subseteq \text{i.o.SIZE}[n^k]$$

Extensions. True$_1 \overset{\text{def}}{=} \forall \Sigma_1^b(\mathcal{L}_{PV})$-sentences true in \mathbb{N} can be included in first item.

Example: $\forall x (\exists y (1 < y < x \land y | x) \leftrightarrow f_{\text{AKS}}(x) = 0)$

$T_2^1 \cup \text{True}_1$ proves that Primes $\in \text{SIZE}[n^c]$ for some $c \in \mathbb{N}$, but not that $\text{P}^{NP} \subseteq \text{i.o.SIZE}[n^k]$.
A more precise statement

- \mathcal{L}_{PV}-formulas $\varphi(x)$ interpreted over \mathbb{N} can define languages in P, NP, etc.

- The sentence $\text{UB}^i_{k, o}(\varphi)$ expresses that the corresponding n-bit boolean functions are computed infinitely often by circuits of size n^k:

\[
\forall 1^{(\ell)} \exists 1^{(n)} (n \geq \ell) \exists C_n (|C_n| \leq n^k) \forall x (|x| = n), \varphi(x) \equiv (C_n(x) = 1)
\]

Theorem

For any of the following pairs of an \mathcal{L}_{PV}-theory T and a uniform complexity class C:

(a) $T = T_2^1$ and $C = P^{NP}$,

(b) $T = S_2^1$ and $C = NP$,

(c) $T = PV$ and $C = P$,

there is an \mathcal{L}_{PV}-formula $\varphi(x)$ defining a language $L \in C$ such that T does not prove the sentence $\text{UB}^i_{k, o}(\varphi)$.
High-level ideas

Two approaches (forget the “i.o.” condition for now):

\[
T_2^1 \not\subseteq P^{NP} \subseteq \text{i.o.SIZE}[n^k],
\]

\[
S_2^1 \not\subseteq \text{NP} \subseteq \text{i.o.SIZE}[n^k].
\]

Main ingredient is the use of "logical" Karp-Lipton theorems.

\[
\text{PV} \not\subseteq P \subseteq \text{i.o.SIZE}[n^k]
\]

Extract from (non-uniform) circuit upper bound proofs a "uniform construction".
Parikh’s Theorem. Let $A(\vec{x}, y)$ be a bounded formula.

If $I \Delta_0 \vdash \forall \vec{x} \exists y A(\vec{x}, y)$ then $I \Delta_0 \vdash \forall \vec{x} \exists y \leq t(\vec{x}) A(\vec{x}, y)$.
Parikh’s Theorem. Let $A(\vec{x}, y)$ be a bounded formula.

If $I \Delta_0 \vdash \forall \vec{x} \exists y A(\vec{x}, y)$ then $I \Delta_0 \vdash \forall \vec{x} \exists y \leq t(\vec{x}) A(\vec{x}, y)$.

We use similar results to “tame” i.o. upper bounds in bounded arithmetic.

Example: If $T_2^1 \vdash \text{SAT} \in \text{i.o.}\text{SIZE}[n^k]$ then $T_2^1 \vdash \text{SAT} \in \text{SIZE}[n^{k'}]$.
Parikh’s Theorem. Let $A(\vec{x}, y)$ be a bounded formula.

If $I \Delta_0 \vdash \forall \vec{x} \exists y A(\vec{x}, y)$ then $I \Delta_0 \vdash \forall \vec{x} \exists y \leq t(\vec{x}) A(\vec{x}, y)$.

We use similar results to “tame” i.o. upper bounds in bounded arithmetic.

Example: If $T_2^1 \vdash \text{SAT} \in \text{i.o.SIZE}[n^k]$ then $T_2^1 \vdash \text{SAT} \in \text{SIZE}[n^{k'}]$.

Not every language is paddable, and more delicate arguments are needed.
A major question is to establish the unprovability of \(P = NP \):

For a function symbol \(f \in \mathcal{L}_{PV} \), consider the universal sentence

\[
\forall x \forall y \psi_{SAT}(x, y) \rightarrow \psi_{SAT}(x, f(x))
\]

Conjecture. For no function symbol \(f \) in \(\mathcal{L}_{PV} \) theory PV proves the sentence \(\varphi_{P=NP}(f) \).

Reduces to the study of unprovability of circuit lower bounds (Theorem 2 in our work).

Motivates both research directions (unprovability of upper and lower bounds).
A major question is to establish the unprovability of $P = NP$:

For a function symbol $f \in \mathcal{L}_{PV}$, consider the universal sentence

$$\varphi_{P=NP}(f) \overset{\text{def}}{=} \forall x \forall y \psi_{\text{SAT}}(x, y) \rightarrow \psi_{\text{SAT}}(x, f(x))$$

Conjecture. For no function symbol f in \mathcal{L}_{PV} theory PV proves the sentence $\varphi_{P=NP}(f)$.
A major question is to establish the unprovability of $P = NP$:

For a function symbol $f \in \mathcal{L}_{PV}$, consider the universal sentence

$$
\varphi_{P=NP}(f) \overset{\text{def}}{=} \forall x \forall y \psi_{SAT}(x, y) \rightarrow \psi_{SAT}(x, f(x))
$$

Conjecture. For no function symbol f in \mathcal{L}_{PV} theory PV proves the sentence $\varphi_{P=NP}(f)$.

Reduces to the study of unprovability of circuit **lower** bounds (Theorem 2 in our work).

Motivates **both** research directions (**unprovability of upper and lower bounds**).
Thank you
Approach 1: “Logical” Karp-Lipton theorems

A few unconditional circuit lower bounds in complexity theory use KL theorems. For instance, $\text{ZPP}^\text{NP} \not\subseteq \text{SIZE}[n^k]$ can be derived from:

[Kobler-Watanabe’98] If $\text{NP} \subseteq \text{SIZE}[\text{poly}]$ then $\text{PH} \subseteq \text{ZPP}^\text{NP}$.
Approach 1: “Logical” Karp-Lipton theorems

- A few unconditional circuit lower bounds in complexity theory use KL theorems. For instance, $\text{ZPP}^{\text{NP}} \not\subseteq \text{SIZE}[n^k]$ can be derived from:

 [Kobler-Watanabe’98] If $\text{NP} \subseteq \text{SIZE}[\text{poly}]$ then $\text{PH} \subseteq \text{ZPP}^{\text{NP}}$.

- Stronger collapses provide better lower bounds. It is not known how to collapse to P^{NP}. Better KL theorems in fact necessary in this case [Chen-McKay-Murray-Williams’19].
Approach 1: “Logical” Karp-Lipton theorems

▶ A few unconditional circuit lower bounds in complexity theory use KL theorems. For instance, \(\text{ZPP}^\text{NP} \not\subseteq \text{SIZE}[n^k] \) can be derived from:

[Kobler-Watanabe’98] If \(\text{NP} \subseteq \text{SIZE}[\text{poly}] \) then \(\text{PH} \subseteq \text{ZPP}^\text{NP} \).

▶ Stronger collapses provide better lower bounds. It is not known how to collapse to \(\text{P}^\text{NP} \).

Better KL theorems in fact necessary in this case [Chen-McKay-Murray-Williams’19].

[Cook-Krajicek’07] If \(\text{NP} \subseteq \text{SIZE}[\text{poly}] \) and this is provable in a theory \(T \in \{ \text{PV}, S^1_2, T^1_2 \} \), then \(\text{PH} \) collapses to a complexity class \(C_T \subseteq \text{P}^\text{NP} \).
Approach 2: A “bridge” between uniform and non-uniform circuits

If \(PV \vdash P \subseteq \text{SIZE}[n^k] \), try to extract from PV-proof a “uniform” circuit family for each \(L \in P \).

This would contradict known separation \(P \not\subseteq P\text{-uniform-SIZE}[n^k] \) [Santhanam-Williams’13].

Complications appear because Santhanam-Williams doesn’t provide a.e. lower bounds.
Approach 2: A “bridge” between uniform and non-uniform circuits

If $\text{PV} \vdash \text{P} \subseteq \text{SIZE}[n^k]$, try to extract from PV-proof a “uniform” circuit family for each $L \in \text{P}$.

This would contradict known separation $\text{P} \not\subseteq \text{P-uniform-SIZE}[n^k]$ [Santhanam-Williams’13].

▶ This doesn’t quite work, but is the main intuition behind [Krajicek-Oliveira’17].
Approach 2: A “bridge” between uniform and non-uniform circuits

If \(PV \vdash P \subseteq \text{SIZE}[n^k] \), try to extract from PV-proof a “uniform” circuit family for each \(L \in P \).

This would contradict known separation \(P \not\subseteq P\text{-uniform-SIZE}[n^k] \) [Santhanam-Williams’13].

- This doesn’t quite work, but is the main intuition behind [Krajicek-Oliveira’17].

- Theorem 1 (c) strengthens Krajicek-Oliveira to rule out \(PV \vdash P \subseteq \text{i.o.SIZE}[n^k] \).
Approach 2: A “bridge” between uniform and non-uniform circuits

If $PV \vdash P \subseteq \text{SIZE}[n^k]$, try to extract from PV-proof a “uniform” circuit family for each $L \in P$.

This would contradict known separation $P \not\subseteq P\text{-uniform-SIZE}[n^k]$ [Santhanam-Williams’13].

- This doesn’t quite work, but is the main intuition behind [Krajicek-Oliveira’17].

- Theorem 1 (c) strengthens Krajicek-Oliveira to rule out $PV \vdash P \subseteq \text{i.o.SIZE}[n^k]$.

Complications appear because Santhanam-Williams doesn’t provide a.e. lower bounds.
Krajíček's Fest
Celebrating Jan Krajíček’s 60th Anniversary and his Contributions to Logic and Complexity

Tábor, Czech Republic
September 1, 2020
Complexity Theory with a Human Face

1-4 September 2020, Tábor, Czech Republic