Non-local games and verifiable delegation of quantum computation

Alex Bredariol Grilo

joint work with Andrea Coladangelo, Stacey Jeffery and Thomas Vidick

● Superiorita 😂

- Superiorita 😂
- But they are expensive $\textcircled{\begin{tmatrix} \odot \\ \hline \end{tmatrix}}$

- Superiorita 😂
- But they are expensive $\ensuremath{\textcircled{\sc blue}}$
- Online service 🙂

- Superiorita 😂
- But they are expensive 😕
- Online service 🙂
- Can a client be sure that she is experiencing a quantum speedup?

• Goal: Interacrive proof system for BQP where

- Goal: Interacrive proof system for BQP where
 - ▶ the verifier runs poly-time prob. computation

- Goal: Interacrive proof system for BQP where
 - the verifier runs poly-time prob. computation
 - an honest prover runs poly-time quantum computation

3 / 23

- Goal: Interacrive proof system for BQP where
 - the verifier runs poly-time prob. computation
 - an honest prover runs poly-time quantum computation
 - the protocol is sound against any malicious prover

• Goal: Interacrive proof system for BQP where

- the verifier runs poly-time prob. computation
- an honest prover runs poly-time quantum computation
- the protocol is sound against any malicious prover
- additional property: the prover does not learn the input

Relaxed models

• Multiple entangled non-communicating P

- Multiple entangled non-communicating P
- Sound against any malicious strategy

- Multiple entangled non-communicating P
- Sound against any malicious strategy
- Servers have to keep entangled \oplus

- Multiple entangled non-communicating P
- Sound against any malicious strategy
- $\bullet\,$ Servers have to keep entangled $\ominus\,$
- "Plug-and-play" ☺

Previous works

	Provers	Rounds	Total Resources	Blind
RUV 2012	2	poly(n)	poly(n)	yes

Previous works

	Provers	Rounds	Total Resources	Blind
RUV 2012	2	poly(<i>n</i>)	\geq g ⁸¹⁹²	yes

Previous works

	Provers	Rounds	Total Resources	Blind
RUV 2012	2	poly(<i>n</i>)	\geq g ⁸¹⁹²	yes
McKague 2013	poly(<i>n</i>)	poly(n)	$\geq 2^{153}g^{22}$	yes
GKW 2015	2	poly(n)	\geq g^{2048}	yes
HDF 2015	poly(n)	poly(n)	$\Theta(g^4 \log g)$	yes
FH 2015	5	poly(n)	$>g^3$	no
NV 2017	7	2	$> g^3$	no

The results

Delegate circuit Q on n qubits, with g gates and depth d, 2 provers:

The results

Delegate circuit Q on n qubits, with g gates and depth d, 2 provers:

• Verifier-on-a-leash protocol: O(d) rounds, $O(g \log g)$ EPR pairs, blind

The results

Delegate circuit Q on n qubits, with g gates and depth d, 2 provers:

- Verifier-on-a-leash protocol: O(d) rounds, $O(g \log g)$ EPR pairs, blind
- Dogwalker protocol: 2 rounds, $O(g \log g)$ EPR pairs

Comparing to previous works

	Provers	Rounds	Total Resources	Blind
RUV 2012	2	poly(<i>n</i>)	\geq g ⁸¹⁹²	yes
McKague 2013	poly(n)	poly(<i>n</i>)	$\geq 2^{153}g^{22}$	yes
GKW 2015	2	poly(<i>n</i>)	\geq g^{2048}	yes
HDF 2015	poly(n)	poly(<i>n</i>)	$\Theta(g^4 \log g)$	yes
FH 2015	5	poly(<i>n</i>)	$> g^3$	no
NV 2017	7	2	$>g^3$	no
VoL	2	O(depth)	$\Theta(g \log g)$	yes
DW	2	2	$\Theta(g \log g)$	no
Relativistic	2	1	g ³	no

2 General idea

- 1 qubit
 - ▶ Unit vector in C²
 - Basis: $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 - $\blacktriangleright \ |\psi_1\rangle = \alpha \,|0\rangle + \dot{\beta} \,|1\rangle \,, \ \alpha,\beta \in \mathbb{\bar{C}} \text{ and } |\alpha|^2 + |\beta|^2 = 1$

- 1 qubit
 - ▶ Unit vector in C²
 - ▶ Basis: $|0\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$ ▶ $|\psi_1\rangle = \alpha |0\rangle + \beta |1\rangle$, $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$
- n qubits
 - Unit vector in $(\mathbb{C}^2)^{\otimes n}$
 - Basis: $|i\rangle, i \in \{0, 1\}^n$
 - $\blacktriangleright |\psi_2\rangle = \sum_{i \in \{0,1\}^n} \alpha_i |i\rangle, \ \alpha_i \in \mathbb{C} \text{ and } \sum |\alpha_i|^2 = 1$

- 1 qubit
 - ▶ Unit vector in C²

▶ Basis:
$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
▶ $|\psi_1\rangle = \alpha |0\rangle + \beta |1\rangle$, $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$

• n qubits

- Unit vector in $(\mathbb{C}^2)^{\otimes n}$
- Basis: $|i\rangle, i \in \{0, 1\}^n$
- $|\psi_2\rangle = \sum_{i \in \{0,1\}^n} \alpha_i |i\rangle, \ \alpha_i \in \mathbb{C} \text{ and } \sum |\alpha_i|^2 = 1$
- $|EPR
 angle = rac{1}{\sqrt{2}} \left(|00
 angle + |11
 angle
 ight)$
 - It cannot be written as a product state
 - Source of quantum "spooky actions"
 - For every orthonomal basis $\{|v\rangle, |v^{\perp}\rangle\}$, $|EPR\rangle = \frac{1}{\sqrt{2}} (|vv\rangle + |v^{\perp}v^{\perp}\rangle)$

• Evolution of quantum states

- Unitary operators
- Composed by gates picked from a (universal) gate-set

- Evolution of quantum states
 - Unitary operators
 - Composed by gates picked from a (universal) gate-set
- Projective measurements on $|\psi\rangle$
 - Set of projectors $\{P_i\}$, s.t. $\sum_i P_i = I$
 - Output *i* with probability $||P_i|\psi\rangle||^2$
 - After the measurement, the states collapses to $\frac{P_i|\psi\rangle}{||P_i|\psi\rangle||}$

- Evolution of quantum states
 - Unitary operators
 - Composed by gates picked from a (universal) gate-set
- Projective measurements on $|\psi\rangle$
 - Set of projectors $\{P_i\}$, s.t. $\sum_i P_i = I$
 - Output *i* with probability $||P_i|\psi\rangle||^2$
 - After the measurement, the states collapses to $\frac{P_i|\psi}{||P_i|\psi\rangle||}$

•
$$|\textit{EPR}
angle = rac{1}{\sqrt{2}}\left(|00
angle + |11
angle
ight)$$

 If measure the first half, the second half is completely defined (independent of the chosen basis)

- V and P share EPR pairs
- V sends $z_i \in_R \{0,1\}$

- V and P share EPR pairs
- V sends $z_i \in_R \{0,1\}$
- P sends back $c_i \in \{0, 1\}$

- V and P share EPR pairs
- V sends $z_i \in_R \{0,1\}$
- P sends back $c_i \in \{0,1\}$
- V measures half of EPR pairs with Clifford observables

- V and P share EPR pairs
- V sends $z_i \in_R \{0,1\}$
- P sends back $c_i \in \{0,1\}$
- V measures half of EPR pairs with Clifford observables
- V performs checks

- V and P share EPR pairs
- V sends $z_i \in_R \{0,1\}$
- P sends back $c_i \in \{0,1\}$
- V measures half of EPR pairs with Clifford observables
- V performs checks
- If P passes tests, then no "harmful" errors

x, *Q*

• Idea: Delegate V to a prover

• Idea: Delegate V to a prover

- Idea: Delegate V to a prover
- If PV is honest, we are done

- Idea: Delegate V to a prover
- If PV is honest, we are done
- How to test PV?

• *P*₁ and *P*₂ share a strategy before the game start and then they do not communicate

- *P*₁ and *P*₂ share a strategy before the game start and then they do not communicate
- V picks x, y from distribution D

- *P*₁ and *P*₂ share a strategy before the game start and then they do not communicate
- V picks x, y from distribution D
- V sends x to P_1 and y to P_2

- *P*₁ and *P*₂ share a strategy before the game start and then they do not communicate
- V picks x, y from distribution D
- V sends x to P_1 and y to P_2
- P_1 answers with a and P_2 answers with b

- *P*₁ and *P*₂ share a strategy before the game start and then they do not communicate
- V picks x, y from distribution D
- V sends x to P₁ and y to P₂
- P_1 answers with a and P_2 answers with b
- V accepts iff V(a, b|x, y) = 1

- *P*₁ and *P*₂ share a strategy before the game start and then they do not communicate
- V picks x, y from distribution D
- V sends x to P_1 and y to P_2
- P_1 answers with a and P_2 answers with b
- V accepts iff V(a, b|x, y) = 1
- Classical value $\omega(G)$ and quantum value $\omega^*(G)$

- *P*₁ and *P*₂ share a strategy before the game start and then they do not communicate
- V picks x, y from distribution D
- V sends x to P_1 and y to P_2
- P₁ answers with a and P₂ answers with b
- V accepts iff V(a, b|x, y) = 1
- Classical value ω(G) and quantum value ω*(G)
 ω*(G) > ω(G)

• Classical value $\omega(CHSH) = \frac{3}{4}$

• Quantum value
$$\omega^*(CHSH) = \cos^2(\frac{\pi}{8})$$

• Classical value $\omega(CHSH) = \frac{3}{4}$ • Quantum value $\omega^*(CHSH) = \cos^2(\frac{\pi}{8})$ • Provers share $|EPR\rangle$ and measure $0 \quad 1$

$$\begin{array}{c|c} P_1 & X & Z \\ P_2 & \frac{X+Z}{\sqrt{2}} & \frac{Z-X}{\sqrt{2}} \end{array}$$

- Classical value $\omega(CHSH) = rac{3}{4}$
- Quantum value $\omega^*(CHSH) = \cos^2(\frac{\pi}{8})$
- Provers share |EPR
 angle and measure

	0	1
P_1 P_2	X $\frac{X+Z}{\sqrt{2}}$	$Z_{\frac{Z-X}{\sqrt{2}}}$

 Rigidity: if acceptance prob. is ω^{*}(CHSH) − ε, then strategy is O(√ε) close to the previous one

Our game

Our game

- $\bullet \ {\cal G}$ is a set of one-qubit Clifford observables
- Game where a constant fraction of the questions are in a random \mathcal{G}^m
- Based on the Pauli Braiding Test

Our game

- \mathcal{G} is a set of one-qubit Clifford observables
- Game where a constant fraction of the questions are in a random \mathcal{G}^m
- Based on the Pauli Braiding Test

Honest strategy

Share *m* EPR pairs and on question of the form $W \in \mathcal{G}^m$ the prover measures the "correct" observable *W*.

Theorem

The honest strategy succeeds with prob. $1 - e^{-\Omega(m)}$ in the game.

Theorem

The honest strategy succeeds with prob. $1 - e^{-\Omega(m)}$ in the game.

Theorem

For any $\varepsilon > 0$, any strategy for the provers that succeeds with prob. $1 - \varepsilon$ must be $O(\sqrt{\varepsilon})$ -close to the honest strategy.

- Protocol
 - ▶ With prob. *p*, play non-local game

- Protocol
 - ▶ With prob. *p*, play non-local game
 - With prob. 1 p, execute original protocol

- Protocol
 - ▶ With prob. *p*, play non-local game
 - With prob. 1 p, execute original protocol
- Two tests are indistinguishable for PV

- Protocol
 - ▶ With prob. *p*, play non-local game
 - With prob. 1 p, execute original protocol
- Two tests are indistinguishable for PV
- PV is tested with the game

- Protocol
 - ▶ With prob. *p*, play non-local game
 - With prob. 1 p, execute original protocol
- Two tests are indistinguishable for PV
- PV is tested with the game
- PP is tested in the original protocol

Protocol

- ▶ With prob. *p*, play non-local game
- With prob. 1 p, execute original protocol
- Two tests are indistinguishable for PV
- PV is tested with the game
- PP is tested in the original protocol
- If both pass the tests, they perform the computation

Verifier-on-a-leash protocol

DogWalker protocol

• In Verifier-on-a-leash protocol
- In Verifier-on-a-leash protocol
 - Rounds of communication for blindness

- In Verifier-on-a-leash protocol
 - Rounds of communication for blindness
- In DogWalker protocol

- In Verifier-on-a-leash protocol
 - Rounds of communication for blindness
- In DogWalker protocol
 - Reveal x to PV

- In Verifier-on-a-leash protocol
 - Rounds of communication for blindness
- In DogWalker protocol
 - Reveal x to PV
 - Extra tests to check if PV is honest

Rigidity-Clifford

Test rounds

Computation round

Rigidity-Tomography

Open problems

• More efficient 1-round schemes $(\tilde{O}(g)$ resources)

Open problems

- More efficient 1-round schemes ($\tilde{O}(g)$ resources)
- Blind O(1)-round protocols

Open problems

- More efficient 1-round schemes $(\tilde{O}(g)$ resources)
- Blind O(1)-round protocols
- Delegation protocol with non-entangled provers

Thank you for your attention!