Clique is hard on average for regular resolution

Ilario Bonacina, UPC Barcelona Tech
July 27, 2018
Oxford Complexity Day

Talk based on a joint work with:

A. Atserias

S. de Rezende

M. Lauria

J. Nordström

A. Razborov

Motivations

- k-clique is a fundamental NP-complete problem
- regular resolution captures state-of-the-art algorithms for k-clique
- for k small (say $k \ll \sqrt{n}$) the standard tools from proof complexity fail

k-clique

Input: a graph $G=(V, E)$ with n vertices and $k \in \mathbb{N}$
Output: Yes if G contains a k-clique as a subgraph; NO otherwise

k-clique

Input: a graph $G=(V, E)$ with n vertices and $k \in \mathbb{N}$
Output: Yes if G contains a k-clique as a subgraph; no otherwise

k-clique

Input: a graph $G=(V, E)$ with n vertices and $k \in \mathbb{N}$
Output: Yes if G contains a k-clique as a subgraph; NO otherwise

k-clique

Input: a graph $G=(V, E)$ with n vertices and $k \in \mathbb{N}$
Output: Yes if G contains a k-clique as a subgraph; no otherwise

k-clique

Input: a graph $G=(V, E)$ with n vertices and $k \in \mathbb{N}$
Output: Yes if G contains a k-clique as a subgraph; no otherwise

k-clique

Input: a graph $G=(V, E)$ with n vertices and $k \in \mathbb{N}$
Output: YES if G contains a k-clique as a subgraph; NO otherwise

- k-clique can be solved in time $n^{O(k)}$, e.g. by brute-force
- k-clique is NP-complete
- assuming ETH, there is no $f(k) n^{o(k)}$-time algorithm for k-clique for any computable function f

Resolution

$y \vee \neg w$

$$
x \vee w
$$

$\neg y$

Resolution

$\neg y$

Resolution

(7y)

Resolution

$\neg y \vee \neg z$
clause $_{1} \vee$ var \quad clause $_{2} \vee \neg$ var

Resolution

Resolution

Resolution

Resolution

Tree-like $=$ the proof DAG is a tree
Regular $=$ no variable resolved twice in any source-to-sink path Size $=\#$ of nodes in the proof DAG

What is Resolution good for?

- algorithms routinely used to solve SAT (CDCL-solvers) are somewhat formalizable in resolution
- the state-of-the-art algorithms to solve k-clique (Bron-Kerbosch, Östergård, Russian dolls algorithms, ...) are formalizable in regular resolution

k-clique formula

Construct a propositional formula $\Phi_{G, k}$ unsatisfiable if and only if " G does not contain a k-clique"
$x_{v, j} \equiv$ " v is the j-th vertex of a k-clique in G ".
The clique formula $\Phi_{G, k}$

$$
\begin{aligned}
& \qquad \bigvee_{v \in V} x_{v, i} \quad \text { for } i \in[k] \\
& \text { and } \\
& \neg x_{u, i} \vee \neg x_{v, i} \quad \text { for } i \in[k], u, v \in V \\
& \text { and } \\
& \neg x_{u, i} \vee \neg x_{v, j} \quad \text { for } i \neq j \in[k], u, v \in V,(u, v) \notin E
\end{aligned}
$$

Size

$S\left(\Phi_{G, k}\right)=$ minimum size of a resolution refutation of $\Phi_{G, k}$ $S_{\text {tree }}\left(\Phi_{G, k}\right)=$ minimum size of a tree-like resolution ref. of $\Phi_{G, k}$
$S_{\text {reg }}\left(\Phi_{G, k}\right)=$ minimum size of a regular resolution ref. of $\Phi_{G, k}$

- $S\left(\Phi_{G, k}\right) \leqslant S_{r e g}\left(\Phi_{G, k}\right) \leqslant S_{\text {tree }}\left(\Phi_{G, k}\right) \leqslant n^{\mathcal{O}(k)}$
- if G is $(k-1)$-colorable then $S_{\text {reg }}\left(\Phi_{G, k}\right) \leqslant 2^{k} k^{2} n^{2}$ [~BGL13]
[BGL13] Beyersdorff, Galesi and Lauria 2013. Parameterized complexity of DPLL search procedures.

Erdős-Rényi random graphs

A graph $G=(V, E) \sim \mathcal{G}(n, p)$ is such that $|V|=n$ and each edge $\{u, v\} \in E$ independently with prob. $p \in[0,1]$

Erdős-Rényi random graphs

A graph $G=(V, E) \sim \mathcal{G}(n, p)$ is such that $|V|=n$ and each edge $\{u, v\} \in E$ independently with prob. $p \in[0,1]$

- if $p \ll n^{-2 /(k-1)}$ then a.a.s. $G \sim \mathcal{G}(n, p)$ has no k-cliques
- A.a.s. $G \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ has no clique of size $\left\lceil 2 \log _{2} n\right\rceil$

Main Result (simplified)

Main Theorem (version 1)

Let $G \sim \mathcal{G}(n, p)$ be an Erdős-Rényi random graph with, for simplicity, $p=n^{-4 /(k-1)}$ and let $k \leqslant n^{1 / 2-\epsilon}$ for some arbitrary small ϵ. Then, $S_{r e g}\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\Omega(k)}$.

Main Result (simplified)

Main Theorem (version 1)

Let $G \sim \mathcal{G}(n, p)$ be an Erdős-Rényi random graph with, for simplicity, $p=n^{-4 /(k-1)}$ and let $k \leqslant n^{1 / 2-\epsilon}$ for some arbitrary small ϵ. Then, $S_{r e g}\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\Omega(k)}$.
the actual lower bound decreases smoothly w.r.t. p

Main Result (simplified)

Main Theorem (version 1)

Let $G \sim \mathcal{G}(n, p)$ be an Erdős-Rényi random graph with, for simplicity, $p=n^{-4 /(k-1)}$ and let $k \leqslant n^{1 / 2-\epsilon}$ for some arbitrary small ϵ. Then, $S_{r e g}\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\Omega(k)}$.

the actual lower bound decreases smoothly w.r.t. p

Main Theorem (version 2)
Let $G \sim \mathcal{G}\left(n, \frac{1}{2}\right)$, then

$$
S_{r e g}\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\Omega(\log n)} \text { for } k=\mathcal{O}(\log n)
$$

and

$$
S_{r e g}\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\omega(1)} \text { for } k=o\left(\log ^{2} n\right) .
$$

How hard is to prove that a graph is Ramsey?

Open Problem

Let G be a graph in n vertices with no set of k vertices forming a clique or independent set, where $k=\lceil 2 \log n\rceil$. Is it true that $S_{(r e g)}\left(\Phi_{G, k}\right)=n^{\Omega(\log n)}$?
([LPRT17] proved this but for a binary encoding of $\Phi_{G, k}$)
[LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of proving that a graph is Ramsey.

Previous lower bounds

[BGL13] If G is the complete $(k-1)$-partite graph, then $S_{\text {tree }}\left(\Phi_{G, k}\right)=n^{\Omega(k)}$.
The same holds for $G \sim \mathcal{G}(n, p)$ with suitable edge density p.
[BIS07] for $n^{5 / 6} \ll k<\frac{n}{3}$ and $G \sim \mathcal{G}(n, p)$ (with suitable edge density p), then $S\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} 2^{n^{\Omega(1)}}$
[LPRT17] if we encode k-clique using some other propositional encodings (e.g. in binary) we get $n^{\Omega(k)}$ size lower bounds for resolution

[^0]
Rest of the talk

Focus on $k=\lceil 2 \log n\rceil$ and $G \sim \mathcal{G}\left(n, \frac{1}{2}\right)$, and how to prove $S_{r e g}\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\Omega(\log n)}$

Proof scheme

Theorem 1

Let $k=\lceil 2 \log n\rceil$. A.a.s. $G=(V, E) \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ is such that:

1. V is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense; and
2. For every $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense $W \subseteq V$ there exists $S \subseteq V$, $|S| \leqslant \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leqslant \frac{k}{50}$ and $\left|\widehat{N}_{W}(R)\right|<\widetilde{\Theta}\left(n^{0.6}\right)$ it holds that $|R \cap S| \geqslant \frac{k}{10000}$.

Proof scheme

Theorem 1

Let $k=\lceil 2 \log n\rceil$. A.a.s. $G=(V, E) \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ is such that:

1. V is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense; and
2. For every $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense $W \subseteq V$ there exists $S \subseteq V$,

$$
\begin{aligned}
& |S| \leqslant \sqrt{n} \text { s.t. for every } R \subseteq V \text {, with }|R| \leqslant \frac{k}{50} \text { and } \\
& \left|\widehat{N}_{W}(R)\right|<\widetilde{\Theta}\left(n^{0.6}\right) \text { it holds that }|R \cap S| \geqslant \frac{k}{10000} .
\end{aligned}
$$

Theorem 2

Let $k=\lceil 2 \log n\rceil$. For every G satisfying properties (1) and (2), $S_{r e g}\left(\Phi_{G, k}\right)=n^{\Omega(\log n)}$

Proof scheme

Theorem 1

Let $k=\lceil 2 \log n\rceil$. A.a.s. $G=(V, E) \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ is such that:

1. V is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense; and
2. For every $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense $W \subseteq V$ there exists $S \subseteq V$,

$$
\begin{aligned}
& |S| \leqslant \sqrt{n} \text { s.t. for every } R \subseteq V \text {, with }|R| \leqslant \frac{k}{50} \text { and } \\
& \left|\widehat{N}_{W}(R)\right|<\widetilde{\Theta}\left(n^{0.6}\right) \text { it holds that }|R \cap S| \geqslant \frac{k}{10000} .
\end{aligned}
$$

Theorem 2

Let $k=\lceil 2 \log n\rceil$. For every G satisfying properties (1) and (2), $S_{r e g}\left(\Phi_{G, k}\right)=n^{\Omega(\log n)}$

Proof ideas: boosted Haken bottleneck counting. Bottlenecks are pair of nodes with special properties and a way of visiting them.
The proof heavily uses regularity.

Denseness I

$W \subseteq V$ is (r, q)-dense if for every subset $R \subseteq V$ of size $\leqslant r$, it holds $\left|\widehat{N}_{W}(R)\right| \geqslant q$, where $\widehat{N}_{W}(R)$ is the set of common neighbors of R in W

Denseness I

$W \subseteq V$ is (r, q)-dense if for every subset $R \subseteq V$ of size $\leqslant r$, it holds $\left|\widehat{N}_{W}(R)\right| \geqslant q$, where $\widehat{N}_{W}(R)$ is the set of common neighbors of R in W

Denseness I

$W \subseteq V$ is (r, q)-dense if for every subset $R \subseteq V$ of size $\leqslant r$, it holds $\left|\widehat{N}_{W}(R)\right| \geqslant q$, where $\widehat{N}_{W}(R)$ is the set of common neighbors of R in W

Denseness I

$W \subseteq V$ is (r, q)-dense if for every subset $R \subseteq V$ of size $\leqslant r$, it holds $\left|\widehat{N}_{W}(R)\right| \geqslant q$, where $\widehat{N}_{W}(R)$ is the set of common neighbors of R in W

In $G \sim \mathcal{G}\left(n, \frac{1}{2}\right)$,

- $\left|\widehat{N}_{W}(R)\right| \approx|W \backslash R| \cdot 2^{-|R|}$
- V is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense, where $k=\lceil 2 \log n\rceil$.

Denseness II

Theorem 1

Let $k=\lceil 2 \log n\rceil$. A.a.s. $G=(V, E) \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ is such that:

1. V is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense; and
2. For every $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense $W \subseteq V$ there exists $S \subseteq V$,
$|S| \leqslant \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leqslant \frac{k}{50}$ and
$\left|\widehat{N}_{W}(R)\right|<\widetilde{\Theta}\left(n^{0.6}\right)$ it holds that $|R \cap S| \geqslant \frac{k}{10000}$.

Denseness II

Theorem 1

Let $k=\lceil 2 \log n\rceil$. A.a.s. $G=(V, E) \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ is such that:

1. V is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense; and
2. For every $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense $W \subseteq V$ there exists $S \subseteq V$,
$|S| \leqslant \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leqslant \frac{k}{50}$ and
$\left|\widehat{N}_{W}(R)\right|<\widetilde{\Theta}\left(n^{0.6}\right)$ it holds that $|R \cap S| \geqslant \frac{k}{10000}$.

Denseness II

Theorem 1

Let $k=\lceil 2 \log n\rceil$. A.a.s. $G=(V, E) \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ is such that:

1. V is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense; and
2. For every $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense $W \subseteq V$ there exists $S \subseteq V$,
$|S| \leqslant \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leqslant \frac{k}{50}$ and
$\left|\widehat{N}_{W}(R)\right|<\widetilde{\Theta}\left(n^{0.6}\right)$ it holds that $|R \cap S| \geqslant \frac{k}{10000}$.

Denseness II

Theorem 1

Let $k=\lceil 2 \log n\rceil$. A.a.s. $G=(V, E) \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ is such that:

1. V is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense; and
2. For every $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense $W \subseteq V$ there exists $S \subseteq V$,
$|S| \leqslant \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leqslant \frac{k}{50}$ and
$\left|\widehat{N}_{W}(R)\right|<\widetilde{\Theta}\left(n^{0.6}\right)$ it holds that $|R \cap S| \geqslant \frac{k}{10000}$.

Denseness II

Theorem 1

Let $k=\lceil 2 \log n\rceil$. A.a.s. $G=(V, E) \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ is such that:

1. V is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense; and
2. For every $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense $W \subseteq V$ there exists $S \subseteq V$,
$|S| \leqslant \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leqslant \frac{k}{50}$ and
$\left|\widehat{N}_{W}(R)\right|<\widetilde{\Theta}\left(n^{0.6}\right)$ it holds that $|R \cap S| \geqslant \frac{k}{10000}$.

Denseness II

Theorem 1

Let $k=\lceil 2 \log n\rceil$. A.a.s. $G=(V, E) \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ is such that:

1. V is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense; and
2. For every $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense $W \subseteq V$ there exists $S \subseteq V$,
$|S| \leqslant \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leqslant \frac{k}{50}$ and
$\left|\widehat{N}_{W}(R)\right|<\widetilde{\Theta}\left(n^{0.6}\right)$ it holds that $|R \cap S| \geqslant \frac{k}{10000}$.

Denseness II

Theorem 1

Let $k=\lceil 2 \log n\rceil$. A.a.s. $G=(V, E) \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ is such that:

1. V is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense; and
2. For every $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense $W \subseteq V$ there exists $S \subseteq V$,
$|S| \leqslant \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leqslant \frac{k}{50}$ and $\left|\widehat{N}_{W}(R)\right|<\widetilde{\Theta}\left(n^{0.6}\right)$ it holds that $|R \cap S| \geqslant \frac{k}{10000}$.

Denseness II

Theorem 1

Let $k=\lceil 2 \log n\rceil$. A.a.s. $G=(V, E) \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ is such that:

1. V is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense; and
2. For every $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense $W \subseteq V$ there exists $S \subseteq V$,
$|S| \leqslant \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leqslant \frac{k}{50}$ and
$\left|\widehat{N}_{W}(R)\right|<\widetilde{\Theta}\left(n^{0.6}\right)$ it holds that $|R \cap S| \geqslant \frac{k}{10000}$.

Thank you!

bonacina@cs.upc.edu

Appendix

Regular resolution \equiv Read-Once Branching Programs

Regular resolution \equiv Read-Once Branching Programs

Haken bottleneck counting idea

"Lemma 1"

Every random path $\gamma \sim \mathcal{D}$ in the ROBP passes through a bottleneck node.
"Lemma 2"
Given any bottleneck node b in the ROBP,

$$
\operatorname{Pr}_{\gamma \sim \mathcal{D}}[b \in \gamma] \leqslant n^{-\Theta(k)}
$$

Then, it is trivial to conclude:

$$
\begin{aligned}
1 & =\underset{\gamma \sim \mathcal{D}}{\operatorname{Pr}}[\exists b \in R O B P b \text { bottleneck and } b \in \gamma] \\
& \leqslant|R O B P| \cdot \max _{\begin{array}{c}
b \text { bottleneck } \\
\text { in the ROBP }
\end{array}}^{\gamma \sim \mathcal{D}} \operatorname{Pr}[b \in \gamma] \\
& \leqslant|R O B P| \cdot n^{-\Theta(k)}
\end{aligned}
$$

The random path

$\beta(c)=\max ($ partial $)$ assignment contained in all paths from the source to c
$j \in[k]$ is forgotten at c if no sink reachable from c has label $\bigvee_{v \in V} x_{v, j}$

The random path γ

- if j forgotten at c or $\beta(c) \cup\left\{x_{v, j}=1\right\}$ falsifies a short clause of $\Phi_{G, k}$ then continue with $x_{v, j}=0$
- otherwise toss a coin and with prob. $\Theta\left(n^{-0.6}\right)$
continue with $x_{v, j}=1$

The real bottleneck counting

$$
V_{j}^{0}(a)=\left\{v \in V: \beta(a)\left(x_{v, j}\right)=0\right\}
$$

Lemma 1

For every random path γ, there exists two nodes a, b in the ROBP s.t.

1. γ touches a, sets $\leqslant\left\lceil\frac{k}{200}\right\rceil$ variables to 1 and then touches b;
2. there exists a $j^{*} \in[k]$ not-forgotten at b and such that $V_{j^{*}}^{0}(b) \backslash V_{j^{*}}^{0}(a)$ is $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense.

Lemma 2

For every pair of nodes (a, b) in the ROBP satisfying point (2) of Lemma 1,
$\underset{\gamma}{\operatorname{Pr}}\left[\gamma\right.$ touches a, sets $\leqslant\left\lceil\frac{k}{200}\right\rceil$ vars to 1 and then touches $\left.b\right] \leqslant n^{-\Theta(k)}$

Proof sketch of Lemma 2

Let $E=$ " γ touches a, sets $\leqslant\lceil k / 200\rceil$ vars to 1 and then touches $b "$ and let $W=V_{j^{*}}^{0}(b) \backslash V_{j^{*}}^{0}(a)$
Case 1: $V^{1}(a)=\left\{v \in V: \exists i \in[k] \beta(a)\left(x_{v, i}\right)=1\right\}$ has large size $(\geqslant k / 20000)$. Then $\operatorname{Pr}[E] \leqslant n^{-\Theta(k)}$ because of the prob. of 1 s in the random path γ and a Markov chain argument.
Case 2.1: $V^{1}(a)$ is not large but many $\left(\geqslant \widetilde{\Theta}\left(n^{0.6}\right)\right)$ vertices in W are set to 0 by coin tosses.
So $\operatorname{Pr}[E \wedge W$ has many coin tosses $] \leqslant n^{-\Theta(k)}$ again by a Markov chain argument as in Case 1.
Case 2.2: $V^{1}(a)$ is not large and not many vertices in W are set to 0 by coin tosses. Then many of the 1 s set by the random path γ between a and b must belong to a set of size at most \sqrt{n}, by the new combinatorial property (2).
So $\operatorname{Pr}[E \wedge W$ has not many coin tosses $] \leqslant n^{-\Theta(k)}$.

[^0]: [BIS07] Beame, Impagliazzo and Sabharwal, 2007. The resolution complexity of independent sets and vertex covers in random graphs.
 [LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of proving that a graph is Ramsey.

