Clique is hard on average for regular resolution

Ilario Bonacina, UPC Barcelona Tech July 27, 2018

Oxford Complexity Day

Talk based on a joint work with:

A. Atserias

S. de Rezende

M. Lauria

J. Nordström

A. Razborov

- k-clique is a fundamental NP-complete problem
- regular resolution captures state-of-the-art algorithms for k-clique
- for k small (say $k \ll \sqrt{n}$) the standard tools from proof complexity fail

- k-clique can be solved in time n^{O(k)},
 e.g. by brute-force
- k-clique is NP-complete
- assuming ETH, there is no
 f(k)n^{o(k)}-time algorithm for k-clique
 for any computable function f

4

4

4

Tree-like = the proof DAG is a tree Regular = no variable resolved twice in any source-to-sink path Size = # of nodes in the proof DAG

- algorithms routinely used to solve SAT (CDCL-solvers) are *somewhat* formalizable in resolution
- the state-of-the-art algorithms to solve k-clique (Bron-Kerbosch, Östergård, Russian dolls algorithms, ...) are formalizable in *regular* resolution

k-clique formula

Construct a propositional formula $\Phi_{G,k}$ unsatisfiable if and only if "G does not contain a k-clique"

 $x_{v,j} \equiv$ "v is the j-th vertex of a k-clique in G".

The clique formula $\Phi_{G,k}$ $\bigvee_{v \in V} x_{v,i} \quad \text{for } i \in [k]$ and $\neg x_{u,i} \lor \neg x_{v,i} \quad \text{for } i \in [k], \ u, v \in V$ and $\neg x_{u,i} \lor \neg x_{v,j} \quad \text{for } i \neq j \in [k], u, v \in V, \ (u,v) \notin E$ $S(\Phi_{G,k}) =$ minimum size of a resolution refutation of $\Phi_{G,k}$ $S_{tree}(\Phi_{G,k}) =$ minimum size of a tree-like resolution ref. of $\Phi_{G,k}$ $S_{reg}(\Phi_{G,k}) =$ minimum size of a regular resolution ref. of $\Phi_{G,k}$

- $S(\Phi_{G,k}) \leqslant S_{reg}(\Phi_{G,k}) \leqslant S_{tree}(\Phi_{G,k}) \leqslant n^{\mathcal{O}(k)}$
- if G is (k-1)-colorable then $S_{reg}(\Phi_{G,k}) \leq 2^k k^2 n^2 [\sim BGL13]$

[[]BGL13] Beyersdorff, Galesi and Lauria 2013. *Parameterized complexity of DPLL search procedures.*

A graph $G = (V, E) \sim \mathcal{G}(n, p)$ is such that |V| = n and each edge $\{u, v\} \in E$ independently with prob. $p \in [0, 1]$

A graph $G = (V, E) \sim \mathcal{G}(n, p)$ is such that |V| = n and each edge $\{u, v\} \in E$ independently with prob. $p \in [0, 1]$

- if $p \ll n^{-2/(k-1)}$ then a.a.s. $G \sim \mathcal{G}(n,p)$ has no k-cliques
- A.a.s. $G \sim \mathcal{G}(n, \frac{1}{2})$ has no clique of size $\lceil 2 \log_2 n \rceil$

Main Result (simplified)

Main Theorem (version 1)

Let $G \sim \mathcal{G}(n, p)$ be an Erdős-Rényi random graph with, for simplicity, $p = n^{-4/(k-1)}$ and let $k \leq n^{1/2-\epsilon}$ for some arbitrary small ϵ . Then, $S_{reg}(\Phi_{G,k}) \stackrel{\text{a.a.s.}}{=} n^{\Omega(k)}$.

Main Result (simplified)

Main Theorem (version 1) Let $G \sim \mathcal{G}(n, p)$ be an Erdős-Rényi random graph with, for simplicity, $p = n^{-4/(k-1)}$ and let $k \leq n^{1/2-\epsilon}$ for some arbitrary small ϵ . Then, $S_{reg}(\Phi_{G,k}) \stackrel{\text{a.a.s.}}{=} n^{\Omega(k)}$.

the actual lower bound decreases smoothly w.r.t. p

Main Result (simplified)

Main Theorem (version 1) Let $G \sim \mathcal{G}(n, p)$ be an Erdős-Rényi random graph with, for simplicity, $p = n^{-4/(k-1)}$ and let $k \leq n^{1/2-\epsilon}$ for some arbitrary small ϵ . Then, $S_{reg}(\Phi_{G,k}) \stackrel{\text{a.a.s.}}{=} n^{\Omega(k)}$.

the actual lower bound decreases smoothly w.r.t. p

Main Theorem (version 2) Let $G \sim \mathcal{G}(n, \frac{1}{2})$, then $S_{reg}(\Phi_{G,k}) \stackrel{\text{a.a.s.}}{=} n^{\Omega(\log n)}$ for $k = \mathcal{O}(\log n)$

and

$$S_{reg}(\Phi_{G,k}) \stackrel{\text{a.a.s.}}{=} n^{\omega(1)} \text{ for } k = o(\log^2 n).$$

Open Problem

Let G be a graph in n vertices with no set of k vertices forming a clique or independent set, where $k = \lceil 2 \log n \rceil$. Is it true that $S_{(reg)}(\Phi_{G,k}) = n^{\Omega(\log n)}$?

([LPRT17] proved this but for a binary encoding of $\Phi_{G,k}$)

[[]LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. *The complexity of proving that a graph is Ramsey.*

Previous lower bounds

[BGL13] If G is the complete (k - 1)-partite graph, then $S_{tree}(\Phi_{G,k}) = n^{\Omega(k)}$. The same holds for $G \sim \mathcal{G}(n, p)$ with suitable edge density p.

[BIS07] for $n^{5/6} \ll k < \frac{n}{3}$ and $G \sim \mathcal{G}(n, p)$ (with suitable edge density p), then $S(\Phi_{G,k}) \stackrel{\text{a.a.s.}}{=} 2^{n^{\Omega(1)}}$

[LPRT17] if we encode k-clique using some other propositional encodings (e.g. in binary) we get $n^{\Omega(k)}$ size lower bounds for resolution

[BIS07] Beame, Impagliazzo and Sabharwal, 2007. The resolution complexity of independent sets and vertex covers in random graphs.

[LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. *The complexity of proving that a graph is Ramsey.*

Focus on $k = \lceil 2 \log n \rceil$ and $G \sim \mathcal{G}(n, \frac{1}{2})$, and how to prove $S_{reg}(\Phi_{G,k}) \stackrel{\text{a.e.s.}}{=} n^{\Omega(\log n)}$

Proof scheme

Theorem 1

Let
$$k = \lceil 2 \log n \rceil$$
. A.a.s. $G = (V, E) \sim \mathcal{G}(n, \frac{1}{2})$ is such that:

1.
$$V$$
 is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense; and
2. For every $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense $W \subseteq V$ there exists $S \subseteq V$,
 $|S| \leq \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leq \frac{k}{50}$ and
 $|\widehat{N}_W(R)| < \widetilde{\Theta}(n^{0.6})$ it holds that $|R \cap S| \geq \frac{k}{10000}$.

Proof scheme

Theorem 1

Let
$$k = \lceil 2 \log n \rceil$$
. A.a.s. $G = (V, E) \sim \mathcal{G}(n, \frac{1}{2})$ is such that:

1.
$$V$$
 is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense; and
2. For every $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense $W \subseteq V$ there exists $S \subseteq V$,
 $|S| \leq \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leq \frac{k}{50}$ and
 $|\widehat{N}_W(R)| < \widetilde{\Theta}(n^{0.6})$ it holds that $|R \cap S| \geq \frac{k}{10000}$.

Theorem 2

Let $k = \lceil 2 \log n \rceil$. For every G satisfying properties (1) and (2), $S_{reg}(\Phi_{G,k}) = n^{\Omega(\log n)}$

Proof scheme

Theorem 1

Let
$$k = \lceil 2 \log n \rceil$$
. A.a.s. $G = (V, E) \sim \mathcal{G}(n, \frac{1}{2})$ is such that:

1.
$$V$$
 is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense; and
2. For every $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense $W \subseteq V$ there exists $S \subseteq V$,
 $|S| \leq \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leq \frac{k}{50}$ and
 $|\widehat{N}_W(R)| < \widetilde{\Theta}(n^{0.6})$ it holds that $|R \cap S| \geq \frac{k}{10000}$.

Theorem 2

Let $k = \lceil 2 \log n \rceil$. For every G satisfying properties (1) and (2), $S_{reg}(\Phi_{G,k}) = n^{\Omega(\log n)}$

Proof ideas: boosted Haken bottleneck counting. Bottlenecks are pair of nodes with special properties **and** a way of visiting them. The proof heavily uses regularity.

 $W \subseteq V$ is (r, q)-dense if for every subset $R \subseteq V$ of size $\leq r$, it holds $|\widehat{N}_W(R)| \ge q$, where $\widehat{N}_W(R)$ is the set of common neighbors of R in W

 $W \subseteq V$ is (r, q)-dense if for every subset $R \subseteq V$ of size $\leq r$, it holds $|\widehat{N}_W(R)| \ge q$, where $\widehat{N}_W(R)$ is the set of common neighbors of R in W

 $W \subseteq V$ is (r, q)-dense if for every subset $R \subseteq V$ of size $\leq r$, it holds $|\widehat{N}_W(R)| \ge q$, where $\widehat{N}_W(R)$ is the set of common neighbors of R in W

 $W \subseteq V$ is (r, q)-dense if for every subset $R \subseteq V$ of size $\leq r$, it holds $|\widehat{N}_W(R)| \geq q$, where $\widehat{N}_W(R)$ is the set of common neighbors of R in W

In $G \sim \mathcal{G}(n, \frac{1}{2})$,

- $|\widehat{N}_W(R)| \approx |W \smallsetminus R| \cdot 2^{-|R|}$
- V is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense, where $k = \lceil 2 \log n \rceil$.

Denseness II

Theorem 1

Let
$$k = \lceil 2 \log n \rceil$$
. A.a.s. $G = (V, E) \sim \mathcal{G}(n, \frac{1}{2})$ is such that:

1.
$$V$$
 is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense; and
2. For every $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense $W \subseteq V$ there exists $S \subseteq V$
 $|S| \leq \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leq \frac{k}{50}$ and
 $|\widehat{N}_W(R)| < \widetilde{\Theta}(n^{0.6})$ it holds that $|R \cap S| \geq \frac{k}{10000}$.

Let
$$k = \lceil 2 \log n \rceil$$
. A.a.s. $G = (V, E) \sim \mathcal{G}(n, \frac{1}{2})$ is such that:

1.
$$V$$
 is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense; and
2. For every $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense $W \subseteq V$ there exists $S \subseteq V$,
 $|S| \leq \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leq \frac{k}{50}$ and
 $|\widehat{N}_W(R)| < \widetilde{\Theta}(n^{0.6})$ it holds that $|R \cap S| \geq \frac{k}{10000}$.

Let
$$k = \lceil 2 \log n \rceil$$
. A.a.s. $G = (V, E) \sim \mathcal{G}(n, \frac{1}{2})$ is such that:

1.
$$V$$
 is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense; and
2. For every $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense $W \subseteq V$ there exists $S \subseteq V$,
 $|S| \leq \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leq \frac{k}{50}$ and
 $|\widehat{N}_W(R)| < \widetilde{\Theta}(n^{0.6})$ it holds that $|R \cap S| \geq \frac{k}{10000}$.

Let
$$k = \lceil 2 \log n \rceil$$
. A.a.s. $G = (V, E) \sim \mathcal{G}(n, \frac{1}{2})$ is such that:

1.
$$V$$
 is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense; and
2. For every $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense $W \subseteq V$ there exists $S \subseteq V$,
 $|S| \leq \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leq \frac{k}{50}$ and
 $|\widehat{N}_W(R)| < \widetilde{\Theta}(n^{0.6})$ it holds that $|R \cap S| \geq \frac{k}{10000}$.

Let
$$k = \lceil 2 \log n \rceil$$
. A.a.s. $G = (V, E) \sim \mathcal{G}(n, \frac{1}{2})$ is such that:

1.
$$V$$
 is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense; and
2. For every $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense $W \subseteq V$ there exists $S \subseteq V$,
 $|S| \leq \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leq \frac{k}{50}$ and
 $|\widehat{N}_W(R)| < \widetilde{\Theta}(n^{0.6})$ it holds that $|R \cap S| \geq \frac{k}{10000}$.

Let
$$k = \lceil 2 \log n \rceil$$
. A.a.s. $G = (V, E) \sim \mathcal{G}(n, \frac{1}{2})$ is such that:

1.
$$V$$
 is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense; and
2. For every $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense $W \subseteq V$ there exists $S \subseteq V$,
 $|S| \leq \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leq \frac{k}{50}$ and
 $|\widehat{N}_W(R)| < \widetilde{\Theta}(n^{0.6})$ it holds that $|R \cap S| \geq \frac{k}{10000}$.

Let
$$k = \lceil 2 \log n \rceil$$
. A.a.s. $G = (V, E) \sim \mathcal{G}(n, \frac{1}{2})$ is such that:

1.
$$V$$
 is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense; and
2. For every $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense $W \subseteq V$ there exists $S \subseteq V$,
 $|S| \leq \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leq \frac{k}{50}$ and
 $|\widehat{N}_W(R)| < \widetilde{\Theta}(n^{0.6})$ it holds that $|R \cap S| \geq \frac{k}{10000}$.

Let
$$k = \lceil 2 \log n \rceil$$
. A.a.s. $G = (V, E) \sim \mathcal{G}(n, \frac{1}{2})$ is such that:

1.
$$V$$
 is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense; and
2. For every $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense $W \subseteq V$ there exists $S \subseteq V$,
 $|S| \leq \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leq \frac{k}{50}$ and
 $|\widehat{N}_W(R)| < \widetilde{\Theta}(n^{0.6})$ it holds that $|R \cap S| \geq \frac{k}{10000}$.

Thank you!

bonacina@cs.upc.edu

Appendix

Regular resolution \equiv Read-Once Branching Programs

Regular resolution \equiv Read-Once Branching Programs

Haken bottleneck counting idea

"Lemma 1"

Every random path $\gamma\sim\mathcal{D}$ in the ROBP passes through a bottleneck node.

"Lemma 2"

Given any **bottleneck** node *b* in the ROBP,

$$\Pr_{\gamma \sim \mathcal{D}}[b \in \gamma] \leqslant n^{-\Theta(k)}.$$

Then, it is trivial to conclude:

 $1 = \Pr_{\gamma \sim \mathcal{D}} [\exists b \in ROBP \ b \ bottleneck \ and \ b \in \gamma]$ $\leq |ROBP| \cdot \max_{\substack{b \ bottleneck \\ in \ the \ ROBP}} \Pr_{\gamma \sim \mathcal{D}} [b \in \gamma]$ $\leq |ROBP| \cdot n^{-\Theta(k)}$

The random path

 $\beta(c) = \max$ (partial) assignment contained in all paths from the source to c

 $j \in [k]$ is forgotten at c if no sink reachable from c has label $\bigvee_{v \in V} x_{v,j}$

The random path γ

- if j forgotten at c or
 β(c) ∪ {x_{v,j} = 1} falsifies a short clause of Φ_{G,k}
 then continue with x_{v,j} = 0
- otherwise toss a coin and with prob. Θ(n^{-0.6}) continue with x_{v,j} = 1

The real bottleneck counting

$$V_j^0(a) = \{ v \in V : \beta(a)(x_{v,j}) = 0 \}$$

Lemma 1

For every random path γ , there exists two nodes a, b in the ROBP s.t.

- 1. γ touches *a*, sets $\leq \lceil \frac{k}{200} \rceil$ variables to 1 and then touches *b*;
- 2. there exists a $j^* \in [k]$ not-forgotten at b and such that $V_{j^*}^0(b) \smallsetminus V_{j^*}^0(a)$ is $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense.

Lemma 2

For every pair of nodes (a, b) in the ROBP satisfying point (2) of Lemma 1,

$$\Pr_{\gamma}[\gamma \text{ touches } a, \text{ sets } \leqslant \left\lceil \frac{k}{200} \right\rceil \text{ vars to 1 and then touches } b] \leqslant n^{-\Theta(k)}$$

Proof sketch of Lemma 2

Let $E = ``\gamma$ touches a, sets $\leq \lceil k/200 \rceil$ vars to 1 and then touches b" and let $W = V_{j^*}^0(b) \smallsetminus V_{j^*}^0(a)$ **Case 1:** $V^1(a) = \{v \in V : \exists i \in [k] \ \beta(a)(x_{v,i}) = 1\}$ has large size $(\geq k/20000)$. Then $\Pr[E] \leq n^{-\Theta(k)}$ because of the prob. of 1s in the random path γ and a Markov chain argument. **Case 2.1:** $V^1(a)$ is not large but many $(\geq \widetilde{\Theta}(n^{0.6}))$ vertices in Ware set to 0 by coin tosses.

So $\Pr[E \land W$ has many coin tosses] $\leq n^{-\Theta(k)}$ again by a Markov chain argument as in **Case 1**.

Case 2.2: $V^1(a)$ is not large and not many vertices in W are set to 0 by coin tosses. Then many of the 1s set by the random path γ between a and b must belong to a set of size at most \sqrt{n} , by the new combinatorial property (2).

So $\Pr[E \land W \text{ has not many coin tosses}] \leq n^{-\Theta(k)}$. $\sim \Box$