On the Extension Complexity of Polytopes Associated with Permutation Groups

Mateus de Oliveira Oliveira
University of Bergen

Joint work with Lars Jaffke (UiB) and Hans Raj Tiwary (Charles Univ.)
PART I

POLYTOPES vs GROUPS
Popular Optimization Problem

\[
\text{Max } \sum_{i} c_i x_i \quad \text{ over } \quad \text{A discrete domain } \Sigma
\]

\[
\hat{x} \in \mathcal{F} \subseteq \Sigma^n
\]

\[
\text{Set of feasible solutions}
\]
POPULAR APPROACH

IDENTIFY POINTS IN $F \subseteq \Sigma^n$
WITH A SET \hat{F} OF VECTORS IN \mathbb{R}^n

$$P(F) = \text{conv}(\hat{F})$$

OPTIMIZE $\sum_{\hat{a}} c_{\hat{a}} x_{\hat{a}}$
OVER $P(F)$
ISSUE: THE POLYTOPE P(F) MAY HAVE SUPERPOLYNOMIALY MANY FACETS.

DESCRIPTION OF P(F) MAY REQUIRE SUPERPOLYNOMIALY MANY INEQUALITIES
WORK AROUND: EXTENDED FORMULATIONS

\[Q \subseteq \mathbb{R}^{n + n'} \quad n' = \text{POLY}(n) \]

MAXIMIZE \(\sum c_i x_i \) HERE

GET A SOLUTION HERE
EXAMPLE: PERMUTAHEDRON

\[P_N = \{ a_1, a_2, \ldots, a_m \in [N]^N : a_i \neq a_j \text{ for } i \neq j \} \]

\[P(P_N) = \]

\[P(P_N) \text{ has } 2^{\Omega(N)} \text{ facets} \]

But \(\Theta(N \log N) \) ext. form.

Image from Wikipedia
WHICH GROUPS HAVE POLYNOMIAL EXTENDED FORMULATIONS

\[G \leq \text{SYM}(\{N\}) \quad \forall G \in G \Rightarrow \text{REPRESENT } G \text{ BY } a_1, a_2, \ldots, a_N \in \{N\}^N \]

\[\hat{G} = \{ (a_1, a_2, \ldots, a_N) \in \mathbb{R}^N : a_1, a_2, \ldots, a_N \in G \} \]

\[\text{G-HEDRON: } \mathcal{P}(G) = \text{CONV}(\hat{G}) \]

\[\text{EX. } \mathcal{P}(\text{ALT}_n) \text{ IS KNOWN AS ALTERNAHEDRON} \]

\[\checkmark \text{ ALSO HAS } \Theta(N \log N) - \text{SIZE EXT. FORM. (WELTGE-2012)} \]
Which groups have polynomial extended formulations

Sym$_n$, Alt$_n$ (Goemans, Weltge)

Reflection groups (Kaibel, Pasikovich, Humphreys)

Special case of main theorem of this work.

Thm: X is a graph of treewidth k and max degree Δ \Rightarrow

\begin{align*}
\chi_c(\text{Aut}(X)) &= 2^{O(k \Delta \log \Delta)} \cdot \chi(1) \\
&= 2^{O(k \Delta \log \Delta)} \cdot 1 \chi
\end{align*}
PART II

GROUPS vs GRAPHS
Let $[N] = \{1, \ldots, N\}$.

A group $G \subseteq \text{Sym}([N])$ is embeddable in a connected graph X with $M \geq N$ vertices if...

\[\text{Aut}(X) \text{ stabilizes } [N] = \{1, \ldots, N\} \]

\[G = \{ \varphi|_N : \varphi \in \text{Aut}(X) \} \]

Graph embeddability complexity: $\text{g.e.c.}(G)$

Minimum M s.t. $\exists X$ on M vertices s.t. $G \rightarrow X$
Ex: symmetric group $\text{SYM}([n])$

Cyclic group \mathbb{C}_n
BÁBÁI, BOWER 1969:

ANY SUBGROUP \(G \subseteq \text{SYM}([N]) \) CAN BE EMBEDDED IN A GRAPH WITH \(O(N|G|) \) VERTICES.

THEOREM: WORST CASE FOR G.E.C. OF SUBGROUPS OF \(\text{SYM}([N]) \) IS \(O(N!) \).

OPEN PROBLEM: GIVE A FAMILY OF GROUPS WITH SUPERPOLYNOMIAL G.E.C.

BÁBÁI-1969: IS THE G.E.C. OF \(\text{ALT}_N \) SUPERPOLYNOMIAL IN \(N \)?
A related problem:

Given a group G, find a graph X such that $G \cong \text{Aut}(X)$.

Frucht-1949: Any group is isomorphic to the automorphism group of a 3-regular graph.

Contrast with: For $n \geq 6$, $\text{Sym}([n])$ cannot be embedded in graphs of max degree less than $n-1$.

Liebeck-1983: $\text{Alt}_n \cong \text{Aut}(X) \Rightarrow |X| \geq 2^{\Omega(n)}$.

Contrast with: Open whether $g.r.c.$ of Alt_n is superpolynomial.
Which groups have polynomial extended formulations

Main Theorem:

If $G \in \text{SYM}([n])$ is embeddable in a graph X with $m > n$ vertices, treewidth k and max-degree Δ then

$$x.c. (G) = 2^0 \left(k \Delta \log \Delta \right) \cdot o(x).$$
PART III

FORMAL LANGUAGES

VS

POLYTOPES AND GROUPS
Which formal languages have small extension complexity?

By language we mean

\[L_1, L_2, \ldots, L_N, \ldots \quad L_N \in (\Sigma_N)^n \]

we allow the alphabet to grow with the size of strings.
WHICH FORMAL LANGUAGES HAVE
SMALL EXTENSION COMPLEXITY?

(EXPLICIT IN Tiwary 2015)

IF \(L_n \) IS COMPUTABLE BY NON. UNIF. NONDET.
READ-ONCE OBLIVIOUS BRANCHING PROGRAMS
OF SIZE \(s(n) \) THEN \(x.\text{c}(L_n) \leq s(n)^{o(1)} \)

\[\downarrow \]

ONLINE NONDET. TURING MACHINE WORKING IN
SPACE \(r(n) \Rightarrow x.\text{c}.(L_n) \leq 2^{o(r(n))} \cdot n \)

\[\downarrow \]

REGULAR LANGUAGES \(\Rightarrow x.\text{c}.(L_n) \leq o(n) \)
Which formal languages have small extension complexity?

Open problem: Suppose $L_n = \sum^n \cap L(G)$ for some context-free grammar G. Is $x.c.(L_n) = N^f(|G|)$?

In other words do context-free languages have polynomial $x.c.$?
EX: REGULAR CFG'S ARE 1-HOMOGENEOUS.
(PARSE TREES ARE LINES)

ANY LANGUAGE CAN BE ACCEPTED
BY NON UNIF. FAMILIES OF 1-HOMOG.
CFG'S.

PALINDROME LANGUAGE IS ACCEPTED
BY CONST. SIZE 1-HOMOGENEOUS CFG.

\[
G: \begin{align*}
A & \rightarrow 112 \\
A & \rightarrow 1A1 \\
A & \rightarrow 2A2
\end{align*}
\]

EVERY WORD OF SIZE N IS PARSED
BY TREES OF SAME SHAPE.
h-HOMOGENEOUS CFG's

Say that a CFG is h-homogeneous if for each n, the strings of length n are accepted using one out of $h(n)$ parse-trees.
THEOREM: IF L_n IS ACCEPTED BY A h-HOMOGENEOUS CFG G THEN
$$x \cdot c(D(L_n)) \leq h(n) \cdot |G|^{O(1)} \cdot n^{O(1)}.$$

THEOREM: IF $G \in \text{SYM}([n])$ CAN BE EMBEDDED ON A GRAPH OF SIZE M, TREewidth k AND MAX-DEGREE Δ THEN THERE IS A 1-HOMOGENEOUS CFG G OF SIZE $O(k \cdot \Delta \log \Delta) \cdot M^{O(1)}$ S.T. $L(G) = G$.
OPEN PROBLEMS

1) Is \(g.e.c(\text{ALT}_n) \gtrsim N^{\Omega(1)} \)?

Note that \(\text{x.c.}(\text{P(ALT}_n)) = \Theta(N \log N) \)

2) Is \(\text{x.c.}(\mathbb{Z}^n) \leq N^f(|G|) \) for some computable function \(f \)?

3) Give a group with superpolynomial \(x.c. \).

4) Give a group with superpolynomial \(g.e.c. \).
THANK YOU!