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Proofs using a parity connective
PK(⊕) has unbounded fan-in

∧
,
∨
,⊕0,⊕1, plus negations of

literals. Lines are cedents (sequences of formulas, interpreted as
disjunctions). Most rules roughly standard:

Γ Weakening
Γ,∆

Γ, ϕ Γ, ϕ
Cut

Γ

Γ,∆
OR

Γ,
∨

∆

Γ, ϕi for all i ∈ I
AND

Γ,
∧

i∈I ϕi

Rules for ⊕0,⊕1 connectives:

Axiom
⊕0∅

Γ, ϕ,⊕b−1Φ Γ, ϕ,⊕bΦ
MOD

Γ,⊕b(Φ, ϕ)

Γ,⊕aΦ Γ,⊕bΨ
Add

Γ,⊕a+b(Φ,Ψ)

Γ,⊕a(Φ,Ψ) Γ,⊕bΨ
Subtract

Γ,⊕a−bΦ

for each a, b ∈ {0, 1}.
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Constant depth Frege with parity

Constant depth Frege with parity (a.k.a. AC0[2]-Frege):
a (family of) subsystem(s) of PK(⊕) where formulas must have
constant depth (= number of alternations of

∧
,
∨
,⊕).

Major open problem:

Prove a superpolynomial (or better) lower bound
on the size of AC0[2]-Frege proofs of some family of tautologies.

Main reason of interest:

I Techniques for l.b. on size of AC0 circuits
useful in proving l.b. for AC0-Frege proofs (without ⊕).

I L.b. on size of AC0[2] circuits are known.

Theorem (Buss-Ko lodziejczyk-Zdanowski 2012/15)

AC0[2]-Frege is quasipolynomially simulated by its fragment
operating only with (cedents of)

∧
’s of ⊕’s of log-sized ∧’s.
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Aim of our work

Problem:
Understand the relationship between AC0[2]-Frege and its
subsystems combining full AC0-Frege with limited parity reasoning.

Examples of such systems:

I Constant depth Frege with parity axioms,

I The treelike and daglike versions of a system defined by
Kraj́ıček 1997.



Constant depth Frege with parity axioms

To AC0-Frege, we add as axioms all instances of the principle
Count2, saying that there is no perfect matching on an odd-sized
set: ∨

1≤i≤2n+1

∧
e⊆[2n+1]2, i∈e

¬ψe ∨
∧

e,f⊆[2n+1]2, e⊥f

(ψe ∧ ψf ),

where the ψe ’s are constant-depth formulas.

I Count2 requires exponential-size proofs in AC0-Frege.
(BIKPRS ’95)

I PHPn+1
n (in the usual form “there is no injection from n + 1

to n”) requires exp-size proofs in AC0-Frege w/ parity axioms.
(Beame-Riis ’98)



The system PKc
d(⊕)

PKc
d(⊕) is a fragment of PK(⊕) where

1. formulas have depth ≤ d ,

2. no ⊕’s are in the scope of
∨
,
∧

,

3. there are ≤ c ⊕’s per line.

E.g. (c = 3):

ϕ1, . . . , ϕm,⊕0(Ψ1),⊕0(Ψ2),⊕1(Ψ3).

Two versions: daglike (normal) and treelike (each line used at
most once as a premise). We think of them as refutation systems.

I treelike PK3
O(1)(⊕) p-simulates AC0-Frege with parity axioms.

I PHPn+1
n requires exp-size proofs in treelike PKc

d(⊕)
(Kraj́ıček ’97).

I Count3 requires exp-size proofs in daglike PKc
d(⊕)

(Kraj́ıček ’97 + PC degree lower bounds from Buss et al. ’99).
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Some polynomial separations (all witnessed by families of
CNFs) and a quasipolynomial simulation

AC0[2]-Frege

daglike PK
O(1)
O(1)(⊕)

treelike PK
O(1)
O(1)(⊕)

AC0-Frege w/ parity axioms

<

p

<

p

<

p

?

?

≡ qp



PKc
d(⊕) <p AC0[2]-Frege

Theorem
There exist a family {An}n∈ω of unsatisfiable CNF’s such that
each An has a poly(n)-size refutation in AC0[2]-Frege, but
requires nω(1)-size refutations in PKc

d(⊕) for any constants c, d .

I We use an Impagliazzo-Segerlind-style switching lemma to
prove this.

I Switching turns PKc
d(⊕) for proofs into low-degree PC

refutations.

I So, we need tautology susceptible to IS-like switching lemma,
with polysize proofs in AC0[2]-Frege, but not in low-degree
PC.

I We use an obfuscated version of WPHP2n
n (see next slide).
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Take m s.t. n = 2polylog(m) and WPHP:

1 +
∑
j∈[m]

xij , i ∈ [2m],

xi1j · xi2j , i1< i2∈ [2m], j ∈ [m]

Replace each xij by a sum of n variables xijk , k ∈ [n] and expand.

⊕1 ({xijk : j ∈ [m], k∈ [n]}) , i ∈ [2m], (1)

⊕0 ({xi1jk ∧ xi2j` : k, `∈ [n]}) , i1< i2∈ [2m], j ∈ [m] (2)

I For each i , introduce nm + 1 “type-1 extra points”, and reexpress
(1) using new variables by saying that there is a perfect matching
on the union of the set of type-1 extra points and the set of xijk ’s
with value 1.

I For each triple (i1, i2, j), introduce a set of n2 “type-2 extra
points”, and reexpress (2) using new variables by saying that there
is a perfect matching on the union of the set of type-2 extra points
and the set of pairs (k, `) s.t. both xi1jk and xi2j` evaluate to 1.
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The simulation

Theorem
AC0-Frege with parity axioms and treelike PK

O(1)
O(1)(⊕)

are quasipolynomially equivalent (w.r.t. the language without ⊕).

Inspired by “Counting axioms simulate Nullstellensatz”
(Impagliazzo-Segerlind ’06), but somewhat more complicated.

Proof
has four steps (given treelike PKc

O(1)(⊕) refutation of size s):

1. Replace original refutation by treelike PK
O(log s)
O(1) (⊕) refutation

that is balanced (height O(log s)).

2. Modify the refutation so that each line contains exactly one ⊕.

3. Delay application of subtraction rules.

4. Simulate the single-parity system w/o subtraction.
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Moving to single parities

Replace line

ϕ1, . . . , ϕk ,⊕0(ψ1
i : i ∈ I1), . . . ,⊕0(ψ`

i : i ∈ I`)

by
ϕ1, . . . , ϕk ,⊕0(ψ1

i1 ∧ . . . ∧ ψ
`
i`

: i1∈ I1, . . . , i`∈ I`).

This necessitates adding some new rules, such as

Γ,⊕0(ϕi : i ∈ I )
(Multiply)

Γ,⊕0(ϕi ∧ ψj : i ∈ I , j ∈J)

This leads to an auxiliary proof system, which we call one-parity
system.



Simulation - the main idea

I Given: a derivation P in the one-parity system from some set
of axioms A that don’t contain ⊕.

I Consider a line C := ϕ1, . . . , ϕ`,⊕0(ξ1, . . . , ξk).

I We want to write down a constant-depth formula γC which
says: ”If all ϕ’s are false, there exists a perfect matching on
the set of satisfied ξ’s.”

I To this end, for each e∈
([k]
2

)
, we introduce a formula µCe (in

the variables of P) with meaning: “the two formulas ξi , ξj
with e = {i , j} are matched to one another”.

I We need to make sure that γC has AC0-Frege (without parity
axioms) derivation of a small size from the non-logical axioms
A.



Propagating the matchings

The matching formulas µCe are constructed inductively, depending
on how C was derived in P.
E.g. Multiply by (ψ1, ψ2, ψ3):
(red = false)

⊕0(ϕ1, ϕ2)

⊕0(ϕ1 ∧ ψ1, ϕ2 ∧ ψ1, ϕ1 ∧ ψ2, ϕ2 ∧ ψ2, ϕ1 ∧ ψ3, ϕ2 ∧ ψ3)



Problem with subtraction

⊕0(ϕ1, ϕ2, ϕ3, ϕ4, ψ1, ψ2) ⊕0(ψ1, ψ2)

⊕0(ϕ1, ϕ2, ϕ3, ϕ4)

We match ϕ3 to ϕ4 because in the left premise they were matched
to formulas that were matched to each other in the right premise.

Keeping track of this through the whole proof would blow up the
formula size.



Delaying subtraction

Instead of

⊕0(Φ,Ψ) Γ,⊕0Ψ

Γ,⊕0Φ

do

⊕0(Φ,Ψ) Γ,⊕0Ψ

Γ,⊕0(Φ,Ψ,Ψ)

I The size blowup is no worse that (size)O(height).

I The last line was ⊕0(1). Now it is ⊕0(1, ψ1, ψ1, . . . , ψ`, ψ`).



Completing the simulation

Eventually, we get a perfect matching
on the true inputs to the end line ⊕0(1, ψ1, ψ1, . . . , ψ`, ψ`).

But there is an obvious perfect matching
on all true inputs to ⊕0(1, ψ1, ψ1, . . . , ψ`, ψ`) except 1.

AC0-Frege with parity axioms knows this is a contradiction.



Open problem:

Prove a superquasipolynomial separation between AC0[2]-Frege
and a subsystem containing AC0-Frege with parity axioms
on a family of formulas without ⊕.


