An Overview of Quantified Derandomization

Roei Tell, Weizmann Institute of Science

Complexity Theory @ Oxford, July 2018

> the standard derandomization problem

Given a circuit **C** ∈ **C** over **n** bits, deterministically distinguish between the cases:

- > C accepts all but at most 2ⁿ/3 of its inputs
- > C rejects all but at most 2ⁿ/3 of its inputs

- > lower bounds ⇒ derandomization
- > When C=P/poly equivalent to prBPP=prP
- > Implied by average-case lower bounds for C
 - > hardness-randomness [Yao'82, BM'84, NW'94]
 - > hardness amplification (e.g., [IW'99])
 - > gives blackbox derandomization (i.e., a PRG)

> state of the art

- > P/poly: ?
 > TC⁰, NC¹: ?
 - > ACC⁰: sat in time 2^{n-n^ε} [Wil'11]
 - > AC⁰: quasipoly time [AW'85, Bra'11, TX'12, Tal'17]
 - > **CNFs:** time $n^{\tilde{O}(loglogn)}$

[LV'96, Baz'07, DETT'10, GMR'12]

- > derandomization ⇒ lower bounds
- > Blackbox derand implies lower bounds

> output-set of PRG/HSG is "hard" function

- > Whitebox derand implies (weaker) lower bounds
 - > indirect arguments [IW'98, IKW'02, KI'04, Wil'11, BV'14, MW'18]
 - "hard" function in E^{NP}, NEXP, NQP, NTIME[n^{log*(n)}]

> Faster derand ⇒ better lower bounds

> circuit size, explicitness of "hard" function

> a relaxed derandomization problem [GW'14]

Given a circuit **C** ∈ **C** over **n bits**, deterministically distinguish between the cases:

> C accepts all but at most B(n) of its inputs

> C rejects all but at most B(n) of its inputs

 \Rightarrow in the classical problem B(n)=2ⁿ/3; we think of B(n) = o(2ⁿ)

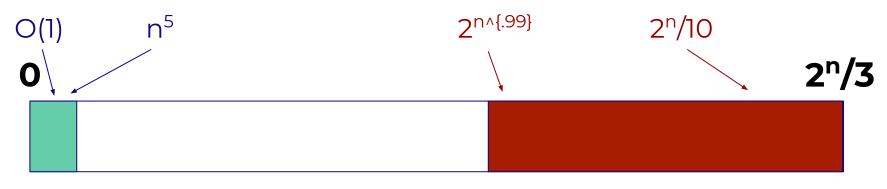
- > conflicting intuitions
- > In "complexity 101" they said that ¹/₃ is arbitrary!

> error-reduction: just how low can it take us?

- > For B(n)=0, I know how to solve the problem!
 - > detecting extremely small bias is easy
- > So is it easy or hard to detect extremely small bias?

> for a fixed circuit class C

"Easy" vs "hard" values for B(n)



B(n)

> for a fixed circuit class C

Goal 1: Understand! Get tight results

> for a fixed circuit class C

Goal 1: Understand! Get tight results

Goal 2: Make green and red cross ⇒ **standard derand**

B(n)

- > derandomization ⇒ lower bounds
- > Blackbox derand implies lower bounds¹
 - > output-set of PRG/HSG still a "hard" function
- > Whitebox derand doesn't (necessary) imply LBs
 - > implies LBs indirectly, via standard derandomization
- > No (known) speed vs. size trade-off

Polynomials that vanish rarely

- > Consider **degree-d polys** $F^n \rightarrow F$ for finite field $F=F_{a}$
- > Hitting-set for all polys has size ≥ (n+d choose d)
- > Is there a hitting-set for polys that vanish on at most b(n) of inputs of size o((n+d choose d))?

Some known results research directions that have been active

Overview of known results

> Constant-depth circuits:

- > AC⁰ > AC⁰[⊕] > TC⁰, LTF/PTF ckts
- > Polys that vanish rarely
- > Proof systems

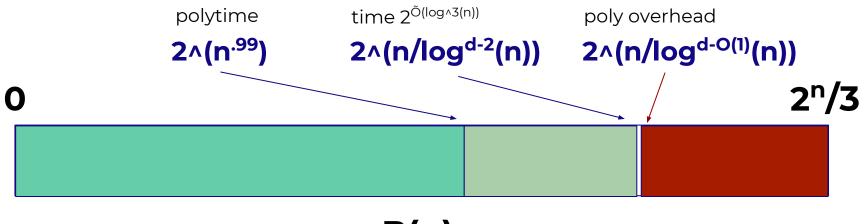
[GW'14, GVW'15, CL'16, T'17] [GW'14, T'17] [T'18, KL'18]

[GW'14, T'17, in progress]

[GW'14]

AC⁰: touching the threshold

> circuits of constant depth d



B(n)

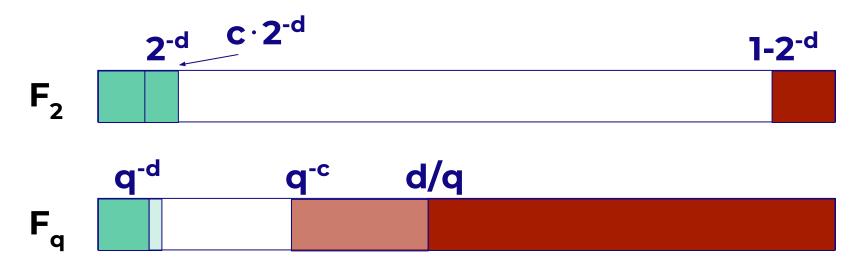
TC⁰, LTF and PTF circuits

>	circuits of constant depth d		quant derand
	#wires	lower bounds	with B(n) ≈ 2 ^{n^{.99}}
	poly(n)		
	n ^{1+O(1/d)}	bounds against specific funcs can be "magnified" [AK'10]	quant derand would imply standard derand of all TC ⁰ [T'18]
	n ^{1+exp(-d)}	unconditional bds: parity, gen Andreev [IPS'97, CSS'16]	unconditional quant derand for LTF, PTF ckts [T'18,KL'18]

1 see [T'18, KL'18]

Polys that vanish rarely

> polys $F^n \rightarrow F$ of any degree d=d(n)

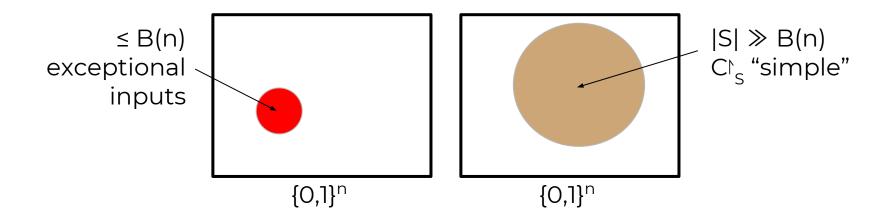


Known techniques and their limitations

Deterministic restrictions

high-level strategy suggested by [GW'14]

Idea: Given C: $\{0,1\}^n \rightarrow \{0,1\}$, find simple function that approximates C in large subset $S \subseteq \{0,1\}^n$, $|S| \gg B(n)$



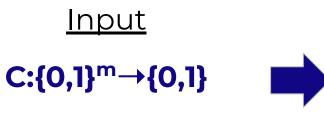
Deterministic restrictions

- > comments
- > Obs: Method is "complete"
- > Subset S not necessarily a subcube
 - > but we need to approx the bias of the simple func in S
- > Can use **whitebox access** to circuit
- > "Full derandomization" of restriction procedures
 - > previous applications required only partial derand [AW'85]

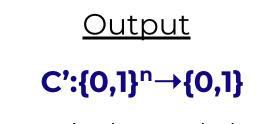
Polys that vanish rarely

- > several ad-hoc techniques
- > Structural results:
 - > biased polys approximated by low-degree polys
 - > biased polys constant on almost all large subspaces
- Biased ckts have probabilistic representation
 as biased polys ⇒ approx by low-degree polys

Error-reduction



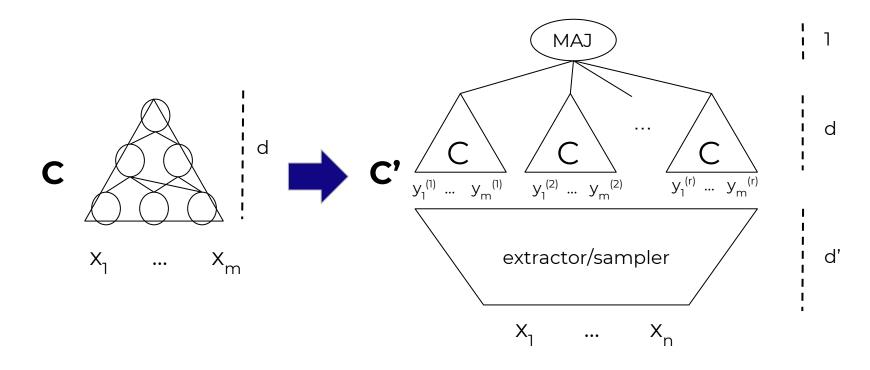
- > depth d, size s
- > at most 2^m/3 bad inputs



- > blow-up in d, s, n=n(m)
- > preserves majority output
- > at most **B(n) bad inputs**

Error-reduction

> using a seeded extractor / averaging sampler



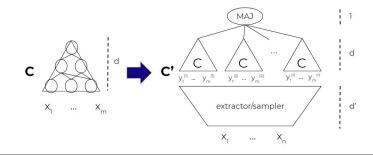
Error-reduction

- > comments
- Extractors in "weak models" barely studied before
 this led to fruitful study of extractors in AC⁰, TC⁰, polys
- > Extractors are **an "overkill"**
 - > we only need to sample one event, induced by circuit C $\in \mathcal{C}$
 - > weaker notions: extractor for $\pmb{\mathcal{C}}$ -events, whitebox extractor

¹ AC⁰-extractors for AC⁰-tests cannot be significantly more efficient than AC⁰-extractors for all tests

Limitation of blackbox techniques

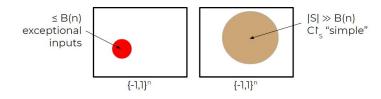
Limitation of blackbox techniques



Step 1: Error-reduction

- ightarrow extractor for ${m {\cal C}}$ -events
- > doesn't depend on specific C

Idea: Given C:{0,]}ⁿ → {0,]}, find **simple function** that **approximates C** in large subset S⊆{0,]}ⁿ, **|S|** ≫ **B(n)**



Step 2: Restrictions

- > distribution over restrictions
- > doesn't depend on specific C

Limitation of blackbox techniques

- > **Thm:** For any class $\mathcal{C} \supseteq \{ \text{polysize DNFs} \}$, if there are
 - 1. C-computable extractor with **B'(n) bad inputs** for error $\Omega(1)$
 - distribution over sets of size B(n) that simplifies every C ∈ C
 to a constant, wp > 1/2

Then, necessarily **B(n) < B'(n).**

⇒ Naive comb of the two techs **cannot suffice for standard derand**

¹ restriction procedures for "small AC⁰[⊕]", LTF ckts, PTF ckts already whitebox

Open problems are everywhere here's a carefully-trimmed list

Where next?

- > few suggested directions
- > Non-deterministic algorithm for quantified derand

> suffice for "derand \Rightarrow lower bounds" [Wil'11]

- > can use collapse hypothesis & some advice [FS'16,MW'17]
- > Whitebox samplers (sampler for specific circuit)
- → HSGs for polys Fⁿ_q → F_q that vanish rarely

Thank you!

⇒ relaxed circuit-analysis task
 ⇒ limitations on blackbox techniques
 ⇒ "interesting problem! perhaps relevant to stuff I like?"