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Abstraet--A new model of list processing is proposed which is more suitable as a basic data structure 
for architecture-independent programming languages than the traditional model of lists. Its main primitive 
functions are: concatenate, which concatenates two lists; split, which partitions a list into two parts; and 
length, which gives the number of elements in a list. This model contains a degree of non-determinism 
which allows greater freedom to the implementation to achieve high performance on both parallel and 
serial architectures. 

data structures functional programming list processing parallel programming 

1. INTRODUCTION 

Lists have been used as basic data structures within programming languages since the 1950s. The 
most elegant and successful formulation was in Lisp [1] with its primitive functions car, cdr and 
cons, often now referred to by the more meaningful names of head, tail and cons respectively. Lisp 
and its model of list processing based on the head, tail and cons primitives have given rise to a large 
number of programming languages over the three and a half decades since Lisp was invented; for 
example, following closely to the pure Lisp tradition are ML [2], Miranda [3] and Haskell [4]. 

The success of the Lisp model of list processing is due to a combination of its semantic elegance 
on the one hand and its simplicity and efficiency of implementation on the other.t In the context 
of functional languages particularly, it has given rise to a style of programming which is clear, 
concise and powerful. This style is well documented in many publications, for example [5]. 

Despite the often proclaimed advantages of functional languages for parallel programming [6], 
there has been very little progress in constructing really worthwhile parallel implementations of 
them. A large part of the problem lies in the difficulty of obtaining efficient parallel representation 
of the traditional head-tail-cons model of list processing. Many recent functional languages such 
as Miranda and Haskell, as well as older functional languages such as List, have this model built 
intimately into the language. Although most modern languages are quite powerful enough to allow 
the programmer to define any type of data structure by defining a suitable set of primitive functions, 
the built-in primitives for head, tail and cons typically execute approximately an order of magnitude 
faster than user-defined equivalents. For this reason, almost all programs in these languages use 
the traditional list-processing model as a matter of course. Hence, if this model cannot be 
implemented efficiently in parallel, most programs are unlikely to be any better. 

There are, however, many high-level list operations for which it is easy to envisage a very efficient 
parallel implementation, particularly those which operate on the whole list, such as map and reduce 
(sometimes called fold). Therefore, the problem is not inherent in the semantics of list processing 
or the concept of a list itself, but rather in the choice of a set of primitive functions, and the (usually 
implicit) assumption that the implementation executes these in constant time (i.e. independently 
of the lengths of the list involved). 

*To whom correspondence should be addressed. 
t i n  the early development of Lisp, efficiency of implementation was a major concern, while the desire for an elegant and 

coherent semantic model of list processing was much less pressing. Nevertheless, the reason that Lisp was more successful 
than its list-processing competitors almost certainly had a lot to do with McCarthy's perceptive choice of the basic 
routines that operated on lists [19]. 
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In this paper, we propose a new model of list processing based on a different set of primitive 
functions, chosen to be efficiently implementable on parallel archite,:tures, but preserving the usual 
semantics of  lists. Programs that use pattern matching on lists or explicitly refer to head, tail and 
cons will need major rewriting to use the new model, which is best suited to a new style of 
programming based on the divide-and-conquer paradigm, rather than the usual recursive/iterative 
style of conventional list processing. On the other hand, programs that do not use the primitives 
directly, but instead use purely high-level library functions may not require any changes at all! 

To achieve satisfactory parallel performance requires that the primitives of the new model be 
built into the language and implemented directly by the compiler or interpreter. The order of 
magnitude penalty typically suffered by user-defined primitives means that one has to achieve ideal 
speedup on approx 10 parallel processors simply to equal the performance of the traditional model 
on a serial machiue. This will usually be an unacceptable price to pay. At the very least, all the 
primitive functions should be built in, and, preferably, tlie more commonly used higher level 
functions as well. 

2. THE MODEL 

The idea behind our model is a very old one: that of representing a list as a binary tree (e.g. 
as in some sorting algorithms). There are, however, many different binary trees that can represent 
the same list. We abstract a set of primitive functions which are suitable for use with binary tree 
representations, but which define list structures and no more. Although these primitives are well 
suited for use with binary tree representations of lists, they do not permit the programmer to see 
the full internal structure of the trees, hence they do require any particular tree representation, or 
even a tree representation at all. This element of non-determinism in the model is important, and 
is discussed more fully later. 

2.1. Informal description 

The following six functions are chosen as the primitive functions of the model (the first is actually 
a constant, or a function which takes no arguments). 

(i) [] is the empty list. 
(ii) singleton x (or, alternatively, [x]) is the list which contains a single element, x. 

(iii) concatenate s t (or, alternatively, s+ +t) is the list formed by concatenating the lists s and t. 
(iv) split s is a pair of lists got by partitioning the list s into two parts. It is defined only if s 

contains at least two elements. Both lists are non-empty. If  s contains more than two 
elements, the result of applying split is non-deterministic, i.e. there is more than one 
acceptable solution and an implementation is free to choose which of these to give as the 
result. 

(v) length s (or, alternatively, # s) is the number of elements in the list s. 
(vi) element s is the only element present in the singleton list s. This function is undefined for 

lists which contain either more or less than one element. 

The primitive split is non-deterministic. This is to allow the implementation to choose the 
quickest way to implement it that the circumstances permit. This freedom is essential to obtaining 
good parallel performance, as will be seen later. The reasons for choosing a non-deterministic 
primitive are discussed later in section 2.3. 

The result of applying split is a pair of lists (not to be confused with a list of two lists). It is 
assumed that the language used in examples later in this paper allows the definition of pairs of 
objects in a single statement, for example: 

(s,t) = split u 

Alternatively, if a pair of objects cannot be defined in a single statement in this way, a semantically 
equivalent approach is to define two primitive functions, split1 and split2: 

split u = (split1 u, split2 u), 
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SO that the definition of  s and t can be carried out separately: 

s = s p l i t 1 '  u 

t = s p l i t 2  u 

2 2  Algebraic specification 
The algebraic properties of the primitive functions that can be used to specify the semantics of 

the model are as follows: 

1. # [ ] = 0  
2. # [ x ]  = I  
3. # ( s + + t )  = # s + # t  
4. element [x] = x 
5. s + + [ ] = [ ] + + s = s  
6. s + + ( t + + u ) = ( s + + t ) + + u  
7. sp l i t ( [ x ]++[y ] )=  ( [x] , [y])  
8. # u > = 2, split u = (s,t) implies 

s++t=u,  # s > = l ,  # t > = l  

2.3. Non-determinism 

The primitive function split is non-deterministic as defined above. It is easy to modify the 
specification to make it deterministic, but there are considerable advantages in keeping it the way 
it is. Consider two obvious ways in which the non-determinism could be removed. 

Firstly, we could replace the second line of Axiom 8 by: 

s++t=u ,  # s = # u D I V 2 ,  # t = ( # u + l ) D I V 2  

This would mean that split always divides the list in half (or as close to that as feasible). The 
disadvantage with this is that it constrains the implementation unnecessarily. It is very hard to find 
any representation of lists that makes this easy to do without introducing other inefficiencies 
elsewhere. 

Secondly, we could replace Axioms 7 and 8 by the single axiom: 

split (s+ +t )  = (s,t) 

provided s and t are each non-empty lists. However, while this certainly removes the non-determin- 
ism, it changes the specification from one for lists into one for trees: the internal structure is 
now visible to the programmer, not just the order of the elements. Axiom 6 (associativity of 
concatenation) would have to be removed as it is contradicts the new axiom. This is certainly 
not what we want. Two lists must always be equal if they contain the same collection of 
elements in the same order. The way in which the list was originally constructed should not be 
significant. 

Of course, it could be argued: why not provide trees instead of lists as the basic data structures, 
after all they are more general and include lists as simply a special case? The answer to this question 
is more subtle, but equally definite. No commonly-used language has done this, although the 
argument in favour of trees has always been relevant and has nothing to do with parallelism. The 
argument against trees is simply that most problems do not need the extra internal structure that 
can be represented by a tree. Lists are fully adequate in the vast majority of situations. Carrying 
around the excess baggage of the extra complexity of trees when it is generally unnecessary is highly 
undesirable. The most successful languages have usually been the simplest ones, not the most 
complicated ones. 

To maintain this simplicity, while at the same time giving sufficient freedom to the implementor 
to vary the implementation to fit the computer architecture available, it is worth introducing 
non-determinism, provided that it can be kept strictly under control. With a little extra care on 
the part of the programmer it is not difficult to write fully deterministic programs using some 
operators or functions which are non-deterministic. Some of the higher-level functions introduced 
later illustrate this well (e.g. reduce). 
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As a general principle, it seems very likely that some carefully selected non-deterministic 
operators will need to be introduced into most architecture-independent programming languages. 
For example, if it is required to compute 

at + a2 + " " + a, 

then it does not matter in which order the additions are carried out, the sum will always be the 
same because addition is associative and commutative. However, a program which specifies that 
the numbers are added sequentially, one at a time from the left (as is typical in most present-day 
programming languages) constrains the implementor quite unnecessarily (and highly inefficiently 
on most parallel machines). The best way to write a summation program that can be run at 
optimum efficiency on all different types of machine architecture is to use a language in which the 
order in which the additions are to be performed is undefined. The non-determinism becomes a 
problem only if such an order-undefined program is written using a non-associative operator 
instead of addition. 

Hence the use of non-deterministic primitives does impose an obligation on the programmer to 
verify that the operators used have the required properties, such as associativity. 

2.4. Represen ta t ion  in the compu ter  

There are many different ways to represent lists. The representation described below is not 
claimed to be the only suitable representation, nor the best representation. It is, however, simple, 
well known, and suitable for high-performance parallel implementation on a shared memory 
architecture, as well as allowing constant-time execution of all the new primitives. Discussion of 
parallel execution is left until a later section, and for the moment we simply describe the 
representation. 

A list is represented as a binary tree. Each node in the tree is either a branch node or a leaf node. 
Each leaf node contains an element of the list. Each branch node contains two pointers, the left 
one points to the first part of the list, while the right points to the second part of the list. Ideally 
these two parts of the list should approximately equal in length (i.e. the tree should be balanced), 
but that is not a requirement for correctness of the representation. It affects only the performance. 
Each branch node also contains the number of items in its sub-tree (i.e. the length of the list which 
that sub-tree represents). Again, this is solely to improve performance (so that the length primitive 
can be computed in constant time). 

The representations of the empty list ([ ]), a singleton list ([a]), and a list of two elements ([a,b]) 
are: 

10..   ll.t L ÷ N  
N N 

The • denotes a nil pointer and occurs only in lists containing no elements, or just a single element. 
Two alternative representations of the list [a,b,c] are: 

+-N N ® 

N 
The more elements the list contains, the more different tree structures are possible. All are equally 
valid and will give exactly the same results, although the performance of a program may depend 
upon how well-balanced the tree is. 
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With the above representation, it is easy to program implementations of all six primitive 
functions that will execute in constant time, irrespective of the lengths of the lists involved. None 
of these primitives offers any scope for parallelism, however. That comes with the implementation 
of higher-level list-processing functions. 

3. HIGH-LEVEL LIST-PROCESSING FUNCTIONS 

Most common high-level list-processing functions such as map and reduce can be easily 
programmed in terms of the new primitives, using a divide-and-conquer strategy. The structure of 
divide-and-conquer programs makes them particularly well suited to parallel implementations on 
a very wide variety of parallel architectures [7, 8]. 

Most of the functions defined in section 3.2 are identical in specification to functions in the 
Haskell standard prelude [4]. The Haskell standard prelude has been chosen as a starting point 
because it includes a wide variety of useful list-processing functions that are in common use in 
HaskeU and many other functional languages (the standard functions of Miranda, for instance, are 
very similar). Nearly all of the list-processing functions in the Haskell standard prelude have been 
included. A few have been omitted and a few have been replaced by similar (but not identical) 
functions for reasons discussed later. 

3.1. The language used 

All program fragments are expressed in a simple functional language pseudocode which 
is essentially a very small subset of Miranda and Haskell, but with a few minor syntactic 
changes. The usual arithmetic operators are used, the relational operators that test for 
equality and inequality are denoted by =-- and l= (as in C) and a number of other relational 
and logical operators are borrowed from C also. Conditional expressions are denoted by 
IF . .THEN. .  ELSE.. FI. Each program line begins with the symbol > and all other lines are 
regarded as comments. 

As the code for each of the functions is quite brief and easy to understand, the code itself serves 
as both a formal specification of the function and its implementation. No attempt is made to include 
separate formal specifications of the functions. The comments preceding the code give a brief 
informal description description of each function, and most of these functions are familiar to 
programmers of functional languages anyway. 

Pattern matching is often used in modern functional programming languages to make programs 
more readable. It is easy to incorporate the new list primitives into the patterns that can be used. 
For example, instead of writing the definition of the function head as" 

> head s = 
> IF # s = = O T H E N  / 
> ELSlF # s = = l  THEN elements 
> ELSE head sl  FI 
> WH ERE (s l  , s2 )  = spl i t  s 

The same program can be written using pattern matching as: 

> head [ ] = / 
> head [x]  = x 
> head (s+ +t)  = head s 

These two programs would be executed in almost exactly the same way, but the latter 
form is shorter and clearer. Pattern matching is used throughout this paper for those reasons. 
Undefined parts of functions will be omitted completely instead of making them explicit with the 
symbol i .  

3.2. Code for the functions 
head and tail extract the first element and the remaining sub-list, respectively, from a non- 

empty list. last and init are the dual functions, extracting the last element and the preceding 
sub-list. 
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> head [x] = x 
> head (s+ +t) = head s 

> last [x] = x 
> last (s+ +t)  = last t 

> tail [x] = [ ]  
> tail ( s++ t )  = ta i l s  ++  t 

> i n i t [ x ] = [ ]  
> init ( s++ t )  =s  ++  in i t t  

(:) adds a new element to the beginning of a list. 
append adds a new element to the end of a list: 

> x : s = r x ]  + + s  
> append s x = s + + Ix] 

(..) creates a list made up of a sequence of consecutive integers: 

> i . .  i = [ i l  
> i . . j = l F  i < j T H E N ( i . . m i d )  + + ( ( m i d + l ) . . j ) F I  
> WHERE mid=  ( i + j )  D IV2  

(DIV is integer division) 

sill is the i-th element of the list s (counting from 0): 

> Ix ]  !! O = x  
> ( s++ t )  l! i = IF  i < # s T H E N  s l l  i 
> ELSEt l! ( i -  #s )  FI 

balance is the identity function on lists, but has the useful effect of  creating a balanced 
representation: 

> balance s=  map f ( 0 . .  ( # s - l ) )  W H E R E f i = s l l i  

map f s applies f to each element of s independently: 

> m a p f [ ] = [ ]  
> map f [x] = [f x] 
> m a p f  (s++t)  = m a p f s  ++ map f t  

filter p s is the list of all those elements of s which satisfy the predicate p: 

> filter p [ ] = [ ] 
> filter p [x] = I F p x T H E N  [x] ELSE [ ]  FI 
> filter p (s+ +t)  = filter p s + + filter p t 

partition p s is the pair of lists such that the first is all elements of  s satisfying p, while the second 
is all elements of s which do not satisfy p: 

> partition p s = (filter p s, filter (not.p) s) 

reduce f z s reduces the list s, using the binary operator f, and the starting value z; while reduce1 
is a variant with no starting value, that must be applied to non-empty lists. The function f must 
be associative for reduce f and reduce1 f to give deterministic results, reduce and reduce1 replace 
the Haskell functions foldl, foldll ,  foldr and foldrl .  

> reduce f z [ ] =z  
> reduce f z [x] = x 
> reduce f z (s+ +t)  = f (reduce f z s) (reduce f z t) 

> reduce1 f I'x] = x 
> reduce1 f ( s++ t )  = f  (reduce1 fs )  (reduce1 f t )  
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reducemap is simply the functional composition of  reduce and map: 

> reducemap f g z s = reduce f z (map g s) 

concat ,  when applied to a list of  lists, gives a single list which is the concatenation of  all the element 
lists: 

> concat = reduce (+ +) [ ] 

take i s returns the first i elements of  s (or the whole of s if i is greater than # s), where i ~> 0: 

> take Os = [ ] 
> take i [ ]  = [ ] 
> take i [x] = [x] 
> t a k e i ( s + + t ) = l F i < =  # s T H E N t a k e i s  
> ELSEs ++  take ( i -  # s )  t FI 

drop i s returns all but the first i elements of s, where i >t 0: 

> drop 0 s = s 
> drop i  [ ] = [ ]  
> drop i [x] = [ ] 
> d r o p i ( s + + t ) = l F i < =  # s T H E N d r o p i s + + t  
> ELSE drop ( i -  #s )  t FI 

spl i tAt i s does both jobs at once: 

> splitAt i s = (take is, drop i s) 

takeWhile p s returns the longest prefix of  s containing elements satisfying the predicate p: 

> takeWhile = first, span WHERE first (x,y) = x 

dropWhile p s returns the remainder of s: 

> dropWhile = s e c o n d ,  span WHERE second (x,y) = y 

span p s is equivalent to (takeWhile p s, dropWhile p s): 

> span p [ ]  = ( [  ] , [  ] )  
> span p rx] = IF  p x T H E N  ( [ x ] , [  ] )  ELSE ([  ] , [ x ] )  FI 
> span p ( s++ t )  = IF  # s 2  = =  0THEN ( s l + + t l , t 2 )  ELSE ( s l , s 2 + + t )  FI 
> WHERE 
> (sl ,s2) = span p s 
> ( t l  ,t2) = span p t 

break p s is similar but uses the negation of  p: 

> break p=span  (not .  p) 

lines s breaks the string s at each newline character (which is removed) and returns a list of  separate 
lines. A string consisting of  a single newline character gives a list of  two empty lines. Any string 
that terminates with a newline character will give a list of  lines in which the last line is empty. A 
string containing no newline characters will give a list of  lines containing only one line (which is 
the original string exactly). The third line of  the code below is rather subtle, and best understood 
by considering the situation in which the last character o f s  is not a newline, nor is the first character 
of  t. In that case, the last line of s and the first line of  t are just two parts of  the same line of  s+ +t, 
hence the need for the term [last ss + + head tt] which concatenates the last line of  s and the first 
line of  t into a single line. Notice that the other occurrences of  the operator + + in the definition 
of  l ines(s+ +t) concatenate lists of lines. 
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> l ines  [ ] = [ [  ]1 
> lines [x l  = l F x  = =  newl ineTHEN [ [  1,[ ]1 ELSE [ [ x ] ]  FI 
> l ines  ( s + + t )  = in i t  ss + +  [( last ss) + +  (head t t ) ]  ++  tail tt 
> WHERE 
> ss = l ines  s 
> tt = l ines  t 

word s acts similarly, but splits the string at every occurrence of white space (which is removed), 
returning a list of words. 

> words [ ] = [ [  ] ]  
> words [x] = l F i s S p a c e x T H E N  [ [  1,[ ] ]  ELSE [ [ x ] ]  FI 
> words (s+ +t)  = init ss + + join (last ss) (head tt) + + tail tt 
> WHERE 
> join p q = l F  # p = = 0  & &  # q = = O T H E N  [ ] ELSE [ p + + q ]  FI 
> ss = words s 
> tt -- words t 

unlines and unwords perform the inverse operations: 

> unlines s = concat (map f s) WH ERE f p = p + + [newline] 
> unwords s = concat (map f s) WHERE f p = p + + [space1 

n u b s  returns the list consisting of the elements of s with all repeated occurrences of the same 
element removed: 

> n u b [ ] = [ ]  
> nub s = (head s ) :  nub (filter ((1=) (head s)) (tail s ) )  

reverse s returns the list got by reversing the order of  the elements in s: 

> reverse = reduce (flip (+ + ) )  [ ] 
> W H E R E f l i p f x y = f y x  

and s returns the result of logically ANDing together all the elements of s. or s performs the similar 
logical OR operation: 

> and = reduce (&&)  True 
> o r=  reduce (11) False 

( & &  denotes the logical A N D  operator, while II denotes logical OR) 
any p s is true if and only if at least one element of s satisfies the predicate p: 

> any p = reducemap (11) P False 
> all p = reducemap (&&)  p True 

elem x s is true if and only if x is an element of s. 
notElem x s is truc if and only if x is not an element of s: 

> elem = any. (= = ) 
> notElern=all. (I=) 

where (.) denotes function composition: (f.g)x=f(g x) 
sum s returns the sum of all elements of s. 
product s returns the product of the elements. 
maximum s is the maximum value of the elements. 
minimum s is the minimum value of the dements: 

> sum = reduce (+ )0  
> product = reduce ( , )  1 
> maximum = reduce1 max 
> minimum = reduce1 min 
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zip combines two lists to create a list of pairs: 

zip [ x l  ,x2 . . . .  ] [ y l  ,y2 . . . .  ] = [ ( x l  ,y l  ), (x2,y2)  . . . .  ] 

z ip3 combines three lists to create a list o f  triples in a similar way: 

> zip = z ipWith f WH E R E f a b = (a,b) 
> zip3 = z ipWi th3 f WHERE f a b c = (a,b,c) 

zipWith is a generalisation of zip in which corresponding elements are combined using any given 
function: 

zipWith f Ix1 ,x2 . . . .  ] [yl ,y2 . . . .  ] = If xl y l ,  f x2 y2 . . . .  ] 

zipWith3 combines three lists in a similar way: 

> zipWith f s t = m a p  g ( 0 . .  ( n - l ) )  
> WHERE 
> g i = f  (s!!i) (t!!i) 
> n = m i n  ( # s )  ( # t )  

> z ipWi th3 f s t  u--- map g ( 0 . .  ( n - l ) )  
> WHERE 
> g i = f  (s!!i) (t!!i) (utli)  
> n = m i n  ( # s )  (min ( # t )  ( # u ) )  

transpose, when applied to a list o f  lists (interpreted as a list o f  rows of  a matr ix),  gives that l ist 
wi th rows and columns interchanged: 

> transpose [ ] = [ ] 
> t ranspose [ [ x ] ]  = [ [ x ] ]  
> t ranspose Is+ +t ]  = transpose s+ + transpose t 
> t ranspose (s+ +t)  = z ipWith (+ +)  ( transpose s) (transpose t) 

3.3. Discussion 

We set out to implement the full set of list-processing functions defined in the Haskell standard 
prelude to see if the new list primitives can cope adequately with a wide range of common 
programming problems. The set of functions included in the previous section is close to the set of 
functions in the Haskell standard prelude, but some functions have been omitted and some others 
added. The reasons for these changes are discussed below. 

The first six functions (head, last, tail, init, (:), append) are the primitives of the traditional 
model of lists and their duals (operating on the other end of the list). The implementation of each 
is straightforward. If  the list argument of each is balanced, then the result will be very nearly 
balanced also. However, repeated application of these functions can easily produce unbalanced 
lists. For example, if s is balanced, then tail(tail(tail(tail(tail s))))  will be badly unbalanced. For 
this reason, the use of these functions should be avoided if at all possible. Often, this will not be 
a problem as many things can be done in other ways which do not use these low-level list functions 
(examples later). 

The function (..) which creates a list of consecutive integers is not in the Haskell standard 
prelude, but is included here because it is used several times in the code for later functions. It has 
the advantage that the code given always creates balanced lists, and the performance of most of 
the functions in this list is best for balanced lists, particularly for parallel implementations, as we 
will see later. 

The function balance is functionally equivalent to the identity function, but the code given 
creates a balanced representation no matter how unbalanced the input. Of course, this function 
does not occur in the Haskell standard prelude as it serves no purpose with the traditional 
representation of lists. 

The next four functions ((!1), map, filter, partition) are all functionally the same as in Haskell. 
Our implementation of each of them uses the divide-and-conquer paradigm, in each case splitting 
the list into two parts and calling the function recursively on each part, then combining the two 
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results (in the case of (l l) alone, only one of the two parts needs to be solved as the other is not 
required). 

The two functions reduce and reduce1 are introduced to replace the Haskell functions foldl, 
foldr, foldll and foldr] which perform the same reduction but in a defined order, rather than in 
an undefined order as do reduce and reduce]. This means that both reduce and redueel are 
non-deterministic (i.e. they may give non-unique results) unless the first argument, f, is associative. 
In effect, this means that there is a proof obligation on the programmer to show that f is associative, 
otherwise the program may give unpredictable results. Although programmers are not used to 
having to cope with such proof obligations, they are generally not too onerous and will become 
much easier and more generally accepted as formal methods and program verification techniques 
become more widely used and better supported by appropriate software tools. 

The payoff is considerable: reduce and reduce1 are much easier to implement efficiently in 
parallel than the fold-family of functions. The important question, however, is: are they as useful? 
It is very difficult to find a sound answer to this question short of acquiring years of experience 
programming with them in a wide variety of applications. The best answer we can give here is to 
look at all the other functions in the Haskell standard prelude that are programmed using the 
fold-family. There are, in fact, 17 such functions. All but 3 of these are easily programmed using 
reduce instead (because, in each case, the reduction function is associative). This suggests that in 
the great majority of cases reduce is a convenient replacement for foldl and foldr. The three 
functions which are not easily programmed using reduce are (\\), sums and products, all of which 
require that the list elements be scanned in order from left to right. These three functions have been 
omitted from the previous section because we have not found any better way of implementing them 
than that given in the Haskell standard prelude, which is serial only. 

The Haskell functions scanl, scanll, scanr and scanrl, which scan lists either from the left or 
from the right, are omitted for the same reason. 

The function reducemap has been introduced as a useful combination of reduce and map, 
although it is not included in Haskell. 

The functions concat, take, drop, splitAt, takeWhile, dropWhile, span, break, lines, words, 
unlines, unwords, nub, reverse, and, or, any, all, elem, notElem, sum, product, maximum, 
minimum, zipWith, zipWith3, zip, zip3 and transpose are all functionally equivalent to the Haskell 
functions of the same name. In all these cases a simple and efficient divide-and-conquer 
implementation is possible. The Haskell functions zip4, zip5, etc. and zipWith4, zipWith5, etc. 
have been omitted purely to save space. All are very similar to the zip functions that have been 
included. 

4. PARALLEL PERFORMANCE 

4.1. Parallel implementation 

The most obvious way of implementing the divide-and-conquer style of programming in parallel 
is to assume a shared memory architecture. In theoretical analysis this usually means the PRAM 
model (Parallel Random Access Machine) as it is commonly called in the literature (e.g. [9]). In 
such a shared memory architecture, after the divide-and-conquer algorithm has divided the 
problem into a number of independent subproblems, these subproblems can run concurrently. 
There is no added overhead for data transmission between processors as all processors can access 
the shared memory to obtain their input data, while the results written into shared memory are 
also available (at no added cost) to the processes which need to use them. The performance analysis 
given in the next section is based on this approach. 

A distributed implementation (on an architecture without shared memory) is less easily achieved. 
Possible approaches are being investigated, but it is too soon to say how successful these will be. 

4.2. Theoretical PRAM performance 

Complexity analysis of the programs given in section 3.2 gives the results shown in the table. 
The analysis is for asymptotic performance for large n, where n is the problem size, generally the 
length of the list which is one of the arguments of the function concerned. In the case of the last 
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function, transpose, the matrix being transposed is assumed to be n × n. The parallel performance 
figures are all for the CRCW (Concurrent Read, Concurrent Write) PRAM model. 

The first column (after the function itself) is the parallel time for balanced lists. The 
second column is the parallel time for the worst case (usually for maximally unbalanced lists). 
The third column gives the number of processors required to achieve maximum parallelism. 
The fourth column gives the serial time for balanced lists, while the fifth column is the 
serial time for maximally unbalanced lists. Finally, the last column is the serial time for the 
conventional head-tail-cons model of lists (as programmed in the Haskell standard prelude, for 
instance). 

It is clear from the table that most of the functions considered fall into one of a small number 
of categories. 

The first category includes the primitives and other very simple functions: (+ + ), split, # ,  head, 
last, tail, init, cons, append. None of these offer any parallelism. Some are faster than the 
equivalents in the traditional model of lists, while others are slower. On average they are faster 
for balanced lists and about the same speed or slower for unbalanced lists. 

The second main category includes the functions map, filter, partition, reduce, reduce1, 
reducemap, concat, takeWhile, dropWhile, span, break, lines, words, unlines, unwords, reverse, 

Table 1. Complexity analysis results 

Concatenation Model 

Parallel Serial Cons 

Function Balanced Worst Procs. Balanced Worst Serial 

s + + t  0(I) O(l) O(I) O(I) 0(I) O(n) 
splits 0(I) 0(I) 0(1) 0(1) 0(I) O(n) 
#s  0(1) O(l) O(l) 0(1) 0(I) O(n) 
head s O(log n) O(n) O(1) O(log n) O(n) 0(I) 
last s O(log n) O(n) O(1) O(log n) O(n) O(n) 
tail s O(log n) O(n) O(1) O(log n) O(n) 0(I) 
init s O(Iog n) O(n) O(I)  O (log n) O(n) O(n) 
cons x s O(I)  O(I)  O(1) O(1) O(I)  O(I)  
append s x O(I)  0(1) 0(I) 0(1) O(l) O(n) 
1 ..n O0og n) O(log n) O(n) O(n) O(n) O(n) 
balance s O(log n) O(n) O(n) O(n log n) O(n 2) __ 
sill O(log n) O(n) 0(I) O(log n) O(n) O(i) 
map f s O(log n) O(n) O(n) O(n) O(n) O(n) 
filter p s O(log n) O(n) O(n) O(n) O(n) O(n) 
partition p s O(log n) O(n) O(n) O(n) O(n) O(n) 
reduce f z s O(log n) O(n) O(n) O(n) O(n) O(n) 
reduce1 f s OOog n) O(n) O(n) O(n) O(n) O(n) 
redueemap f z s O(log n) O(n) O(n) O(n) O(n) O(n) 
concat s O(log n) O(n) O(n) O(n) O(n) O(n) 
take i s O(log n) O(n) O(1 ) O(Iog n) O(n) O(i) 
drop i s O(log n) O(n) O(1) O(log n) O(n) O(i) 
splitAt i s O(log n) O(n) O(I) O(log n) O(n) O(i) 
takeWhile p s O(log n) O(n) O(n) O(n) O(n) O(n) 
dropWhile p S O(log n) O(n) O(n) O(n) O(n) O(n) 
span p s OOog n) O(n) O(n) O(n) O(n) O(n) 
break p s O(log n) O(n) O(n) O(n) O(n) O(n) 
lines s O(log n) O(n) O(n) O(n) O(n) O(n) 
words S O00g n) O(n) O(n) O(n) O(n) O(n) 
unlines s O(log n) O(n) O(n) O(n) O(n) O(n) 
unwords s O(log n) O(n) O(n) O(n) O(n) O(n) 
nubs  O(n log n) O(n 2) O(n) O(n 2) O(n 2) O(n 2) 
reverse s O0og n) O(n) O(n) O(n) O(n) O(n) 
and s O(log n) O(n) O(n) O(n) O(n) O(n) 
or o OOog n) O(n) 0(I) O(n) O(n) O(n) 
any p s O(log n) O(n) O(n) O(n) O(n) O(n) 
all p s O(log n) O(n) O(n) O(n) O(n) O(n) 
elem x s O(log n) O(n) O(n) O(n) O(n) O(n) 
notElem x s O(log n) O(n) O(n) O(n) O(n) O(n) 
sum s O(log n) O(n) O(n) O(n) O(n) O(n) 
product s O0og n) O(n) O(n) O(n) O(n) O(n) 
maximum s O0og n) O(n) O(n) O(n) O(n) O(n) 
minimum s O(log n) O(n) O(n) O(n) O(n) O(n) 
zipWith f s t O(log n) O(n) O(n) O(n log n) O(n 2) O(n) 
zipWith3 f s t u O(log n) O(n) O(n) O(n log n) O(n 2) O(n) 
zip s t O(log n) O(n) O(n) O(n log n) O(n 2) O(n) 
zip3 s t u O(log n) O(n) O(n) O(n log n) O(n 2) O(n) 
transpose s O(log 2 n) O(n log n) O(n 2) O(n log n) O(n 2) O(n 2) 
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and, or, any, all, elem, notElem, sum, product, maximum and minimum. All of these execute in 
O(logn) parallel time for balanced lists and O(n) time for serial execution and for parallel 
execution of worst-case unbalanced lists. Provided the program is written so that the lists are always 
approximately balanced, all of these functions offer excellent speedup. 

A third category is the 'zip' functions: zip, zip3, zipWith, zipWith3. These all have O(logn) 
parallel time for balanced lists, O(n) parallel time for worst-case unbalanced lists and for serial 
execution with the usual head-tail-cons list primitives. For serial execution with the concatenate- 
split list primitives, however, these functions are slower. 

The remaining functions need to be considered separately, hub and transpose are more complex 
than most, but both offer excellent parallel speedup for balanced lists. The function (..) always 
produces a balanced list as its output and hence always gives excellent parallel speedup. The 
function balance has no counterpart in the head-tail-cons model, so the comparison cannot 
be made (although it gives parallel speedup within the context of the concatenate-split model 
of lists). 

Overall, most of these functions offer very substantial parallel speedups provided that the 
list representations are reasonably well balanced. This is very dependent on the algorithm 
design; some functions may cause lists to become unbalanced, while others do not. Much 
more experience of programming with this model of lists is needed before we can say just how easy 
it is to write programs which offer large amounts of parallelism in a wide range of typical 
applications. 

Nevertheless, in many common applications highly parallel programs are easy to construct. In 
a later section, we consider three very different applications: sorting, ray tracing, and finding the 
convex hull of a set of points. All three can be easily programmed in the new model in ways which 
are potentially highly parallel. 

4.3. Parallel simulation 

The model of list processing has been implemented within a functional programming language 
and the performance of a simulated parallel implementation investigated. The parallel simulation 
is for a shared memory architecture that falls within the CRCW PRAM category. The implemen- 
tation method is combinator graph reduction. 

Input to the reducer is the low-level functional language, FLIC [10], which is first of all translated 
to an acyclic graph representing an equivalent lambda-expression. This graph also contains 
primitives (integers, reals and sum-products) and operators (which broadly correspond to the FLIC 
set of operators), together with the Y combinator to indicate recursion. 

The standard abstraction algorithm [ll] is then performed to translate the graph into one 
containing the Turner combinations (S, K, I, B, C, S', B', C') and no lambdas. Acyclic graph 
reduction is then used to evaluate the resulting graph. 

The graph is assumed to reside in shared memory so that all available processors can work on 
reducing different parts of it simultaneously. The performance results are entirely consistent with 
the analysis given earlier. Details of this simulation work are published elsewhere [12]. 

5. THREE APPLICATIONS 

Three different applications are outlined below to illustrate the use of the model in somewhat 
more complex situations than those considered previously. 

5.1. Quicksort 

Hoare's quicksort algorithm can be programmed quite easily in the new model. For simplicity, 
we assume that the input data is in the form of a list of distinct numbers which are required to 
be sorted into increasing numerical order. Also for simplicity, a rather crude method is used to 
estimate the median value. Neither of these simplifications affects the structure of the program for 
our purposes. A much better and more general quicksort program could be written with exactly 
the same overall structure, but it would be longer and offer no new insights into the list-processing 
aspects of the problem. 



List processing primitives for parallel computation 13 

Our simple version of  quicksort is: 

> quicksort [ ] = [ ] 
> quicksort [x] = [x] 
> quicksort s = quicksort sl  + + quicksort s2 
> WHERE 
> (sl ,s2) = reducemap f g r ] s 
> g x = l F x  < =  median THEN ( [ x ] , [  ] )  
> ELSE ([  ] , [ x ] )  FI 
> f ( t l , t2 )  (u l ,u2 )  = ( t l + + u l ,  t2+ +u2)  
> median = (head s + last s ) /2  

The use of  reducemap is safely deterministic because the function f is associative (by the 
associativity of  + +). 

The P R A M  performance of  this program is O(log2n) because there are logn stages to the 
whole program and each requires the execution of  reducemap which is O(logn).  This assumes 
that the list is well balanced initially and that the estimates of  the median are always exactly 
right. While this is unlikely to be precisely the case, for typical data quicksort behaves nearly 
as well as for the ideal case. Worst case situations are extremely unlikely to occur for large 
data sets. As the programmer has full control of  the way in which the input list is generated, 
it should be easy to ensure that it is balanced, and hence optimum parallel performance is 
attained. 

5.2. Ray tracing 

Suppose we have a list of  objects and a list of  rays (representing physical objects and light rays 
in 3-D space). The problem is to compute the first impact of  each ray on an object. 

Each ray is represented as a starting point and a direction. An impact with an object is 
simply represented as a distance, which is the distance the ray travels from its starting point 
before it hits the object. The first impact for a given ray is then the impact represented by the 
minimum distance. We do not go into details of how objects are represented, or how the point 
of  impact of  a ray with an object is computed, but concentrate solely on the overall structure of  
the program. 

One possible solution is as follows, expressed as a program for the function impacts which takes 
two arguments, a list of  rays and a list of  objects, and gives a list of  impacts as its result (this list 
is in the same order as the input list of  rays): 

> impacts rays objects = map firstimpact rays 
> WHERE 
> firstimpact ray = reducemap min impact infinity objects 
> WHERE 
> impact object = 

Distance travelled by ray to hit object  
> rain x y =  IF x <  = y T H E N  x ELSE y FI 

The program uses map to apply the function firstimpact to each separate ray in the list. 
This function takes a single ray as its argument and finds the first impact of  that ray with any 
of  the objects. This is done by first applying impact to each separate object. The function 
impact takes a single object as its argument and finds the impact of  the current ray with that 
object. When the list of  impacts of  one ray with all the objects has been found, that list is 
reduced with rain to find the first impact of  that ray on an object. The value infinity denotes a 
very large value which is used to represent no impact at all (i.e. the distance travelled by the ray 
is infinite). 

An alternative approach is to first find the list of  impacts of  all rays with a single object, and 
do this independently for each of  the objects. These results can then be combined to give the first 
impact of  each ray with an object. This program is: 
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> impacts2 rays objects = reducemap (zipWith rain) impactson z objects 
> WHERE 
> irnpactson object = map impactby rays 
> WHERE 
> impactby ray = 

Distance travelled by ray to hit object 
> min x y =  I F x <  = y T H E N  x ELSE y FI 
> z = map noimpact rays 
> WHERE noimpact ray = inf in i ty 

This program is a little more difficult to understand. The function reducemap firstly applies 
impactson to each object in the list of objects. This gives a list of lists, one for each object. Each 
inner list contains the impacts of all rays with that object. These lists of impacts are then combined 
by finding the first impact for each ray, i.e. the minimum impact distance. The value of z, the 'zero' 
argument of reducemap is the result if the list of objects is empty; in which case no ray hits 
anything, so z is simply a list containing the value infinity repeated as many times as there are rays. 

The first program gives PRAM performance of O(log m) + O(log n) = O(log mn) for balanced 
lists, where m is the number of rays and n is the number of objects. The term O(log m) is for the 
execution of map over rays, while the term O(logn) is for the execution of reducemap over 
objects. For optimum performance, the programmer must ensure that balanced representations 
are generated for both the list of rays and the list of objects. This is easy to do and it is hence quite 
reasonable to assume that the lists are balanced. 

The second program gives poorer performance. There are log n stages to the reducemap function 
in the first line, but each involves the execution of zipWith which is O(log m) (as the lists which 
zipWith operates on contain one element for each ray). So the overall performance is 
O(log m x log n), which is less good than for the first program. 

5.3. Convex hull 

The convex hull of a set of points in a plane is the smallest enclosing convex polygon. For 
example, the set of 11 points shown in the diagram has the convex hull indicated: 

A program for finding the convex hull of a set of points can be written using a divide-and- 
conquer algorithm, using the fact that it is relatively easy to combine two non-overlapping convex 
polygons into a single convex polygon which encloses the original two [13]. (This involves 
much less work than combining two overlapping convex polygons.) We can take advantage 
of this if we divide the original set of points into non-overlapping subsets. An easy way to do 
this is to order the points in order of their X-coordinates (and if two points have equal 
X-coordinates, they are ordered on their Y-coordinates). If this ordered list of points is now divided 
into sublists, each sublist will have a convex hull which does not overlap the convex hull of any 
other sublist. 

For the example given above, the points can be divided into two sets with convex hulls as 
shown: 

! 

1 
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A suitable program to do this is shown below. The data is assumed to be in the form of a list 
of points (called points) which have already been ordered in the required manner. 

> convexhul l  points = reducemap combine g z points 
> WHERE 
> combine hull1 hul l2 = 

Convex hull enclosing hull1 and hull2 
> g point = 

Polygon consisting of that one point 
> Z = 

The empty polygon 

We can easily represent a polygon as an ordered list of points (its vertices) and it is easy to write 
programs for g and z. The function combine which combines two convex hulls is harder, but the 
details do not really matter here, as we have sufficient of the structure of the program to show the 
overall structure and the potential for parallel implementation. 

A more efficient program is likely to result if we combine the sorting and the convex hull 
computation into a single application of divide-and-conquer. This is easy to do, using the quicksort 
algorithm for the sorting: 

> convexhul l  points = polygon 
> WHERE 
> polygon = 
> IF #po in t s  = =  1 THEN points 
> ELSE combine (convexhul l  s l )  (convexhul l  s2) FI 
> WHERE 
> (s l ,s2)  = part i t ion p points 
> p x = (x  < =median)  
> m e d i a n  = 

Estimate the median value of  the elements of points 
> combine hull1 hul l2 = 

Convex hull enclosing hull1 and hull2 

In this single application of the divide and conquer paradigm, the divide phase effectively does the 
sorting, while the final recombination phase does the convex hull computation. 

Assuming that the two recursive applications (i.e. convexhull sl and convexhull s2) are always 
done in parallel, the complete program has O(log n) stages, each of which requires the execution 
of partition over a list which is O(n) in length, taking O(log n) time in parallel (assuming the list 
of points is balanced, which is easy to arrange). Thus, the total time is O(log 2 n) in the PRAM 
model. 

6. RELATED WORK 

It is well known that ordered data (i.e. lists) can be represented by tree structures (e.g. in tree 
sorting), and also that the divide-and-conquer paradigm applies naturally to tree structures, as well 
as being very suitable for parallel implementation. Recently, there has been increasing interest in 
using the divide-and-conquer approach as a basis for the parallel implementation of functional 
languages [7, 14-17]. Yet these pieces have not been brought together before in the way proposed 
in this paper, to suggest an alternative model for lists as basic data structures for parallel (and 
architecture-independent) programming languages. 

George Mou has adopted an alternative approach in his language Divacon [18], in which arrays are 
used as the basic data structures, but with additional primitives to support the divide-and-conquer 
style of programming. In Divacon, the primitive operations on arrays are designed primarily to 
support a distributed representation on the Connection Machine, and the representation does not 
make use of binary trees. 

CL 19/I--B 
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7. CONCLUSIONS 

The proposed new model of list processing overcomes one of  the major obstacles to achieving 
good parallel implementations of functional programming languages. It supports a style of pro- 
gramming in which most common list operations can be implemented using divide-and-conquer 
algorithms which are easily and efficiently parallelised, unlike the conventional style of  list 
processing in which list operations are usually defined to step through the list in strictly sequential 
order. 

For example, the conventional approach to summing a list of numbers is illustrated by the 
program: 

> sum [ ]  = 0 
> sum (x:s) = x + sum s 

while the equivalent program in our new model is: 

> sum [ ] =  0 
> sum [x]  = x 
> sum ( s + + t ) = s u m  x + s u m t  

The latter program takes advantage of the associativity of the addition operator, so that the precise 
order in which the additions are performed does not matter. 

At an even higher level, if the function reduce is regarded as a basic primitive, sum can be 
programmed in a yet more general form: 

> s u m = r e d u c e  (+ )  Os 

which presupposes no part icular model o f  lists whatsoever and gives even more freedom to the 
implementor to optimise to suit the architecture on which the program wil l  be run. 

A l though all three programs above can be wri t ten in most common functional languages (and 
other languages which support general data structures) by simply defining the required data 
structures from first principles, this will not give acceptable levels of efficiency. Typically, operations 
on user defined data structures are an order of magnitude slower than the equivalent operations 
on built-in data structures. This is a very powerful incentive to the programmer to use the built-in 
data structures whenever possible. Most programmers would never even comtemplate replacing the 
built-in model of lists in languages such as Lisp, ML, Miranda or Haskell with their own 
user-defined model of lists. 

With parallel implementation, this difference in efficiency is likely to be even greater, so it is 
important that the basic model of lists and/or other data structures used in the language is capable 
of efficient implementation on all the architectures for which the language will be used. 

A new generation of much more architecture-independent programming languages is needed in 
which more suitable models are provided for basic data structures, such as the concatenation model 
of lists proposed here. This may be either instead of, or in addition to, the traditional head- ta i l -cons  

model of lists. Furthermore, languages should be designed to encourage programmers to use even 
higher-level primitives, such as reduce, which do not specify any particular model and so are even 
more implementation (and hence architecture) independent. 
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