
Comput. Lang. Vol. 19, No. 1, pp. 1-17, 1993 0096-0551/93 $6.00+0.00
Printed in Great Britain. All rights reserved Copyright © 1993 Pergamon Press Ltd

L I S T P R O C E S S I N G P R I M I T I V E S F O R P A R A L L E L

C O M P U T A T I O N

TOM AXFORD I* a n d MIKE JoY 2

~School of Computer Science, University of Birmingham, Birmingham Bl5 2TT, U.K. and 2Department
of Computer Science, University of Warwick, Coventry CV4 7AL, U.K.

(Received 30 March 1992; revision received 22 June 1992)

Abstraet--A new model of list processing is proposed which is more suitable as a basic data structure
for architecture-independent programming languages than the traditional model of lists. Its main primitive
functions are: concatenate, which concatenates two lists; split, which partitions a list into two parts; and
length, which gives the number of elements in a list. This model contains a degree of non-determinism
which allows greater freedom to the implementation to achieve high performance on both parallel and
serial architectures.

data structures functional programming list processing parallel programming

1. INTRODUCTION

Lists have been used as basic data structures within programming languages since the 1950s. The
most elegant and successful formulation was in Lisp [1] with its primitive functions car, cdr and
cons, often now referred to by the more meaningful names of head, tail and cons respectively. Lisp
and its model of list processing based on the head, tail and cons primitives have given rise to a large
number of programming languages over the three and a half decades since Lisp was invented; for
example, following closely to the pure Lisp tradition are ML [2], Miranda [3] and Haskell [4].

The success of the Lisp model of list processing is due to a combination of its semantic elegance
on the one hand and its simplicity and efficiency of implementation on the other.t In the context
of functional languages particularly, it has given rise to a style of programming which is clear,
concise and powerful. This style is well documented in many publications, for example [5].

Despite the often proclaimed advantages of functional languages for parallel programming [6],
there has been very little progress in constructing really worthwhile parallel implementations of
them. A large part of the problem lies in the difficulty of obtaining efficient parallel representation
of the traditional head-tail-cons model of list processing. Many recent functional languages such
as Miranda and Haskell, as well as older functional languages such as List, have this model built
intimately into the language. Although most modern languages are quite powerful enough to allow
the programmer to define any type of data structure by defining a suitable set of primitive functions,
the built-in primitives for head, tail and cons typically execute approximately an order of magnitude
faster than user-defined equivalents. For this reason, almost all programs in these languages use
the traditional list-processing model as a matter of course. Hence, if this model cannot be
implemented efficiently in parallel, most programs are unlikely to be any better.

There are, however, many high-level list operations for which it is easy to envisage a very efficient
parallel implementation, particularly those which operate on the whole list, such as map and reduce
(sometimes called fold). Therefore, the problem is not inherent in the semantics of list processing
or the concept of a list itself, but rather in the choice of a set of primitive functions, and the (usually
implicit) assumption that the implementation executes these in constant time (i.e. independently
of the lengths of the list involved).

*To whom correspondence should be addressed.
t i n the early development of Lisp, efficiency of implementation was a major concern, while the desire for an elegant and

coherent semantic model of list processing was much less pressing. Nevertheless, the reason that Lisp was more successful
than its list-processing competitors almost certainly had a lot to do with McCarthy's perceptive choice of the basic
routines that operated on lists [19].

I

2 TOM AXFORD and MIK~ JoY

In this paper, we propose a new model of list processing based on a different set of primitive
functions, chosen to be efficiently implementable on parallel archite,:tures, but preserving the usual
semantics of lists. Programs that use pattern matching on lists or explicitly refer to head, tail and
cons will need major rewriting to use the new model, which is best suited to a new style of
programming based on the divide-and-conquer paradigm, rather than the usual recursive/iterative
style of conventional list processing. On the other hand, programs that do not use the primitives
directly, but instead use purely high-level library functions may not require any changes at all!

To achieve satisfactory parallel performance requires that the primitives of the new model be
built into the language and implemented directly by the compiler or interpreter. The order of
magnitude penalty typically suffered by user-defined primitives means that one has to achieve ideal
speedup on approx 10 parallel processors simply to equal the performance of the traditional model
on a serial machiue. This will usually be an unacceptable price to pay. At the very least, all the
primitive functions should be built in, and, preferably, tlie more commonly used higher level
functions as well.

2. THE MODEL

The idea behind our model is a very old one: that of representing a list as a binary tree (e.g.
as in some sorting algorithms). There are, however, many different binary trees that can represent
the same list. We abstract a set of primitive functions which are suitable for use with binary tree
representations, but which define list structures and no more. Although these primitives are well
suited for use with binary tree representations of lists, they do not permit the programmer to see
the full internal structure of the trees, hence they do require any particular tree representation, or
even a tree representation at all. This element of non-determinism in the model is important, and
is discussed more fully later.

2.1. Informal description

The following six functions are chosen as the primitive functions of the model (the first is actually
a constant, or a function which takes no arguments).

(i) [] is the empty list.
(ii) singleton x (or, alternatively, [x]) is the list which contains a single element, x.

(iii) concatenate s t (or, alternatively, s+ +t) is the list formed by concatenating the lists s and t.
(iv) split s is a pair of lists got by partitioning the list s into two parts. It is defined only if s

contains at least two elements. Both lists are non-empty. If s contains more than two
elements, the result of applying split is non-deterministic, i.e. there is more than one
acceptable solution and an implementation is free to choose which of these to give as the
result.

(v) length s (or, alternatively, # s) is the number of elements in the list s.
(vi) element s is the only element present in the singleton list s. This function is undefined for

lists which contain either more or less than one element.

The primitive split is non-deterministic. This is to allow the implementation to choose the
quickest way to implement it that the circumstances permit. This freedom is essential to obtaining
good parallel performance, as will be seen later. The reasons for choosing a non-deterministic
primitive are discussed later in section 2.3.

The result of applying split is a pair of lists (not to be confused with a list of two lists). It is
assumed that the language used in examples later in this paper allows the definition of pairs of
objects in a single statement, for example:

(s,t) = split u

Alternatively, if a pair of objects cannot be defined in a single statement in this way, a semantically
equivalent approach is to define two primitive functions, split1 and split2:

split u = (split1 u, split2 u),

List processing primitives for parallel computation 3

SO that the definition of s and t can be carried out separately:

s = s p l i t 1 ' u

t = s p l i t 2 u

2 2 Algebraic specification
The algebraic properties of the primitive functions that can be used to specify the semantics of

the model are as follows:

1. # [] = 0
2. # [x] = I
3. # (s + + t) = # s + # t
4. element [x] = x
5. s + + [] = [] + + s = s
6. s + + (t + + u) = (s + + t) + + u
7. sp l i t ([x]++[y])= ([x] , [y])
8. # u > = 2, split u = (s,t) implies

s++t=u, # s > = l , # t > = l

2.3. Non-determinism

The primitive function split is non-deterministic as defined above. It is easy to modify the
specification to make it deterministic, but there are considerable advantages in keeping it the way
it is. Consider two obvious ways in which the non-determinism could be removed.

Firstly, we could replace the second line of Axiom 8 by:

s++t=u , # s = # u D I V 2 , # t = (# u + l) D I V 2

This would mean that split always divides the list in half (or as close to that as feasible). The
disadvantage with this is that it constrains the implementation unnecessarily. It is very hard to find
any representation of lists that makes this easy to do without introducing other inefficiencies
elsewhere.

Secondly, we could replace Axioms 7 and 8 by the single axiom:

split (s+ +t) = (s,t)

provided s and t are each non-empty lists. However, while this certainly removes the non-determin-
ism, it changes the specification from one for lists into one for trees: the internal structure is
now visible to the programmer, not just the order of the elements. Axiom 6 (associativity of
concatenation) would have to be removed as it is contradicts the new axiom. This is certainly
not what we want. Two lists must always be equal if they contain the same collection of
elements in the same order. The way in which the list was originally constructed should not be
significant.

Of course, it could be argued: why not provide trees instead of lists as the basic data structures,
after all they are more general and include lists as simply a special case? The answer to this question
is more subtle, but equally definite. No commonly-used language has done this, although the
argument in favour of trees has always been relevant and has nothing to do with parallelism. The
argument against trees is simply that most problems do not need the extra internal structure that
can be represented by a tree. Lists are fully adequate in the vast majority of situations. Carrying
around the excess baggage of the extra complexity of trees when it is generally unnecessary is highly
undesirable. The most successful languages have usually been the simplest ones, not the most
complicated ones.

To maintain this simplicity, while at the same time giving sufficient freedom to the implementor
to vary the implementation to fit the computer architecture available, it is worth introducing
non-determinism, provided that it can be kept strictly under control. With a little extra care on
the part of the programmer it is not difficult to write fully deterministic programs using some
operators or functions which are non-deterministic. Some of the higher-level functions introduced
later illustrate this well (e.g. reduce).

4 TOM AXl~RD and MIKE JOY

As a general principle, it seems very likely that some carefully selected non-deterministic
operators will need to be introduced into most architecture-independent programming languages.
For example, if it is required to compute

at + a2 + " " + a,

then it does not matter in which order the additions are carried out, the sum will always be the
same because addition is associative and commutative. However, a program which specifies that
the numbers are added sequentially, one at a time from the left (as is typical in most present-day
programming languages) constrains the implementor quite unnecessarily (and highly inefficiently
on most parallel machines). The best way to write a summation program that can be run at
optimum efficiency on all different types of machine architecture is to use a language in which the
order in which the additions are to be performed is undefined. The non-determinism becomes a
problem only if such an order-undefined program is written using a non-associative operator
instead of addition.

Hence the use of non-deterministic primitives does impose an obligation on the programmer to
verify that the operators used have the required properties, such as associativity.

2.4. Represen ta t ion in the compu ter

There are many different ways to represent lists. The representation described below is not
claimed to be the only suitable representation, nor the best representation. It is, however, simple,
well known, and suitable for high-performance parallel implementation on a shared memory
architecture, as well as allowing constant-time execution of all the new primitives. Discussion of
parallel execution is left until a later section, and for the moment we simply describe the
representation.

A list is represented as a binary tree. Each node in the tree is either a branch node or a leaf node.
Each leaf node contains an element of the list. Each branch node contains two pointers, the left
one points to the first part of the list, while the right points to the second part of the list. Ideally
these two parts of the list should approximately equal in length (i.e. the tree should be balanced),
but that is not a requirement for correctness of the representation. It affects only the performance.
Each branch node also contains the number of items in its sub-tree (i.e. the length of the list which
that sub-tree represents). Again, this is solely to improve performance (so that the length primitive
can be computed in constant time).

The representations of the empty list ([]), a singleton list ([a]), and a list of two elements ([a,b])
are:

10.. ll.t L ÷ N
N N

The • denotes a nil pointer and occurs only in lists containing no elements, or just a single element.
Two alternative representations of the list [a,b,c] are:

+-N N ®

N
The more elements the list contains, the more different tree structures are possible. All are equally
valid and will give exactly the same results, although the performance of a program may depend
upon how well-balanced the tree is.

List processing primitives for parallel computation 5

With the above representation, it is easy to program implementations of all six primitive
functions that will execute in constant time, irrespective of the lengths of the lists involved. None
of these primitives offers any scope for parallelism, however. That comes with the implementation
of higher-level list-processing functions.

3. HIGH-LEVEL LIST-PROCESSING FUNCTIONS

Most common high-level list-processing functions such as map and reduce can be easily
programmed in terms of the new primitives, using a divide-and-conquer strategy. The structure of
divide-and-conquer programs makes them particularly well suited to parallel implementations on
a very wide variety of parallel architectures [7, 8].

Most of the functions defined in section 3.2 are identical in specification to functions in the
Haskell standard prelude [4]. The Haskell standard prelude has been chosen as a starting point
because it includes a wide variety of useful list-processing functions that are in common use in
HaskeU and many other functional languages (the standard functions of Miranda, for instance, are
very similar). Nearly all of the list-processing functions in the Haskell standard prelude have been
included. A few have been omitted and a few have been replaced by similar (but not identical)
functions for reasons discussed later.

3.1. The language used

All program fragments are expressed in a simple functional language pseudocode which
is essentially a very small subset of Miranda and Haskell, but with a few minor syntactic
changes. The usual arithmetic operators are used, the relational operators that test for
equality and inequality are denoted by =-- and l= (as in C) and a number of other relational
and logical operators are borrowed from C also. Conditional expressions are denoted by
IF . .THEN. . ELSE.. FI. Each program line begins with the symbol > and all other lines are
regarded as comments.

As the code for each of the functions is quite brief and easy to understand, the code itself serves
as both a formal specification of the function and its implementation. No attempt is made to include
separate formal specifications of the functions. The comments preceding the code give a brief
informal description description of each function, and most of these functions are familiar to
programmers of functional languages anyway.

Pattern matching is often used in modern functional programming languages to make programs
more readable. It is easy to incorporate the new list primitives into the patterns that can be used.
For example, instead of writing the definition of the function head as"

> head s =
> IF # s = = O T H E N /
> ELSlF # s = = l THEN elements
> ELSE head sl FI
> WH ERE (s l , s2) = spl i t s

The same program can be written using pattern matching as:

> head [] = /
> head [x] = x
> head (s+ +t) = head s

These two programs would be executed in almost exactly the same way, but the latter
form is shorter and clearer. Pattern matching is used throughout this paper for those reasons.
Undefined parts of functions will be omitted completely instead of making them explicit with the
symbol i .

3.2. Code for the functions
head and tail extract the first element and the remaining sub-list, respectively, from a non-

empty list. last and init are the dual functions, extracting the last element and the preceding
sub-list.

6 TOM AXFORD and MIKE .IoYf

> head [x] = x
> head (s+ +t) = head s

> last [x] = x
> last (s+ +t) = last t

> tail [x] = []
> tail (s++ t) = ta i l s ++ t

> i n i t [x] = []
> init (s++ t) =s ++ in i t t

(:) adds a new element to the beginning of a list.
append adds a new element to the end of a list:

> x : s = r x] + + s
> append s x = s + + Ix]

(..) creates a list made up of a sequence of consecutive integers:

> i . . i = [i l
> i . . j = l F i < j T H E N (i . . m i d) + + ((m i d + l) . . j) F I
> WHERE mid= (i + j) D IV2

(DIV is integer division)

sill is the i-th element of the list s (counting from 0):

> Ix] !! O = x
> (s++ t) l! i = IF i < # s T H E N s l l i
> ELSEt l! (i - #s) FI

balance is the identity function on lists, but has the useful effect of creating a balanced
representation:

> balance s= map f (0 . . (# s - l)) W H E R E f i = s l l i

map f s applies f to each element of s independently:

> m a p f [] = []
> map f [x] = [f x]
> m a p f (s++t) = m a p f s ++ map f t

filter p s is the list of all those elements of s which satisfy the predicate p:

> filter p [] = []
> filter p [x] = I F p x T H E N [x] ELSE [] FI
> filter p (s+ +t) = filter p s + + filter p t

partition p s is the pair of lists such that the first is all elements of s satisfying p, while the second
is all elements of s which do not satisfy p:

> partition p s = (filter p s, filter (not.p) s)

reduce f z s reduces the list s, using the binary operator f, and the starting value z; while reduce1
is a variant with no starting value, that must be applied to non-empty lists. The function f must
be associative for reduce f and reduce1 f to give deterministic results, reduce and reduce1 replace
the Haskell functions foldl, foldll , foldr and foldrl .

> reduce f z [] =z
> reduce f z [x] = x
> reduce f z (s+ +t) = f (reduce f z s) (reduce f z t)

> reduce1 f I'x] = x
> reduce1 f (s++ t) = f (reduce1 fs) (reduce1 f t)

List processing primitives for parallel computation 7

reducemap is simply the functional composition of reduce and map:

> reducemap f g z s = reduce f z (map g s)

concat , when applied to a list of lists, gives a single list which is the concatenation of all the element
lists:

> concat = reduce (+ +) []

take i s returns the first i elements of s (or the whole of s if i is greater than # s), where i ~> 0:

> take Os = []
> take i [] = []
> take i [x] = [x]
> t a k e i (s + + t) = l F i < = # s T H E N t a k e i s
> ELSEs ++ take (i - # s) t FI

drop i s returns all but the first i elements of s, where i >t 0:

> drop 0 s = s
> drop i [] = []
> drop i [x] = []
> d r o p i (s + + t) = l F i < = # s T H E N d r o p i s + + t
> ELSE drop (i - #s) t FI

spl i tAt i s does both jobs at once:

> splitAt i s = (take is, drop i s)

takeWhile p s returns the longest prefix of s containing elements satisfying the predicate p:

> takeWhile = first, span WHERE first (x,y) = x

dropWhile p s returns the remainder of s:

> dropWhile = s e c o n d , span WHERE second (x,y) = y

span p s is equivalent to (takeWhile p s, dropWhile p s):

> span p [] = ([] , [])
> span p rx] = IF p x T H E N ([x] , []) ELSE ([] , [x]) FI
> span p (s++ t) = IF # s 2 = = 0THEN (s l + + t l , t 2) ELSE (s l , s 2 + + t) FI
> WHERE
> (sl ,s2) = span p s
> (t l ,t2) = span p t

break p s is similar but uses the negation of p:

> break p=span (not . p)

lines s breaks the string s at each newline character (which is removed) and returns a list of separate
lines. A string consisting of a single newline character gives a list of two empty lines. Any string
that terminates with a newline character will give a list of lines in which the last line is empty. A
string containing no newline characters will give a list of lines containing only one line (which is
the original string exactly). The third line of the code below is rather subtle, and best understood
by considering the situation in which the last character o f s is not a newline, nor is the first character
of t. In that case, the last line of s and the first line of t are just two parts of the same line of s+ +t,
hence the need for the term [last ss + + head tt] which concatenates the last line of s and the first
line of t into a single line. Notice that the other occurrences of the operator + + in the definition
of l ines(s+ +t) concatenate lists of lines.

8 TOM AXFORD and Mir~ JoY

> l ines [] = [[]1
> lines [x l = l F x = = newl ineTHEN [[1,[]1 ELSE [[x]] FI
> l ines (s + + t) = in i t ss + + [(last ss) + + (head t t)] ++ tail tt
> WHERE
> ss = l ines s
> tt = l ines t

word s acts similarly, but splits the string at every occurrence of white space (which is removed),
returning a list of words.

> words [] = [[]]
> words [x] = l F i s S p a c e x T H E N [[1,[]] ELSE [[x]] FI
> words (s+ +t) = init ss + + join (last ss) (head tt) + + tail tt
> WHERE
> join p q = l F # p = = 0 & & # q = = O T H E N [] ELSE [p + + q] FI
> ss = words s
> tt -- words t

unlines and unwords perform the inverse operations:

> unlines s = concat (map f s) WH ERE f p = p + + [newline]
> unwords s = concat (map f s) WHERE f p = p + + [space1

n u b s returns the list consisting of the elements of s with all repeated occurrences of the same
element removed:

> n u b [] = []
> nub s = (head s) : nub (filter ((1=) (head s)) (tail s))

reverse s returns the list got by reversing the order of the elements in s:

> reverse = reduce (flip (+ +)) []
> W H E R E f l i p f x y = f y x

and s returns the result of logically ANDing together all the elements of s. or s performs the similar
logical OR operation:

> and = reduce (&&) True
> o r= reduce (11) False

(& & denotes the logical A N D operator, while II denotes logical OR)
any p s is true if and only if at least one element of s satisfies the predicate p:

> any p = reducemap (11) P False
> all p = reducemap (&&) p True

elem x s is true if and only if x is an element of s.
notElem x s is truc if and only if x is not an element of s:

> elem = any. (= =)
> notElern=all. (I=)

where (.) denotes function composition: (f.g)x=f(g x)
sum s returns the sum of all elements of s.
product s returns the product of the elements.
maximum s is the maximum value of the elements.
minimum s is the minimum value of the dements:

> sum = reduce (+)0
> product = reduce (,) 1
> maximum = reduce1 max
> minimum = reduce1 min

List processing primitives for parallel computation 9

zip combines two lists to create a list of pairs:

zip [x l ,x2] [y l ,y2] = [(x l ,y l), (x2,y2) ]

z ip3 combines three lists to create a list o f triples in a similar way:

> zip = z ipWith f WH E R E f a b = (a,b)
> zip3 = z ipWi th3 f WHERE f a b c = (a,b,c)

zipWith is a generalisation of zip in which corresponding elements are combined using any given
function:

zipWith f Ix1 ,x2] [yl ,y2] = If xl y l , f x2 y2]

zipWith3 combines three lists in a similar way:

> zipWith f s t = m a p g (0 . . (n - l))
> WHERE
> g i = f (s!!i) (t!!i)
> n = m i n (# s) (# t)

> z ipWi th3 f s t u--- map g (0 . . (n - l))
> WHERE
> g i = f (s!!i) (t!!i) (utli)
> n = m i n (# s) (min (# t) (# u))

transpose, when applied to a list o f lists (interpreted as a list o f rows of a matr ix), gives that l ist
wi th rows and columns interchanged:

> transpose [] = []
> t ranspose [[x]] = [[x]]
> t ranspose Is+ +t] = transpose s+ + transpose t
> t ranspose (s+ +t) = z ipWith (+ +) (transpose s) (transpose t)

3.3. Discussion

We set out to implement the full set of list-processing functions defined in the Haskell standard
prelude to see if the new list primitives can cope adequately with a wide range of common
programming problems. The set of functions included in the previous section is close to the set of
functions in the Haskell standard prelude, but some functions have been omitted and some others
added. The reasons for these changes are discussed below.

The first six functions (head, last, tail, init, (:), append) are the primitives of the traditional
model of lists and their duals (operating on the other end of the list). The implementation of each
is straightforward. If the list argument of each is balanced, then the result will be very nearly
balanced also. However, repeated application of these functions can easily produce unbalanced
lists. For example, if s is balanced, then tail(tail(tail(tail(tail s)))) will be badly unbalanced. For
this reason, the use of these functions should be avoided if at all possible. Often, this will not be
a problem as many things can be done in other ways which do not use these low-level list functions
(examples later).

The function (..) which creates a list of consecutive integers is not in the Haskell standard
prelude, but is included here because it is used several times in the code for later functions. It has
the advantage that the code given always creates balanced lists, and the performance of most of
the functions in this list is best for balanced lists, particularly for parallel implementations, as we
will see later.

The function balance is functionally equivalent to the identity function, but the code given
creates a balanced representation no matter how unbalanced the input. Of course, this function
does not occur in the Haskell standard prelude as it serves no purpose with the traditional
representation of lists.

The next four functions ((!1), map, filter, partition) are all functionally the same as in Haskell.
Our implementation of each of them uses the divide-and-conquer paradigm, in each case splitting
the list into two parts and calling the function recursively on each part, then combining the two

10 TOM AXFORD and MIKE JoY

results (in the case of (l l) alone, only one of the two parts needs to be solved as the other is not
required).

The two functions reduce and reduce1 are introduced to replace the Haskell functions foldl,
foldr, foldll and foldr] which perform the same reduction but in a defined order, rather than in
an undefined order as do reduce and reduce]. This means that both reduce and redueel are
non-deterministic (i.e. they may give non-unique results) unless the first argument, f, is associative.
In effect, this means that there is a proof obligation on the programmer to show that f is associative,
otherwise the program may give unpredictable results. Although programmers are not used to
having to cope with such proof obligations, they are generally not too onerous and will become
much easier and more generally accepted as formal methods and program verification techniques
become more widely used and better supported by appropriate software tools.

The payoff is considerable: reduce and reduce1 are much easier to implement efficiently in
parallel than the fold-family of functions. The important question, however, is: are they as useful?
It is very difficult to find a sound answer to this question short of acquiring years of experience
programming with them in a wide variety of applications. The best answer we can give here is to
look at all the other functions in the Haskell standard prelude that are programmed using the
fold-family. There are, in fact, 17 such functions. All but 3 of these are easily programmed using
reduce instead (because, in each case, the reduction function is associative). This suggests that in
the great majority of cases reduce is a convenient replacement for foldl and foldr. The three
functions which are not easily programmed using reduce are (\\), sums and products, all of which
require that the list elements be scanned in order from left to right. These three functions have been
omitted from the previous section because we have not found any better way of implementing them
than that given in the Haskell standard prelude, which is serial only.

The Haskell functions scanl, scanll, scanr and scanrl, which scan lists either from the left or
from the right, are omitted for the same reason.

The function reducemap has been introduced as a useful combination of reduce and map,
although it is not included in Haskell.

The functions concat, take, drop, splitAt, takeWhile, dropWhile, span, break, lines, words,
unlines, unwords, nub, reverse, and, or, any, all, elem, notElem, sum, product, maximum,
minimum, zipWith, zipWith3, zip, zip3 and transpose are all functionally equivalent to the Haskell
functions of the same name. In all these cases a simple and efficient divide-and-conquer
implementation is possible. The Haskell functions zip4, zip5, etc. and zipWith4, zipWith5, etc.
have been omitted purely to save space. All are very similar to the zip functions that have been
included.

4. PARALLEL PERFORMANCE

4.1. Parallel implementation

The most obvious way of implementing the divide-and-conquer style of programming in parallel
is to assume a shared memory architecture. In theoretical analysis this usually means the PRAM
model (Parallel Random Access Machine) as it is commonly called in the literature (e.g. [9]). In
such a shared memory architecture, after the divide-and-conquer algorithm has divided the
problem into a number of independent subproblems, these subproblems can run concurrently.
There is no added overhead for data transmission between processors as all processors can access
the shared memory to obtain their input data, while the results written into shared memory are
also available (at no added cost) to the processes which need to use them. The performance analysis
given in the next section is based on this approach.

A distributed implementation (on an architecture without shared memory) is less easily achieved.
Possible approaches are being investigated, but it is too soon to say how successful these will be.

4.2. Theoretical PRAM performance

Complexity analysis of the programs given in section 3.2 gives the results shown in the table.
The analysis is for asymptotic performance for large n, where n is the problem size, generally the
length of the list which is one of the arguments of the function concerned. In the case of the last

List processing primitives for parallel computat ion 11

function, transpose, the matrix being transposed is assumed to be n × n. The parallel performance
figures are all for the CRCW (Concurrent Read, Concurrent Write) PRAM model.

The first column (after the function itself) is the parallel time for balanced lists. The
second column is the parallel time for the worst case (usually for maximally unbalanced lists).
The third column gives the number of processors required to achieve maximum parallelism.
The fourth column gives the serial time for balanced lists, while the fifth column is the
serial time for maximally unbalanced lists. Finally, the last column is the serial time for the
conventional head-tail-cons model of lists (as programmed in the Haskell standard prelude, for
instance).

It is clear from the table that most of the functions considered fall into one of a small number
of categories.

The first category includes the primitives and other very simple functions: (+ +), split, # , head,
last, tail, init, cons, append. None of these offer any parallelism. Some are faster than the
equivalents in the traditional model of lists, while others are slower. On average they are faster
for balanced lists and about the same speed or slower for unbalanced lists.

The second main category includes the functions map, filter, partition, reduce, reduce1,
reducemap, concat, takeWhile, dropWhile, span, break, lines, words, unlines, unwords, reverse,

Table 1. Complexity analysis results

Concatenation Model

Parallel Serial Cons

Function Balanced Worst Procs. Balanced Worst Serial

s + + t 0(I) O(l) O(I) O(I) 0(I) O(n)
splits 0(I) 0(I) 0(1) 0(1) 0(I) O(n)
#s 0(1) O(l) O(l) 0(1) 0(I) O(n)
head s O(log n) O(n) O(1) O(log n) O(n) 0(I)
last s O(log n) O(n) O(1) O(log n) O(n) O(n)
tail s O(log n) O(n) O(1) O(log n) O(n) 0(I)
init s O(Iog n) O(n) O(I) O (log n) O(n) O(n)
cons x s O(I) O(I) O(1) O(1) O(I) O(I)
append s x O(I) 0(1) 0(I) 0(1) O(l) O(n)
1 ..n O0og n) O(log n) O(n) O(n) O(n) O(n)
balance s O(log n) O(n) O(n) O(n log n) O(n 2) __
sill O(log n) O(n) 0(I) O(log n) O(n) O(i)
map f s O(log n) O(n) O(n) O(n) O(n) O(n)
filter p s O(log n) O(n) O(n) O(n) O(n) O(n)
partition p s O(log n) O(n) O(n) O(n) O(n) O(n)
reduce f z s O(log n) O(n) O(n) O(n) O(n) O(n)
reduce1 f s OOog n) O(n) O(n) O(n) O(n) O(n)
redueemap f z s O(log n) O(n) O(n) O(n) O(n) O(n)
concat s O(log n) O(n) O(n) O(n) O(n) O(n)
take i s O(log n) O(n) O(1) O(Iog n) O(n) O(i)
drop i s O(log n) O(n) O(1) O(log n) O(n) O(i)
splitAt i s O(log n) O(n) O(I) O(log n) O(n) O(i)
takeWhile p s O(log n) O(n) O(n) O(n) O(n) O(n)
dropWhile p S O(log n) O(n) O(n) O(n) O(n) O(n)
span p s OOog n) O(n) O(n) O(n) O(n) O(n)
break p s O(log n) O(n) O(n) O(n) O(n) O(n)
lines s O(log n) O(n) O(n) O(n) O(n) O(n)
words S O00g n) O(n) O(n) O(n) O(n) O(n)
unlines s O(log n) O(n) O(n) O(n) O(n) O(n)
unwords s O(log n) O(n) O(n) O(n) O(n) O(n)
nubs O(n log n) O(n 2) O(n) O(n 2) O(n 2) O(n 2)
reverse s O0og n) O(n) O(n) O(n) O(n) O(n)
and s O(log n) O(n) O(n) O(n) O(n) O(n)
or o OOog n) O(n) 0(I) O(n) O(n) O(n)
any p s O(log n) O(n) O(n) O(n) O(n) O(n)
all p s O(log n) O(n) O(n) O(n) O(n) O(n)
elem x s O(log n) O(n) O(n) O(n) O(n) O(n)
notElem x s O(log n) O(n) O(n) O(n) O(n) O(n)
sum s O(log n) O(n) O(n) O(n) O(n) O(n)
product s O0og n) O(n) O(n) O(n) O(n) O(n)
maximum s O0og n) O(n) O(n) O(n) O(n) O(n)
minimum s O(log n) O(n) O(n) O(n) O(n) O(n)
zipWith f s t O(log n) O(n) O(n) O(n log n) O(n 2) O(n)
zipWith3 f s t u O(log n) O(n) O(n) O(n log n) O(n 2) O(n)
zip s t O(log n) O(n) O(n) O(n log n) O(n 2) O(n)
zip3 s t u O(log n) O(n) O(n) O(n log n) O(n 2) O(n)
transpose s O(log 2 n) O(n log n) O(n 2) O(n log n) O(n 2) O(n 2)

12 TOM AXFORD and MIKE JOY

and, or, any, all, elem, notElem, sum, product, maximum and minimum. All of these execute in
O(logn) parallel time for balanced lists and O(n) time for serial execution and for parallel
execution of worst-case unbalanced lists. Provided the program is written so that the lists are always
approximately balanced, all of these functions offer excellent speedup.

A third category is the 'zip' functions: zip, zip3, zipWith, zipWith3. These all have O(logn)
parallel time for balanced lists, O(n) parallel time for worst-case unbalanced lists and for serial
execution with the usual head-tail-cons list primitives. For serial execution with the concatenate-
split list primitives, however, these functions are slower.

The remaining functions need to be considered separately, hub and transpose are more complex
than most, but both offer excellent parallel speedup for balanced lists. The function (..) always
produces a balanced list as its output and hence always gives excellent parallel speedup. The
function balance has no counterpart in the head-tail-cons model, so the comparison cannot
be made (although it gives parallel speedup within the context of the concatenate-split model
of lists).

Overall, most of these functions offer very substantial parallel speedups provided that the
list representations are reasonably well balanced. This is very dependent on the algorithm
design; some functions may cause lists to become unbalanced, while others do not. Much
more experience of programming with this model of lists is needed before we can say just how easy
it is to write programs which offer large amounts of parallelism in a wide range of typical
applications.

Nevertheless, in many common applications highly parallel programs are easy to construct. In
a later section, we consider three very different applications: sorting, ray tracing, and finding the
convex hull of a set of points. All three can be easily programmed in the new model in ways which
are potentially highly parallel.

4.3. Parallel simulation

The model of list processing has been implemented within a functional programming language
and the performance of a simulated parallel implementation investigated. The parallel simulation
is for a shared memory architecture that falls within the CRCW PRAM category. The implemen-
tation method is combinator graph reduction.

Input to the reducer is the low-level functional language, FLIC [10], which is first of all translated
to an acyclic graph representing an equivalent lambda-expression. This graph also contains
primitives (integers, reals and sum-products) and operators (which broadly correspond to the FLIC
set of operators), together with the Y combinator to indicate recursion.

The standard abstraction algorithm [ll] is then performed to translate the graph into one
containing the Turner combinations (S, K, I, B, C, S', B', C') and no lambdas. Acyclic graph
reduction is then used to evaluate the resulting graph.

The graph is assumed to reside in shared memory so that all available processors can work on
reducing different parts of it simultaneously. The performance results are entirely consistent with
the analysis given earlier. Details of this simulation work are published elsewhere [12].

5. THREE APPLICATIONS

Three different applications are outlined below to illustrate the use of the model in somewhat
more complex situations than those considered previously.

5.1. Quicksort

Hoare's quicksort algorithm can be programmed quite easily in the new model. For simplicity,
we assume that the input data is in the form of a list of distinct numbers which are required to
be sorted into increasing numerical order. Also for simplicity, a rather crude method is used to
estimate the median value. Neither of these simplifications affects the structure of the program for
our purposes. A much better and more general quicksort program could be written with exactly
the same overall structure, but it would be longer and offer no new insights into the list-processing
aspects of the problem.

List processing primitives for parallel computation 13

Our simple version of quicksort is:

> quicksort [] = []
> quicksort [x] = [x]
> quicksort s = quicksort sl + + quicksort s2
> WHERE
> (sl ,s2) = reducemap f g r] s
> g x = l F x < = median THEN ([x] , [])
> ELSE ([] , [x]) FI
> f (t l , t2) (u l ,u2) = (t l + + u l , t2+ +u2)
> median = (head s + last s) /2

The use of reducemap is safely deterministic because the function f is associative (by the
associativity of + +).

The P R A M performance of this program is O(log2n) because there are logn stages to the
whole program and each requires the execution of reducemap which is O(logn). This assumes
that the list is well balanced initially and that the estimates of the median are always exactly
right. While this is unlikely to be precisely the case, for typical data quicksort behaves nearly
as well as for the ideal case. Worst case situations are extremely unlikely to occur for large
data sets. As the programmer has full control of the way in which the input list is generated,
it should be easy to ensure that it is balanced, and hence optimum parallel performance is
attained.

5.2. Ray tracing

Suppose we have a list of objects and a list of rays (representing physical objects and light rays
in 3-D space). The problem is to compute the first impact of each ray on an object.

Each ray is represented as a starting point and a direction. An impact with an object is
simply represented as a distance, which is the distance the ray travels from its starting point
before it hits the object. The first impact for a given ray is then the impact represented by the
minimum distance. We do not go into details of how objects are represented, or how the point
of impact of a ray with an object is computed, but concentrate solely on the overall structure of
the program.

One possible solution is as follows, expressed as a program for the function impacts which takes
two arguments, a list of rays and a list of objects, and gives a list of impacts as its result (this list
is in the same order as the input list of rays):

> impacts rays objects = map firstimpact rays
> WHERE
> firstimpact ray = reducemap min impact infinity objects
> WHERE
> impact object =

Distance travelled by ray to hit object
> rain x y = IF x < = y T H E N x ELSE y FI

The program uses map to apply the function firstimpact to each separate ray in the list.
This function takes a single ray as its argument and finds the first impact of that ray with any
of the objects. This is done by first applying impact to each separate object. The function
impact takes a single object as its argument and finds the impact of the current ray with that
object. When the list of impacts of one ray with all the objects has been found, that list is
reduced with rain to find the first impact of that ray on an object. The value infinity denotes a
very large value which is used to represent no impact at all (i.e. the distance travelled by the ray
is infinite).

An alternative approach is to first find the list of impacts of all rays with a single object, and
do this independently for each of the objects. These results can then be combined to give the first
impact of each ray with an object. This program is:

14 TOM AXFOXD and MIKE JOY

> impacts2 rays objects = reducemap (zipWith rain) impactson z objects
> WHERE
> irnpactson object = map impactby rays
> WHERE
> impactby ray =

Distance travelled by ray to hit object
> min x y = I F x < = y T H E N x ELSE y FI
> z = map noimpact rays
> WHERE noimpact ray = inf in i ty

This program is a little more difficult to understand. The function reducemap firstly applies
impactson to each object in the list of objects. This gives a list of lists, one for each object. Each
inner list contains the impacts of all rays with that object. These lists of impacts are then combined
by finding the first impact for each ray, i.e. the minimum impact distance. The value of z, the 'zero'
argument of reducemap is the result if the list of objects is empty; in which case no ray hits
anything, so z is simply a list containing the value infinity repeated as many times as there are rays.

The first program gives PRAM performance of O(log m) + O(log n) = O(log mn) for balanced
lists, where m is the number of rays and n is the number of objects. The term O(log m) is for the
execution of map over rays, while the term O(logn) is for the execution of reducemap over
objects. For optimum performance, the programmer must ensure that balanced representations
are generated for both the list of rays and the list of objects. This is easy to do and it is hence quite
reasonable to assume that the lists are balanced.

The second program gives poorer performance. There are log n stages to the reducemap function
in the first line, but each involves the execution of zipWith which is O(log m) (as the lists which
zipWith operates on contain one element for each ray). So the overall performance is
O(log m x log n), which is less good than for the first program.

5.3. Convex hull

The convex hull of a set of points in a plane is the smallest enclosing convex polygon. For
example, the set of 11 points shown in the diagram has the convex hull indicated:

A program for finding the convex hull of a set of points can be written using a divide-and-
conquer algorithm, using the fact that it is relatively easy to combine two non-overlapping convex
polygons into a single convex polygon which encloses the original two [13]. (This involves
much less work than combining two overlapping convex polygons.) We can take advantage
of this if we divide the original set of points into non-overlapping subsets. An easy way to do
this is to order the points in order of their X-coordinates (and if two points have equal
X-coordinates, they are ordered on their Y-coordinates). If this ordered list of points is now divided
into sublists, each sublist will have a convex hull which does not overlap the convex hull of any
other sublist.

For the example given above, the points can be divided into two sets with convex hulls as
shown:

!

1

List processing primitives for parallel computation 15

A suitable program to do this is shown below. The data is assumed to be in the form of a list
of points (called points) which have already been ordered in the required manner.

> convexhul l points = reducemap combine g z points
> WHERE
> combine hull1 hul l2 =

Convex hull enclosing hull1 and hull2
> g point =

Polygon consisting of that one point
> Z =

The empty polygon

We can easily represent a polygon as an ordered list of points (its vertices) and it is easy to write
programs for g and z. The function combine which combines two convex hulls is harder, but the
details do not really matter here, as we have sufficient of the structure of the program to show the
overall structure and the potential for parallel implementation.

A more efficient program is likely to result if we combine the sorting and the convex hull
computation into a single application of divide-and-conquer. This is easy to do, using the quicksort
algorithm for the sorting:

> convexhul l points = polygon
> WHERE
> polygon =
> IF #po in t s = = 1 THEN points
> ELSE combine (convexhul l s l) (convexhul l s2) FI
> WHERE
> (s l ,s2) = part i t ion p points
> p x = (x < =median)
> m e d i a n =

Estimate the median value of the elements of points
> combine hull1 hul l2 =

Convex hull enclosing hull1 and hull2

In this single application of the divide and conquer paradigm, the divide phase effectively does the
sorting, while the final recombination phase does the convex hull computation.

Assuming that the two recursive applications (i.e. convexhull sl and convexhull s2) are always
done in parallel, the complete program has O(log n) stages, each of which requires the execution
of partition over a list which is O(n) in length, taking O(log n) time in parallel (assuming the list
of points is balanced, which is easy to arrange). Thus, the total time is O(log 2 n) in the PRAM
model.

6. RELATED WORK

It is well known that ordered data (i.e. lists) can be represented by tree structures (e.g. in tree
sorting), and also that the divide-and-conquer paradigm applies naturally to tree structures, as well
as being very suitable for parallel implementation. Recently, there has been increasing interest in
using the divide-and-conquer approach as a basis for the parallel implementation of functional
languages [7, 14-17]. Yet these pieces have not been brought together before in the way proposed
in this paper, to suggest an alternative model for lists as basic data structures for parallel (and
architecture-independent) programming languages.

George Mou has adopted an alternative approach in his language Divacon [18], in which arrays are
used as the basic data structures, but with additional primitives to support the divide-and-conquer
style of programming. In Divacon, the primitive operations on arrays are designed primarily to
support a distributed representation on the Connection Machine, and the representation does not
make use of binary trees.

CL 19/I--B

16 TOM AXFORD and MIKE JOY

7. CONCLUSIONS

The proposed new model of list processing overcomes one of the major obstacles to achieving
good parallel implementations of functional programming languages. It supports a style of pro-
gramming in which most common list operations can be implemented using divide-and-conquer
algorithms which are easily and efficiently parallelised, unlike the conventional style of list
processing in which list operations are usually defined to step through the list in strictly sequential
order.

For example, the conventional approach to summing a list of numbers is illustrated by the
program:

> sum [] = 0
> sum (x:s) = x + sum s

while the equivalent program in our new model is:

> sum [] = 0
> sum [x] = x
> sum (s + + t) = s u m x + s u m t

The latter program takes advantage of the associativity of the addition operator, so that the precise
order in which the additions are performed does not matter.

At an even higher level, if the function reduce is regarded as a basic primitive, sum can be
programmed in a yet more general form:

> s u m = r e d u c e (+) Os

which presupposes no part icular model o f lists whatsoever and gives even more freedom to the
implementor to optimise to suit the architecture on which the program wil l be run.

A l though all three programs above can be wri t ten in most common functional languages (and
other languages which support general data structures) by simply defining the required data
structures from first principles, this will not give acceptable levels of efficiency. Typically, operations
on user defined data structures are an order of magnitude slower than the equivalent operations
on built-in data structures. This is a very powerful incentive to the programmer to use the built-in
data structures whenever possible. Most programmers would never even comtemplate replacing the
built-in model of lists in languages such as Lisp, ML, Miranda or Haskell with their own
user-defined model of lists.

With parallel implementation, this difference in efficiency is likely to be even greater, so it is
important that the basic model of lists and/or other data structures used in the language is capable
of efficient implementation on all the architectures for which the language will be used.

A new generation of much more architecture-independent programming languages is needed in
which more suitable models are provided for basic data structures, such as the concatenation model
of lists proposed here. This may be either instead of, or in addition to, the traditional head- ta i l -cons

model of lists. Furthermore, languages should be designed to encourage programmers to use even
higher-level primitives, such as reduce, which do not specify any particular model and so are even
more implementation (and hence architecture) independent.

R E F E R E N C E S

1. McCarthy, J. A micro-manual for Lisp--not the whole truth. ACM SIGPLAN Notices 13(8): 215-216, 1978.
2. Wikstrom, A. Functional Programming Using Standard ML. London: lh'cnticc-Hall; 1987.
3. Turner, D. A. Miranda: a non-strict functional language with polymorphic types. In Proceedings of FPCA'89 (Edited

by Jouannaud J-P.), Lecture Notes on Computer Science 201: 1-16. Berlin: Springer-Verlag.
4. Hudak, P. and Wadler, P. (¢ds.) Report on the Programming Language Haskell, Internal Report. Department of

Computer Science, Yale University, 1990.
5. Bird, R. and Wadler, P. Introduction to Functional Programming. London: Prentice-Hall; 1988.
6. Peyton Jones, S. L. Parallel implementations of functional programmin 8 languages. Comput. J. 32: 175-186; 1989.
7. Axford, T. An elementary language construct for parallel programming. ACM SIGPLAN Notices 25(7): 72-80; 1990.
8. Axford, T. An abstract model for parallel programming, research report CSR-91-5. School of Computer Science,

University of Birmingham, 1991.
9. Gibbons, A. and Rytter, W. Efficient Parallel Algorithms, Cambridge: Cambridge University Press; 1988.

List processing primitives for parallel computation 17

10. Peyton Jones, S. L. and Joy, M. S. FLIC--a functional language intermediate code. Research Report 148, Department
of Computer Science, University of Warwick, Coventry, 1989.

I1. Turner, D. A. A new implementation technique for applicative languages. Softw.-Pract. Exper. 9: 31-49; 1979.
12. Joy, M. and Axford, T. Parallel combinator reduction: some performance bounds, research report 210. Department

of Computer Science, University of Warwick, Coventry CV4 7AL, U.K., 1992.
13. Preparata, F. P. and Hong, S. J. Convex hulls of finite sets of points in two and three dimensions. Commun. ACM

20: 87-93; 1977.
14. Cole, M. Allgorithmie Skeletons: Structured Management of Parallel Computation. Tunbridge Wells: Pitman; 1989.
15. Kelly, P. Functional Programming of Loosely-Coupled Multiprocessors, Tunbridge Wells: Pitman, 1989.
16. Mou, Z. G. and Hudak, P. An algebraic model for divide-and-conquer and its parallelism. J. Supercomp. 2: 257-78;

1988.
17. Rabhi, F. A. and Manson, G. A. Experimenting with divide-and-conquer algorithms on a parallel graph reduction

machine. Reseach Report CS-90-2 (I 990), Department of Computer Science, University of Sheffield, Sheffield S 10 2TN,
U.K., 1990.

18. Mou, Z. G. Divacon: a parallel language for scientific computation based on divide-and-conquer. In Proc. 3rd Syrup.
Frontiers Massively Parallel Computation, IEEE; 1990.

19. McCarthy, J. History of Lisp. ACM SIGPLAN Notices 13(8): 217-223; 1978.
20. Turner, D. A. Recursion equations as a programming language. In Functional Programming and its Applications (Edited

by Darlington, J., Henderson, P. and Turner D. A.). Cambridge: Cambridge University Press; 1982.

About the Author--ToM AXFORD obtained an MSc from the University of Melbourne in 1964 and a PhD
in Mathematical Physics from the University of Birmingham in 1968. He has been Lecturer and Senior
Lecturer in Computer Science at the University of Birmingham since 1967. His interests have included
programming language design, operating systems design, microprocessor systems, real-time systems and
concurrent programming. His main research interest is currently in functional programming languages and
their implementation on parallel architectures.

About the Author--MxKE JoY received a BA in Mathematics from Jesus College Cambridge in 1979, and
in 1985 a PhD in Computer Science from the University of East Anglia. He is currently a Lecturer in
Computer Science at the University of Warwick. His research interests include functional programming,
definitive programming, and parallel implementaion of functional languages.

