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As genome projects produce increasingly large quantities of sequence data, fast and reliable
sequence analysis methods are required. Basic methods for comparing pairs of sequences or
detecting patterns are well-developed, and now the key problem in analyzing this genomic
data is how to integrate the software and primary databases in a ¯ exible and robust way.
The wide range of available programs conform to very di� erent input, output, and processing
requirements, typically with little consideration given to issues of integration. Key to addres-
sing these issues appropriately is not to consider them as a result of the biological domain,
but instead as an information processing problem that suggests nothing as much as an agent-
based approach. In this paper, we introduce GeneW eaver, a multi-agent system for bio-
informatics, and describe in detail the agent interactions which allow the integration and
management of analysis methods and data. The system does not o� er new methods but
instead manages existing databases and analysis tools in an e� ective and ¯ exible way,
and facilitates easy and dynamic growth.

The agent metaphor has been extremely successful in engaging wide interest
and research, with some substantial success in terms of development of large
agent systems. Apart from the obvious reasons of impact and intuition, the
swell of interest in agents has typically been attributed to key changes and
advances in the technological landscape over a number of years in recent
times. Perhaps the most dramatic of these changes has been the emergence of
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the World Wide Web (WWW), a double-edged sword which, on the one hand
has opened up a wealth of resources in an accessible way and provided ready
technologies for remote distribution of information that brings with it, on the
other hand, a new set of problems relating to information gathering, for
example (Foss 1998; Huhns and Sing 1998). As far as agents are concerned,
both the bene® ts and the di� culties that have arisen as a result of the Web
are grist to the mill of agent research and development. The distribution of
information and associated technologies lend themselves almost ideally to use
by, in and for multi-agent systems. The dual aspect of this interaction with
the WWW has thus been a major driving force.

However, the Web in itself is not the only factor, though its sudden and
dramatic appearance and its pervasive nature might mask other issues. In
particular, advances in object technology, and more speci® cally, distributed
object technology, have provided an infrastructure without which the devel-
opment of large-scale agent systems would become much more di� cult and
less e� ective and, without a doubt, agent techniques and technologies would
become less transferable. For example, the CORBA distributed computing
platform (Vossen 1997) to handle low-level interoperation of heterogeneous
distributed components, is a valuable piece of technology that can underpin
the development of agent systems without the need for re-invention of funda-
mental techniques.

It has been argued elsewhere (Luck 1999) that the success of agent systems is
due to the timely coincidence of a maturity in some related ® elds and speci® c
developments in others that have converged in a particular way, catalyzed by
the agent metaphor, to describe the current state of the art. With this maturing
of the technology, and the increasing acceptance of agents and their deploy-
ment in commercial and industrial applications, agents can be regarded as
moving out of the laboratory. The adoption of agent technology for use in
® elded applications is an important milestone in the development of the ® eld,
and marks the start of the transition from prototypes and demonstrators to
the commercial products that can provide further impetus.

In this paper, we describe a multi-agent system that involves all of these
issues in its application to the very real and demanding problems of data
integration and management for the life sciences. The vast quantities of data
being rapidly generated by various sequencing e� orts, the global distribution
of available but remote databases that are continually updated, the existence
of numerous analysis programs to be applied to sequence data in pursuit of
determining protein structure and function, all point to the suitability of an
agent-based approach.

We begin with a brief introduction to the problem domain, and explain
how it leads to the current situation in which systems such as the one we
describe here are vital. Then we introduce the prototype GeneWeaver agent
community, a multi-agent system for managing the task of genome analysis,
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describing the agents involved, and the agent architecture. It should be noted
that GeneWeaver can also be viewed as providing a more generic framework
for a range of such agent-based systems. Finally, inter-agent communication
in support of data and technique management is described, and some rele-
vant data management protocols and scenarios are presented.

GENOME ANALYSIS AND PROTEIN STRUCTURE
PREDICTION

The Human Genome Project (Collins et al. 1988) has been running since
1990 as a multi-billion dollar project, originally to ® nd the estimated 100,000
or more human genes and to determine the sequence of the 3-billion DNA
basepairs making up the human genome. A draft of the sequence has now
been published (The Genome International Sequencing Consortium 2001)
and it is estimated that we have between 20,000 and 30,000 genes.
However, sequencing the human genome is only the beginning, and a sub-
stantial e� ort now needs to take place to organize and make sense of the data
so that it may be used by life scientists in treating disease, for example.
Moreover, the human genome is not the only genome being sequenced,
with over one hundred other genomes having already been sequenced, and
the ¯ ood of data is constantly increasing, including organisms ranging in size
from small viruses to mice. All the data needs to be analyzed and integrated
to provide a coherent and useful overall picture.

Flow of Biological Information

In this section, we begin by outlining the biology underlying the problem
domain, but of necessity give only a brief treatment. The interested reader
can refer to numerous introductory texts, such as Kitcher (1996).

Typically, an organism stores its hereditary material using DNA mole-
cules, which are passed from one generation to the next. The data stored in
these molecules can be simply represented as strings composed from four
letters (G, C, A and T). Now, in a cell, a large number of short segments
of the DNA molecule are transcribed into complementary strands of RNA,
which essentially represent the genes of the organism. Similar to DNA, the data
in each RNA molecule can be represented by a string composed from four
letters (G, C, A and U) in which the T from the DNA is now replaced by U,
as illustrated in Figure 1. Typically, the RNA molecules are then translated into
protein molecules that can be represented as strings composed from 20 di� erent
letters. Each consecutive group of three RNA letters is translated into a single
protein letter according to the genetic code for the organism. The protein
molecule then folds into a precise three-dimensional structure, which usually
contains a number of active sites on its surface where other proteins or small
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molecules may bind, and this gives the protein its unique biological function.
For example, Figure 1 shows a resulting protein with the function of taking two
molecules (X and Y) and combining them into a single molecule (XY). This
would only be one small part of an enormous network of such reactions, which
would result in the overall function of the particular type of cell.

While this very simpli® ed view of the cellular processes involved o� ers some
insight into the underlying biology, some more complicated stages (such as
RNA processing) have been omitted completely. In addition, although our
presentation has suggested that one process is universal, there are exceptions
to the general rules, as with the HIV virus, which stores its genome using RNA
instead of DNA, but we will not consider such issues further in this paper.

Figure 1 summarizes the ¯ ow of biological information taking place in a
cell as described above, together with the associated computational proces-
sing of this data, that we describe next. On the left-hand side of the ® gure,
aspects of di� erent molecules involved in the production of a protein with a
speci® c function are shown with a more concrete representation of the data
involved, and its transformation, being given in the central part of the ® gure
through an example. The right-hand side shows some classes of techniques
that a bioinformatician may use to elucidate the di� erent types of informa-
tion from the genomic DNA sequence of an organism. It includes the com-
putational data processing and shows that it may involve a number of
di� erent paths of data analysis.

Computational Processing

As indicated above, the rate at which this primary genetic data is being
produced at present is extremely rapid and increasing. There is consequently
a huge amount of genome data that is freely available across the Internet,
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typically stored in ¯ at ® le databases providing DNA sequences. The problem
of working out what each gene does, especially in light of the potential
bene® ts of doing so, is therefore correspondingly pressing, and one which
is meriting much attention from various scienti® c communities.

Traditionally, the ® rst task for the bioinformatician is to use what are
known as ORF detection methods on the DNA to determine the di� erent
protein sequences that are encoded in it. For each protein sequence, a
variety of techniques, such as sequence similarity and motif detection, may
be used to try to elucidate the function of the protein. Similarly, a range
of structure recognition techniques may be used to determine the three-
dimensional structure of the protein which may then, in turn, help in
determining its function.

This process of identifying genes and predicting the structure of the
encoded proteins is thus fairly labor-intensive, made worse by requiring
substantial expert knowledge concerning the available analysis techniques
and the underlying data. However, the steps involved are all computer-
based tasks: scanning sequence databases for similar sequences, collecting
the matching sequences, constructing alignments of the sequences, and trying
to infer the function of the sequence from annotations of the matched pro-
teins (for which the function is already known). All of this requires use of the
wide range of available tools for these tasks, which sometimes o� er results
that agree, but often do not (though they typically provide con® dence scores
that enable relatively easy interpretation).

Many tools are available to perform these tasks, but they are generally
standalone programs that are not integrated with each other and require
expert users to perform each stage manually and combine them in appro-
priate ways. For example, the process of trying to ® nd a matching sequence
might result in turning up an annotated gene, but the annotations include a
lot of spurious information as well as the important functional information.
The problem here is distilling this relevant information, which is not at all
di� cult for an expert, but which might prove problematic for a less experi-
enced user. With the amount of data that is being generated, this kind of
expertise is critical.

Finally, the information gained from this analysis is added back into
relevant databases as a resource in its own right, with entries usually includ-
ing large amounts of natural language in addition to the raw data. For
example, a very small entry of the data held about a protein in the
S database is shown in Figure 2. The updating of this data over
time as new information emerges adds an additional dimension to the data
management requirements. Analysis programs may generate or modify data
that other programs also use, requiring the di� erent sources of information
and the di� erent programs be managed e� ectively to ensure that the system
as a whole is coherent, consistent, and synchronized.
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If we consider the kinds of problems raised by these issues, including
® ltering and prioritizing information resulting from matched proteins, inte-
grating several distinct analysis programs possibly in sophisticated ways,
managing multiple remote sources of data in di� erent formats, and so on,
no solution for automation suggests itself quite as much as a multi-agent
approach. In fact, this kind of problem is not really novel Ð it ® ts what might
be considered a standard model of a multi-agent system in a traditional
information systems domain with the addition of some extra complications,
and a di� erent set of data.
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THE GENEWEAVER AGENT COMMUNITY

GeneWeaver is a multi-agent system aimed at addressing many of the
problems concerning the management of data and analysis techniques in the
domain of bioinformatics. It comprises a community of agents that interact
with each other, each performing some distinct task, in an e� ort to automate
the processes involved in, for example, determining protein function. Agents
in the system can be concerned with management of the primary databases,
performing sequence analyses using existing tools, or with storing and pre-
senting resulting information. The important point to note is that the system
does not o� er new methods for performing these tasks, but organizes existing
ones for the most e� ective and ¯ exible operation. This section provides an
overview of the system through the agents within it.

Figure 3 illustrates the overall perspective of GeneWeaver in that it
contains the di� erent classes of agents and shows how they interrelate. At the
left side, the PDB agent, PIR agent, and S agent all manage the primary
sequence databases indicated by their names (as described later), and interact
with the NRDB (non-redundant database) agent, which combines their data.
At the right edge of the ® gure, the calculation agents (including the B
agent and the M agent that perform speci® c analysis tasks) attempt to
annotate sequences in the genomes using relevant programs, again indicated
by their names. Finally, at the top, a number of genome agents manage the
genomes for particular organisms, and request analysis from the calculation
agents. At each point of external interaction, agents typically receive and
provide information via the Intemet. In the ® gure, dashed lines indicate
agents communicating to and from the Internet using http or FTP protocols.
Solid lines represent the main communication pathways between the agents
using an agent communication language. The broker agent (see below) is
omitted for clarity.
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There are ® ve types of agent present in the GeneWeaver community.

° Broker agents, which are not shown in Figure 3 since they are facilitators
rather than points of functionality, are needed to register information
about other agents in the community.

° Primary database agents are needed to manage remote primary sequence
databases, and keep the data contained in them up-to-date and in a format
that allows other agents to query that data.

° Non-redundant database agents construct and maintain non-redundant
databases from the data managed by other primary database agents in
the community.

° Calculation agents encapsulate some pre-existing methods or tools for
analysis of sequence data, and attempt to determine the structure or func-
tion of a sequence. Whenever possible, they are also responsible for con-
structing and managing any underlying data that they rely on.

° Genome agents are responsible for managing the genomic information for a
particular organism.

Each of these agents is considered in more detail below.

Broker Agents

The potential size of the GeneWeaver agent community can be large,
with the number of agents determined by the number of external databases
used, the number of sequence comparison programs, and the extent of var-
ious other utility functions. Since each of these aspects must be wrapped up
in an agent, with numerous interactions required between agents, brokers are
needed to provide what is, in e� ect, a yellow pages service for all agents in the
system. (Di� erent forms of services o� ered might range from the simple
yellow pages service to more sophisticated matchmaking (Kuokka and
Harada 1995a, 1995b), but such issues are beyond the scope of this paper.)

A broker provides information about all the agents currently present in
the community, including the communication methods they support. Each
agent is required to register information about itself with the broker to be
recognized within the community. Conversely, agents can query the broker
for information about other agents in the community. They may also sub-
scribe to the broker’s information and will be noti® ed when it changes as, for
example, when agents join or leave the community.

Primary Database Agents

Although the principle of combining di� erent methods and di� erent infor-
mation sources seems simple, in practice there are a number of di� culties that
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must be faced. Primary data sources (the primary sequence data banks and
the structure data banks, for example) encode their information in di� erent
ways, not only in terms of the basic formatting, but also in the terminology
used. For example, di� erent keyword sets are used for each data bank so that
understanding and interpreting the data (both of primary data sources and
the results from analysis programs) is not a trivial task.

Primary databases are provided externally, under the control of third
parties who may change them at any time. In many cases, the data is largely
unstructured and is often available in the form of ¯ at ® les. The methods of
delivery vary, but have included email transfer of data, FTP downloads, and,
more recently, retrieval through the Web. Each primary database consists of
a number of sequence ® les, which are text ® les formatted in a particular
sequence format. A sequence ® le usually contains data for a number of
protein sequence entries, with each such sequence entry providing a descrip-
tion of the protein and its amino acid sequence (see Figure 2 for an example).

For example, the Protein Data Bank (PDB) (Bernstein et al. 1977), which
was established in 1971, is an international repository for the processing and
distribution of experimentally-determined structure data that is growing dra-
matically. Similarly, SWISSPROT is a curated protein sequence database
with a high level of annotation of protein function, and is supplemented
by another database, TrEMBL (Baxevanis 2001). Many other such sequence
databases are also available (eg. the PIR International Protein Sequence
Database (Barker et al. 1999), and a list of more than 200 of the main
biological databases was recently compiled (Bairoch and Apweiler 2000).
The sheer number and variety indicates the importance of wrapping them
up and providing them to the agent community in a uniform manner, but we
will not provide an exhaustive list here.

The primary database agents manage local copies of di� erent primary
databases, with one agent per database. Currently, all the primary databases
are obtained from FTP locations: a primary database agent queries the
appropriate FTP site on a regular basis to see if any of the ® les making up
the database have changed. If so, the agent determines the changes that are
required to the entries in its copy of the database to update it to a current
version. Other agents can then query the primary database agent to obtain
information about a particular primary database, the ® les making up the
database or the individual sequence entries in the database. Agents can
also subscribe to this information if they want to be noti® ed when it changes.

Non-Redundant Database Agents

A non-redundant database (NRDB) is one constructed from a number of
primary databases with entries that are deemed to provide duplicate informa-
tion excluded. There are three main categories of non-redundant database,
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storing DNA sequences, protein sequences, and protein structures, respec-
tively. Further classi® cations of non-redundant databases may result from
considering the number and quality of primary databases used in the
construction of the non-redundant database, or from the speci® c notion of
redundant information that is used. For example, some non-redundant pro-
tein sequence databases only regard sequences as redundant if they have
identical residue strings, while others regard sequences as redundant if
they have more than 90% of residues identical. Each type of non-redundant
database has its speci® c uses in bioinformatics.

Now, a single agent in the GeneWeaver community manages each dif-
ferent type of non-redundant database. In the initial prototype community,
there is only one NRDB agent, which constructs a non-redundant database
from protein sequences held by all the primary database agents in the com-
munity using identical residue strings as the de® nition of redundancy. Hence
the non-redundant database contains no sequences that have residue strings
identical to any other sequence in the non-redundant database. Each of
these non-redundant sequences is annotated with database cross-references
indicating which sequence in the primary database has the most detailed
annotation for this residue string.

In general, an NRDB agent subscribes to agents managing primary data-
bases from which it wishes to derive its database. It builds up the non-
redundant database by adding any new entries that have been added or
modi® ed in the primary databases since the non-redundant database was
last updated.

Calculation Agents

Calculation agents apply particular skills to try to identify the structure
or function of particular sequences of genomic data. A variety of techniques
are used in a range of available programs, including similarity (homology)
searches of greater or lesser sensitivity (eg. BLAST (Altschul et al. 1990), and
FASTA (Pearson 1990, 1996)), the use of sequence motif patterns (eg. InterPro
(Apweiler et al. 2001)) , sequence alignment (eg. ClustalW (Thompson, Higgins,
and Gibson 1994)) , secondary structure prediction (eg. PhD (Rost and Sander
1993), PSIPRED (Jones 1999b)), membrane topology prediction (eg.
MEMSAT (Jones, Taylor, and Thornton 1994)), fold recognition (eg.
Threader (Jones, Taylor and Thornton 1992), GenThreader (Jones 1999a))
and so on. For example, BLAST (Basic Local Alignment Search Tool) is a
set of rapid similarity search programs that explore all available sequence
databases (Altschul et al. 1990). The search can be performed by a remote server
through web pages or have results returned by email, or on a local machine.

Now, some of the methods take longer to run than others, while some
provide more accurate or con® dent results than others. In consequence, it is
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often necessary to use more than one of these tools depending on the results
at any particular stage. While a high con® dence is desirable, time-consuming
methods should be avoided if their results are not needed.

Although these tools already exist, they are largely independent. Calcula-
tion agents provide a way to integrate their operation in support of appropriate
combinations of methods to generate con® dent results, and integrate them
with, and apply them to, the accumulating genome databases. In short, the
tools are encapsulated in an agent wrapper so that existing applications such as
BLAST can become independent agents in the GeneWeaver community.

A second consideration when managing these methods is the presence
of dependencies between the methods. For instance, di� erent sequence
similarity web servers may be asked to search the SWISSPROT database,
but each server will probably be searching a di� erent version of the database,
returning results that may refer to di� erent entries. A more complicated
dependence results when one program actually uses another internally. For
example, the MEMSAT method uses an internal version of the BLAST
method during its processing. The version of BLAST used, and the version
of its underlying database, is hidden within the MEMSAT method itself.
These underlying dependencies between the di� erent methods can result in
subtle inconsistencies in the di� erent results.

In order to deal with this consistency problem, the calculation agents
attempt to make these dependencies explicit. Whenever possible, a calcula-
tion agent constructs the underlying databases or parameters that its encap-
sulated analysis techniques depend on, using the data and methods available
from other agents in the community. For instance, the BLAST calculation
agent shown in Figure 3 uses the NRDB agent’s non-redundant database to
construct the database it searches. Similarly, the M agent constructs
training parameters for its method by using membrane topology sequences
held by the agent. The agent also uses the B agent when
it needs to carry out the BLAST method during its internal processing. These
interactions, shown in Figure 3, result in a system that has an additional
degree of data and method integration beyond just externally combining the
results obtained from di� erent methods. (In addition, since the M agent
re-trains itself when new membrane topology sequences are added to the
SWISSPROT database, its ability to predict membrane topologies for proteins
improves over time. This can be seen as a rather specialized form of learning
using data and methods that become available in the community.)

Genome Agents

Each genome agent manages the genome information for a particular
organism. This can consist of the DNA sequences making up the genome
of the organism together with the protein sequences expressed by the DNA
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sequences. Data such as known protein homologues and other derived results
are stored together with their relationship to the nucleic acid or protein
sequences. The primary data for the genomes, either DNA or expressed
protein sequences, is obtained through FTP from a primary data source.
Like the primary databases, these are under the control of third parties
and may be modi® ed at any time. Genome agents check these sources of
data on a regular basis, update their data accordingly when any changes
occur, and apply the methods available in the community to annotate the
genomes with functional and structural information. These derived results
also need to be managed, and possibly recalculated, when the underlying
genome data is modi® ed by third parties, or when the version of the method
employed is updated.

Agent Architecture

Each agent in the GeneWeaver community shares a common architecture
that is inspired by, and draws on, a number of existing agent architectures,
such as Jennings and Wittig (1992), but in a far more limited and simpli® ed
way. An agent contains a number of internal modules together with an
external persistent data store that is used for the storage of data it manip-
ulates and external programs used for sequence analysis. In this section, we
brie¯ y describe the generic modules that comprise the architecture illustrated
in Figure 4, which forms the basis of each agent. This will be used to provide
a context for the description of interagent communication given in the fol-
lowing section. A more extensive description of the internal structure of the
agents is presented in Bryson et al. (2000).
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Motivation Module

Since each agent in the GeneWeaver community has di� erent responsi-
bilities and is required to perform di� erent tasks, distinct high-level direction
must be provided in each case to cause essentially the same architecture to
function in di� erent ways. The conceptual organisation of GeneWeaver
agents thus involves the use of some high-level motivations that cause goals
speci® c to the agent’ s tasks and responsibilities to be generated and per-
formed (Luck and d’Inverno 1996). An agent is therefore initialized with
the motivations required to carry out its responsibilities e� ectively. For
example, all agents (except brokers) are motivated to register themselves
with a broker agent, and will generate goals and actions to do so until
they have succeeded. Similarly, a primary database agent has a motivation
to cause the generation of speci® c goals and actions to update the primary
database on a regular basis in order to ensure that it is up-to-date; and a non-
redundant protein agent is motivated to subscribe to a broker for informa-
tion on primary database agents and to subscribe to these latter agents for all
relevant information.

Control Module

Perhaps the most important of the components of the agent architecture
is the control module, which organizes how the agent should pursue the
satisfaction of goals. It decides whether a goal should be accomplished
using a local skill of the action module, whether the goal should be broken
down into a number of sub-goals using a plan, or whether it should be carried
out by the interaction module since it involves either the provision of assis-
tance to another agent, or the request of assistance. In order to do this, the
information contained in the meta-store is used to decide how best to carry
out actions, for example, by an agent examining its own skills and that of
other agents. In addition, the control module determines whether the infor-
mation in the meta-store should be modi® ed as a result of performing an
action.

Action Module

The action module is responsible for managing and performing skills that
modify the underlying data being manipulated by the agent. The resulting
actions typically involve performing operations on some input data and may
(optionally) result in some output. In this respect, they are likely to use and
modify data in the agent’s data store. The action module is thus critically
important in terms of the agent functionality in this domain, since it is the
only module that can interface to the data store and thus provides the only
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way to modify the data the agent is working with. (In the case of calculation
agents, the same would apply to the analysis tools instead of the databases.)
Each agent’s action module is instantiated with a number of skills (or types of
action) that the agent can perform. The action module is invoked by the
control module, and can also cause the control module to invoke message-
passing actions in the interaction module when needed as part of an overall
task. This might occur when another agent is needed to perform an action for
the overall plan.

Interaction and Communications Modules

The interaction module handles the higher level interaction between
di� erent agents. Several possible types of interaction exist, each of them
following a particular ® xed interaction protocol. The interactions are key to
agent cooperation and will be extensively described in the next section.

The interaction module is initialized with the types of interaction it can
service (or the types of provider actions it can initiate) . For example, the
broker is the only agent that initiates its interaction module with a register
action to service requests to register with it from other agents. The particular
actions an agent is able to provide to others are recorded in its meta-store so
that it has an accurate picture of its capabilities.

Now, the communications module for one agent interacts with commu-
nications modules of other agents, using particular transport protocols. It
also passes messages on to the agent itself for interpretation and processing,
as well as accepting outgoing messages to be sent out to others. In this way,
one agent interacts with another through their respective communications
modules.

The mechanics of the interaction of agents in the community are achieved
through a message-passing communication using a number of transport pro-
tocols such as RMI (Farley 1998) and CORBA (Vossen 1997), which is
handled by the communications module.

Meta-Store

The meta-store simply provides a repository for the information that
is required by an individual agent for correct and e� cient functioning. It
contains relevant information about the types of skills, plans, and interactions
supported by di� erent agents within the community. For example, the meta-
data contained in this repository will enumerate the properties and capabil-
ities of the agent, including aspects such as the protocols the agent can use,
the skills that can be executed, and the agent’s motivations. As other modules
are instantiated on initialization, this information is added to the meta-store.
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Thus, as the action module is initialized, the skills that can be performed by it
are added to the repository.

The meta-store also provides a representation of the other agents in the
community in order to determine how best to accomplish particular tasks,
possibly using other agents. Information contained in it may be extended
while the agent is running so that additional or newly-discovered information
about itself or other agents may be included. The only signi® cant interaction
is with the control module which records information in the meta-store as
appropriate, and also uses it in decision-making.

AGENT COMMUNICATION

The BioAgent Language (BAL)

Agents in the GeneWeaver community communicate with each other
using the BioAgent Language (BAL), which is constructed along the lines
of KQML (May® eld, Labrou, and Finin 1996), with similar performatives,
but is both dramatically reduced in range, and tailored to the particular kinds
of interactions likely in GeneWeaver. Speci® cally, the data content of the
BAL messages is vital, since the data is the key resource in the system, and it
is extremely large in quantity. In this section, we describe BAL and show how
it is used by agents for critical interactions.

BAL interactions lie at the highest level of communication, and consist of
a number of messages being passed between agents following a ® xed protocol
for the particular type of interaction. Within an interaction, speci® c commu-
nication between agents is accomplished by sending BAL messages, which
follow a simple speech-act structure by which a performative is associated
with a particular kind of content. Depending on the performative, the content
may consist of an ordered list containing query expressions, data, meta-data
or simple strings. BAL messages employ language and ontology ® elds to
indicate the language used for the content and the meanings assigned to
symbols used.

The BioAgent Content Language (BACL) is a very simple language used
to represent meta-data, data and query expressions. The BioAgent Meta
Ontology (BAMO) de® nes the di� erent types of meta-data (Table 1) and
their meanings. This is the information used by the agent community to
manage and organize itself, more details of which can be found in (Bryson
et al. 2000). The BioAgent Data Ontology (BADO) de® nes the data types
employed (Table 2). These are simply the major artifacts in this domain.

BAL messages consist of a performative together with some data ® elds that
can include the sender and receiver, transport protocol, content language,
content ontology, interaction reference string, page count, and content, as
shown below. The performative, sender id, receiver id, transport protocol,
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and reference string are all compulsory ® elds within a message, while the
presence of the language, ontology, page count, and content depends on
the performative of the message. The list of performatives used by the
GeneWeaver system are enumerated in Table 3.

Sender: ásender idñ

Receiver: áreceiver idñ
Transport: átransport protocolñ
Language: ácontent languageñ

Ontology: ácontent ontologyñ
Perform: áperformative ñ

Ref: áreference stringñ
Page: ápage numberñ
Content: ácontentñ

The sender id and receiver id are in the form Swiss007f000001 ,
which speci® es the name of the agent (in this case S ) followed by 10
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TABLE 1 Types of Meta-Data Present in the BioAgent Meta Ontology

BAMO type Agent Property

AgentInfo General agent features
TransportInfo Transport communication protocols supported
LanguageInfo Content languages supported
OntologyInfo Content ontologies supported
RequesterInfo Interaction types the agent can request
ProviderInfo Interaction types the agent can provide
SkillInfo Skills that may be employed
PlanInfo Plans that may be employed
MotivationInfo Agent motivations
RelationInfo Current ongoing relations with others

TABLE 2 Types of Data Present in the BioAgent
Data Ontology

BADO type Description

RemoteDB Remote primary database
LocalDB Local database
DBFile Sequence database ® le
DBSeqEntry Sequence database entry
Protein Protein sequence
MemTopol Protein membrane topology
Homologue Sequence homology data



hexadecimal digits. The last eight digits specify the IP address of the physical
machine the agent resides on, with the ® rst two digits specifying a particular
o� ce (0 to 100) on the machine. Each agent must have a unique name within
a particular o� ce. Essentially, an o� ce is a running process that permits a
number of agents to be placed within it, each agent existing as a number of
threads within the process. In our current implementation, each o� ce is a
Java Virtual Machine, and this permits a variety of con® gurations. A large
number of agents may be placed into a single o� ce for a small memory
footprint, although this makes them more dependent on each other if, for
example, one of them causes a thread deadlock. By using a separate o� ce for
each agent, the community is more robust to failure in any one agent, but this
uses correspondingly more resources.

Currently three transport protocols are used: rmi, corba, and direct.
RMI is the default protocol supported by all the agents within the Java
implementation of GeneWeaver, while CORBA allows agents implemented
in di� erent languages to be supported as long as they conform to the BAL
language speci® cation. Such agents, running under a di� erent management
system, would need to be allocated their own range of o� ce numbers. For
example, 101 to 150 could be allocated for agents running under a C ‡‡
management system. The direct protocol is used to communicate between
agents in the same o� ce (or process) simply by using synchronized methods.
It permits the con® guration in which a community of agents can cooperate
in the same o� ce (including a broker) without the need for any network
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TABLE 3 Description of BAL Performatives

Performative Description

ask Sender wishes to know if any data exists in the receiver’s data store
(or meta-store) which matches the given data query.

tell Indicates that the given data exists in the data store (or meta store) of the sender
deny Indicates that the data given no longer exists in the data store.

(or meta store) of the sender.
subscribe Sender wishes to subscribe to data (or meta-data) matching the given

query and be informed about future changes.
unsubscribe Remove the subscription.
do Sender wishes the receiver to carry out the speci® ed skill with the given

content as input.
derive Sender wishes the receiver to derive data satisfying the given data query

using its plans and skills.
ok Con® rms an action has been successful.
error Terminates a conversation since either an agent did not understand the

contents, or the message protocol was not followed.
sorry Terminates a conversation. The agent understood the message but did not

have any response to it.
register Registers an agent with the broker. This provides the broker with a

symbolic name and a description for the agent.
unregister Cancels a register (and any commitments of the agent).



communication, and allows agents to make their services available only to
other agents in the same o� ce, providing a secure form of agent hiding.

A unique reference string is generated by the agent initiating an inter-
action as a means of identifying and keeping track of the course of that
interaction, especially when there may be several concurrent interactions
taking place. It is used in all messages that are part of the particular inter-
action. The optional components of BAL messages are determined by the
kind of message (and hence performative) under consideration.

The language and ontology ® elds permit agents to handle multiple content
languages as appropriate and di� erent data contexts within these languages.
The bioinformatics community employs a wide-range of languages to repre-
sent data and data queries, including SQL, XML, XQL, and ASN-1 (Achard,
Vaysseix, and Barillot 2001), and several ontologies are being developed
for use within di� erent sub-® elds (Baker et al. 1999, The Gene Ontology
Consortium 2000). Currently, however, we employ a simple content language
and simple ontologies, although it is bene® cial to permit di� erent languages
and ontologies to be used within specialized sub-communities of agents.

The page count is used, for example, when a long list of data items which
cannot e� ciently (or appropriately) be included in a single message, needs to
be sent between agents, and it may be necessary to split it into multiple
messages. With vast amounts of data being generated daily in this domain,
this is not an unlikely event. The need to use a page count to split data among
messages in this way applies only to tell and deny performatives when used to
transfer large amounts of data.

Now, the contents of the messages vary according to the kind of perfor-
mative used, and are enumerated in Table 4. These may be ordered lists of
query expressions, data, meta-data, or simple strings.
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TABLE 4 Content Types of Di� erent Performatives

Performative Content

ask Data or meta-data query.
tell List of data or meta-data items, page number required.
deny List of data or meta-data items, page number required.
subscribe Data or meta-data query providing what to subscribe to.
unsubscribe No content (reference string used to determine what to unsubscribe).
do Meta-data specifying the Skill to do, followed by a list of data specifying the input.
derive Data query specifying the required data to derive followed by a list of data which

may be used.
ok No content.
error String giving reason for error.
sorry String giving reason for failure.
register AgentInfo meta-data for the agent registering.
unregister No content (reference string used to determine what to unregister).



BAL Interactions

A BAL interaction represents a communicative episode at the highest
level of abstraction. It consists of a number of messages sent between two
agents following a ® xed protocol for the type of interaction. All the messages
are required to share the same reference string to indicate that they are part
of the same interaction. In the discussion below, all interactions concern only
two agents. The agent that requests assistance (and hence the interaction)
is denoted the requester and the agent providing assistance is denoted the
provider.

An example of registration is as follows. The S agent (which is a
primary database agent) registers itself with the B by sending a register
message as follows:

Sender: Swiss007f000001

Receiver: Broker007f000001

Transport: rmi

Language: BACL

Ontology: BAMO

Perform: register

Ref: Swiss007f000001_0

Content:

AgentInfo(

ID = 0,

OWNER = Swiss007f000001 ,

TYPE = PrimaryDB,

MOD_TIME = 2001-04-04T19:40:35+010 0

LOCAL_MOD_TIM E = 2001-04-04T19:40:35+010 0

AGENT_URL = "http://insulin.brunel.ac.uk /~ bryson/agents/

swiss/index.html",

DESCRIPTION = "Swiss agent which manages the SWISSPROT

database."

).

The content of the message consists of a single meta-data item of type
AgentInfo that includes ID, OWNER, TYPE, MOD_TIME, and
LOCAL_MOD_TIME ® elds. The OWNER ® eld identi® es the agent that
owns the meta-data item, while ID provides a unique identi® er for the item
within that particular agent. The MOD_TIME ® eld gives the time, in ISO
format, of the last change to the actual data item (as held by the owner),
whereas LOCAL_MOD_TIME gives the time the item was last changed in
the local agent (since agents may have copies of data owned by other agents).
In addition, there are also AGENT_URL, DESCRIPTION, and TYPE
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® elds to provide further information about the particular agent, such as the
location of its home web page. If the B permits registration, it will
reply with the following ok message:

Sender: Broker007f000001

Receiver: Swiss007f000001

Transport: rmi

Perform: ok

Ref: Swiss007f000001_0.

Interaction Scenarios

We have described the modular framework of an agent together with the
language used for inter-agent communication. In this section, we show how
these aspects come together to enable e� ective agent operations for the man-
agement and integration of data and methods within the agent community.
We describe four general scenarios that result from just setting up the appro-
priate motivations, interactions, skills, and plans in the agents. In each sce-
nario, the goals adopted by agents on either side of the interaction are
described together with the protocol followed and the messages sent as
part of that protocol. The complete interactions are illustrated with state
transition diagrams, which come in parts: one for the requester and one
for the provider. The diagrams are largely self-explanatory, and serve to
illustrate the discussion, so only a cursory explanation of them (as opposed
to the interactions) is given.

Registering with a Broker

Each agent (other than brokers) has a motivation to register with a
broker, which will lead to the generation of a goal with the aim of forming
a register relationship with a broker agent. (We denote goals with the aim of
making or breaking relationships between agents as relationship goals.) The
control module satis® es this goal by examining the meta-store for informa-
tion on a suitable broker, and then initiating a register interaction using the
interaction module. This causes a register message to be sent to the broker
agent via the communications module, and the agent then waits for a
response. For example, the primary database agent, S agent, which
manages the SWISSPROT database, sends the register message above to
the broker agent.

On receiving the register message, the broker starts its side of the inter-
action, resulting in a register relationship goal being passed to its control
module. In turn, the control module satis® es this relationship goal using
an appropriate plan, which causes the broker agent to subscribe (see next
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section) to relevant meta-data of the registering agent such as the agent’ s
skills, databases and plans. This allows the broker to keep track of any
relevant changes in information about the agent, such as when one of its
skills is updated. In addition, the broker agent updates its meta-store to
include details of the registered agent. If the registration plan is successful,
this will result in an ok message being returned by the broker’ s side of the
interaction (as shown above).

Finally, on receiving an ok message from the broker, the registering
agent’ s relationship goal is satis® ed, with the intensity of the relevant motiva-
tion to register being lowered since it is now satis® ed. This reduction in
intensity enables other motivations of the agent to become active.

Alternatively, the broker may not allow the agent to register. For
instance, a security policy may only allow agents running on certain hosts
to register, or the community organized by the broker may be of a specialized
type that does not include primary database agents. In such cases, a sorry
response might result. This interaction scenario is illustrated by Figure 5.

Sender: Broker007f000001

Receiver: Swiss007f000001

Transport: rmi

Perform: sorry

Ref: Swiss007f000001_0

Content:

Invalid agent type.
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Broker Subscription Scenario
The non-redundant database (NRDB) agent is motivated to subscribe to

the broker for information about all agents owning local primary databases
containing protein sequences. This motivation is typically activated (through
having the highest intensity level) once the agent has successfully registered,
and causes a relationship goal of type subscribe to be sent to the control
module. The control module satis® es this relationship goal by querying the
meta-store for all brokers with which it is currently registered. For each
broker, the control module creates a subscribe interaction which, in turn,
results in a subscribe message being sent:

Sender: NRDB007f000001

Receiver: Broker007f000001

Transport: rmi

Language: BACL

Ontology: BADO

Perform: subscribe

Ref: NRDB007f000001_21

Content:

LocalDB(

ID?, OWNER?, SOURCE?, QUALITY?,

TYPE, NAME, MOD_TIME?,

LOCAL_MOD_TIME?, DESCRIPTION?

).

On receiving this subscribe message, the broker responds by starting its
side of the interaction. If the broker refuses to form the relationship, then it
responds with a sorry message, otherwise it responds with an ok message to
indicate that the relationship has been accepted. This causes a query to be
performed on its meta-store on a regular basis to provide the required infor-
mation, resulting in tell and deny messages being sent back to the requester,
giving information about currently registered agents, and those that have
deregistered. Such periodic queries continue until the interaction is halted
on receipt of an unsubscribe message from the requester. The following exam-
ple message illustrates the kind of response that might be received in this way
from the broker:

Sender: Broker007f000001

Receiver: NRDB007f000001

Transport: rmi

Language: BACL

Ontology: BADO

Perform: tell
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Ref: NRDB007f000001_21

Page: 0

Content:

LocalDB(

ID = 11,

OWNER = Swiss007f000001,

SOURCE = SWISSPROT,

QUALITY = 90,

TYPE = PROTEIN,

NAME = SWISSPROT,

MOD_TIME_ = 2001-04-04T20:07:21+0100 ,

LOCAL_MOD_TIME = 2001-04-04T20:08:11T+T0100 ,

DESCRIPTION = "SWISSPROT manually annotated protein database"

).

Later in the session, a deny message may be sent if, for example, the
S agent deregisters from the broker.

Back at the requester’ s end, tell goals are instantiated as a result of
any received tell and deny messages, and cause the control module to carry
out an appropriate plan. In this case, the result is to add information to the
meta-store, or delete information from the meta-store as appropriate. This
interaction scenario is illustrated by the state-transition diagrams of Figure 6.
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Subscribe Interaction Scenarios
The subscribe interaction is also used in a number of other places in the

prototype, such as when the non-redundant database (NRDB) agent is moti-
vated to subscribe to primary database agents for sequence data. Typically,
this motivation becomes active after the agent has successfully subscribed to
the broker for information on agents owning local primary databases, so that
the intensity of that motivation decreases. The NRDB agent then forms
subscribe interaction relationships with each of these agents to obtain infor-
mation about their primary databases. The subscription remains in force
while both agents are present in the community, allowing the NRDB agent
to maintain its database with the latest information known throughout the
community.

Calculation agents also use the subscribe interaction. The B agent
subscribes to the NRDB agent so that it can ensure that the database it
searches with BLAST is up-to-date. Similarly, the M agent subscribes
to the S agent for information about membrane proteins so that it can
keep its method trained with the most recent data.

In general, subscription to another agent for particular types of data may
be regarded as a data push protocol, in that new or modi® ed data is pushed
onto the requester agent as it becomes available. The tell interaction, which is
not used within the prototype, is an unsolicited form of data push. When an
agent has data it believes another agent may be interested in, it simply sends a
tell message to this agent informing it about the data, whereupon it receives
an ok or sorry response informing it whether the other agent is interested in
the data provided.

Calculation Agent Requests
The main concern of previous scenarios has been the manipulation of

data and meta-data. However, agents also have plans, involving sequences of
action, that may be used to satisfy goals by either manipulating the agent’ s
meta-store or by decomposing a goal into a number of sub-goals which may
then be tackled. This section deals with scenarios involving interactions that
use skills combined with plans to satisfy goals.

Suppose a genome agent is initiated with a number of motivations: regis-
tering with a suitable broker, subscribing to the broker for information about
the skills and plans available in the community, updating its genome data
using an external data source and annotating this genome data. Now, deriv-
ing di� erent types of annotation is brought about by di� erent motivations.
For example, the motivation to determine homologues for the proteins
expressed by the genome provides functional annotation, while the motiva-
tion to determine membrane topologies for these proteins provides a form of
structural information.
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We will examine the motivation to determine membrane topologies in
more detail since this involves both derive and do interactions.

Generally, a genome agent will not know the best approach to determine
a membrane topology for a protein in the genome it is annotating. Thus the
motivation generates a derive goal with the aim of deriving a membrane
topology with a suitable quality for the particular protein. Now, the control
module determines how to satisfy this goal by inspecting the meta-store.
Suppose that it ® nds that it does not have a local skill or plan itself to satisfy
deriving a membrane topology, but is aware of another agent in the commu-
nity, the M agent, which contains a suitable plan. To utilize this plan,
the control module creates a derive interaction, resulting in a derive message
being sent to the M agent:

Sender: HInf007f000001

Receiver: Memsat007f000001

Transport: rmi

Language: BACL

Ontology: BADO

Perform: derive

Ref: HInf007f000001_42

Content:

MemTopol(

N_LOC?, OTHER_LOC?, N_LOC_SIDE?,

SPANS?, QUALITY?, DERIVED?,

SEQ_REF = 74_HInf007f000001 .

On receiving this message, the interaction module of the M agent
creates a derive goal that is sent to its control module which, in turn, ® nds a
suitable plan to accomplish the goal and executes it. Now, this plan is fairly
complicated and involves three stages. The ® rst involves obtaining the residue
string of the sequence to analyze if this is not already provided. This can be
satis® ed by a query interaction (described later) to obtain the information from
the genome agent. The second stage involves creating a do goal requesting that
the BLAST skill be used to determine a sequence pro® le for the sequence. Since
this is a well-speci® ed task, it is satis® ed by using a do interaction to request the
B agent perform the calculation. Finally, a second do goal requesting that
the MEMSAT method be applied to this pro® le generates the result, which is
satis® ed by using the MEMSAT skill local to the agent. If all the stages of the
plan are successful, the original derive goal will be satis® ed, causing the M
agent to send a tell message providing the result. The genome agent then uses
this information to annotate the sequence.

Both the derive and do interaction protocols are presented in Figure 7.
This diagram also shows the query interaction, which involves an initial ask
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message, but is otherwise very similar to the others. It simply allows a one-o�
query of the data held by another agent, without receiving further updates; it
is useful in the scenario above when the initial derive goal does not contain all
the required information for the plan.

Note that these protocols may generate a number of pages of results, with
a page number of zero indicating the last page.

Summary
In describing these sample interactions, we show how the system manages

and integrates the distributed databases, skills, and expertise (encoded as
plans) of agents within the community. It may be seen that a number of
categories of interaction are involved. The subscribe and tell interactions
provide data push protocols while the query interaction provides a data pull
protocol. The do and derive interactions are imperative and request action,
the do interaction being used when the requester agent knows exactly which
skill it wishes to apply, and the derive interaction being used otherwise,
leaving it to the provider to decide. Finally, the register interaction is used
to populate and manage the agent community. Though we have only
described some examples of interaction within the prototype, the overall
nature of the system interactions should be clear, with brokers providing
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much of the capability for organizing large numbers of databases and services.
Certainly, there are many other issues here that need to be considered
(for example in relation to the potential use of di� erent data languages
(Achard, Vaysseix, and Barillot 2001) and ontologies (Baker et al. 1999,
The Gene Ontology Consortium 2000) to provide a consistent language for
the description of biological data) but these are separate concerns and we do
not consider them further here. It should be clear though that since the BAL
interaction language is at a higher level it permits di� erent underlying content
languages to be employed.

DISCUSSION AND CONCLUSIONS

The problems raised by the surge of information being added to biolo-
gical databases demand a signi® cant e� ort in order to solve them. This is
particularly important because of the potential bene® ts that an understand-
ing of the information locked away in these databases might bring. In this
paper we have introduced the GeneWeaver agent community for just this
purpose and described the architecture of the individual agents within it.
Concentrating on the fundamental aspects of agent interaction, we have
directed attention towards speci® c scenarios concerned with the management
and integration of distributed databases and analysis methods.

Related e� orts have taken di� erent approaches to the same problem. For
example, GeneQuiz (Andrade et al. 1999) and PEDANT (Frishman et al.
2001) are two functionally rich systems for genome analysis, which integrate
a large number of databases and analysis software using Perl Code, in a
largely monolithic fashion. The designs have been successful, but require
that all the resources are held locally, rasing possible concerns about exten-
sibility and scalability.

Adopting a more distributed approach, MAGPIE (Gaasterland et al.
2000) treats each genome as an individual project to which a number of
remote or local methods may be applied in a highly con® gurable manner.
For instance, remote web servers may be used, distributing both the com-
putational load and the management responsibilities for the underlying data-
bases and tools. However, the data employed by most remote servers is
consequently hidden so that there is potential for the data used by di� erent
servers to be inconsistent. External sites may have very di� erent policies on
how often they update their underlying data, resulting in variations in the
quality of output from servers based on similar methods. Also, the updating
of external servers is generally not noti® ed to the system so that it may
respond by recalculating appropriate data.

In essence, when using external servers, the management of the methods
and data is hidden. This can be remedied by providing distributed systems in
which the di� erent servers become an integral part of the framework, as in
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EDITtoTrEMBL (Moller et al. 1999). Its distributed analysis modules pro-
vide meta-data about their analysis methods, so that appropriate methods
can be chosen, in a similar way to the meta-data used within GeneWeaver to
choose appropriate agents.

Although EDITtoTrEMBL is similar to the approach we adopt, a num-
ber of key di� erences exist between the architectures. In particular,
EDITtoTrEMBL has a single thread of control (the dispatcher module)
which drives its analysis modules in essentially a client-server fashion. The
dispatcher module has the single goal of extending the annotation of a
TrEMBL formatted sequence using the analysis modules. While this su� ces
for the particular application, GeneWeaver provides a more generic and
extensible framework in which future goals of the system may not be entirely
anticipated. For this reason, each agent has its own thread of control, driven
by its own motivations and goals, resulting in a system which has a more
peer-to-peer architecture. This allows new agents joining the community not
only to provide services to the community, but to bring new goals which may
be achieved by the community.

Secondly, the systems di� er in the nature of the interactions between the
distributed components. In our terminology the analysis modules of
EDITtoTrEMBL deal with one type of interaction, a do interaction with a
DBSeqEntry as input, resulting in additional annotation being added to the
DBSeqEntry. Essentially, the distributed components are dealing with one
type of goal, to apply a particular analysis method to a sequence entry. By
contrast, to facilitate a cooperative community the GeneWeaver architecture
employs a much richer interaction language, with relationships that may
persist over long periods of time, allowing agents within the community to
bene® t from interactions with others. For example, the M agent can
improve its analysis as the community of agents discovers more examples of
membrane proteins. In turn, the genome agents bene® t from the M agent
being more accurate, since they use it for satisfying their annotation goals.

Agent systems that are heavily embedded in application to other scienti® c
domains di� er from much early work in the ® eld of information agents,
which achieved high visibility and was responsible to some extent for driving
the agent ® eld forward. For example, agents for traversing and searching the
web, e-mail, and news ® ltering agents exempli® ed a large body of work at one
end of the spectrum. These kinds of systems were not the only agents being
developed, but occupied a central position in the perception of the work
being done. The application of techniques developed for these relatively
well- de® ned problems, however, has transferred into more general areas,
and in more sophisticated and extensive systems. Electronic commerce is
just one example of the natural extension and elaboration of earlier work
and its application to an exciting new domain of activity (Guttman, Moukas,
and Maes 1998).

944 K. Bryson et al.



Perhaps more important to the long-term prospects of agent systems,
though, are application domains that are less intuitively obvious possibilities
for agent systems deployment, but no less deserving or appropriate. This is
because the successful development and use of agent systems by those who
are unaware of the hype, and less concerned with the issues of the technology
per se but more concerned with the bene® ts that it delivers, is more likely to
sustain the agent paradigm in the longer-term. In this respect, the work
described in this paper on the application of agent technology to bioinfor-
matics, in order to make sense of the vast amounts of data that are being
generated at an ever-increasing pace and stored at globally distributed but
accessible sites, demonstrates the suitability of the agent paradigm in yet
another very di� erent domain.

The particular value of these e� orts to the agent community is in solving
problems that have not been created by the very technology (or related
technology) that is being used to solve them. These problems and domains
are pre-existent and decoupled from the solutions, and consequently provide
what might be considered an objective demonstration of the utility of agent
systems. For the cynics Ð and there are many Ð this is an acid test. More
importantly, perhaps, these e� orts address a fundamental need in the bio-
logical sciences.
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