
SHIFTING THE FOCUS FROM METHODOLOGIES TO TECHNIQUES

Andrew D. H. Chow
Department of Computer Science

University of Warwick
Coventry CV4 7AL

 A.D.H.Chow@warwick.ac.uk

Mike Joy
Department of Computer Science

University of Warwick
Coventry CV4 7AL

M.S.Joy@warwick.ac.uk

ABSTRACT
Software engineering group projects are used in
many Computer Science degree programmes. In
most cases, there are constraining factors that
affect the use of methodologies, particularly agile
methods such as Extreme Programming (XP),
which has become more and more prominent in
recent years. Due to the interdependent nature of its
practices, it is often difficult to employ particular
subsets of agile practices in group projects. In this
paper, we report on an experiment conducted to
determine which agile practices remain effective
and pedagogically beneficial under specific
constraints, and argue that there is a need to focus
on teaching software engineering techniques rather
than merely concentrating on development
methodologies.

Keywords
Agile Practices, Computer Science, Education,
Software Engineering, Methodology, Techniques

1. INTRODUCTION
Over the past few years, agile programming has
become increasingly prominent in industry, with
many new software development projects following
its practices [1, 3, 8, 11].
Extreme Programming (XP) is the most prominent
agile methodology [2], and the availability of a
substantial number of books on XP and related
methodologies facilitates the inclusion of agile
programming in the curriculum.
In the academic year of 2002-3, the authors were
involved in the group project which forms a part of
the Introduction to Software Engineering module at
the University of Warwick, for which a group of six
second-year Computer Science students opted to
use agile practices. That pilot exercise was

successful, and in the following academic year a
larger exercise was undertaken in order to
investigate in greater depth the use of agile
practices in this academic context, and to compare
our findings with industrial experiences of agile
programming.
This paper outlines the issues concerning software
engineering methodologies, as well as those
regarding group work in Computer Science,
describes the research methods used to perform
the necessary observations, discusses the
feedback within the context of existing professional
opinions, and argues the need to shift the focus of
teaching from software engineering methodologies
to specific techniques and practices.

2. METHODOLOGIES
Software is expensive. The industry-wide agreed
cost estimate of software development stands at
between US$10 and US$20 per line of code for
commercial projects. This estimate increases
dramatically for high integrity systems. In addition,
the costs of failure in software projects, both in
terms of tangible, financial costs, as well as
intangible losses, can be substantial. Businesses
therefore require software to be developed in a
systematic, proven way, in order to ensure success
and to minimise costs, and this can only be
achieved by adhering to a software engineering
methodology.
Methodologies have existed for software
development since the early days of computing;
more often than not, these were based on
engineering techniques. These “classical”
methodologies, such as the Waterfall Model [13],
the Rational Unified Process [10], and other iterative
processes, are quite rigid; projects often start out
with good intentions and fail to follow through all the
practices and rules of a methodology. This can be
due to a number of reasons such as budget and
time constraints or the programmers’ lack of
discipline. Modern computing power makes it easy
to modify software without taking the required
considerations to ensure reliability, scalability and
ease-of-use.
Agile practices aim to leverage the adaptability of
software whilst ensuring the integrity of the
software. Practices such as refactoring, unit testing,

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.
© 2004 HE Academy for Information and Computer Sciences

and continuous integration ensure that the software
is as “clean” as possible, working as required, and
reliable. Agile practices provide a flexible
framework, which reduces the rigidity of classical
methodologies, concentrating on producing and
delivering visible results. Whereas classical models
and processes prescribe rigid frameworks of
development phases or stages, agile methodologies
emphasise flexibility, and provide the necessary
responsiveness to change, even late in the
development process.
Extreme Programming consists of 12 simple,
interdependent, agile practices, which work together
to form a whole that is greater than its parts.
However, such interdependencies can turn a
methodology based on simplicity into a high risk
proposition, because as Beck [1] comments, “any
one practice doesn't stand well on its own (with the
possible exception of testing). They require the
other practices to keep them in balance.” If a
software development team deviates slightly from
the 12 practices, the methodology may fail, as each
agile practice only “works” if it is supported by
another practice. Thus the XP practices are
effectively a house of cards or, as Stephens and
Rosenberg [8] put it, a “circle of snakes”, where
each practice, or “snake”, can only be made safe
“daisy-chaining it to the next snake”.

3. GROUP PROJECTS
Group projects in the second year of an
undergraduate course provide an early introduction
to teamwork at a time when students are
considered ready to understand other's code and
work with their fellow students. Many students view
the second-year project as valuable to their
degrees, and this value is enhanced by industry
interest, as well as the increasing emphasis placed
on teamwork and communication by prospective
employers [7].
However, there are constraining issues limiting the
teaching and use of agile practices in academia.
These issues include the level of assumed prior
knowledge possessed by the students, the new
techniques for agile methods required to be learnt,
the students' motivation and mismatch of
experience, the existence of lead coders, as well as
students' other academic commitments.
Consequently, there is a need to find the most
appropriate agile practices to teach that will best
equip students to make informed choices of
methods for given problems, rather than to teach a
particular methodology that may become obsolete
and inflexible in future.
In the Introduction to Software Engineering (“ISE”)
group project in the second year of study, students
are required work in groups of 5-6 to design and
implement a fully documented piece of software.

The project topic is specified by the module leader.
The usual process adopted for this project is a
classical software life-cycle, based on an iterative
waterfall model.
Self-assembled teams are formed early in the
academic year, and remain unchanged for the
duration of the project, until the software is
submitted. Throughout the project, formal
documentation is required at all key development
stages, and groups are assessed on the quality of
the documentation, the quality of the software, and
the effective team working throughout the project as
a group. It is intended that the project would be
completed in a ten week period during the second
term, although teams are allowed to start earlier if
they wish.

4. RESEARCH METHODS
The purpose of this research exercise was to
observe undergraduate students using agile
practices for their ISE group projects, which would
enable the identification of agile practices that are
suitable and practical within an academic context.
In the 2003-4 academic year, the ISE students were
invited to use agile practices for the group project,
and of the 51 teams participating, four teams (22
students) chose to use an agile methodology. A
more rigorous approach would have been to
allocate each team either a classical or an agile
framework for conducting the project, in equal
numbers, but this was rejected for ethical reasons
[5]. The size of the sample in this research exercise
could not have been controlled.
In order to ensure that the four teams were neither
advantaged nor disadvantaged in comparison to the
teams using classical software engineering
practices, parallel support sessions were provided
at the same level of staffing and frequency as
offered to the other students.
The research was necessarily qualitative, since
quantitative results, such as the final grades of the
teams, would be statistically insignificant. The
progress of these four teams was closely monitored
by the use of short questionnaires and unstructured
interviews, which together form the data used for
this exercise.

4.1 Questionnaires
Students were given a number of short
questionnaires throughout the project. These
questionnaires were written before the start of the
group project, and allowed some indicative
statistical data to be collected. In order to ensure
the students were not unduly burdened by the
research process of this project, the questionnaires
were short-answers based, and the numbers of
questions in each questionnaire were limited.

Agile Practice Summary of Comments

Continuous Integration Most popular, with teams going to great lengths to achieve this practice

Test-first Development Difficulty with JUnit; all expressed a wish for test-first development and that
more testing had been done

Pair Programming Mixed reaction; appears to depend on the personality match between
students

Emergent Design Wished for more planning (although the type of planning was not specified)

Refactoring Mentioned by all teams; although not implemented by most students. A
couple of teams mentioned the need for refactoring at the end

Coding Standards When attempted, the process fell apart after a while

Collective Code Ownership Only one team appear to have benefited; the others ending up with
members owning sections of code

Simple Design Not mentioned; related to emergent design, but was not emphasised at the
start of the project

Small Releases and Iterations

Time pressure, combined with an uneven pace of development, appears to
have made this an ideal a few mentioned, but none implemented.
“Iterations” were used by a lot of the teams, but in the strictest terms, they
were phases rather than iterations

Sustainable Pace Uneven development pace; burst of activity followed by days/weeks of no
development (due to other commitments)

Metaphor Not mentioned

On-Site Customer Not appropriate for this project, as there are simply too many groups

Figure 1

4.2 Interviews
Interviews were conducted towards the end of the
project, when the project was due to be submitted
for assessment, and were recorded and
transcribed. Each member of the four teams was
individually interviewed, and as there were 22
students providing feedback on their use of agile
practices, it provided a detailed picture of what
practices were deemed to be more applicable for
use in academia.

5. RESULTS
The results of the pilot study undertaken in 2002-3
suggested that certain agile practices were
successfully used with no significant modifications
to the academic process – which was designed for
classical methodologies – but the results did not
provide sufficient evidence of a successful
deployment of agile practices within the particular
constraints.
The exercise in 2003-4 has provided some
evidence of successful deployment of certain agile

practices such as continuous integration, as well as
unsuccessful use of other practices such as
collective code ownership and test-first
development. The students’ comments throughout
the transcripts on specific agile practices are
summarised in Figure 1.
The students opting to use agile practices for their
group projects were essentially opting to learn a
new set of skills, including the use of new tools as
well as software development methods. Whilst it
may be desirable to introduce and teach such skills
through lectures, the use of a didactic approach
alone is unlikely to be effective.
From the qualitative analysis of interview
transcripts, it is possible to identify several agile
practices that appeared to be relevant to students.
One of the more successful practices was
continuous integration, which was facilitated by the
appropriate use of tools such as CVS [9] and
Eclipse [6], although one team did not have access
to a CVS server and had to improvise with Yahoo!
Briefcase [15]. There were mixed reaction to pair
programming, with some students finding the

practice beneficial, whilst others regarded it as a
hindrance, although most agreed that the practice
fostered better communication between members.
Whilst agile programming advocates emergent
design and just-in-time planning, students have
expressed the need for more planning upfront in an
undergraduate group project. The issue of tools was
raised by members from all four teams, highlighting
the roles of tools as a supporting function for
effective use of agile practices. It is perhaps
interesting to note that none of the students
participating in this research exercise had prior
experience or knowledge of agile programming,
which illustrates the need for more emphasis on the
teaching of agile methods if agile practices are to be
adopted in education.
The qualitative research has provided a focus on
the best practices for further investigation. It is clear
that whilst the practice of continuous integration has
benefited the majority of students who used agile
practices for their projects, other practices that were
deemed “useful” by students could not be fully
implemented for various reasons. These practices
include test-first development, which was not
implemented due to a lack of experience with JUnit
[12] and Eclipse, pair programming, where success
was largely dependent on the mix of personality,
and refactoring – a practice mentioned by all teams,
but not implemented due to a lack of knowledge.
In addition, there was considerable confusion over
the practice of collective code ownership, as well as
the concept of “iterations”, where despite using agile
practices, students were essentially developing
software in phases. The data obtained indicates that
communication between tutors and students has
room for improvement, and reiterates the need for
better information on various agile practices and
support tools to be made available to students
before the start of the group project, which would
better equip students who wish to follow practices
such as test-first development and refactoring. This,
in turn, will facilitate an in-depth investigation into
the use and applicability of more agile practices in
education.

6. CONCLUSIONS
The sample size of four teams – 22 students – is
too small for any meaningful statistical analysis to
be performed on the quantitative data, although the
qualitative feedback obtained from the sample
echoes some of the published opinions of software
development professionals such as Stevens and
Rosenberg [14] with regard to agile practices.
In addition, the research suggests that another agile
methodology is not what is needed, rather that it is
more beneficial to introduce alternatives in terms of
agile practices to students and equip them with the
necessary choice of methods for different problem
situations. Indeed, the educational focus of software
engineering should not be on methodologies; rather,

it is the selective implementation of specific agile
practices and techniques in education that will be
most beneficial to students.
Finally, there is a need for students to be equipped
with the necessary knowledge in order to tailor an
agile methodology to a particular project. This is
emphasised by XP’s underlying principle – fix XP
when it breaks – illustrated by Cockburn's idea of “a
methodology per project” [4], and supported by the
increasing number of publications that examine and
set out to mitigate the “flaws” of XP, including the
often-cited Extreme Programming Refactored: The
Case Against XP [14].
It is therefore important to shift the emphasis from a
particular methodology, and focus instead on the
“human” elements and techniques that make a
group project successful. It has become evident that
practices such as peer review through pair
programming, iteration planning and release
planning appear to increase communication
between members of teams. For example, iteration
planning and release planning provide key goals
and milestones to which developers can aspire. Pair
programming and peer review improve
communication between team members, as well as
their understanding of the project. These practices,
used in conjunction with a well-defined architecture
and a clear specification, as well as the practice of
up-front design, will enhance communication and
bring all members of a team up to speed with all the
aspects of the project.

7. REFERENCES
[1] Beck, K., Extreme Programming Explained:

Embrace Change. Addison-Wesley (1999).
[2] Beck, K. et al., Manifesto for Agile Software

Development. http://www.agilemanifesto.org
[3] Cockburn, A. Agile Software Development.

Addison-Wesley Longman (2002).
[4] Cockburn, A. A Methodology Per Project.

http://alistair.cockburn.us/crystal/articles/mpp/m
ethodologyperproject.html

[5] Cohen, L., Manion, L. and Morrison, K.,
Research Methods in Education. 5th Ed.
Routledge Falmer (2000).

[6] The Eclipse Foundation, eclipse.org.
http://www.eclipse.org/

[7] Fincher, S., Petre, M. and Clark, M. (eds),
Computer Science Project Work: Principles and
Pragmatics. Springer-Verlag (2001).

[8] Fowler, M., Refactoring: Improving the Design
of Existing Code. Addison Wesley (1999).

[9] The Free Software Foundation, CVS –
Concurrent Versions System.
http://www.gnu.org/software/cvs/

[10] IBM Corporation, Rational Unified Process.
http://www-306.ibm.com/software/awdtools/rup/

[11] Martin, R. C., Agile Software Development:
Principles, Patterns and Practices. 2nd Ed.
Prentice Hall (2003).

[12] Object Mentor, Inc., JUnit, Testing Resources
for Extreme Programming. http://www.junit.org

[13] Sommerville, I., Software Engineering. 7th Ed.
Pearson Education Ltd (2004).

[14] Stephens, M. and Rosenberg, D., Extreme
Programming Refactored: The Case Against
XP. Apress (2003).

[15] Yahoo! Inc., Yahoo! Briefcase.
http://briefcase.yahoo.com/

