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An Approach to Source-Code Plagiarism
Detection and Investigation Using
Latent Semantic Analysis

Georgina Cosma and Mike Joy

Abstract—Plagiarism is a growing problem in academia. Academics often use plagiarism detection tools to detect similar source-code
files. Once similar files are detected, the academic proceeds with the investigation process which involves identifying the similar
source-code fragments within them that could be used as evidence for proving plagiarism. This paper describes PlaGate, a novel tool
that can be integrated with existing plagiarism detection tools to improve plagiarism detection performance. The tool also implements a
new approach for investigating the similarity between source-code files with a view to gathering evidence for proving plagiarism.
Graphical evidence is presented that allows for the investigation of source-code fragments with regards to their contribution toward
evidence for proving plagiarism. The graphical evidence indicates the relative importance of the given source-code fragments across
files in a corpus. This is done by using the Latent Semantic Analysis information retrieval technique to detect how important they are
within the specific files under investigation in relation to other files in the corpus.

Index Terms—Source-code similarity detection, similarity investigation tool, latent semantic analysis.

1 INTRODUCTION

OURCE-CODE plagiarism detection in programming assign-

ments is a task many higher education academics carry
out. Source-code plagiarism occurs when students reuse
source-code authored by someone else, either intentionally or
unintentionally, and fail to adequately acknowledge the fact
that the particular source-code is not their own [1]. Cosma
and Joy created a detailed definition as to what constitutes
source-code plagiarism from the perspective of academics
who teach programming on computing courses [1].

Once similar file pairs are detected, the academic
proceeds with the task of investigating the similar source-
code fragments within the detected files. In source-code
files, similarity may be suspicious or innocent. For example,
similarity between source-code files may exist innocently
due to source-code examples and solutions the students
were given during classes [2]. Suspiciously similar source-
code files are those that share source-code fragments that
are distinct in program logic, approach, and functionality
from source-code fragments found in other files in the
corpus. This is the kind of similarity that could be used as
strong evidence for proving plagiarism [2].

It is important that instances of plagiarism are detected
and gathering sound evidence to confidently proceed with
plagiarism is a vital procedure [1]. Joy and Luck [3] also
identify the issue of the burden of proof on gathering
appropriate evidence for proving plagiarism,
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“Not only do we need to detect instances of plagiarism, we
must also be able to demonstrate beyond reasonable doubt
that those instances are not chance similarities.”

Many tools have been developed for detecting similarities
in files [4]. These tools automate the detection process and
allow the academic to carry out the investigation process
manually. One feature that does not exist in these tools is one
that aids the academic during the process of investigating the
detected similarity between files for plagiarism.

This paper describes a novel tool, PlaGate, for detecting
similar source-code files, and investigating similar source-
code fragments with a view to gathering evidence for
proving plagiarism.

The main contributions of this paper are summarized as
follows:

e an approach for enhancing the plagiarism detection
performance of existing algorithms for detecting
similarity in source-code plagiarism;

e a technique for semiautomatically investigating
source-code fragments and indicating their contri-
bution level (CL) toward evidence gathering for
proving source-code plagiarism.

2 SouRrce-CobDE PLAGIARISM DETECTION TooOLS

Many different plagiarism detection tools exist and these
can be categorized depending on their algorithms. This
section describes source-code plagiarism detection tools
using the three categories identified by Mozgovoy [4],
which are the Fingerprint-based systems, String-matching
systems, and Parameterized matching algorithms.

Tools based on the fingerprint approach work by
creating “fingerprints” for each file which contain statis-
tical information about the file, such as average number of
terms per line, number of unique terms, and number of
keywords [4].
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An early plagiarism detection system was an attribute
counting program developed by Ottenstein for detecting
identical and nearly identical student work [5], [6]. The
program used Halstead’s software metrics to detect
plagiarism by counting operators and operands for ANSI-
FORTRAN modules [7], [8].

Robinson and Soffa developed a plagiarism detection
program that combined new metrics with Halstead’s
metrics in order to improve plagiarism detection [9]. Their
system ITPAD [9] breaks each program into blocks and
builds graphs to represent the structure of each student’s
program. It then generates a list of attributes based on the
lexical and structural analysis and compares pairs of
programs by counting these characteristics.

Measure of Software Similarity (MOSS) [10] is based on
a string-matching algorithm which divides programs into
k-grams, where a k-gram is a contiguous substring of
length k. Each k-gram is hashed, and MOSS selects a subset
of these hash values as the program’s fingerprints.
Similarity is determined by the number of fingerprints
shared by the programs—the more fingerprints they share,
the more similar they are [11].

Some of the most well known and recent string-
matching-based systems include Yet Another Plague
(YAP3) [12], JPlag [13], and Sherlock [3]. In most string-
matching-based systems, including the ones mentioned
above, the first stage is called tokenization. At this stage,
each source-code file is replaced by predefined and
consistent tokens, for example, different types of loops in
the source-code may be replaced by the same token name
regardless of their loop type (e.g., while loop, for loop). Each
source-code document is then represented as a series of
token strings. The tokens for each document are compared
to determine similar source-code segments.

YAP3 converts programs into strings of tokens and
compares them by using the token matching algorithm,
Running-Karp-Rabin Greedy-String-Tiling algorithm (RKR-
GST), in order to find similar source-code segments [12].
This algorithm was developed mainly to detect breaking of
code functions into multiple functions and to detect the
reordering of independent source-code segments. The
algorithm works by comparing two strings (the pattern and
the text) by searching the text to find matching substrings of
the pattern. Matches of substrings are called tiles. Each tile is
a match which contains a substring from the pattern and a
substring from the text. Once a match is found the status of
the tokens within the tile are flagged. Tiles whose length is
below a minimum-match length threshold are ignored. The
RKR-GST algorithm aims to find maximal matches of
contiguous substring sequences that contain tokens that
have not been covered by other substrings, and therefore to
maximize the number of tokens covered by tiles.

JPlag [13] uses the same comparison algorithm as YAP3,
but with optimized runtime efficiency. In JPlag, the
similarity is calculated as the percentage of token strings
covered. One of the problems of JPlag is that files must
parse to be included in the comparison for plagiarism, and
this can cause similar files that were not parsed to be
missed. Also, JPlag’s user defined parameter of minimum-
match length is set to a default number. Changing this
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number can alter the detection results (for better or worse)
and to alter this number one may need an understanding of
the RKR-GST algorithm behind JPlag. JPlag is implemented
as a web service and contains a simple but efficient user
interface, which displays a list of similar file pairs and their
degree of similarity, and a display for comparing the
detected similar files by highlighting their matching blocks
of source-code fragments.

Sherlock [3] also implements a similar algorithm to
YAP3. One of the benefits of Sherlock is that, unlike JPlag,
the files do not have to parse to be included in the
comparison and there are no user defined parameters that
can influence the system’s performance. Sherlock is an
open-source tool and its token matching procedure is easily
customizable [3] to languages other than Java. Sherlock’s
user interface displays a list of similar file pairs and their
degree of similarity, and a display for comparing the pairs
of files by indicating their matching blocks of source-code
fragments. In addition, Sherlock displays quick visualiza-
tion of results in the form of a graph where each vertex
represents a single source-code file and each edge shows
the degree of similarity between the two files. The graph
only displays similarity (i.e., edges) between files above the
given user defined threshold. Sherlock is a stand-alone tool
and not a web-based service like JPlag and MOSS. A stand-
alone tool may be preferable to academics with a view to
checking student files for plagiarism when taking into
consideration confidentially issues.

The DUP tool [14] is based on a parameterized matching
algorithm which detectsidentical and near-duplicate sections
of source-code, by matching source-code sections whose
identifiers have been substituted (renamed) systematically.

Information retrieval methods have been applied to
source-code plagiarism detection by Moussiades and Vakali
[15]. They have developed a plagiarism detection system
called PDetect which is based on the standard vector-based
information retrieval technique. PDetect represents each
program as an indexed set of keywords and their frequen-
cies found within each program, and then computes the
pair-wise similarity between programs. Program pairs that
have similarity greater than a given cutoff value are grouped
into clusters. Their results also show that PDetect and JPlag
are sensitive to different types of attacks and the authors
suggest that JPlag and PDetect complement each other.

3 WHAT Is LATENT SEMANTIC ANALYSIS (LSA)?

Latent Semantic Analysis is an information retrieval techni-
que comprising mathematical algorithms that are applied to
text collections. Initially a text collection is preprocessed and
represented as a term-by-file matrix containing terms and
their frequency counts in files. Matrix transformations are
applied such that the values of terms in files are adjusted
depending on how frequently they appear within and across
files in the collection.

A mathematical algorithm called Singular Value Decom-
position (SVD), decomposes this term-by-file matrix into
separate matrices that capture the similarity between terms
and between files across various dimensions. The aim is to
represent the original relationships between terms in a
reduced dimensional space such that noise is removed from
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the data and therefore uncovering the important relations
between terms and documents [16]. LSA aims to find
underlying (latent) relationships between different terms
that have the same meaning but never occur in the same
file. In the context of textual information retrieval, noise
accounts for variability in term usage.

LSA derives the meaning of terms from approximating
the structure of term usage among documents through SVD.
This underlying relationship between terms is believed to be
mainly due to transitive relationships between terms, that is,
terms are similar if they cooccur with the same terms within
files [17], [18]. Traditional text retrieval systems cannot
detect this kind of transitive relationship between terms
and a consequence of this is that relevant files may not be
retrieved. LSA categorizes terms and files into a semantic
structure depending on their semantic similarity, hence
latent semantic in the title of the method.

LSA is typically used for indexing large text collections
and retrieving files based on user queries. One of the
important features of LSA is that it uncovers the important
relations between terms by reducing the noise in the data
[17], and so can detect similar terms even if they never
appear in the same document. LSA thus overcomes the
problems of synonymy (different terms can be used to
describe the same concept) and polysemy (one term can
have more than one meaning) experienced by traditional
text retrieval systems [19].

The ability of LSA to identify similar documents that
contain different terms describing the same concept seems
to be important in the area of plagiarism detection. This is
because common plagiarism techniques include renaming
variables in the code, and LSA is likely to detect documents
that contain such semantic changes. Furthermore, changes
to the document structure do not affect the detection of
similar documents because LSA treats each document as a
bag of words. Thus, if two documents are very similar but
contain lexical and structural changes as an attempt to hide
plagiarism, they are likely to be detected by LSA. Another
advantage of using LSA is that it is language independent
and therefore it is not needed to develop any parsers for
programming languages in order for LSA to provide
detection of similar files.

The literature does not appear to describe any LSA-based
tools for detecting source-code plagiarism in student assign-
ments or an evaluation of LSA on its applicability to detecting
source-code plagiarism. A thorough literature review by
Mozgovoy [4] also identifies this absence in literature.

Nakov [20] describes an application of LSA to a corpus of
source-code programs written in the C programming
language by Computer Science students. The results show
that LSA was able to detect the copied programs. It was also
found that LSA had given relatively high similarity values to
pairs containing noncopied programs. The author assumes
that this was due to the fact that the programs share common
language reserved terms and due to the limited number of
solutions for the given programming problem. The authors
mention that they have used data sets comprising of 50, 47,
and 32 source-code files and they have set dimensionality to
k = 20. Considering the size of their corpora, their choice of
dimensions appears to be too high, and it is suspected that

this was the main reason that the authors report very high
similarity values to nonsimilar documents. The authors
justify the existence of the high similarity values to be due to
files sharing language reserved terms. However, the use of a
suitable weighting scheme and appropriate number of
dimensions can reduce the chances of this happening. In
their paper, the authors do not provide details of their choice
of parameters other than their choice of dimensions (which
also lacks justification).

Much work has been done in the area of applying LSA to
software components. Some of the tools developed include
MUDABIlue [21] for software categorization, Softwarenaut
[22] for exploring parts of a software system using hierarch-
ical clustering, and Hapax [23] which clusters software
components based on the semantic similarity between their
software entities (whole systems, classes, and methods).
Other literature includes the application of LSA to categoriz-
ing software repositories in order to promote software reuse
[24], [25], [26].

4 SIMILARITY IN SOURCE-CODE FILES

Similarity between two files is established by investigating
the source-code fragments found within the files for
common characteristics. Investigation involves scrutinizing
similar source-code fragments and thereafter judging
whether the similarity between them appears to be
suspicious or innocent. If a significant amount of suspicious
similarity is found then the files under investigation can be
considered suspicious.

As part of a survey conducted by Cosma and Joy [2],
academics were required to judge the degree of similarity
between similar source-code fragments and justify their
reasoning. The survey revealed that it is common procedure
during the investigation process, while academics compare
two similar source-code fragments for plagiarism, to take
into consideration factors that could have caused this
similarity to occur. Such factors include:

e the assignment requirements—for example, students
may be required to use a specific data structure (e.g.,
vectors instead of arrays) to solve a specific program-
ming problem;

e supporting source-code examples given to students
in class—these might include skeleton code that they
could use in their assignment solutions;

e whether the source-code fragment in question has
sufficient variance in solution—that is, whether the
particular source-code fragment could have been
written differently; and

e the nature of the programming problem and nature
of the programming language—for example, some
small Object-Oriented methods are similar, and the
number of ways they can be written are limited.

All similarity between files must therefore be carefully

investigated to determine whether it occurred innocently
or suspiciously. The survey findings revealed that source-
code plagiarism can only be proven if the files under
investigation contain distinct source-code fragments and
hence demonstrate the student’s own approach to solving
the specific problem. It is source-code fragments of this
kind of similarity that could be used as strong evidence for
proving plagiarism [2].
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The similar source-code fragments under investigation
must not be “short, simple, trivial (unimportant), standard,
frequently published, or of limited functionality and
solutions” because these may not provide strong evidence
for proving plagiarism [2]. Small source-code fragments
that are likely to be similar in many solutions can be used to
examine further the likelihood of plagiarism, but alone they
may not provide sufficient evidence for proving plagiarism.
Section 4.1 describes the types of similarity found between
similar files.

4.1 Similarity Categories between Files and

Source-Code Fragments

In student assignments two source-code fragments may
appear similar, especially when they solve the same task, but
they may not be plagiarized. When investigating files for
plagiarism some source-code fragments would be used as
stronger evidence than others, and from this perspective
source-code fragments have varying contributions to the
evidence gathering process of proving plagiarism. This
section presents a criterion for identifying the contribution
levels of source-code fragments with a view to proving
plagiarism. This criterion was developed after considering
the findings from a survey discussed in [2] and Section 4.
The survey was conducted to gather an insight into what
constitutes source-code plagiarism from the perspective of
academics who teach programming on computing subjects.
A previous study revealed that similarity values between
files and between source-code fragments are a very sub-
jective matter [2], and for this reason the criterion developed
consists of categories describing similarity in the form of
levels rather than similarity values.

The contribution levels for categorizing source-code
fragments by means of their contribution toward providing
evidence with a view to proving plagiarism are as follows.

e Contribution Level 0—No contribution. This cate-
gory includes source-code fragments provided by
the academic that appear unmodified within the
files under consideration as well as in other files in
the corpus. Source-code fragments in this category
will have no contribution toward evidence gather-
ing. Examples include skeleton (or template) code
provided to students and code fragments presented
in lectures or handouts.

e Contribution Level 1—Low contribution. This cate-
gory includes source-code fragments belonging to
the Contribution Level 0—No contribution category but
which have been modified in a similar manner in the
files in which they occur. Examples include modified
template or other source-code provided to students
to structure their programs, source-code fragments
presented in lectures or handouts, and source-code
fragments which are coincidentally similar due to the
nature of the programming language used and other
factors discussed in Section 4. Source-code fragments
in this category may only be used as low contribution
evidence if they share distinct lexical and structural
similarity.

e Contribution Level 2—High contribution. The
source-code fragments belonging to this category
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appear in a similar form only in the files under
investigation, and share distinct and important
program functionality or algorithmic complexity.

The levels of similarity (SL) that can be found between
files are as follows:

e Similarity Level 0—Innocent. The files under
investigation do not contain any similar source-
code fragments, or contain similar source-code
fragments belonging to the Contribution Category 0:
No contribution.

e Similarity Level 1—Suspicious. The files under
investigation share similar source-code fragments
which characterize them as distinct from the rest of
the files in the corpus. The majority of similar source-
code fragments found in these files must belong to
the Contribution Level 2—High contribution category
although some belonging to Contribution Level
1—Low contribution and Contribution Level 0—No
contribution categories may also be present and
may contribute to the evidence. Enough evidence
must exist to classify the files under investigation in
this category.

5 PLAGATE SYSTEM OVERVIEW

The PlaGate tool aims to enhance the process of plagiarism
detection and investigation. PlaGate is integrated within
external plagiarism detection tools to improve plagiarism
detection and to provide a facility for investigating the
source-code fragments within the detected files. The first
component of PlaGate, PlaGate’s Detection Tool (PGDT), is a
tool for detecting suspiciously similar files. This tool can be
integrated with external plagiarism detection tools for
improving their detection performance. The second compo-
nent of PlaGate, PlaGate’s Query Tool (PGQT), is integrated
with PGDT and the external tool for further improving
detection performance. PGQT has a visualization function-
ality useful for investigating the relative similarity of given
source-code files or source-code fragments with other files in
the corpus. In PlaGate, the source-code files and source-code
fragments are characterized by LSA representations of the
meaning of the words used. With regards to investigating
source-code fragments, PGQT compares source-code frag-
ments with source-code files to determine their degree of
relative similarity. The idea is that files that are suspicious
will contain distinct (i.e., contribution level 2) source-code
fragments that can distinguish these files from the rest of the
files in the corpus. The similarity between the distinct source-
code fragments and the files in which they appear will be
relatively higher than the files that do not contain the
particular source-code fragment. From this it can be assumed
that the relative similarity (i.e., importance) of a source-code
fragment across files in a corpus can indicate its contribution
level toward evidence for proving plagiarism.

Fig. 1 illustrates the detection functionality of PlaGate
and how it can be integrated with an external tool.

The similarity detection functionality of PlaGate is
described as follows:

1. Similarity detection is performed using the external
tool.
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; Similarity Detection Phase with PlaGate’s Detection (PGDT) and

Query (PGQT) Tools

-
Similarity Detection with External Tool |
i
i

External tool

Detected file pairs

Master list of
detected file pairs

Similarity Investigation Phase with
PlaGate’s Query Tool (PGQT)

Similarity
visualization

Suspicious source-
code fragments

Fig. 1. PlaGate’s detection and investigation functionality integrated with
an existing plagiarism detection tool.

2.

External tool outputs a list containing the detected
file pairs based on a given cutoff value.

PlaGate’s List Management component (PGLM)
stores the detected files in the master list of detected
file pairs.

Similarity detection is carried out with PGDT and
similar file pairs are detected based on a given
cutoff value.

PGLM stores the detected files in the master list of
detected file pairs.

PGLM removes file pairs occurring more than once
from the master list.

PGQT takes as input the first file, F;,, from each file
pair stored in the master list.

PGQT treats each F, file as a query and detects file
pairs based on a given cutoff value.

PGLM updates the master list by including the file
pairs detected by PGQT. Steps 5 and 6 are thereafter
repeated.

PGQT can also be used for visualizing the relative

similarity of source-code fragments and files with regards to

identifying the contribution level of source-code fragments

toward proving plagiarism. This procedure is described as

follows:

1. PGQT accepts as input a corpus of source-code files'
and source-code fragments to be investigated.

2. PGQT returns graphical output in the form of
boxplots that indicate the contribution levels of
source-code fragments.

3. PGQT returns the files most relative to the particular
source-code fragment.

4. PGQT returns the category of contribution of the

source-code fragment in relation to the files under
investigation specified by the user.

PGQT can also be used for visualizing the relative
similarity between files. This procedure is described as
follows:

1. The source-code file corpus only needs to be input once either at the
detection stage or at the investigation stage.

5.1

383

PGQT accepts as input a corpus of source-code
files, and accepts as queries the source-code files to
be investigated (these could be files from the
master list or any other file in the corpus selected
by the academic).

PGQT returns output in the form of boxplots that
indicate the relative similarity between the queries
and files in the corpus.

PGQT returns the relative degree of similarity
between files in the corpus.

System Representation

The following definitions describe the PlaGate components:

A file corpus C is a set of source-code files C =
{F, Fy,...,F,}, where n is the total number of files.
A source-code fragment, denoted by s, is a contig-
uous string of source-code extracted from a source-
code file, F.

A source-code file (also referred to as a file) F' is an
element of C, and is composed of source-code
fragments, such that F' = {si,ss,...,s,} where p is
the total number of source-code fragments found in F'.
A set of source-code fragments S extracted from
file Fis S C F.

File length is the size of a file F', denoted by Iy, is
computed by Irp = >"7 | t; where ¢; is the frequency
of a unique term in F, and ¢ is the total number of
unique terms in F.

Source-code fragment length is the size of a source-
code fragment s, denoted by [, is computed by
l; =>"1 ,t; where t; is the frequency of a unique
term in s, and u is the total number of unique
terms in s.

6 THE LSA PROCESS IN PLAGATE
The LSA process in PlaGate is as follows:

1.

Initially the files are preprocessed, by removing
from the files terms that were solely composed of
numeric characters, syntactical tokens (e.g., semico-
lons, colons), terms that occurred in less than two
files (i.e., with global frequency less than two), and
terms with length less than two. Prior experiments
have shown that removing comments improves
retrieval performance especially in files which
contain suspicious source-code but whose comments
are significantly different [27], [28].

LSA starts by transforming the preprocessed corpus
of files into an m x n matrix A = [a;;], in which each
row represents a term vector, each column repre-
sents a file vector, and each cell a;; of the matrix A
contains the frequency at which a term ¢ appears in
file j [16]. Each file F, is represented as a vector in
the term-by-file matrix.

Term-weighting algorithms are then applied to
matrix A. The purpose of applying weighting
algorithms is to increase or decrease the importance
of terms using local and global weights in order to
improve detection performance. With document
length normalization the term values are adjusted
depending on the length of each file in the corpus.
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The value of a term in a file is a;; = l;; X gi X nj,
where [;; is the local weight for term ¢ in file j, g; is
the global weight for term 4, and n; is the normal-
ization factor. Various local and global weighting
algorithms exist (see [29]). Exhaustive experiments
were conducted with various source-code corpora
and the results of those experiments revealed that
the term-frequency local weight, normal global weight,
and cosine normalization return good results [27].2
Term frequency is the number of times term ¢ occurs
in document j and defined by f;;. The normal global
weighting is defined by

gi_l/\/—i?ja

and cosine normalization is defined by

“1/2
nj = (Z(Qilzj)?) : (1)

2

4. Singular Value Decomposition is then performed
on the weighted matrix A. This involves decom-
posing matrix A into the product of three other
matrices: a term by dimension matrix, U, a singular
value matrix, ¥, and a file by dimension matrix, V,
such that A = UXVT.

5. Dimensionality Reduction is then performed in
which the three matrices are reduced to k dimen-
sions by selecting the first k£ columns from matrices
U, Y, and V, and the rest of the values are set to zero.
The reduced matrices are denoted by Uy, X, and V},
such that A=~ A, = U, X ViI. In the experiments
described in this paper k was set to 30 dimensions
based on results gathered from previous experi-
ments [27], [28].

7 SIMILARITY DETECTION AND SOURCE-CODE
FRAGMENT CLASSIFICATION IN PLAGATE

After applying LSA to a source-code corpus, the PGQT or
PGDT tools can be used for retrieving suspicious files.
Using the PGQT tool an input file or source-code fragment
(that needs to be investigated) is transformed into a query
vector and projected into the reduced k-dimensional space.
Given a query vector g, whose nonzero elements contain the
weighted term frequency values of the terms, the query
vector can be projected to the k-dimensional space by

Q=q xU,x;*, (2)

[16]. Once projected, a file F', or source-code fragment s, is
represented as a query vector Q.

The similarities between the projected query @) and all
other source-code files in the corpus are computed using a
similarity measure. The cosine similarity measure is very
popular and involves computing the dot product between
two vectors (e.g., the query vector and file vector) and
dividing it by the euclidean distance between the vectors.

2. The experiments included all the data sets that were involved in the
experiments described in this paper.
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This ratio gives the cosine angle between the vectors, and
the closer the angle is to +1.0 the higher the similarity
between the query and file vector. Therefore, in the term-
by-file matrix A that has columns a; the cosine similarity
between the query vector g = (¢, 1s,. .. ,tm)T and the n file
vectors is given by Berry and Browne [29]

T m
a;q o
O = T e T Lot )
4%} m g m
for j=1,...,n where n is equal to the number of files in the

data set (or the number of columns in the term-by-file
matrix A). Hence, the output is a 1 x n vector SV in which
each element sv;, contains the similarity value between the
query and a file in the corpus, sv = sim(Q, F'), € [-1.0,+1.0].

Common terms can exist accidentally in source-code files
and due to the factors discussed in Section 4, and this can
cause relatively high-similarity values between files in an
LSA-based system. For this reason a criterion has been
devised for classifying the source-code fragments into the
categories described in Section 4.1.

Each source-code fragment can be classified into a
contribution level category based on the similarity value
between the source-code fragment (represented as a query
vector) and selected files under investigation (each file
represented as a single file vector). This similarity is the
cosine between the query vector and the file vector as
discussed in Section 7. The classification of similarity values
is performed as follows.

1. PlaGate retrieves the sim(Q,F) similarity value
between a query Q) and the selected file F.

2. Based on the value of sim(Q, F) PlaGate returns the
classification category as Contribution Level 2 (if
sim(Q, F) > ¢), otherwise Contribution Level 1.

The PGDT detection tool uses a different algorithm for
detecting similar file pairs in PlaGate. Using the PGQT tool
and thus treating every file as a new query and searching
for similar files that match the query would not be
computationally efficient or feasible for large collections.
This is because each file must be queried against the entire
collection. For this reason, instead of the cosine similarity
algorithm, function 4 will be used for computing the
similarity between all files in the collection. After applying
SVD and dimensionality reduction to the term-by-file
matrix, A, the file-by-file matrix can be approximated by
Deerwester et al. [30]

(ViZ)(Vizi)" (4)

This means that element i, j of the matrix represents the
similarity between file i and file j in the collection.

The output from PlaGate is visualized using Tukey’s
boxplots (also called box-and-whisker plots) [31]. To
construct a boxplot the elements of the SV vector are
initially ordered from smallest to largest sv,...,sv, and
then the median, upper quartile, lower quartile, and
interquartile range values are located.

Using boxplots, the data output from PlaGate can be
visualized and quickly interpreted. Boxplots help the user
to identify clustering type features and enable them to
discriminate quickly between suspicious and not suspi-
cious files.
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TABLE 1
The Data Sets

A B € D
Number of files 106 176 179 175
Number of terms 537 640 348 459
Number of suspicious file pairs 6 48 51 79
Number of files excluded from 13 7 8 7
comparison by JPlag

8 EXPERIMENTS

Four corpora comprising of Java source-code files created
by students were used for conducting the experiments.
These were real corpora produced by undergraduate
students on a Computer Science course at the University
of Warwick. Students were given simple skeleton code to
use as a starting point for writing their programs. Table 1
shows the characteristics of each data set.

In Table 1, Number of files is the total number of files in a
corpus. Number of terms is the number of terms found in an
entire source-code corpus after preprocessing is performed
as discussed in Section 6. Number of suspicious file pairs is the
total number of file pairs that were detected in a corpus and
judged as suspicious by academics (the term suspicious is
defined in Section 4.1). JPlag reads and parses the files prior
to comparing them. Files that cannot be read or do not parse
successfully are excluded from the comparison process by
JPlag. In Table 1, the last row indicates the number of files
excluded from comparison by JPlag. PlaGate and Sherlock
do not exclude any files from the comparison process.

In the next two sections that follow results gathered
from two experiments are described. Experiment 1 is
concerned with evaluating the performance of PlaGate
and two existing external tools, i.e., Sherlock and JPlag,
and investigating whether integrating existing plagiarism
detection tools with PlaGate enhances source-code similar-
ity detection performance. Experiment 2 is concerned with
the evaluation of the PGQT tool for investigating source-
code fragments.

8.1 Performance Evaluation Measures for

Plagiarism Detection

This section describes evaluation of the comparative perfor-
mances of PGDT, PGQT, JPlag, and Sherlock. The similarity
values provided by these three tools are not directly
comparable since they use a different measure of similarity.

Two standard and most frequently used measures in
information retrieval system evaluations are recall and
precision, and these have been adapted to evaluate the
performance of plagiarism detection.

The similarity for two files sim(F,, F}) is computed using
a similarity measure. Based on a threshold ¢, the file pairs
with sim(F,, F},) > ¢ will be detected. For the purposes of
evaluation the following terms are defined:

e  Suspicious file pairs: each suspicious file pair, sp,
contains files that have been judged by human
graders as suspicious (as defined in Section 4.1). A
set of suspicious file pairs is denoted by SP = {sp,
Sp2,...,8pst, where the total number of known
suspicious file pairs in a set (i.e., corpus) is z = |SP)|.

e Innocent file pairs: are those pairs that do not share
any suspicious similarity but have been detected as
suspicious by the tools.

e Detected file pairs: are those pairs that have been
retrieved with sim(Fy, Fy) > ¢. A set of detected file
pairs is denoted by DF = SDUNS = {sdy, sds, ...,
sdy} U {nsi,nss,...,ns,}, where SD C S. The total
number of detected file pairs is |[DF|. The total
number of suspicious file pairs detected is denoted
by |SD|, and the total number of innocent file pairs
detected is denoted by |NS].

e PlaGate’s cutoff value, ¢,, typically falls in the range
0.70 < ¢, < 1.00. Any file pairs with sim(F,, F;) >
¢, are detected. The cutoff values for PGDT were
selected experimentally. For each data set, detection
was performed using cutoff values ¢, =0.70 and
¢p = 0.80. The cutoff value selected for each data set
was the one that detected the most suspicious file
pairs and fewer innocent.

e JPlag’s cutoff value is ¢;, where 0 < ¢; < 100, ¢; is
set to the lowest sim(F,, F},) given to a similar file
pair sd; detected by JPlag.

e Sherlock’s cutoff value is ¢,, and is set to the top
N detected file pairs. Sherlock displays a long list of
detected file pairs sorted in descending order of
similarity (i.e., from maximum to minimum). With
regards to selecting Sherlock’s cutoff value, each
corpus was separately fed into Sherlock and each file
pair in the returned list of detected file pairs was
judged as suspicious or innocent. The cutoff value is
set to the N position in the list of detected file pairs
where the number of innocent file pairs detected
begins to increase. In computing Sherlock’s precision
N = |DF|.

Recall, denoted by R, where R € [0, 1], is the proportion

of suspicious file pairs that are detected based on the
cutoff value, ¢. Recall is 1.00 when all suspicious file pairs

are detected

Recall |SD|  number_of_suspicious_file_pairs_detected
ecall = =

|SP|  total_number_of _suspicious_file_pairs
(5)
Precision, denoted by P, where P € [0, 1], is the propor-
tion of suspicious file pairs that have been detected in the
list of files pairs detected. Precision is 1.00 when every file
pair detected is suspicious
SD
Precision = |‘D—F||
__number_of suspicious_file_pairs_detected

total_number_of_file_pairs_detected
(6)
The overall performance of each tool will be evaluated by
combining the precision and recall evaluation measures. As
a single measure for evaluating the performance of tools for
plagiarism detection, the weighted sum of precision and
recall will be computed by

Precision + 2 x Recall

where F € [0,1]. The closer the value of F is to 1.00 the
better the detection performance of the tool.
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Fig. 2. Methodology for creating a list of suspicious file pairs.
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A recall-precision graph is an evaluation measure that
combines recall and precision, and shows the value of
precision at various points of recall.

8.2 Experiment 1

Experiment 1 is concerned with evaluating the performance
of PlaGate against two external tools, JPlag and Sherlock.
Detection performance when the tools function alone and
when integrated with PlaGate is evaluated. Literature
contains evaluations of plagiarism detection tools [13], [32],
[4]. The performance of JPlag is considered to be close to that
of MOSS [13], therefore JPlag was selected for comparison
and integration with PlaGate as it was readily available to us.
Furthermore, evaluations revealed that string-matching
algorithms JPlag and Yap3 performed better than the
parameterized matching algorithm DUP by means of
retrieving a higher number of suspicious file pairs. In the
evaluations discussed in this paper, Sherlock was also used
because it was readily available and used by the Department
of Computer Science at the University of Warwick, and it is
believed that other institutions also use this tool.

In order to evaluate the detection performance of tools
using the evaluation measures discussed in Section 8.1, the
total number of suspicious file pairs in each corpus must be
known. Fig. 2 illustrates the process of creating the list of
suspicious file pairs.

Initially, tools PGDT, Sherlock, and JPlag were separately
applied on each corpus in order to create a master list of
detected file pairs for each corpus. This produced three lists
of detected file pairs (based on a given cutoff value as
discussed in Section 8.1), where each list corresponds to a
tool output. These three lists were merged into a master list.
Other known suspicious file pairs identified by academics,
but not identified by the tools, were also included in the
master list of detected file pairs. Thereafter, PGQT was
applied to every F, file in the list (that is the first file in a pair
of files) and file pairs with similarity value above ¢, were
retrieved and added to the master list of detected file pairs.
Academics scrutinized the detected file pairs contained in
the master list and identified the suspicious file pairs. The
final outcome consisted of four lists, i.e., one for each corpus,
containing the paired ID numbers of suspicious files.

After constructing the list of suspicious file pairs, the
detection performance of each tool is evaluated using
the evaluation measures discussed in Section 8.1, and the
detection results returned by each tool are based on a given
cutoff value. In addition, detection performance is evaluated
when PGQT is applied to 1) all detected file pairs in the list,
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TABLE 2
Performance of Tools on Data Set A

Recall ~ Precision F
PGDT ¢p =0.70 0.67 0.80 0.71
Sherlock ¢s = 20 0.83 0.25 0.64
Sherlock@20 U PGDT 1.00 0.27 0.76
Sherlock@20 U PGDT U PGQT  1.00 0.23 0.74
JPlag ¢; = 54.8 0.50 0.75 0.58
JPlag U PGDT 0.67 0.67 0.67
JPlag U PGDT U PGQT 0.83 0.71 0.79
JPlag U Sherlock@20 1.00 0.27 0.76
TABLE 3

Performance of Tools on Data Set B

Recall ~ Precision F
PGDT ¢, =0.80 0.38 0.75 0.50
Sherlock ¢s = 40 0.75 0.90 0.80
Sherlock@40 U PGDT 0.83 0.83 0.83
Sherlock@40 U PGDT U PGQT  0.96 0.78 0.90
JPlag ¢; =99.2 0.42 1.00 0.61
JPlag U PGDT 0.46 0.79 0.57
JPlag U PGDT U PGQT 0.54 0.79 0.62
JPlag U Sherlock@40 1.00 0.92 0.97

and 2) only to those file pairs judged as suspicious by the
academics. Results from the second case will be marked with
PGQT v2 in the description of results.

Tools are expected to detect similar file pairs and it
would not be reasonable to penalize a system for detecting
suspicious files that after undergoing human judgment are
found not to contain suspicious similarity that can be
regarded as plagiarism, as their similarity may be due to
factors such as those discussed in Section 4.

Evaluation measures are applied to evaluate the detec-
tion performance of each of the tools PGDT, JPlag, and
Sherlock. Evaluations from combining PGDT and PGQT
with Sherlock, and JPlag are also performed.

Following is a summary of the results based on Tables 2,
3,4, and 5.

e Recall increases when each of the external tools,
JPlag and Sherlock, are integrated with PGDT, than
when they are used alone. The results show that
when combining PGDT with external tools, preci-
sion may decrease although this may not always be
the case. The constant increase in recall suggests that
PGDT and the external tools complement each other
by detecting different kinds of plagiarism attacks,
and thus suspicious files missed by one tool are
likely to be detected by the other tool.

TABLE 4
Performance of Tools on Data Set C

Recall ~ Precision F
PGDT ¢, =0.70 0.23 1.00 0.49
Sherlock ¢s = 30 0.51 0.87 0.63
Sherlock@30 U PGDT 0.65 0.89 0.73
Sherlock@30 U PGDT U PGQT  0.65 0.89 0.73
JPlag ¢; =91.6 0.37 1.00 0.58
JPlag U PGDT 0.57 1.00 0.71
JPlag U PGDT U PGQT 0.71 0.88 0.76
JPlag U Sherlock@30 0.67 0.89 0.74
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TABLE 5
Performance of Tools on Data Set D

Recall ~ Precision F
PGDT ¢p =0.70 0.28 0.76 0.44
Sherlock ¢s = 50 0.57 0.90 0.68
Sherlock@50 U PGDT 0.70 0.82 0.74
Sherlock@50 U PGDT U PGQT  0.82 0.76 0.80
JPlag ¢; = 100.0 0.25 1.00 0.50
JPlag U PGDT 0.28 0.52 0.36
JPlag U PGDT U PGQT 0.30 0.55 0.38
JPlag U Sherlock@Q50 0.57 0.90 0.68

e  When external tools are integrated with both PGDT
and PGQT there is a further increase in recall than
when external tools are used alone or with PGDT.
However, this integration is likely to cause a slight
decrease in precision than when the external tools
are integrated only with PGDT.

e Although JPlag returned high precision values
across all data sets, it suffered from low recall.
Integrating JPlag with PlaGate’s PGDT and/or
PGQT increased recall considerably but caused a
negative impact on precision than when JPlag was
used alone.

e Combining JPlag and Sherlock improved recall
values for data sets A, B, and C, whereas recall
remained the same for data set D. When JPlag was
combined with Sherlock precision decreased. How-
ever, overall results suggest that by combining the
two tools together more suspicious file pairs are
detected, which is a desirable outcome for academics.

e JPlag and Sherlock are both based on a string-
matching algorithm, but yet their detection perfor-
mance differs significantly on data sets. Evidence
from the experiments does not indicate which of the
two tools, JPlag or Sherlock, is best for plagiarism
detection, however, the results suggest that combin-
ing the techniques together or with PlaGate results
in improved detection performance, i.e., more
suspicious files are being detected when using a
combination of tools than when using a single tool.

Fig. 3 illustrates the value of Precision at various level of

Recall for data set D. The performance of the various tools
can be quickly read from the chart—the order of the unions
indicates the order of sets of documents retrieved by each
tool, for example, the JPlag U PGDT U PGQT curve shows

Recall-Precision Graph
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Fig. 3. Recall-precision graph for data set D.
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File A FileB
1. publicint backtrack Control{IRobotrobot) | 1. publicint backtrackControl(IRobotrobot)
Z: f 2 {
3. System.out.printin("BACKTRACK"); 3. System.out.printin{"Going backwards"};
4. intdirection = IRobot.AHEAD; 4. if(nonwallexits{robot) > 2)
5. intx = nonWallExits(robot); 5 f
6. inty = passageExits{robot}; 6. if(passageexits(robot) > 0}{
7. f(x>2) 7. direction = explorerControl{robot);
&t 8. robotData.popall(});}
9. if(y>0) 9. else
10. { 10. { direction = oppositepassage(robot});
11. direction =exploreControl(robot); 11. robotData.popall(};}
12. robotdata.popall(); 12. }
EF 13. if (nonwallexits(robot) ==1}{
14. else 14. direction=deadend(robot);}
15 { 15. else
16. direction =around(robot); 16. if {(nonwallexits(robot) == 2){
17. robotdata.popall(); 17. direction = corridor(robot);}
18. } 18. returndirection;
19. } 15 3
20. if (x==2){direction = corridor{robot);}
21, if (x==1){direction = deadend(robot};}
22. returndirection;
23. }

Fig. 4. Source-code extract from a file pair that was detected by PlaGate
and not by JPlag or Sherlock.

that the initial points of the particular line are the
documents retrieved by JPlag, then PGDT, and the last
ones are those retrieved by PGQT. The JPlag U PGDT U
PGQT curve clearly illustrates that integrating PGDT (the
data points of the green vertical line) decreases precision.
The green line illustrates an increase in recall and precision
where the last five points on the line are concerned—which
are PGQT’s results.

Similarity often occurs in groups containing more than
two files. Sherlock and JPlag often failed to detect some of
the files from groups containing suspicious files. JPlag
failed to parse some files that were suspiciously similar to
other files in a corpus (and they were excluded from the
comparison process), and also suffered from local confusion
which also resulted in failing to detect suspicious file pairs
[13]. Local confusion occurs when source-code segments
shorter that the minimum-match-length parameter have
been shuffled in the files. String matching algorithms tend
to suffer from local confusion, which also appears to be the
reason why Sherlock missed detecting similar file pairs.
Sherlock often failed to detect suspicious file pairs because
they were detected as having lower similarity than
nonsimilar files (i.e., retrieved further down the list and
lost among many innocent) mainly due to local confusion.

Fig. 4 contains an extract from two files that were
suspiciously similar. The structural changes, i.e., extra lines
of code, caused string-matching tools JPlag and Sherlock to
fail to detect the particular file pair. Each of the files contain
approximately 385 lines of code, and thus only an extract is
shown in this paper.

A careful comparison of the two source-code fragments
shown in Fig. 4 reveals the following similarities: lines of
code are similar but their location is different within the
files; file A introduces extra variables x, and y; lexical
differences (different identifier/variable/method names);
and importantly the functionality of files A and B remains
the same regardless of all the differences that can be
considered as techniques for disguising similarity.

PlaGate does not suffer from local confusion because it
does not rely on detecting files based on structural
similarity, hence they cannot be tricked by code shuffling.
Furthermore, unlike JPlag, files do not need to parse or
compile to be included in the comparison process.
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TABLE 6
Data Set A File Pairs and Their Similarity Values

Files under investigation in Dataset A, n=106
File Pairs | PGQT | HI LS | H2 LS | PGQT LS
F82-F9 0.96 1 1 1
F75-F28 0.99 1 1 1
F86-F32 0.99 1 1 1
F45-F97 0.77 0 0 0
F73-F39 0.37 0 0 0

Overall results suggest that integrating PlaGate with
external tools improves overall detection performance.
Plagiarism detection using a combination of two tools is
always better than using a single tool.

8.3 Experiment 2

This section is concerned with the evaluation of PGQT’s
output against human judgment with a view to investigating
of source-code fragments for plagiarism. Experiment 2
follows on from experiment 1 discussed in Section 8.2. From
the file pairs detected in data sets A and B from experiment 1,
34 pairs of similar source-code fragments each consisting
of one Java method are to be investigated. The file pairs
containing the source-code fragments for investigation are:
F113-F77, F75-F28, F82-F9, F86-F32. Source-code fragments
were extracted from the first file from each file pair (ie.,
F113, F75, F82, and F86) and treated as queries to be input
into PGQT.

For evaluation purposes, academics with experience in
identifying plagiarism graded each pair of source-code files
and source-code fragments based on the criterion discussed
in Section 4.1. Boxplots were created for each set of source-
code fragments and arranged in groups, each containing
boxplots corresponding to source-code fragments extracted
from a single file. Section 8.3.1 discusses the visualization
output from investigating the file pairs in data set A.
Suspicious and innocent file pairs have been selected as
examples for investigating the visualization component of
PlaGate’s PGQT tool.

Table 6 compares the similarity values by PGQT, and the
human graders. Column PGQT holds the sim(F,, F}) cosine
similarity values for each pair containing files F,, F}, € C.
Columns H1 SL and H2 SL show the similarity levels (SL)
provided by human grader 1 (H1) and human grader 2
(H2), respectively. Table 8 shows the source-code fragment
ID’s and their similarity values to files, and it is described in
Section 8.3.3.

As discussed in Section 6, when PGQT is used for
plagiarism detection, a selected file F is treated as a query, it
is expected that the particular file selected will be retrieved
as having the highest similarity value with itself, and shown
as an extreme outlier in the relevant boxplot. Therefore, if
file [ is treated as a query, the file most similar to that will
be the file itself (i.e., F}). In the evaluation, this similarity
will be excluded from comparison. Boxplots were created
for each of the files under investigation.

When PGQT is used for plagiarism investigation, the
similarity value between a source-code fragment belonging
to the contribution level 2 category (described in Section 4.1),
and the file F from which it originated, is expected to be
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Fig. 5. Data set A: Similar files under investigation are F82-F9, F75-F28,
F63-F32, F45-F97, F73-F39. Outliers sim; > 0.80: F9-9,82; F75-75,28;
F86-86,32.

relatively high compared to the remaining files in the
corpus. In addition, if the particular source-code fragment is
distinct, and therefore important in characterizing other files
in the corpus, then these files will also be retrieved indicated
by a relatively high similarity value.

With regards to source-code fragments belonging to
contribution level 1, described in Section 4.1, because these
are not particularly important in any specific files, it is
usually not expected that they will retrieve the files they
originated from. This is especially the case if the files contain
other source-code fragments that are more important in
distinguishing the file from the rest of the files in the corpus.

The numbers shown in the boxplots correspond to the
file identifier numbers, such that 9 corresponds to file 9,
which is denoted as F9 in the analysis of the results.

8.3.1 Data Set A: Investigation of Source-Code Files
Using PGQT

From data set A, files F82, F75, F86, F45, and F73 were used

as queries in PGQT. Fig. 5 shows the output from PGQT,

which shows the relative similarity between these files and

the rest of the files in the corpus.

Files F82, F75, and F86 were graded at similarity level 1
(suspicious) by the human graders. Their corresponding
boxplots show that these files also received a high similarity
value with their matching similar files. The files under
investigation and their matching files were returned as
extreme outliers with a large separation from the rest of the
files in the corpus. Table 7 contains the top five highest
outliers for each of the files of data set A. These are
indicators that files F82, F75, and F86 are suspicious.

Files F45 and F73 were graded at similarity level 0
(innocent) by the human graders. The boxplots in Fig. 5 and
Table 7 show that files F45 and F73 were returned in the top

TABLE 7

Data Set A Files—Five Highest Outliers and Their Values

F82| Value|| F75| Value|| F86 | Value|| F45| Value|| F73| Value
[ | F82[ 1.00 || F75| 1.00 || F86 | 1.00 || F45| 1.00 || F73| 1.00
2 | F9 | 0.96 || F28| 0.99 || F32 | 0.99 || FI1| 0.79 || F74| 0.79
3| F84| 0.21 || F12| 0.20 || F39 | 0.26 || F97| 0.77 || F31| 0.59
4 | F4 | 021 || F21| 0.19 || F102| 0.19 || F19| 0.51 || F97| 0.49
5| F91| 0.21 || F14| 0.12 || F76 | 0.17 || F20| 0.35 || F61| 0.38
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TABLE 8
Similarity Values for All Source-Code
Fragments and Their Suspicious File Pairs

FileC FileD

Method clearBoard() is a CL1 fragment Method clearBoard() isa CL1 fragment

1. publicvoid clearBoard(){ 1. publicvoid clearBoard(){

ranked but without any other files receiving relatively close
similarity values to them, because they were used as the
query files. In addition, without taking into consideration
outlier values, the data for F45 and F73 are spread out on a
relatively wide scale when compared to the boxplots
corresponding to files F82, F75, and F86, and without much
separation between the files under investigation and the
remaining of the files in the corpus. These are indicators
that files F45 and F73 are innocent.

8.3.2 Data Sets A and B: Investigation of Source-Code
Fragments Using PGQT

After the similarity detection stage, similar source-code
fragments in files F82, F75 and F86 of data set A, and file F113
of data set B were investigated. From these files, source-code
fragments from both contribution level 1 (low contribution)
and contribution level 2 (high contribution) categories were
selected as described in the methodology in Section 8.3. Each
individual boxplot was placed in one of three sets of boxplot
graphics, corresponding to the file it originated from. The
boxplots of source-code fragments corresponding to files
F82, F75, F86, and F113 are shown in Figs. 7, 8, 9, and 10,
respectively. Table 8 shows the contribution levels assigned
to the source-code fragments by the human graders.

Case| File/SCF stmy | simg| m_sim | PGQT IQR | Human 2. for(inti=0;i <boardArray.length;i++}{ 2. for{inty=0;y <tilearray.length;y++){
name CL CL 3. for(intn=0;n <boardArray.length;n++) 3. for(intx=0;x<tilearray.length;x++)
1 Fll3/Q1* 0.96 0.88 0.92 2 0.16 2] 4. boardArray[i][n] = null;}} 4. tilearray[y][x]=null;}}
2 F113/Q2* | 099 | 0.83 | 0.91 2 0.15 | 2
3 F113/Q3* | 023 | 0.03 | 0.13 1 0.42 1 ) )
4 Jait 13/@4* 0.97 0.93 0.95 2 0.09 2 Method addElements() isaCL2 fragment Method addElements() isa CL2 fragment
2 EZZQ; 83; 83(5) ggg ; 8:138 ; 1. publicvoid addElements(String str){ 1. publicvoid addElements{Stringstr){
Q : y : : 2. if(noofElements == wordboardlistl.length){ 2. if (Elements==wordboardlistl.length){
7 F75/Q3 0.26 0.29 0.28 1 0.34 1 3. String{] wordboardlist2= 3. String{] wordboardlist2 =
8 F75/Q4 0.94 0.93 0.94 2 0.14 2 4. new String[wordboardlistl.length*2]; 4. new Stringlwordboardlistl.length*2};
9 F75/Q5 0.63 0.65 0.64 1 0.29 1 5. for(inti=0; ikwordboardlistl.length; i++){ 5. for{inti=0; i<wordboardlistl.length; i++){
10 F75/Q6 0.66 0.67 0.67 1 0.26 1 6. wordboardlist2[ij]=wordboardlist1[i];} 6. wordboardlist2[i]=wordboardlist1[i];}
11 F75/Q7 0.99 | 0.99 | 0.99 2 0.17 | 2 7. wordboardlistl=wordboardlist2;} 7. wordboardiistl=wordboardlist2;}
12 F82/Q1 0.99 0.97 0.98 2 0.20 2 8. wordboardlist1{noofElements] = str; 8. wordboardlist1[Elements] = str;
13 F82/Q2 098 | 0.98 | 0.98 2 023 | 2 9. noofElements++;} 9. Elements++;}
14 F82/Q3 0.33 0.33 0.33 1 0.30 1 10. publicString elementAt{inti){ 10. publicString elementAt(inti){
15 F82/Q4 047 0.35 0.41 1 0.35 1 11. return wordboardiist1{i];} 11. returnwordboardiist1[i];}
16 F82, 40 0.29 0. 1 0. 1 12. publicint size(){ 12. publicint size(){
05 0 20 > 13. returnnoofElements;} 13. returnElements;}
17 F82/Q6 0.57 | 0.48 | 0.53 1 0.34 1
18 F82/Q7 0.39 | 0.33 | 0.36 1 032 | 1
;3 Egé;gg 83% 831 ggg ; 8;; ; Method StringArray() isa CL2 fragment StringArray() is a CL2 fragment
21 F82/Q10 0.97 | 0.94 | 0.96 2 024 | 2 1. publicString[] StringArray(){ 1. publicString[] StringArray(){
22 F86/Q1 0.99 | 097 | 0.98 2 0.18 | 2 2. String{] newArray = new String[noofElements]; |2.  String{] newarray = new String[Elements];
23 F86/Q2 0.72 | 0.70 | 0.71 1 0.20 1 3. for{inti=0;i <noofElements;i++){ 3. for{inti=0;i<Elements;i++){
24 F86/Q3 0.97 | 096 | 0.97 2 0.19 | 2 4. newArray[i]=elementAt(i);} 4. newarraylij=elementAt(i);}
25 F86/Q4 0.06 0.07 0.07 1 0.33 1 5. returnnewArray;} 5. returnnewarray;}
26 F86/Q5 098 | 0.98 | 0.98 2 0.17 | 2
27 F86/Q6 023 | 0.22 | 0.23 1 0.30 | 1 Fig. 6. CL1 and CL2 Source-code extracts from a file pair that was
28 F86/Q7 0.44 | 047 | 0.46 1 037 |1 detected by PlaGate and not by JPlag or Sherlock.
29 F86/Q8 098 | 0.97 | 0.98 2 0.17 | 2
30 F86/Q9 0.05 | 0.06 | 0.06 1 0.33 1 . .
31 | F86/Q10 013 | 0.12 | 013 1 033 | 1 The fragments shown in Fig. 6, demonstrate the
32 | F86/QI1 0.62 1 0.62 | 0.62 ! 035 1 1 difference between source-code belonging to the CL1 and
33 F86/Q12 0.99 | 099 | 0.99 2 0.16 | 2 . .
34 F86/Q13 0.94 0.92 0.93 2 0.16 2 CL2 Categorles. The fragments were extracted from file
:ilTheOF]]BhCLZ s(iurce-cocle ﬁ'z:)gments are four:id in gwre tl;an two ; pairs detected by PlaGate (51m7 = 0.99) but failed to be
i t imilarit t F77 Fi1 in t . . .

= Iy Tie Simtlanty NaTies hetvest an are shownin the detected by JPlag or Sherlock. The particular file pair could

table. y & p p

not be parsed by JPlag, and Sherlock failed to detect it since
the strings are different, and because the fragments were
found in different locations within each file. JPlag is also
sensitive to this kind of attack (i.e., local confusion). LSA
did detect them since it is not sensitive to systematic-
renaming or code-shuffling. Extra comments have been
added above each fragment containing its name and
contribution level category.
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Fig. 7. F82 boxplot: Similar files under investigation are F82 and F9.
Outliers sim; > 0.80: Q1—82, 9; Q2—9, 82; Q3—91, 54, 23, 26, 104,
105, 94; Q5—22, 31; Q9—9, 82; Q10—9, 82.
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Fig. 8. F75 boxplot: Similar files under investigation are F75 and F28.
Outliers sim; > 0.80: Q2—75, 28; Q3—22, 31; Q4—75, 28; Q7—75, 28.

In the case of the source-code fragments extracted from
file F82 (Fig. 7), the boxplots corresponding to Q1, Q2, Q9,
and Q10 all received very high similarity values with both
files F82 and F9. Source-code fragments Q1, Q2, Q9, and
Q10 were classified as belonging to the contribution level 2
category by the human graders (Table 8). The boxplot of Q3
has many mild outliers but there is no great separation
between the files in the corpus, and no extreme outliers
exist in the data set. These are strong indicators that source-
code fragment Q3 is not particularly important within files
F9 and F82 or any other files in the corpus. Q5 has one mild
outlier and no great separation exists between files.
Excluding outliers, the data for the contribution level 1
source-code fragments Q3, Q4, Q5, Q6, Q7, and Q8 are
spread on a relatively wider scale than data of contribution
level 2 source-code fragments. The boxplots corresponding
to contribution level 1 source-code fragments do not
provide any indications that they are important in any of
the files. As shown in Table 8, the observations from
boxplots match the academic judgments.

Fig. 8 shows the data for the source-code fragments
corresponding to file F75. The boxplots show that Q2, Q4,
and Q7 received very high-similarity values with files F75
and F28. Table 8 shows that source-code fragments Q2, Q4,
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Fig. 9. F86 boxplot: Similar files under investigation are F86 and F32.
Qutliers sim; > 0.80: Q1—86, 32; Q2—39; Q3—86, 32; Q4—86, 85;
Q5—86, 32; Q8—86, 32; Q12—86, 32; Q13—386, 32.
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Fig. 10. F113 boxplot: Similar files under investigation are F113 and
F77. Outliers with sim; > 0.80: Q1—121, 149, 40, 113, 146, 134, 77,
Q2—121, 149, 40, 113, 146, 134, 77; Q4—121, 149, 40, 113, 146, 134,
77.Q1, Q2, and Q4 are CL2 SCFs, Q3 is a CL1 SCF.

and Q7 were classified at the contribution level 2 category.
The remaining source-code fragments—Q1, Q3, Q5, and
Q6—were graded at contribution level 1 by the human
graders. Source-code fragment Q6 has two mild outliers,
files F75 and F28, which suggests that source-code fragment
Q6 is relatively more similar to those two files than others in
the corpus, however there is no great separation between
the files in the corpus and hence it cannot be considered as
particularly important fragment in files F75 and F28.

The boxplots corresponding to source-code fragments
extracted from file F86 shown in Fig. 9 and from file F113
shown in Fig. 10 follow a similar pattern. In Fig. 10, the
boxplots corresponding to source-code fragments Q1, Q2,
and Q4, show files F113 and F77 as extreme outliers with a
good separation from the rest of the files. In addition, the
remaining files presented as extreme outliers in Q1, Q2, and
Q4 are very similar to files F113 and F77 and all contain
matching similar source-code fragments to Q1, Q2, and Q4.
During the detection process JPlag only identified F113 and
F77 as similar and failed to parse the remaining files in this
group of similar files. Sherlock performed better than JPlag
and detected three files. PGDT outperformed JPlag and
Sherlock and detected five of those files. By using PGQT to
investigate similar source-code fragments seven similar files
were detected and scrutinizing these revealed that they all
shared suspicious source-code fragments. The suspicious
source-code fragments are Q1, Q2, and Q4 shown in Fig. 10.

In summary, the boxplots follow either Pattern 1 or
Pattern 2. These are discussed as follows:

e DPattern 1: Source-code fragments belonging to
Contribution Level 1 category

- The values in boxplots corresponding to source-
code fragments categorized as contribution
level 1 by academics are spread out on the
scale without any files having great separation
than others.

- The IQR of box plots corresponding to contribu-
tion level 1 source-code fragments is relatively
higher than those corresponding to contribution
level 2 source-code fragments.
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e Pattern 2: Source-code fragments belonging to
Contribution Level 2 category

- The boxplots for the contribution level 2 source-
code fragments show the suspicious files
marked as extreme outliers with a good separa-
tion from the rest of the files in the corpus.

- The upper-quartile values for the source-code
fragments belonging to the contribution level 2
category are either equal or below the median of
the source-code fragments falling into the con-
tribution level 1 category. That is, over three-
quarters of the values in the contribution level 2
data sets are lower than the median values of the
contribution level 1 data sets.

- Some of the boxplots of source-code fragments
belonging to the contribution level 1 category
have whiskers extending to high on the scale
and/or mild outliers. This suggests that in
some cases the single pair-wise similarity
values between source-code fragments and files
may not be sufficient indicators of the source-
code fragments’ contribution toward indicating
plagiarism.

- Excluding the outliers, and therefore consider-
ing the IQR and difference between maximum
and minimum adjacent values, data for source-
code fragments belonging to the contribution
level 2 category are spread out on a smaller scale
compared to the data for contribution level 1
source-code fragments.

8.3.3 Comparing PGQT’s Results with Human
Judgment

This section describes and explores hypotheses formed
from analyzing the output of PGQT in Section 8.3.2. Table 8
shows the source-code fragments and their similarity values
to files. Column sim; = sim(Q, F,) and simy = sim(Q, Fy)
are the cosine similarity values between each source-code
fragment Q and files F;, and F, where F;, corresponds to the
first file in a pair of files, and F; corresponds to the second
file, and F, F; € C. Column m_sim is the average of sim;
and simgy, column PGQT CL shows the contribution level
values based on the m_sim values (contribution levels are
described in Section 4.1), column IQR shows the IQR values
computed from the boxplot, and Human CL is the contribu-
tion level provided by the academics based on the criterion
in Section 4.1.

Observing the similarity values provided by LSA and
comparing those to the similarity levels provided by the
human graders, revealed a pattern—grouping the similarity
values provided by LSA (thus creating LSA CL values) to
reflect the categories used by human graders (i.e., CL1 or
CL2), revealed that LSA values matched those of humans
when setting threshold value ¢ to 0.80. More detail on the
relevant experiments is described later on in this chapter.
Thus, in the discussion that follows, we will set the value of

¢ to 0.80.
The hypotheses that will be tested are as follows:

TABLE 9
Spearman’s rho Correlations for All Source-Code Fragments

Spearman’s rho Correlations
sim sima m_sim | PGQT IQR
CL
Human CL 0.87** | 0.87** | 0.87** | 1.00** —0.85*
Sig. (2-tailed) 0.00 0.00 0.00 0.00 0.00
N 34 34 34 34 34
**_ Correlation is significant at the 0.01 level (2-tailed).

Hypothesis 1.

e Hy: There is no correlation between the PGQT
similarity values (i.e., simy,simg, m_sim) and the
contribution level values assigned by the human
graders (human CL).

e Hy: There is a correlation between the PGQT
similarity values (i.e., simy, simg, m_sim) and con-
tribution level values assigned by the human graders
(human CL).

Hypothesis 2.

e Hy: There is no correlation between the human CL
and the PGQT CL wvariables.

e  Hj: There is a correlation between the human CL and
the PGQT CL wvariables.

Hypothesis 3.

e Hy: There is no correlation between the IQR and
human CL variables.

e  Hy: The greater the human CL value the smaller the
IQR. There is a correlation between these two
variables. The relative spread of wvalues (using the
IQR) in each set of source-code fragments can indicate
the contribution level of source-code fragments.

Regarding hypothesis 1, Table 9 shows that average
correlations between PGQT variables (simq, sima, Mgim)
and human CL are strong and highly significant ~ = 0.87,
p < 0.01. This suggests that PGQT performs well in
identifying the contribution level of source-code fragments.

Regarding hypothesis 2, Table 9 shows an increase in
correlations between the human CL and the similarity values
provided by PGQT (i.e., simy, sims, mgy,) when the PGQT
values are classified into categories (PGQT CL). The correla-
tions were strong and significant between the human CL and
the PGQT CL variables with r = 1.00, p < 0.01. Classifying
the PGQT similarity values has improved correlations with
human judgment, i.e, a 0.13 increase in correlations,
increasing from r = 0.87,p < 0.01 to r = 1.00,p < 0.01.

Regarding hypothesis 3, Table 9 shows that the correla-
tions for variables IQR and human CL are strong and highly
significant r = —0.85, p < 0.01. These findings suggest that
taking into consideration the distribution of the similarity
values between the source-code fragment and all the files in
the corpus can reveal important information about the
source-code fragment in question with regards to its
contribution toward evidence gathering.
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TABLE 10
Spearman’s rho Correlations for
Each File Computed Separately

Spearman’s rho Correlations
simi s1ma m_sim | IQR PGQT
CL

F113 Human CL | 0.77 0.77 0.77 -0.77 1.00
Sig. (2-tailed) 0.23 0.23 0.23 0.23 0.00
N 4 4 4 4 4
F75 Human CL 0.87* 0.87* 0.87* —0.87* 1.00**
Sig. (2-tailed) 0.01 0.01 0.01 0.01 0.00
N 7 7 7 7 7
F82 Human CL 0.86** | 0.86** | 0.86™* | —0.86** | 1.00**
Sig. (2-tailed) 0.00 0.00 0.00 0.00 0.00
N 10 10 10 10 10
F86 Human CL | 0.87** | 0.87** | 0.87** | —0.87** | 1.00**
Sig. (2-tailed) 0.00 0.00 0.00 0.00 0.00
N 13 13 13 13 13
**_Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

Before accepting any of the hypotheses it is worth
investigating the correlations between variables when
source-code fragments are grouped by the files they
originated from. Table 10 shows the correlations.

Table 10 shows that the correlations are equal for the
human CL and PGQT values (i.e., simy, simsg, mg,) and for
the human CL and IQR variables. Note that although the
significance of correlations for F113 is computed as statisti-
cally low (i.e., 0.23), for the purposes of this research this
correlation is still considered important because the aim is to
investigate whether PlaGate can identify the contribution
levels of any number of given source-code fragments when
compared to human judgment. In conclusion, based on these
findings H; of hypotheses 1, 2, and 3 can be accepted.

9 CONCLUSION

This paper proposes a novel approach based on the Latent
Semantic Analysis information retrieval technique for
enhancing the plagiarism detection and investigation
process. A prototype tool PlaGate, has been developed that
can function alone or be integrated with current plagiarism
detection tools. The main aims of PlaGate are:

e to detect source-code files missed by current
plagiarism detection tools;

e to provide visualization of the relative similarity
between files; and

e to provide a facility for investigating similar source-
code fragments and indicate the ones that could be
used as strong evidence for proving plagiarism.

The findings discussed in this paper revealed that PlaGate
can complement external plagiarism detection tools by
detecting similar source-code files missed by them. This
integration resulted in improved recall at the cost of precision,
i.e.,, more suspicious but also more innocent in the list of
detected files. In the context of source-code plagiarism
detection, string-matching-based detection systems have
shown to detect fewer innocent than an LSA-based system.
Overall performance was improved when PlaGate’s PGDT
and PGQT tools were integrated with the external tools JPlag
and Sherlock.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO.3, MARCH 2012

This paper also proposes a technique for the investiga-
tion of source-code fragments. The idea put into practice
with the PlaGate’s Query Tool is that plagiarized files can
be identified by the distinct source-code fragments they
contain, where distinct source-code fragments are those
belonging to the contribution level 2 category, and it is these
source-code fragments that will serve as the main evidence
for proving plagiarism. PlaGate computes the relative
importance of source-code fragments within all the files in
a corpus and indicates the source-code fragments that are
likely to have been plagiarized. A comparison of the results
gathered from PGQT with human judgment have revealed
high correlations between the two. PGQT has shown to
estimate well the importance of source-code fragments with
regards to characterizing files.

Plagiarism is a sensitive issue and supporting evidence
that consists of more than a similarity value can be helpful to
academics with regards to gathering sound evidence for
proving plagiarism. The experiments with similarity values
revealed that in some cases, the single pair-wise similarity
values between source-code fragments and files were not be
sufficient indicators of the source-code fragments’ contribu-
tion toward proving plagiarism. This is because relatively
high similarity values were given to source-code fragments
that were graded as low contribution by human graders. This
issue was dealt with by classifying the similarity values
provided by PGQT into previously identified contribution
categories. Correlations have shown an improvement in
results, i.e., higher agreement between classified similarity
values and the values provided by human graders.

10 CONSIDERATIONS AND FUTURE WORK

Choosing the optimal parameter settings for noise reduction
can improve system performance. Choice of dimensions is
the most important parameter influencing the performance
of LSA. Furthermore, automatic dimensionality reduction is
still a problem in information retrieval. Techniques have
been proposed for automating this process for the task of
automatic essay grading by Kakkonen et al. [33]. For now,
PlaGate uses parameters that were found as giving good
detection results from conducting previous experiments
with source-code data sets.

During experimental evaluations, the creation of artificial
data sets has been considered in order to investigate whether
LSA would detect particular attacks. However, from the
perspective of whether a specific attack can be detected by
LSA, the behavior of LSA is unpredictable whether a
particular file pair classified under a specific attack (i.e.,
change of an if to a case statement) is detected does not
depend on whether LSA can detect a particular change as
done in string matching algorithms. It depends on the
semantic analysis of words that make up each file and the
mathematical analysis of the association between words.

On occasions when given a source-code fragment PGQT
fails to detect its relative files which results in the source-code
fragment being misclassified as low contribution when itis a
high contribution source-code fragment. This was especially
the case if the source-code fragment is mostly comprised of
single word terms and symbols (e.g., +, :, > ). This is because
during preprocessing these are removed from the corpus.
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Future experiments are planned to evaluate the performance
of PlaGate when keeping these terms and characters during
preprocessing. This was also one of the reasons PGDT failed
to detect some of the suspicious file pairs.

In the context of source-code plagiarism detection the
behavior of PlaGate is far less predictable than string-
matching plagiarism detection tools. The behavior of an
LSA-based system depends heavily on the corpus itself
and on the choice of parameters which are not auto-
matically adjustable. Furthermore, an LSA-based system
cannot be evaluated by means of whether it can detect
specific plagiarism attacks due to its dependence on the
corpus, and this makes it difficult to compare PlaGate with
other plagiarism detection tools which have a more
predictable behavior.

The advantages of PlaGate are that it is language
independent, and therefore it is not needed to develop
any parsers or compilers for programming languages in
order for PlaGate to provide detection in programming
languages. Therefore, files do not need to parse or compile
to be included in the comparison process. Furthermore,
most tools compute the similarity between two files,
whereas PlaGate computes the relative similarity between
files. These are two very different approaches which give
different detection results.

String-based matching tools are expected to provide
more reliable results (i.e., better recall and precision) when
compared to techniques based on information retrieval
algorithms. However, the detection performance of string-
matching tools tends to suffer from local confusion and
JPlag also has the disadvantage of not being able to include
files that do not parse in the comparison process. PlaGate
and string matching tools are sensitive to different types of
attacks and this paper proposes an algorithm for combining
the two approaches to improve detection of suspicious files.

PlaGate is currently in prototype mode and future work
includes integrating the tool within Sherlock [3]. In
addition, work is planned to investigate parameter settings
for languages other than Java, and to adjust PlaGate to
support languages other than Java. In addition, future
works includes research into the automatic adjustment of
preprocessing parameters and the development of new
similarity measures in order to improve the detection
performance of PlaGate.
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