
IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 2, MAY 2008 195

Towards a Definition of Source-Code Plagiarism
Georgina Cosma and Mike Joy

Abstract—A survey using a scenario-based questionnaire format
has provided insight into the perceptions of U.K academics who
teach programming on computing courses. This survey across
various higher education (HE) institutions investigates what
academics feel constitutes source-code plagiarism in an under-
graduate context. Academics’ responses on issues surrounding
source-code reuse and acknowledgement are discussed. A general
consensus exists among academics that a “zero tolerance” pla-
giarism policy is appropriate; however, some issues concerning
source-code reuse and acknowledgement raised controversial
responses. This paper discusses the most important findings
from the survey and proposes a definition of what can constitute
source-code plagiarism from the perspective of U.K. academics
who teach programming on computing courses.

Index Terms—Reuse, self-plagiarism, source-code plagiarism
definition, survey.

I. INTRODUCTION

PLAGIARISM in programming assignments is an issue for
most academics teaching programming. Source-code can

be obtained in various ways including the Internet, source-code
banks, and text books. Online resources exist where students
can hire expert coders to implement their programming assign-
ments [1]. These opportunities make plagiarism easier for stu-
dents. Concerns about the ease with which students can obtain
material from online sources and use the material in their student
work have been expressed in a number of journals, including [2]
and [3].

Dick et al. and Sheard et al. identify various student cheating
techniques and reasons why students cheat [4], [5]. In addition,
they define cheating in the form of questions that, if answered
positively, could indicate cheating. Culwin et al. conducted a
study of source-code plagiarism in which they obtained data
from 55 U.K. higher education (HE) computing schools [6].
They found that 50% of the 293 academics who participated
in their survey believed that in recent years plagiarism has in-
creased. Asked to estimate the proportion of students under-
taking source-code plagiarism in initial programming courses,
22 out of 49 staff responded with estimates ranging from 20% to
more than 50%. Decoo’s recent book on academic misconduct
discusses various issues surrounding academic plagiarism, and
briefly discusses software plagiarism at the level of user-inter-
face, content and source-code [7]. However, in order to identify
cases of plagiarism one must have a clear idea of what actions
constitute plagiarism. Sutherland-Smith completed a survey to
gather the perspectives of teachers in the faculty of Business

Manuscript received December 30, 2006; revised May 24, 2007 and June 1,
2007.

The authors are with the Department of Computer Science, University
of Warwick, Coventry CV4 7AL, U.K. (e-mail: g.cosma@warwick.ac.uk;
m.s.joy@warwick.ac.uk).

Digital Object Identifier 10.1109/TE.2007.906776

and Law at South-Coast University in Australia [8]. The find-
ings reveal varied perceptions on plagiarism among academics
teaching the same subject, and the author suggests that a “collab-
orative, cross-disciplinary rethinking of plagiarism is needed.”
In addition, a review of the current literature on source-code pla-
giarism reveals a lack of research on the issue of what is consid-
ered source-code plagiarism from the perspective of academics
who teach programming on computing courses.

This paper discusses the findings of a survey carried out to
gather the perspectives of U.K. academics of what is under-
stood to constitute source-code plagiarism in an undergraduate
context. The responses revealed that a wide agreement exists
among academics on the issue of what can constitute source-
code plagiarism. Because of the object-oriented nature of some
programming languages, some academics have identified im-
portant issues concerned with source-code reuse and acknowl-
edgement (including self-plagiarism). They also noted differ-
ences between the approach to plagiarism adopted for graded
and nongraded work. In the final section of the paper, the survey
findings are used to suggest a definition of what can constitute
source-code plagiarism from the perspective of academics who
teach programming on computing courses.

II. METHODOLOGY

An online questionnaire was distributed to academics across
U.K. HE institutions. The mailing list of academics was sup-
plied by the Higher Education Academy Subject Centre for
Information and Computing Sciences (HEA-ICS). The United
Kingdom has approximately 110 HE level computing depart-
ments, for which the HEA-ICS attempts to provide support. The
mailing list contained contact information for 120 academics,
most of whom were assumed to have expertise in teaching
programming.

The survey instructions specified that only academics who are
currently teaching (or have previously taught) at least one pro-
gramming subject should respond. The survey was completed
anonymously, but a section in which the academics could op-
tionally provide personal information was included. A total of
59 responses were received, of which 43 provided the name of
their academic institution. These 43 academics were employed
at 37 departments in 34 different institutions; 31 were Eng-
lish universities and 3 were Scottish universities. Responses re-
ceived from two or more academics from the same institution
were consistent with each other.

The questionnaire was comprised mostly of closed questions
requiring multiple-choice responses. The majority of questions
were in the form of small scenarios describing various ways stu-
dents have obtained, used, and acknowledged material. The re-
spondents were required to select, from a choice of responses,
the type of academic offense (if any) that in their opinion ap-
plied to each scenario. Gathering the comments of academics on

0018-9359/$25.00 © 2008 IEEE

196 IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 2, MAY 2008

Fig. 1. Scenarios and responses. A: A student reproduces/copies someone else’s source-code without making any alterations and submits it without providing
any acknowledgements. B: A student reproduces/copies someone else’s source-code, adapts the code to his/her own work and submits it without providing any
acknowledgements. C: A student converts all or part of someone else’s source-code to a different programming language and submits it without providing any
acknowledgements. D: A student uses code-generating software (software that one can use to automatically generate source-code by going through wizards) and
removes the acknowledgement comments that were automatically placed into the code by the software and submits it without providing any acknowledgements.

the various issues regarding plagiarism was important because
of the variety both of university regulations in this area, and of
the academics’ opinions on such a sensitive issue. Therefore,
a text-box was included below each question for academics to
provide any comments they had about issues related to the ques-
tion asked. A detailed analysis of the responses to all survey
questions is reported elsewhere [9]. The purpose of this survey
was not to address in depth subjective issues, such as plagiarism
intent and plagiarism penalties, that could depend on student cir-
cumstances and university policies.

III. SURVEY RESULTS

This section discusses academics’ responses on issues sur-
rounding source-code reuse and acknowledgement, assignment
contribution, actions when plagiarism is suspected, and student
collaboration in programming assignments. In the sections that
follow, the term module denotes a single subject of study; for
example, the Programming for Computer Scientists module is
part of the undergraduate degree course (program) Computer
Science.

A. Plagiarized Material

Plagiarism in programming assignments can go beyond the
copying of source-code; it can include comments, program input
data, and interface designs.

Comments within source-code can be plagiarized and may
contribute towards identifying source-code plagiarism cases.

Program input data and the user-interface can be subject to
plagiarism if they form part of the requirement in the assign-
ment specification. The majority of respondents (40 out of 59)
agreed that program input data can be subject to plagiarism but
this alone cannot contribute to the identification of plagiarism.
Three academics commented that copying input data is an issue
if students are assessed on their testing strategies. When students
are assessed on their testing strategies, assessment for plagia-
rism would occur by observing the testing strategy, including

the datasets (e.g., input data) used for testing the program, and
the testing material, including the test plan, system design doc-
umentation, technical documentation, and user manuals.

Interface designs submitted by students that appear suspi-
cious need to be investigated for plagiarism if the assignment
requires students to develop their own interface designs.

B. Adapting, Converting, Generating, and Reusing
Source-Code

Academics were provided with scenarios concerned with
the copying, adapting, and converting of source-code from one
programming language to another, and using code-generating
software for automatically creating source-code. A code-gen-
erator is an application that takes as input metadata (e.g., a
database schema) and creates source-code that is compliant
with design patterns. An example of shareware code-generator
software is JSPMaker [10]—when given a database this soft-
ware quickly and easily creates complete source-code and a full
set of JavaServer pages [11] that have database connectivity.

The given scenarios and responses are shown in Fig. 1. Aca-
demics’ comments on these scenarios raise important issues that
are unique to source-code plagiarism.

Responses to scenarios A and B indicate a wide agreement
that reproducing/copying someone else’s source-code with or
without making any alterations and submitting it without pro-
viding any acknowledgements constitutes source-code plagia-
rism. However, concerns were expressed on source-code reuse
and acknowledgement. One academic commented

“ in O-O environments where reuse is encouraged,
obviously elements of reuse are not automatically plagia-
rism. I think I’d be clear on the boundaries and limits in any
given circumstance, and would hope to be able to commu-
nicate that clarity to my students, but obviously there will
potentially be problems. Use of the API would be legiti-
mate without acknowledgement—or with only the implicit
acknowledgement.”

COSMA AND JOY: TOWARDS A DEFINITION OF SOURCE-CODE PLAGIARISM 197

Regarding scenario B, many of the academics commented
that adapting source-code may constitute plagiarism depending
on the degree of adaptation, i.e., how much code is a copy of
someone else’s work and the extent to which that code has
been adapted without acknowledgement. For example, a pro-
gram may not be considered to be plagiarized if it was started
by using existing source-code and then adapted to such an extent
that it is beyond all recognition, so that there is nothing left of
the original code to acknowledge. However, more of the respon-
dents have raised the issue of source-code reuse and acknowl-
edgement. Specifically, one academic remarked

“ code copied from a website that assists in a specific
task is potentially good practice. However, code that is a
100% copy is a different issue. I would also be concerned
about the context of this copying. If the only deliverable
were to be code and documentation the offense is clear. In
this sense I suppose it is an issue of how much of the overall
assignment is actually a copy of other work (without ac-
knowledgement).”

On the issue of converting all or part of someone else’s
source-code to a different programming language, and submit-
ting it without providing any acknowledgements (scenario C),
several academics remarked that if the code is converted au-
tomatically without any or much effort from the student, then
this procedure can constitute plagiarism. However, if a student
takes the ideas or inspiration from code written in another
programming language and creates the source-code entirely
“from scratch,” then this procedure is not likely to constitute
plagiarism. Furthermore, in their comments academics have
pointed out that taking source-code written in one program-
ming language and converting it to a similar programming
language, such as from C++ to Java, can constitute plagiarism.
One academic, referring to scenarios A–D described in Fig. 1,
emphasized the following:

“In each case there must be some presumed benefit to
the student in doing so (why did they do it otherwise?)
and disruption to the assessment system. Even where the
advantage might be minimal—e.g., from Prolog to C—a
good student would almost certainly acknowledge the issue
and use it to discuss the differences.”

Academics were asked whether plagiarism takes place if “a
student uses code-generating software, removes the acknowl-
edgement comments that were automatically placed into the
code by the software, and submits it without providing any ac-
knowledgements.” The majority of the respondents considered
unacknowledged use of code-generating software as plagiarism
unless permission for use of such software is described in an as-
signment specification.

The findings suggest that students should be required to ac-
knowledge any material they use that is not their own orig-
inal work even when source-code reuse is permitted. All mate-
rial should be acknowledged regardless of licensing permissions
(e.g., open source, free-use, fair-use).

Fig. 2. Responses to self-plagiarism scenario. Scenario: Assume that students
were not allowed to resubmit material they had originally created and submitted
previously for an other assignment. For a graded assignment, a student has
copied parts of source-code that s/he had produced for another assignment
without acknowledging it.

C. Self-Plagiarism in Source-Code

In nonprogramming assignments, self-plagiarism occurs
when a student reuses parts of an assignment previously sub-
mitted for academic credit and submits it as part of another
assignment without providing adequate acknowledgement of
this fact. In programming modules where source-code reuse is
taught, self-plagiarism may not be considered as an academic
offense.

Academics were given the scenario “assume that students
were not allowed to resubmit material they had originally cre-
ated and submitted previously for another assignment. For a
graded assignment, a student has copied parts of source-code
that s/he had produced for another assignment without acknowl-
edging it,” and were asked to select a response. The results are
shown in Fig. 2. Some controversial responses were received.

The majority of academics (48 out of 59) have characterized
this scenario as an academic offense (17 as plagiarism and 31 as
other academic offense), and in their comments they described
this scenario as “self-plagiarism,” “breach of assignment reg-
ulations if resubmission is not allowed,” and “fraud if resub-
mission is not acknowledged.” Some academics argued that in
object-oriented environments, where reuse is encouraged, it is
inappropriate to prevent students from reusing source-code pro-
duced as part of another programming assignment. The com-
ments and responses provided by the academics who do not con-
sider the given scenario to constitute plagiarism or another aca-
demic offense point to the controversial issue on source-code
reuse mentioned previously. One academic who provided a “do
not know” response remarked that students should reuse source-
code where possible, while another, who was clear that the given
scenario “was not an academic offense,” emphasized:

“I find it hard to assume that students were not allowed
to resubmit material.”

A third academic, who also stated that the given scenario “was
not an academic offense,” asked rhetorically

“Would this ever happen in a programming-oriented
module when we behove students not to reinvent the
wheel?”

198 IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 2, MAY 2008

Fig. 3. Responses to minimum assignment weight scenario. Scenario: What
would have to be the minimum weight of an assignment towards the overall
module mark for you to proceed with investigation into plagiarism?

These statements represent the majority of surveyed aca-
demics, reinforcing our conclusion that resubmitting source-
code without providing appropriate acknowledgements may
lead to an academic offense, if this is not allowed for the
particular assignment.

D. Assignment Contribution

When prompted to consider the question “What would have
to be the minimum weight of an assignment towards the overall
module mark for you to proceed with investigation into plagia-
rism?” responses were largely uniform. As Fig. 3 illustrates, the
majority (32 out of 51) or respondents cited a value in the range
of 0–5, suggesting a “zero tolerance” policy. Furthermore, there
was agreement that investigation into possible plagiarism cases
should always be pursued and appropriate action taken (either
in the form of penalties or as warnings) regardless of the assign-
ment’s contribution towards the overall module mark.

The rationale for this attitude was clearly articulated by one
respondent who warned:

“If they cheat on a 5% assignment they will cheat on a
larger one. A short, sharp shock can prevent the full of-
fense.”

In some instances, the severity of the offense is considered by
the institution to vary depending on the contribution of the as-
signment:

“Any contribution would bring the same investigation.
However, for the full range of penalties to be applied a min-
imum contribution to the degree award of 7%, or a second
or subsequent upheld accusation, is required. This is Uni-
versity policy.”

Plagiarism can occur regardless of whether an assignment is
graded or nongraded, i.e., regardless of its contribution to the
overall course mark. Nongraded assignments refer to assign-
ments that are not submitted for academic credit (such as some
laboratory and tutorial exercises). Some university regulations
on plagiarism seem to apply to graded assignments only. Many
academics have commented that when plagiarism is detected

in nongraded assignments, the students should be approached
and informed or warned about its implications on graded as-
signments. Such measures are not always explicitly described
in university regulations.

One academic commented that

“If the assignment is not contributing towards the mark
for the module then the correct protocol should be brought
to the attention of the student.”

E. Considerations on Student Collaboration

The survey raised issues on appropriate and inappropriate
collaboration between students. There was general agreement
among respondents that it is “pedagogically valuable” for stu-
dents to engage actively in sharing ideas while discussing as-
signments as long as they do not copy each other’s work. Three
academics who encourage students to share ideas commented
on the benefits and pitfalls of such practice:

“I have no problem with sharing ideas. Given the re-
stricted types of programs undergraduate students write,
it is inevitable that certain design decisions lead to similar
code.”

This position was endorsed and elaborated by another academic
who articulated a straightforward view on the problem:

“I am personally not too worried about students dis-
cussing their work, it is the outright copying that I find most
offensive and educationally pointless.”

A third academic observed that it is

“ important to remember that we often expect people
to engage actively in discussing content and assignments.
Also, as preparation for future working in teams, we
often need to be much clearer in what we require of
students—and what we don’t.”

Respondents noted that occurrences of plagiarism vary (both
in type and in frequency) depending on the tasks being un-
dertaken at the time. Respondents reported that occurrences of
plagiarism when students are testing and debugging their soft-
ware appeared to depend on the type of testing being carried out
by the students. They remarked that occurrences of plagiarism
during white box testing (tests requiring access to the code of the
program under test) tend to be more frequent than during black
box testing (tests conducted at the software interface level) due
to the nature of these tests.

In addition, respondents noted that the distribution of marks
awarded for the components of an assignment influences in
which of those component tasks plagiarism may occur. For
example, if the credit awarded for the design of a program
is relatively high compared to the credit for the coding, then
students are more likely to plagiarize when performing the
design task.

Sharing ideas and sharing work were considered as two very
different issues. Although academics expressed no objections
to students sharing ideas, they opposed the practice of students
collaborating and submitting similar work when assignments
required them to work individually.

COSMA AND JOY: TOWARDS A DEFINITION OF SOURCE-CODE PLAGIARISM 199

IV. SOURCE-CODE PLAGIARISM: TOWARDS A DEFINITION

Based on the responses summarized previously, the following
is suggested as a new definition of what constitutes source-code
plagiarism in an academic context.

Source-code plagiarism in programming assignments can
occur when a student reuses (Section IV-A) source-code
authored by someone else and, intentionally or unintention-
ally, fails to acknowledge it adequately (Section IV-C), thus
submitting it as his/her own work. This involves obtaining
(Section IV-B) the source-code, either with or without the
permission of the original author, and reusing (Section IV-A)
source-code produced as part of another assessment (in which
academic credit was gained) without adequate acknowledge-
ment (Section IV-C). The latter practice, self-plagiarism, may
constitute another academic offense.

A. Reusing

“Reusing” includes the following:
1) reproducing/copying source-code without making any al-

terations;
2) reproducing/copying source-code and adapting it min-

imally or moderately; minimal or moderate adaptation
occurs when the source-code submitted by the student still
contains fragments of source-code authored by someone
else;

3) converting all or part of someone else’s source-code to
a different programming language may constitute plagia-
rism, depending on the similarity between the languages
and the effort required by the student to do the conversion;
conversion may not constitute plagiarism if the student bor-
rows ideas and inspiration from source-code written in an-
other programming language and the source-code is en-
tirely authored by the student;

4) generating source-code automatically by using code-gen-
erating software; this could be construed as plagiarism if
the use of such software is not explicitly permitted in the
assignment specification.

Where source-code reuse is not allowed, reusing
(Section IV-A) source-code authored by someone else (or
produced by that student as part of another assessment) and pro-
viding acknowledgements may constitute a breach of assignment
regulations, rather than plagiarism (or self-plagiarism).

B. Obtaining

Obtaining the source-code either with or without the permis-
sion of the original author includes the following:

1) paying another individual to create a part of or all of their
source-code;

2) stealing another student’s source-code;
3) collaborating with one or more students to create a pro-

gramming assignment which required students to work
individually, resulting in the students submitting sim-
ilar source-codes; such inappropriate collaboration may
constitute plagiarism or collusion (the name of this aca-
demic offense varies according to the local academic
regulations);

4) exchanging parts of source-code between students in dif-
ferent groups carrying out the same assignment with or
without the consent of their fellow group members.

Incidents of source-code plagiarism can co-occur with other
academic offenses (such as theft, cheating, and collusion) de-
pending on academic regulations. The list previously mentioned
is indicative of key areas where this form of plagiarism occurs,
but it is certainly not exhaustive, since there are numerous ways
that students can obtain source-code written by others.

C. Inadequately Acknowledging

Inadequately acknowledging source-code authorship in-
cludes the following:

1) failing to cite the source and authorship of the source-code,
within the program source-code (in the form of an in-text
citation within a comment) and in the appropriate docu-
mentation;

2) providing fake references (i.e., references that were
made-up by the student and that do not exist); this is a
form of academic offense, often referred to as fabrication,
which may co-occur with plagiarism;

3) providing false references (i.e., references exist but do not
match the source-code that was copied); another form of
academic offense, often referred to as falsification, which
may co-occur with plagiarism;

4) modifying the program output to make it seem as if the
program works when it is not working; this too is a form of
academic offense akin to falsification, which may co-occur
with plagiarism.

V. CONCLUSION

Much survey-based research exists addressing the prevalence
of source-code plagiarism in academia. However, surveys on the
issue of what constitutes source-code plagiarism in U.K. uni-
versities are rare in academic scholarship. In addition, there ap-
pears to be no commonly agreed description of what constitutes
source-code plagiarism from the perspective of academics who
teach programming on computing courses.

Differences among university policies, assignment require-
ments, and personal academic preferences, can create varied
perceptions among academics and students on what constitutes
source-code plagiarism. The fact that source-code reuse is en-
couraged in object-oriented programming may lead students to
take advantage of this situation, and use or adapt source-code
written by other authors without providing adequate acknowl-
edgements.

Since reuse is encouraged in object-oriented programming,
some academics have expressed different opinions on issues
surrounding source-code reuse and acknowledgement. The ma-
jority of respondents agreed that, when reuse is permitted, stu-
dents should adequately acknowledge the parts of the source-
code written by other authors (or that the students have sub-
mitted as part of another assessment) otherwise these actions
can be construed as plagiarism (or self-plagiarism).

General agreement exists that a “zero tolerance” plagiarism
policy should be implemented. Responses show that university

200 IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 2, MAY 2008

policies influence the actions academics can take when they de-
tect plagiarism. However, not all universities apply these poli-
cies to assignments that are not submitted for academic credit.

Academics teaching programming should inform students
clearly of their preferences especially on source-code reuse
and acknowledgement. Avoiding confusion among academics
and students is likely to reduce the occurrences of plagiarism.
Carroll and Appleton have devised a good practice guide
suggesting techniques for dealing with plagiarism [12].

This paper considers the difference in opinions among aca-
demics on source-code specific issues and proposes a definition
of source-code plagiarism, which can be adjusted by academics
to meet their requirements.

ACKNOWLEDGMENT

The authors would like to thank the academics who responded
to the survey, N. Griffiths for his contribution towards the cre-
ation of the survey questions, and N. Nakariakova and the staff
at HEA-ICS for logistical support in managing the survey. Pre-
liminary findings from the survey were reported in [13].

REFERENCES

[1] T. Jenkins and S. Helmore, “Coursework for cash: The threat from
on-line plagiarism,” in Proc. 7th Annu. Conf. Higher Education
Academy Network for Information and Computer Sciences, Dublin,
Ireland, Aug. 29–31, 2006, pp. 121–126.

[2] J. Kasprzak and M. Nixon, “Cheating in cyberspace: Maintaining
quality in online education,” Assoc. Adv. Comput. Educ., vol. 12, no.
1, pp. 85–99, 2004.

[3] P. M. Scanlon and D. R. Neumann, “Internet plagiarism among college
students,” J. Coll. Student Devel., vol. 43, no. 3, pp. 374–385, 2002.

[4] M. Dick, J. Sheard, C. Bareiss, J. Carter, D. Joyce, T. Harding, and
C. Laxer, “Addressing student cheating: Definitions and solutions,”
SIGCSE Bull., vol. 35, no. 2, pp. 172–184, 2003.

[5] J. Sheard, A. Carbone, and M. Dick, “Determination of factors which
impact on IT students’ propensity to cheat,” in Proc. 5th Australasian
Computing Education Conf., Adelaide, Australia, 2003, pp. 119–126.

[6] F. Culwin, A. MacLeod, and T. Lancaster, “Source code plagiarism
in UK HE computing schools, issues, attitudes and tools,” South Bank
Univ., London, U.K., Sep. 2001, Tech. Rep.

[7] W. Decoo, Crisis on Campus: Confronting Academic Misconduct.
Cambridge, MA: MIT Press, 2002.

[8] W. Sutherland-Smith, “Pandora’s box: Academic perceptions of stu-
dent plagiarism in writing,” J. Eng. Acad. Purp., vol. 4, no. 1, pp.
83–95, 2005.

[9] G. Cosma and M. Joy, “Source-code plagiarism: A UK academic per-
spective,” Dept. Computer Science, University of Warwick, Conventry,
U.K., Res. Rep. No. 422, 2006.

[10] Computer Software, JSPMaker v1.0.1, e.World Technology Ltd., Hong
Kong, China.

[11] H. Bergsten, JavaServer Pages, 3rd ed. Sebastopol, CA: O’Reilly,
2003.

[12] J. Carroll and J. Appleton, Plagiarism: A Good Practice Guide. Ox-
ford, U.K.: Oxford Brookes Univ., 2001.

[13] G. Cosma and M. Joy, “Source-code plagiarism: A UK academic per-
spective,” in Proc. 7th Annu. Conf. Higher Education Academy Net-
work for Information and Computer Sciences, Dublin, Ireland, Aug.
29–31, 2006, pp. 116–120.

Georgina Cosma is working towards the Ph.D. degree in the Department of
Computer Science, University of Warwick, Coventry, U.K.

Her fields of interest include source-code similarity detection and the latent
semantic analysis information retrieval technique.

Mike Joy received the M.A. degree in mathematics from Cambridge University,
Cambridge, U.K., the M.A. degree in postcompulsory education from the Uni-
versity of Warwick, Coventry, U.K., and the Ph.D. degree in computer science
from the University of East Anglia, Norwich, Norfolk, U.K.

He is currently an Associate Professor at the University of Warwick. His
research interests focus on educational technology and computer science
education.

