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ABSTRACT
The automation of the classification of issue reports helps to im-
prove the efficiency of the software tracking cycle. This task can
be considered a multi-class classification problem. Therefore, this
work is a participation in the NLBSE’24 Issue Report Classification
competition.

The paper introduces a lightweight model called AdaptIRC that
uses adapters. These adapters add additional trainable layers instead
of tuning the whole pre-trained model. Then, they are attached
to the transformer to predict classes of the unseen testing data.
The dataset provided contained 3,000 reports divided equally for
training and testing, having five different repositories and three
classes. The newly developed model has achieved an overall F1
score of 0.8934 that exceeded the baseline of an F1 score of 0.827,
an approximate increase of 8%.
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1 INTRODUCTION
Tracking software issues is one step in the software maintenance
cycle. It includes manually classifying software report issues, which
is time-consuming and demanding. Therefore, automating this task
should result in increased efficiency.

This work participates in “The NLBSE’24 Tool Competition” [5],
creating an issue report classification tool. The provided dataset
includes 3,000 reports, and the classes are either bug, enhancement,
or question taken from five different repositories. In addition, the
authors provide a baseline [2] using few-shot learning with an
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overall weighted score of 0.827. Previous work published in the
report classification competition has involved [6] and [7] which
have used FastText [4] for classification in the created Ticket Tagger
system.

Fine-tuning a pre-trained model for a certain task requires adjust-
ing the weights of the entire structure. This requires resources and
time. Thus, using adapters with the pre-trained models reduces the
computations and produces competitive results. Adapters [12] add
additional layers, and the weights of these layers must be adjusted.
So, instead of tuning thewholemodel, only the adapter layers would
be trained. Adapters are also considered to be few-shot learners [1].

This work applies adapters on top of a RoBERTa [8] transformer
after a few preprocessing steps for the task of issue report classifi-
cation creating a model called AdaptIRC with an improved average
score of 0.8934.

The paper is organised as follows: section 2 covers the tool
creation, section 3 presents the results, and section 4 concludes.

2 TOOL CREATION
A preliminary step before creating the tool is to analyse the dataset.
It can be pre-processed by removing the parts that would not be
useful during training or testing. The new model (AdaptIRC) starts
with training an adapter module along with a classification head,
and then attaches them to a RoBERTa transformer model to predict
the unseen test cases. A simple abstract architecture of the devel-
oped models can be seen in Figure 1. Each step is illustrated in the
following subsections.

Figure 1: A high-level architecture of the developed model
(AdaptIRC). The adapter and classification heads are the
trainable entities.

This work licensed under Creative Commons Attribution International 4.0 License.
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Table 1: A sample issue report

repo opencv/opencv
created_at 2022-01-15 02:39:22

label feature
title Reading BigTiff images

body

**Merge with extra: https://github.com/opencv/opencv_extra/pull/952** resolves #18717
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL
or other license that is incompatible with OpenCV
- [ ] The PR is proposed to proper branch
- [ ] There is reference to original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake

2.1 Dataset
The dataset consists of 3,000 issue reports and an example issue
report can be seen in Table 1. The columns in the dataset are the
following.

• Repository: the dataset includes 5 repositories: facebook/react,
tensorflow/tensorflow,microsoft/vscode, bitcoin/bitcoin, and
opencv/opencv.

• Title: the title of the issue report.
• Creation date: the date on which the issue was created.
• Body: the content of the issue report.
• Label: the class of an issue, being a bug, an enhancement, or
a question.

So, 3,000 reports with 5 categories produced 600 reports per
repository for both training and testing, divided equally. Therefore,
there were 300 training reports per category and 300 instances for
testing. As a result, few-shot learning algorithms are more suitable
for this task because of limited training data.

2.2 Pre-Processing
The dataset includes lengthy texts and unnecessary words. There-
fore, the following pre-processing steps with regular expressions
were utilised.

• Remove new lines, multiple tabs, and multiple spaces.
• Remove links and errors.
• Remove special characters except for question marks.
• Remove the text written in triple quotes.

Both the title and text were pre-processed, and then they were
concatenated to be the input text. This text was tokenised and fed
into the transformer model.

2.3 Adapters
The general single encoder of the transformer architecture [15] can
be seen on the left of Figure 2. It starts by converting the input
into embeddings and adding the positional encoding to them. Then,
the new resulting input is fed into a multi-head attention and an
(add and norm) block. Then, the output of the (add and norm) layer
is fed to the feed-forward network and another (add and norm)

layer. Adapters aim to add additional layers to the transformer
models, and these layers would be tuned. There are various adapter
methods. One of the first architectures that created adapters for
natural language processing [3] added two additional layers before
and after the feed-forward layer in the transformer blocks. Another
technique [9, 11] adds a single adapter layer as in the right of
Figure 2 and has minor differences in accuracy. Therefore, the latter
adapter was used in this work, as it has fewer weights to adjust.

Figure 2: The transformer encoder architecture. The left rep-
resents the general architecture [15]. The right represents
the adapter type used in this work [9, 11].
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Table 2: Results

Repository/Model Baseline AdaptIRC
Label Precision Recall F1-Score Precision Recall F1-Score

facebook/react

Bug 0.9048 0.9500 0.9268 0.9159 0.98 0.9468
Feature 0.8491 0.9000 0.8738 0.9126 0.94 0.9261
Question 0.8652 0.7700 0.8148 0.9556 0.86 0.905
Average 0.8729 0.8733 0.8718 0.928 0.9267 0.926

tensorflow/tensorflow

Bug 0.9565 0.8800 0.9167 0.9205 0.81 0.8617
Feature 0.8558 0.8900 0.8725 0.8173 0.85 0.833
Question 0.7885 0.8200 0.8039 0.7963 0.86 0.8269
Average 0.8669 0.8633 0.8644 0.8447 0.84 0.8407

microsoft/vscode

Bug 0.8485 0.8400 0.8442 0.891 0.9 0.8955
Feature 0.7627 0.9000 0.8257 0.901 0.91 0.9055
Question 0.8916 0.7400 0.8087 0.9592 0.94 0.9495
Average 0.8343 0.8267 0.8262 0.9171 0.9167 0.9168

bitcoin/bitcoin

Bug 0.7604 0.7300 0.7449 0.8958 0.86 0.87755
Feature 0.8723 0.8200 0.8454 0.9293 0.92 0.9246
Question 0.6455 0.7100 0.6762 0.8476 0.89 0.8683
Average 0.7594 0.7533 0.7555 0.8909 0.89 0.8902

opencv/opencv

Bug 0.7619 0.8000 0.7805 0.8654 0.9 0.88235
Feature 0.8842 0.8400 0.8615 0.927 0.89 0.9082
Question 0.8100 0.8100 0.8100 0.89 0.89 0.89
Average 0.8187 0.8167 0.8173 0.8942 0.8933 0.8935

Overall

Bug 0.8464 0.8400 0.8426 0.8977 0.89 0.8928
Feature 0.8448 0.8700 0.8558 0.8975 0.902 0.8995
Question 0.8001 0.7700 0.7827 0.8897 0.888 0.888
Average 0.8305 0.8267 0.8270 0.895 0.8933 0.8934

2.4 Training
For a better evaluation of the generalisation of the developed model,
the training data sets were divided into training and validation sets.
Since the training sets were small, the percentage of validation sets
was selected to be 30% of the training sets. This led to two subsets:
training with 210 reports per repository and validation with 90
instances per repository.

The following are the steps for training the AdaptIRC model.

(1) The adapter module is initialised with random weights.
(2) The selected adapter module consists of two feed-forward

layers that are small neural networks.
(3) The weights of these two layers are fine-tuned, whereas the

other transformer model weights are frozen.
(4) While the adapter module is trained, a Classification Head

(CH) is trained simultaneously.
(5) The CH consists of a combination of linear and dropout

layers that are part of a feed-forward network.
(6) The adapter is attached to the model.
(7) The CH is added to the transformer’s output and maps the

generated mean-pooling embeddings to a single class, which
is a bug, enhancement, or question.

(8) A single adapter is trained for each repository, leading to
five different adapters.

For adapter training, the parameters were the following: the
learning rate was 1 × 10−4, batch size was 32, and the number of

epochs was 200. The metric for choosing the best model was the
validation loss. The maximum length of the input was set to 256.

The T4 Nvidia Graphical Processing Unit (GPU) with a Random
Access Memory (RAM) of 12GB was used for training and testing.
The full code runs within 1 to 2 hours. Each adapter takes around
15 minutes to be trained.

One feature of adapters is their modularity and composability
[10]. Another feature is that they are lightweight as there are fewer
parameters to train. For example, the RoBERTa model is around
500MB, while the adapters are a few megabytes around 6MB. This
makes it very convenient to store and is easily accessible. For in-
stance, in this work, we have five repositories, so training the full
models would yield five models with each having a size of around
500MB, while in adapters, we have a single model of size 500MB
and five adapters with each of size around 6MB. This requires less
storage and computation.

3 RESULTS
The evaluation of the model in the test set was based on precision,
recall, and F1-score as presented in equations 1, 2, and 3, respectively.
For the ranking, it was based on the overall average F1 score.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)
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𝑓 1𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (3)

The baseline along with the results of our model can be seen
in Table 2 which shows the precision, recall, and f1 score for each
class in each repository both in the baseline and in AdaptIRC. The
baseline [2] utilised SetFit few-shot learning [14] and Sentence
Transformers [13] for their work. The overall F1 scores in Adap-
tIRC facebook/react, tensorflow/tensorflow, microsoft/vscode, bit-
coin/bitcoin, and opencv/opencv were 0.926, 0.84, 0.917, 0.89 and
0.89, respectively. Therefore, the newly developed model exceeds
the baseline in all metrics except for the tensorflow/tensorflow
repository. A potential reason could be that the tensorflow/tensorflow
repository had longer texts than the other repositories even with
pre-processing. Furthermore, for the overall average F1 score, Adap-
tIRC with a score of 0.893 exceeds the baseline score with a score of
0.827 by approximately 8%. This indicates that the adapters were as
robust as few-shot learners in the task of issue report classification.
One limitation of this work was the limited maximum token size. It
was selected to be 256 to be faster in training, it would not consume
high resources, and this work would not yield high accuracy if the
important parts of the text were at the end of longer sequences of
input.

4 CONCLUSION
In this paper, we participated in the Issue Report Classification
Competition, creating a lightweight model called AdaptIRC that
utilised adapters trained and activated with the RoBERTa trans-
former with proper preprocessing. The newly developed model
achieved an F1 score of 0.89 that outperforms the baseline with an
F1 score of 0.827. The code and the created adapters are publicly
shared 1.

For future work, different configurations can be explored. Eval-
uating and comparing experiments with several adapter methods
and several pre-trained models could be very productive future
work. In addition, it would be interesting to compare the results
of full fine-tuning and different adapters. A limitation of this work
was that training an adapter per repository is not ideal. Adapters
can also be used for transfer learning, so, another possible direc-
tion is to explore the performance of a single adapter on different
repositories. Another experiment would be to use the full data for
training instead of splitting the data into training and evaluation
sets, and to monitor the performance over the testing set.
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