
A Standard for a Graph Representation for Functional Programs

Mike Joy

Department of Computer Science ,
University of Warwick ,

Coventry ,
CV4 7AL .

Tel : +44 203 52336 8
E-mail (UUCP) : . . . ! ukc! warwick! ms j

E-mail (otherwise) : msj@uu.warwick .ac .uk

Tom Axford

Department of Computer Science ,
University of Birmingham ,

Birmingham ,
B15 2TT .

Tel : +44 21 472 1301 ext . 207 4
E-mail : tha@comp-vl .bhatn .ac .uk

ABSTRAC T

The data structures used in the authors' functional language graph reduction imple-
mentations are described, together with a standard notation for representing the graphs i n
a textual format . The graphs employed are compatible with FLIC and with the functiona l
languages in use at Birmingham and Warwick . The textual format is designed to b e
transmittable easily across networks .

1 . Introductio n

Work is progressing at Warwick and at Birmingham into graph reduction techniques for functiona l
programs . In order to facilitate cooperation between the establishments it has been necessary to standardis e
the data structures used and certain aspects of their implementations, as well as a format for transmittin g
them across networks . At Birmingham, a functional language currently used for teaching purposes [1 ]
resembles the languages SASL [2] and Pill [3] currently in use at Warwick . Both are translated into graphi-
cal form before evaluation . In the case of the SASL interpreter, the intermediate code produced is FLIC
[4] . The forms of the graphs eventually produced were found to be almost identical . Therefore the need
was isolated for a standard definition for the graphs . It is envisaged that any functional language could b e
translated to such a graph and then executed by either the Birmingham or the Warwick machine, In order t o
move graphs between the two machines a standard for describing the graphs in a machine-independent an d
printable way was also found to be necessary .

The graphical representation described in this paper may be thought of primarily as an interna l
representation of the intermediate code, FLIC . It is more general than that, however . Although the FLIC
operator set is preferred, other sets of basic operators may be used if required . If portability is to b e
achieved, definitions of these operators in terms of FLIC operators should be provided . Alternatively, it i s
often not difficult to write a translator program to transform a graph using one set of operators into a n
equivalent graph using another set of operators (partial reduction of the graph incorporating the definition s
of the old operators in terms of the new operators is usually quite effective) .

75



For these reasons we consider it more important to standardise the structure of the graph and th e
types of nodes allowed and their meaning . The basic data types and structures also follow FLIC, except
that we allow the data structures of cartesian sum and product domains (i .e . unions and tuples, respectively)
to be used separately, while FLIC permits products and sums of products only . It is not possible for the
user to extend this set of basic types : he must represent his own data types and structures purely in terms o f
those provided. He can, however, annotate objects so that additional information is not lost (the annotatio n
must not affect the meaning, but it can provide guidance as to efficient implementation and other pragmati c
information) .

2. The Graph

A functional program is represented as a connected, d irected, and possibly cyclic, graph in whic h
each node has out-degree 0, 1 or 2 . There are eleven different node types, described below .

2 .1 . Node Type s

2 .1 .1 . Integer and Rea l

Nodes of types integer and real represent known constants of the usual types integer and real ,
respectively . The value of the constant is stored in the node, which has out-degree O . No limits are
specified for maximum integer size or accuracy of real numbers, although a particular machine implemen-
tation will, of course, have such limits .

2 .1 .2 . Operator

Nodes of type operator represent basic operators which are predefined as part of the language, for
example, the ordinary arithmetic operators . A code for the operator is stored in the node, which has out -
degree O . See the appendix below for a description of some of the standard operators .

2 .1 .3 . Appl y

Nodes of type apply represent function application . These nodes have out-degree 2, the left pointer i s
to the function and the right pointer is to the argument . As in the lambda calculus, all functions have one
argumen t

2 .1 .4 . Lambd a

This type of node represents lambda abstraction and has an out-degree of 2 . The left pointer is to th e
bound variable and the right pointer is to the body of the lambda abstraction (which may be of any type) .

2 .1 .5 . Variable

Nodes of type variable represent the bound variables of lambda abstraction, but can also be used to
represent free variables (if the programming language which is being represented allows completely fre e
variables) . They have an out-degree of O .

2 .1 .6 . Sum

These nodes represent cartesian sums (discriminated unions), and have an out-degree of 1 . The
integer tag is kept in the node, together with a single pointer to the value associated with the sum (whic h
may be of any type) .

2 .1 .7 . Product

These nodes represent cartesian products (tuples) and have an out-degree of 2 . The left pointer is to
the first element of the product (which may be of any type) and the right pointer is to the rest of the produc t
(i .e . another node of type product), or it is a null pointer . The number of elements in the product is als o
stored in the node . A 0-tuple is represented by a null pointer, which has the address 0 .

76



2 .1 .5 . Undefined

Nodes of this type represent I (bottom) . They have out-degree O .

2 .1 .9 . Recursive Referenc e

A node of type recursive reference is used whenever a pointer introduces a cycle into the graph (i .e .
in recursive definitions) . Semantically, the recursive reference node (with out-degree 1) simply denotes the
node to which it points . Its presence is solely a label that the pointer here is different (we call it a wea k
pointer) . Graph traversal and memory management algorithms that would not work on cyclic graphs ca n
then be implemented simply by ignoring weak pointers (see next section) .

2 .2. Node Names

Each node has an associated name . This name has no semantic significance within the graph (e .g .
two distinct nodes of type variable which have the same name do not represent the same variable, in gen-
eral) .

We use the name of a node for two main purposes . Firstly, it can be the name given to that object i n
the source program from which the graph was generated . In the work being done at Birmingham, transfor-
mations are performed on the graph and the transformed graph can be printed out in the source language
with the original names retained wherever possible .

Secondly, free variables need to be identified and distinguished from each other, and the name can b e
used for this purpose also .

2 .3 . Graph Structure

One of the authors [5] has shown that a simple reference counting scheme for cyclic graphs of func-
tional programs is practicable . The graph structure supports this scheme of reference counting (although i t
does not require it : mark-scan garbage collection schemes could be used if preferred, and the reference
counts ignored) .

If the reference counting scheme is to be used, the graph must satisfy certain requirements, the main
one being :

(i)

	

If weak pointers (i .e . pointers from recursive reference nodes) are ignored, the graph is acyclic and
connected .

A further condition is required to ensure that graph reduction operations do not generate graphs whic h
break this rule :

(ii) There must be exactly one point of entry to any cycle, which will be the node pointed to by one o r
more weak pointers . That is, there must be only one node in the cycle pointed to by weak pointers
and that node must also be the only node in the cycle which is pointed to by any nodes outside th e
cycle.

Axford has shown that these conditions are not difficult to satisfy and that, provided they are satisfied ,
reference counting of strong pointers only is all that is needed for safe memory management .

If combinator reduction is used, however, it is preferable to translate recursion into the Y combinato r
to remove all cycles from the graph .

2 .4. Example

Consider the graph representing "factorial 3 " before any graph reduction has taken place . Assumin g

we hav e

def fac = Xn . if n 5 1 then 1 else n * fac (n-1 )

the graph becomes (or could become - it is not unique, due to possible code-sharing) :

77



For clarity in this diagram, three of the pointers to the bound variable "n" have not been connected to th e
node for "n", but the intent should be obvious .

3 . GCODE : a Textual Representation of the Grap h

The structure for the textual representation of a graph is a sequence of lines, each representing a
separate node in the graph, of the form :

address

	

type

	

usage_count

	

annotation

	

"name"

	

[other fields ]

where the fields are separated by blanks or tabs . The field address is an unsigned non-zero intege r
representing the storage location of the node. The field type is an unsigned integer representing the type o f
the node (integer, real, application, etc .) . The field usage_count is an unsigned integer used for garbag e
collection purposes (reference counts, etc .), and represents the number of strong pointers to that node in the
graph . The field annotation is an integer currently not assigned, but may be used in the future by particular
implementations . The meaning of a program should be unchanged if all the annotations are ignored . The
"name" field is a character string naming the node, usually null .

For example, the node at address 111 which is an apply node called "fred", with left and right des-
cendants at addresses 222 and 333 respectively, usage count of 1, with no annotation, would be represente d
by :

111 5 1 0 "fred" 222 33 3

Standard C language [6] conventions apply in the name, thus for example a node calle d
"aSilly\012\013\n\tName" would be acceptable. Similarly all other fields use the appropriate "C" lexica l
conventions .

The available types are

78



Undefined

	

0
Integer

	

1
Real

	

2
Sum

	

3
Product

	

4
Apply

	

5
Recursive Reference

	

6
Operator

	

7
Variable

	

8
Lambda

	

9

3 .1 . The Type "Integer "

address 1 usage_count annotation "name" value_of the intege r
where value_of the_integer is a (signed) integer . No restriction on the size of the integer is imposed ,
though machine dependencies will naturally come into play .

3 .2 . The Type "Real "

address 2 usage_count annotation "name" value_of the real numbe r
where value_of the _ real_ number is a real number written using "C " conventions .

3 .3 . The Type "Sum "

address 3 usage_count annotation "name" tag address_of valu e
where a sum domain is considered as associating with a node an unsigned integer tag in a finite range, an d
address_of value is the address of the node which is tagged .

3 .4 . The Type " Product "

address 4 usage_count annotation "name" size first second
where a product domain is thought of as a tuple, implemented as a linked list, size is the size of the tuple ,
first is the address of the head of the tuple and second is the address of the tail . The address of the nul l
tuple is 0, rather than an explicit 0-tuple node .

3 .5 . The Type "Apply "

address 5 usage_count annotation "name" left righ t
where left and right are the addresses of the descendants of the apply node. We can think of left as a func-
tion taking one argument (right) .

3 .6 . The Type "Recursive Reference "

address 6 usage_count annotation "name" recref
where recref is the address of the node which is used recursively, that is, which is pointed to by a weak
pointer .

3 .7 . The Type "Operator "

address 7 usage_count annotation "name" operator qualifie r
where operator is an integer (at least 16-bit) representing a predefined operator, and the last field is a n
integer for use in the case where there is a family of operators all of the same name (such as th e
"SELECT-i" of FLIC) . A List of FLIC operators is given in the appendix .

3 .8 . The Type "Variable "

address 8 usage_count annotation "name "
and is used for bound or free variables .

79



3 .9 . The Type "Lambda "

address 9 usage_count annotation "name" by body
where by and body are integers which are the addresses of the bound variable of the lambda node and the
body respectively .

3.10 . The Type "Undefined "

address 0 usage_count annotation "name "
which is a non-strict I .

3 .11 . Root Node

The root node is always given address 1 .

3 .12 . Example : The Factorial Functio n

1 5 1 0 3 2 1
2 6 1 0 3

3 9 1 0 "factorial" 11 4
4 5 1 0 5 1 3
5 5 1 0 6 1 2
6 5 1 0 7 8
7 7 1 0 16176
8 5 1 0 9 1 2
9 5 1 0 10 1 1

10 7 1 0 8978
11 8 4 0 „ n , l

12 1 2 0 1

13 5 1 0 14 1 6
14 5 1 0 15 1 1
15 7 1 0 8466
16 5 1 0 2 1 7
17 5 1 0 18 20
18 5 1 0 19 1 1
19 7 1 0 8465
20 1 1 0 1

21 1 1 0 3

4. Semantics and Operators

The set of FLIC operators with the semantics specified for FLIC is preferred, but other sets of opera -
tors with different semantics may be defined also . Of course, if a different set of operators is used, transla-
tion to and from FLIC operators must be provided for interchange of programs, but this is often fairl y
straightforward .

In the representation of FLIC programs, 0-tuples are not represented explicitly but instead ar e
denoted by a null pointer (in GCODE a pointer with the value 0) .

5. Conclusions

A graphical representation of a functional program in the FLIC intermediate code, or a simila r
language, has been suggested as a standard internal form for functional programs . Full details of the inter-
nal format have not been specified because they are likely to be somewhat machine dependent and, in an y
event, communication of programs between different sites is not likely to take place via direct memor y
dumps! Instead, a precisely defined printable format for the graph has been given and this is the level a t
which communication is expected .



The graphical representation can be used with various different sets of basic operators . The FLI C
operator set is preferred, but alternative sets can be defined if required. The representation also permits
(but does not require) all nodes of the graph to be named and annotated with additional information (whic h
must not affect the meaning of the program in the functional sense) .

The aim of this standard graphical representation is to encourage the use of compatible representa-
tions in work on functional programming languages which is being carried out at many sites, rather tha n
the proliferation of many incompatible representations which differ in arbitrary, but often quite trivial ,

ways .

6 . References

1 . T.H. Axford, "Lecture Notes on Functional Programming," Internal Report CSR-86-13, Departmen t
of Computer Science, University of Birmingham, Birmingham, 1986 .

2 . D .A. Turner, SASL Language Manual, University of Kent, Canterbury, 1979 .

3 - D . Berry, The PIFL Programmers ' Manual, Department of Computer Science, University o f
Warwick, Coventry, 1985 .

4. S .L . Peyton'Jones, "FLIC - A Functional Language Intermediate Code," Internal Note 2048, Depart-
ment of Computer Science, University College London, London, 1987 .

5. T.H. Axford, "Reference Counting of Cyclic Graphs for Functional Programs," Internal report CSR -
87-1, Department of Computer Science, University of Birmingham, Birmingham, 1987 .

6. B.W. Kernighan and D .M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs ,
New Jersey, 1978 .

7. Appendix : FLIC-Compatible Predefined Operators

We present the operators currently supported, all of which agree with the semantics of FLIC. They are
assumed to be Curried operators .

Arity

	

Type of Result

1

	

Integer
2

	

Integer
2

	

Integer
2

	

Integer
2

	

Integer
2

	

Integer
1

	

Real
2

	

Real
2

	

Real
2

	

Real
2

	

Real
2

	

Su m
2

	

Su m
2

	

Sum
2

	

Su m
2

	

Sum
2

	

Sum
2

	

Sum
2

	

Sum
2

	

Sum
2

	

Sum
2

	

Sum
2

	

Sum
1

	

Real
1

	

Integer

Descriptio n	 er.

integer unary minus
integer plus
integer minus
integer multipl y
integer divide (truncation )
integer remainder
real unary minus
real plu s
real minu s
real multipl y
real divid e
integer <
integer >
integer < =
integer > =
integer equalit y
integer ! =
real <
real >
real <-e,

real >==
real equality
real !=
integer to real conversio n
real to integer conversion

Code (hex) FLIC Name

1110

	

INT_
2110

	

INT-
2111

	

INT -
2112

	

INT *
2113

	

INT/
2114

	

INT%
1220

	

FLOAT_
2220

	

FLOATt-
2221

	

FLOAT -
2222

	

FLOAT *
2223

	

FLOAT/
2310

	

INT<
2311

	

INT>
2312

	

INT< =
2313

	

INT>.
2314

	

INTO
2315

	

INT! =
2320

	

FLOAT<
2321

	

FLOAT>
2322

	

FLOAT< =
2323

	

FLOAT=
2324

	

FLOAT=
2325

	

FLOAT !
1210

	

INT->FLOA T
1120

	

FLOAT>IN T

81 .



2

	

(unknown )
2

	

(unknown )
1

	

Produc t
3

	

(unknown )
1

	

Sum
2

	

Sum
2

	

Sum
2

	

Sum
(variable)

	

Sum
(variable)

	

(unknown )
1

	

Integer
2

	

(unknown)
2

	

(unknown)
2

	

(unknown)
2

	

(unknown)
(variable)

	

Product
2

	

(unknown)
2

	

(unknown)
2

	

Sum
2

	

Sum
2

	

Sum
1

	

Apply
3

	

Apply
2

	

(unknown)
(variable)

	

(unknown)
1

	

(unknown)
3

	

Apply
3

	

Apply
4

	

Apply
4

	

Apply
4

	

Apply
1

	

Real
1

	

Real
1

	

Real
1

	

Real
1

	

Real

sequential evaluation

	

2FF0
applicative order evaluation

	

2FF 1
input from a file

	

1440
conditional if.,then„else

	

3F30
negation

	

1330
logical inclusive OR

	

2330
logical exclusive OR

	

233 1
logical AND

	

2332
create sum-product domain

	

F310
extract elt. from sum-product

	

1±1.0
extract tag from a sum=product

	

1130
change tuple to curried application

	

25F0
as UNPACK, but strictly

	

25F 1
extract element of tuple

	

2F10
extract element of sum-tuple

	

2F1 1
create a tuple

	

F4F0
change tuple to curried application

	

25F2
as UNTUPLE-n, but strictly

	

25F3
polymorphic equality

	

23F0
polymorphic <

	

23F 1
polymorphic >

	

23F2
combinator Y

	

15F0
combinator S

	

35F0
combinator K

	

2FF2
FLIC operator K

	

FF10
combinator I

	

1FF0
combinator B

	

35F 1
combinator C

	

35F2
combinator S'

	

45F0
combinator B'

	

45F 1
combinator C'

	

45F2
square root

	

122 1
sin

	

1222
cos

	

122 3
exponential

	

1225
natural logarithm

	

1226

SEQ
STRICT
INPUT
I F
NOT
OR
XO R
AND
PACK- n
CASE- n
TAG
UNPACK
UNPACK !
SEL-TUPL E
SEL-SUM
TUPLE- n
UNTUPLE- n
UNTUPLE! -n
POLY=
POLY<
POLY>

K- n

SQRT
SIN
CO S
EXP
LN

82


