
NETWORKED SUBMISSION AND ASSESSMENT

Mike Joy, Pui-Shan Chan, Michael Luck
Department of Computer Science

University of Warwick
Coventry CV4 7AL

 M.S.Joy@warwick.ac.uk, Pui-Shan.Chan@dcs.warwick.ac.uk, Michael.Luck@dcs.warwick.ac.uk
 http://www.dcs.warwick.ac.uk/cobalt/

ABSTRACT
In this paper, we describe the new online
submission and assessment software in use at
Warwick, a 3-tier client-server architecture with
enhanced functionality and security features, and
discuss its evolution from the BOSS software which
was used before. We concentrate on the changing
requirements for such software brought about by
Internet availability, and on the enhanced
functionality afforded by the use of new
technologies.

Keywords
Networked online submission assessment

1. INTRODUCTION
In response to the problems caused by ever-
increasing numbers of students we have previously
developed an automated system for online
submission and assessment of programming
assignments [4]. After several years of deployment
in various guises, we have gained a maturity of
understanding of the process of automated
submission and assessment, and a better
appreciation of the potential improvements and
future directions.
In this paper, we briefly review the original BOSS
system, and outline some of its limitations. We then
describe its successor, Boss2, and discuss the
changes.

2. BOSS
As described elsewhere [4], the BOSS system is
intended to perform several distinct tasks within a

single overarching framework, and is aimed at
course management rather than instruction: it
supports the submission, testing and marking of
programming assignments, and also enables
feedback to be provided to students. Thus it does
not impact on the delivery of instructional materials,
which is a separate problem, and in this respect
differs from other related tools such as
CourseMaster [5] (and its functionally similar
predecessor Ceilidh [1] which we have discussed in
more detail elsewhere [4]). The structure of the
system reflects the conceptual division of the
software into three core modules that can be treated
as largely independent components which address
the submission of assignments, their testing and
their marking, as follows.
• The submission module allows students to

submit a piece of coursework, and handles the
task of copying that coursework to a secure
location where it can be accessed
subsequently.

• The testing module runs and tests a single
student program against one data set, and
reports success or failure according to the given
expected output.

• The marking module assists a lecturer in
marking a collection of coursework (after the
submitted programs have been run and tested
again several sets of data).

Each of these components provides information
through the user interface that is processed and
managed by lower level utilities, which access the
central file store through careful and secure
techniques.

3. LIMITATIONS IN BOSS
The BOSS system has been in use now for several
years and, though successfully fulfilling its rôle
during that period, we have become aware of a
number of limitations with the BOSS software that
might be addressed. In this section we describe
these constraints, grouped under the broad
headings of input and output, operating

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission.
8th Annual Conference on the Teaching of Computing, Edinburgh
© 2000 LTSN Centre for Information and Computer Science

environments, and institutional procedures. We
consider each in turn below.

3.1 Input and Output
A major difficulty is the lack of support for graphical
user interfaces (GUIs) in student programs.
Currently, normal input and output for programs are
handled via text files, leaving little room for GUI
designs. Commercial software packages have
benefited enormously from the introduction of the
windowing environment, most end-user applications
are designed to be used interactively, and the GUI
is becoming an essential part of any computer
software. In addition, new languages, such as Java,
which are object-oriented, allow for sophisticated
I/O. Restricting students to text-based I/O is
therefore now undesirable.
Another major problem is the handling of standard
input and output when performing automatic tests
on submitted programs. The BOSS software runs
under the UNIX operating system and, as
mentioned above, the normal program interface is
handled via ASCII text files. This is not ideal for
automatic testing purposes, since a sizeable
number of programs will fail the tests because of
unexpected non-printing control characters
generated by the programs. Programs written in C
and Pascal are particular susceptible to this
problem. Even simple typographical errors, such as
incorrect use of whitespace and capitalisation, can
cause automatic tests to fail.
Furthermore, when comparing the output from a
program against the expected output, utilities such
as diff are used to perform the check, but these
utilities do not handle certain types of files well,
especially if control characters are present. When a
marker is presented with the output from a student’s
program which appears to fail an automatic test, in
order to ascertain whether it in fact was a genuine
failure, or whether it should be awarded partial or full
credit, the marker needs to understand the output
from the comparing utility. The authors are not
aware of any such tool which produces easy-to-
understand output, and a marker must therefore
learn about the utility, which may well involve
significant time and effort.

3.2 Operating Environments
As most of the commonly used programming tools
are available on both PC and UNIX platforms,
students now have the capacity to develop their
programs under several environments. At Warwick,
students are encouraged to use and to get exposed
to a wide range of such programming tools.
However, while students often use PCs, the
Department of Computer Science at Warwick, does
not support PC use, instead concentrating its

resources on UNIX. As a direct consequence, many
students will transfer files from a PC to the
departmental UNIX machines when they submit
their work. There is a definite and yet subtle
difference between the two platforms concerning
text files. A text file created in a DOS/Windows
environment will contain non-printing characters,
causing the automatic tests to fail under the UNIX
environment. Due to the seemingly transparent
nature of computing networks, many students
overlook this issue unknowingly.
The BOSS software does not have any built-in
network capability, and is an application running on
a UNIX machine connected to the campus data
network. Students would have to logon to the UNIX
system in order to access the BOSS software. Many
students may feel uncomfortable if they only have
limited exposure to the UNIX platform, and since
many users of BOSS are not Computer Science
majors this is not an uncommon problem.
For a variety of technical reasons, it has not been
possible to port BOSS to all platforms available to
students, and in particular provision of the software
under Windows was not an option. One of the major
reasons for this was simply the complexity of
multiple installations of the software on a network
supporting a variety of processors (Sparc, Intel,
R5000) and UNIX versions (Solaris, Linux, IRIX),
and subtle differences in the behaviour of “standard”
system utilities. BOSS is not built upon the
client/server architecture and has no built-in network
capability, and it would have required a complete
rewrite of large parts of the software in order to
migrate BOSS to another platform.
The security of BOSS relies on the security of a
simple networked UNIX machine, and is not
scalable to a distributed implementation. Differences
in the file protection and other security mechanisms
afforded by different operating systems were
important factors, as we were only prepared to
deploy the software on machines on which we had
sufficient confidence that our software and stored
files would not be vulnerable either to malicious
attack or to accidental system failure.

3.3 Institutional Procedures
Within BOSS we make a distinction between
markers and moderators for those staff users
involved in the marking process, on a “per module”
basis. This has worked fine for most modules, but
occasionally a more sophisticated and configurable
model of staff duties and privileges is needed.
Logical representations of the institution processes
such as submission policies and assignment
marking schemes are heavily dependent on the
UNIX directory and file structure. Information is held

in text files placed under a fixed and predefined
directory structure, effectively forcing a tree
structure on the BOSS data storage. Thus modules
subdivide into assignments, which subdivide into
exercises. Data retrieval is done via traversing the
relevant directories systematically. This strong
coupling of data representations and the software
implementation does not accurately model the
actual presentation of a module, which may have a
more complex interrelationship between the various
assessment units.

4. BOSS2
With the advent of client/server concept and
architecture, and enabling technologies such as the
Java language, we see a great opportunity for the
BOSS software to be developed further. The use of
the client/server architecture will offer a flexible
structure which enables BOSS to evolve more
gracefully. The new version of BOSS, Boss2, is
rewritten using the Java language which boosts its
portability, robustness and ease of integration with
other computer software and systems.

4.1 Architecture
The traditional client/server architecture (2-tier)
approach usually involves two computers
communicating with one another. There is a
tendency for the client programs to take on more
processing tasks and hence become bigger (fatter)
over time, and this has a knock-on effect on the
performance and maintainability of the software.
Recently, there has been a strong movement
shifting from the 2-tier approach towards a 3-tier
architecture. This architecture utilises enabling
technologies such as Remote Method Invocation
(RMI) or CORBA to produce a middle layer between
the client and the server, and a further interface
between the server and the data storage.
The new BOSS software is built upon this 3-tier
architecture which includes clients and servers, both
written in Java, and a relational database, MySql.
Client/server communication is handled using RMI,
and Java DataBase Connectivity (JDBC) provides
an interface between the servers and the relational
database.
With this approach, the clients just provide a user
interface whereas the servers contain all the
complicated application logic including handling
student assignment submissions, automatic testing
and assignment marking. All information ranging
from student registration to assignment marking
schemes is held in a MySql database which can be
assessed via the JDBC link from the servers.
The main advantage of employing this architecture
is to introduce some form of flexibility into the

software. The client/server interface is clearly
specified, allowing a simple object model of the
processes to be implemented in the servers.
Similarly, the interface to the relational database
permits the system developer a clear understanding
of the underlying storage mechanism. The software
needs to be highly robust and configurable in order
to cope with different demands and parameters for
modules, and the model we have implemented
meets this requirement. With this architecture,
attention and development effort can be targeted to
a particular area more efficiently, and enables a
variety of software development activities to be
carried out separately, thus helping to speed up
development time. New development and changes
to different areas can be introduced with ease as
the impact of modifications can be contained,
helping BOSS to evolve and mature in a graceful
manner.

4.2 System overview
As shown in Figure 1, Boss2 composes of several
distinct components.
The user interface layers handles three separate
activities: submission, testing and marking. Each
activity will have its own interface in order to acquire
data from the users as well as to present responses
from the servers.
The server layer consists of a set of services to
facilitate the three main activities, both externally
and internally. As expected, the Submission,
Testing and Marking components are the core
functions provided by the server. The Security
component provides functions to authenticate users
and to manage sessions between each invocation
of Boss2. A channel for the markers and moderators
to communicate with the students is provided by the
Feedback component. A Plagiarism Detection
component [3] helps to detect unethical
submissions, and the Configuration component
provides functions to adjust the Boss2 settings.
Finally, a Miscellaneous component provides
general support for the Boss2 software. The Java
packages which form the server software mirror
these components.
The data store layer is composed of a file store and
a database. The file store holds the actual
submission files (in compressed form) from students
as well as test data sets and expected results for
automatic testing.
The interface and server layers are designed to be
placed on different machines to enhance software
flexibility, and the two layers are linked via a
computer network. For performance and security
reasons, the data store layer is placed on the same
machine as the server layer. The RMI connection

between the client interfaces and the servers is
encrypted using the Secure Sockets Layer (SSL)
protocol.

4.3 Enhancements
Our successor to BOSS, Boss2, differs from its
predecessor in a variety of ways.
Boss2 is implemented using Java, a very conscious
design choice that supports several desirable
features. First, Java brings with it the general
benefits of using object-oriented technology with the
associated improvements to modularity and
abstraction. Second, since Java embraces web-
based technology through its network APIs, and its
use to program applets, it can provide a solution
that is equally suited to use as a standalone
application or as a web-enabled system. In
principle, this allows the software to be integrated
with other web-based functionality and to be used
from across the Internet. Third, Java's platform
independent model allows for deployment on all
hardware currently available to our students,
regardless of concerns with underlying operating

systems. Finally, Java provides a wealth of
resources for a range of relevant purposes,
including database access and security, so that a
coherent software solution can be developed.
We are very conscious that any Web-based solution
carries with it dangers. For example, in order to use
BOSS a student must logon to a central UNIX
server, and that logging on process is sufficient to
verify the identity of the student (assuming, of
course, that the student has taken care not to
divulge their id/password, either accidentally or on
purpose). However, in a networked environment, the
software is placed in a vulnerable position and is
prone to malicious attacks in many different ways.
A primary concern is to prevent the introduction of
computer viruses and Trojan horses to the system
via the student's submission. A test harness was
introduced in BOSS and has been improved in
Boss2, which keeps sensitive information from
being probed, and the directory structure of the file

Data Base

 Submission Testing Marking

 Security Plagiarism Detection Feedback

 Configuration Miscellaneous

 Testing Marking Submission

File Store

Network

Interface

Server

Data Store

Figure 1: the 3-tier architecture for Boss2

storage from being discovered. Boss2 can mimic
the BOSS testing paradigm, ensuring backward
compatibility.
Upon the completion of a submission, an email
receipt will be sent to the student immediately
afterwards. It confirms that files have been copied
across to the main server, together with the hash
code for each individual file submitted as well as a
security hash code to authenticate the email
message. The hash codes are extremely sensitive
to changes. It will be reflected in the sequence of
the hash codes if any submission work has been
tampered with. An audit trail is kept of all dialogue
with submission system, and is duplicated in the
database, thus making it difficult for anyone to forge
a submission.
Another addition to Boss2 is the use of SSL
encryption technologies to protect the network traffic
from prying eyes. Together with Java RMI, we feel
confident that we have developed a model which
can ensure smooth and secure transactions
between the clients and the servers.
More importantly, in relation to a testing process, is
the replacement of the text-based UNIX solution
used by BOSS, with its associated difficulties of
specifying programs based on text input and output.
In Boss2, by using the object-oriented paradigm,
these problems can be overcome: instead of
specifying text output, for example, a result object
can be specified instead, which can be compared
with an expected result object. However, unlike the
text-based solution, methods can be easily defined
by the course organiser to perform comparisons
between objects, based on any criteria they choose
to use, enabling a variety of degrees of strictness of
matching. In addition, the scope for submission of
bogus solutions is reduced, since it is not possible
simply to generate unstructured textual output, but
instead program code is necessary.

4.4 Future Possibilities
The original BOSS system, which has been
deployed at Warwick for seven years on a variety of
courses, demonstrated the applicability and value of
a system for online submission and automated
testing of programming assignments, and has
proved the validity of the paradigm that we have
used. Inevitably, but fortuitously, changes in the
surrounding technological environment have
provided us with the ability to enhance the
functionality of BOSS over the years. Indeed,
several minor adjustments have been made to the
initial version including, for example, the introduction

of a graphical user interface relatively early in the
development (and deployment) of BOSS.
Nevertheless more recent developments have given
rise to much greater potential improvements, both to
the overall design and structure of the system
through a complete overhaul, and to some of the
fundamental aspects of the system such as the
testing of programs and the addition of network-
enabled and security-enhanced processes. As a
result we have redesigned and implemented BOSS
as Boss2, which we regard as a second generation
system for submission and assessment.
This redesign process has allowed us to integrate
much of the code for the new system with that for
our web-based CAL software [2], and we are
currently investigating the feasibility of merging the
two systems into a single course management
utility. The possibilities for such a utility are
becoming increasingly important in the light of an
increased concentration on concerns of distance
learning and, more recently, on the collection of
different aspects of the application of computers to
teaching under the banner of e-learning. In our
approach, we have not reacted to the hype to
develop systems specifically for such purposes, but
have developed robust and effective systems on the
basis of sound and extensive experience. The
system we describe here can indeed be used to
support networked e-learning, but it can also be
used in an isolated fashion to support traditional
models with enhanced quality of both pedagogy and
assessment.

5. REFERENCES
[1] Benford S.D., Burke K.E. and Foxley E., A

System to Teach Programming in a Quality
Controlled Environment, The Software Quality
Journal 177-197 (1993)

[2] Joy M.S. and Luck M., Computer-Assisted
Learning using the Web, Proceedings of the 5th
Annual Conference on the Teaching of
Computing, Dublin, 105-108 (1997)

[3] Joy M.S. and Luck M., Plagiarism in
Programming Assignments, IEEE Transactions
on Education 42(2) 129-133 (1999)

[4] Luck M. and Joy M.S., A Secure On-Line
Submission System, Software - Practice and
Experience 29(8), 721-740 (1999)

[5] CourseMaster's Research Page:
http://www.cs.nott.ac.uk/CourseMaster/

