i e g B o

Innovations in Education and Teaching International, I Routledie
Vol. 42, No. 1, February 2005, pp. 15-25 b :

Group projects and the computer science
curriculum

Mike Joy*
University of Warwick, UK

Group projects in computer science are normally delivered with reference to good software engineering practice.
The discipline of software engineering is rapidly evolving, and the application of the latest ‘agile techniques’ to
group projects causes a potential conflict with constraints imposed by regulating bodies on the computer science
curriculum. This paper explores the issues, and argues that there are strong educational reasons for modifying
the computer science curriculum to accommodate these new software engineering methodologies.

Introduction

The Universities and Colleges Admissions Service (UCAS, 2003) lists 3148 courses in
computer science in the UK, at undergraduate degree level and sub-degree level (such as Higher
National Diploma, HND). Of those, 496 are ‘single subject’ computer science. The content of
these courses varies greatly, with some offering a business-oriented perspective on information
technology (IT), whilst others emphasize the ‘science’ viewpoint on the subject. The subject
matter taught in each of these courses is constantly and rapidly changing, in response both to
technological advances in computing, and to the economic and social environment in which
graduates will make their careers. All are subject to quality assurance processes, and some are
accredited by professional bodies.

Most computing courses contain one or more group projects, motivated by practical and
pedagogical considerations. The delivery of such projects involves the application of good soft-
ware engineering practice, a topic within the computer science curriculum which is evolving
rapidly at the time of writing. There are also curriculum constraints affecting group projects,
which are imposed by current quality assurance practices and accreditation requirements, and
which assume a model for software engineering which is now being questioned.

Using one such course—the Computer Science degree at Warwick University in the UK—as
a case study, we consider how external constraints have affected group projects within the overall

*Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
Email: M.S.Joy@warwick.ac.uk

ISSN 1470-3297 (print)/ISSN 1470-3300 (online)/05/010015-11
© 2005 Taylor & Francis Group Ltd
DOI: 10.1080/14703290500048788

16 M. Joy

curriculum. We present an overview of the latest developments in software engineering, and
argue that there are strong educational reasons for modifying the curriculum to accommodate
the new software engineering methodologies.

Group work and the learning experience

The use of group work in higher education has many benefits, and there is a substantial body of
knowledge on its effective deployment (Henry, 1994; Reynolds, 1994; Gibbs, 1995; Jaques,
2000). Henry (1994) identifies five principal reasons for students to undertake group work:

o Application of knowledge—students are able to put into practice the knowledge and theory they
have assimilated in previous modules.

o Monvarion—a suitably chosen project is likely to be of direct relevance to the student.

o Higher cognitive skills—students develop a deep understanding of the material they are work-
ing on, and develop corresponding deep learning skills.

o Auronomy—students have control over what they learn and how they learn it.

o Assessment—projects are effective at distinguishing the strong students from the weaker ones.

Reynolds (1994) includes a further category:

o Ideological—students are prepared for participation in a society which promotes collaboration
and participation.

In the context of computer science, there is a cultural factor. Hughes and Cotterell (2002,
p- 217) note that: ‘A problem with major software projects is that they always involve working
in groups, and many people attracted to software development find this difficult’.

In the Professional Practice chapter of the Computer Science Curriculum authored jointly by
the Association for Computing Machinery (ACM) and the Institute of Electrical and Electronics
Engineers (IEEE) in the USA (ACM/IEEE, 2001, p. 59), it is noted that: ‘Learning how to work
in teams is not a natural process for many students, but it is nonetheless extremely important’.

Computing students often lack basic team-working skills, and we should therefore add a
further reason to include group work within the computer science curriculum:

o Team skills—students should learn to work effectively as part of a team, rather than as lone
programmers.

External requirements

In the industrial and commercial context that most students would encounter after graduating,
computer programming is normally a group activity. The UK Government is committed to
‘ensuring that the education and training system responds effectively to demand from employ-
ers’ (DfES, 2003, p. 58), and team working is a transferable skill desired by employers in the I'T
sector. In recognition of this, the accreditation requirements of the professional bodies require
the inclusion of group work within the curriculum. We consider course accreditation and quality
assurance in the UK as factors which affect course design, and for comparison purposes we will
also briefly consider accreditation in the USA.

Group projects in computer science 17

Computer Science, and other Information Technology-related degree courses in the UK are
regulated by the British Computer Society (BCS) or the Institute of Electrical Engineers (IEE),
or both. These two organizations are nominated bodies of the Engineering Council (EC) that
are allowed to award professional qualifications including chartered engineer status (CEng) to
appropriately qualified members. The relationship between the EC and its nominated bodies
has developed over time, but is essentially pyramidal in structure. The majority of the work of
the EC is devolved to the individual organizations with the EC issuing binding guidance on
limited aspects of an organization’s processes. In the case of the BCS, one specific effect is that
membership of the BCS is a prerequisite for CEng status, but not a sufficient one. Membership
of the BCS is open to a wider pool of professionals than those who aspire to be chartered
engineers.

In order for I'T professionals to become members of the BCS (designated by the letters MBCS
after their name), they must fulfil two prerequisites: they must have sufficient academic back-
ground, together with appropriate industrial or commercial experience. The BCS administers
its own examinations, but the majority of members have a qualification which exempts them
from the BCS examinations, and which is typically a three-year undergraduate honours degree.
The process for applying for exemption is described in detail in the BCS guidelines (1998). The
academic prerequisite for CEng is more onerous, and requires either four years of undergradu-
ate study, or a three-year honours degree plus a one-year ‘matching section’, which is typically
a one-year MSc.

The Quality Assurance Agency (QAA) has also been involved in the specification of standards
in computing, and in 2000 the ‘subject benchmark statement’ for computing was published
(QAA, 2000). The purpose of the document is to provide an outline of the curriculum expected
of a computing honours degree, and its intended audience includes, in addition to quality assur-
ance reviewers, potential students, external examiners and the individual academics within
computing departments. When drafts of the benchmark were distributed during the consulta-
tion phase, they met with a high degree of acceptance, and there seems to be a high level of confi-
dence within computing departments that its contents are accurate and representative.

In its preamble, the benchmark states that it ‘provides general guidance for articulating the
learning outcomes ... but is not a specification of a detailed curriculum’. The extent to which
the benchmark is in active use by individual departments in their course specification process is
as yet unclear, but the QAA will use it in future quality assurance exercises, and the BCS has
already incorporated reference to the QAA benchmark in its exemption and accreditation guide-
lines (BCS, 1998).

The system in the USA is somewhat different, and there are a number of national organiza-
tions involved in the accreditation process. The ACM is the direct equivalent of the BCS, and
the IEEE mirrors the role of the IEE. Accreditation of individual courses is handled by the
Computer Accreditation Commission (CAC)—a committee of the Accreditation Board for
Engineering Technology (ABET). The CAC is advised by the Computer Science Accreditation
Board (CSAB)—a professional federation with the ACM and IEEE amongst others as members.
Every 10 years the ACM and the IEEE Computer Society jointly agree a model computer
science curriculum for use by the CSAB, the most recent having been published in 2001 (ACM/
IEEE, 2001). Distinct curricula for computer engineering, software engineering and Informa-
tion Systems are also in preparation.

18 M. Joy

The ACM/IEEE curriculum is highly prescriptive, and specifies in depth both a core body of
knowledge and several ‘implementation strategies’ for delivering that knowledge. As a conse-
quence, accredited courses tend to have similar modules, with identical names and module
codes, and there is a large choice of textbooks each targeted at each named module. Although
most UK universities do not normally wish to seek USA accreditation, the ACM/IEEE approach
taken to group projects within the CS curriculum is not dissimilar from the BCS in the UK (and
explicitly draws on the QAA benchmark), and it will be helpful to us to refer to the ACM/IEEE
curriculum.

It is interesting to compare the BCS (or IEE) with other EC nominated bodies in the UK. For
example, CEng status is often a required qualification for senior jobs within the civil engineering
profession. In contrast, in May 2002 the BCS had less than 17,000 full members (BCS, 2003),
only a minority of I'T professionals, and few undergraduates join the BCS as Associate Members.
There is minimal regulation of the I'T industry in the UK, and the professional bodies do not
have the same influence as in other engineering disciplines. This mirrors practice in most
countries, the one exception being the State of Texas (2001), where use of the phrase ‘software
engineer’ is controlled by law.

This raises the obvious question of why an academic degree programme would wish to be
approved for BCS exemption or EC accreditation. A compelling reason is course marketing,
where accreditation may be seen by potential students as a seal of quality. This is particularly
important at present where a significant proportion of students are overseas, and who scrutinize
quality indicators carefully when selecting their course.

Group projects in computer science

Team work within computer science typically refers to a group project, where several program-
mers work together to write an item of software. Raymond (2001, p. 52), in a discussion of the
historical development of the Linux operating system, applies Kropotkin’s ‘severe effort of many
converging wills’ to the successful completion of a collaborative software development project.
A group project requires hard work, commitment and enthusiasm. There is a substantial body
of knowledge on the application of group work within this context, including a section of Fincher
et al.’s (2001) good practice guide for projects in computer science, and Hughes and Cotterell’s
(2002) guide to software project management.

The professional bodies all include group work within their framework for a computing degree
course. The QAA (2000, p. 6) specifies as a ‘computing-related practical ability’: “The ability to
work as a member of a development team, recognising the different roles within a team and
different ways of organising teams’.

The BCS requires that graduates of accredited courses should have the ability to ‘work in
multidisciplinary teams’ (BCS, 1998, p. 18) . Furthermore, each accredited course must contain
a substantial group project, which must fulfil (inzer alia) the following criteria (BCS, 1998, p. 22):

o ‘it should exhibit a structured approach to information systems practice, involving a number
of stages in the life cycle;

o each student must clearly identify their contribution to the overall project; ... and the assess-
ment must clearly identify each individual’s personal contribution;

Group projects in computer science 19

o the product must exhibit the attributes of quality, reliability, timeliness and maintainability’.
Furthermore, the project must generate a report which should include (BCS, 1998, p. 21):

o ‘aclear description of the stages of the life cycle undertaken;
o a description of how verification and validation were applied at all stages;
« appendices—technical documentation’.

The ACM/IEEE curriculum (2001) refers to ‘teamwork with individual accountability’, and
requires the incorporation of a ‘significant team project that encompasses both design and
implementation’. It suggests a model for this as a fourth-level ‘Capstone Project’ (a project
which brings together the knowledge and skills assimilated during the course of study) being a
‘team-oriented, software-engineering effort’.

There seems, therefore, to be a general understanding that the nature of the programming
activity makes group work a desirable and necessary component of the computer science curric-
ulum. However, this does not allow academics to use the full range of team activities described
in the literature. The necessity of access to equipment and associated software tools makes inap-
propriate many structured activities which might be used in the humanities and social sciences,
and the accreditation requirements further circumscribe the content of the project. More impor-
tant, from a practitioner’s standpoint, are the theoretical foundations for the discipline known
as ‘software engineering’, which effectively prescribe the type of activity that can be undertaken.

Software engineering

As we have noted above, computer science is an Engineering discipline, and a major topic
within the subject which might be seen as deserving such a characterization is that of software
engineering.

Software engineering is ‘a systematic approach to the analysis, design, implementation and
maintenance of software’ (FOLDOC, 2003). Ghezzi ez al. (2003, p. 1) describe it as the ‘build-
ing of software systems which are so large or so complex that they are built by a team or teams
of engineers’. The discipline requires the approach to be defined accurately, and group work is
fundamental to the process. A group project in computer science and a software engineering
project are to most intents and purposes synonymous. A successful group project would neces-
sarily apply good software engineering practice, whereas a software engineering project would
not be a solitary activity.

Although there are many approaches to systematizing the software development process
(Schach, 2002), the standard view of the process is a variant of the ‘waterfall model’ (see
Figure 1).

This process involves the following phases (the ‘software life cycle’):

1. the requirements of the ‘customer’ are ascertained;

2. aspecification (a detailed—possibly formal—description of the intended product) is written;

3. the software specification is then analysed, the software designed, and the specification is
mapped to a collection of structures appropriate to the programming language to be used;

4. the software is implemented (i.e. coded) in a programming language; and finally

5. the software is then tested (to remove any errors).

20 M. Joy

——>| Requirements
—>| Implementation|

Figure 1. The ‘waterfall model’ of software development

At the end of the process, there may be further iterations. For example, experience implement-
ing the software may reveal an implicit flaw in the specification, or the customer may modify his/
her requirements. This model of the software engineering process bears a strong resemblance to
that of other engineering disciplines—for ‘programming language’ read ‘construction materials’,
for ‘coded’ read ‘constructed’, and the process is simply mapped to the civil engineering equiv-
alent.

Within this broad framework, there is a variety of software engineering ‘methodologies’ which
further guide the programmer, requiring for example specific documentation to be generated
during the process, and indicating the use of supporting software tools to assist in correctly relat-
ing design, code and documentation together.

The organization of a team within such a software engineering project would typically be hier-
archical, with a team leader delegating specific well-defined tasks to individual team members.

Only application of knowledge and team-working skills, of the six motivating factors for group
work listed above, appear to be directly and unambiguously relevant. Whilst we would hope that
students would be motivated, and autonomously develop higher-order cognitive skills, and that
we would measure effectively individual students’ contributions, those outcomes would depend
on the details of the project to be undertaken, and the structure and internal dynamics of the
individual group. The ideological perspective might even be adversely affected by excessively
authoritarian management of a group.

This ‘classical’ process, however, does map well on to the criteria specified by the external
agencies. The software life cycle is catered for, individual contributions of students can be ascer-
tained and the production of suitable documentation is implicit.

Agile programming

The standard model of the software engineering process is open to criticism. The process can
be very inflexible, and the burden of documentation is often heavy. Furthermore, many custom-
ers do not actually know what they want at the start of the software development process, and
classical processes do not easily allow for changes of specification part-way during the develop-
ment (Martin, 2003).

Group projects in computer science 21

There is now a trend towards what is known as agile programming (Martin, 2003), a paradigm
for software development which eschews classical wisdom on the subject, and is instead guided
by the lessons learned by the pragmatics of the team programming activity.

The most well-known agile process is XP—an acronym for ‘Extreme Programming’ (Beck,
1999)—though others are used, such as SCRUM (ADM Inc., 2003) and Crystal (Cockburn
et al., 2003). These processes are lightweight, and perhaps best suited to small project develop-
ment. They are iterative, and require the active involvement of the customer throughout the
development process. So, instead of the software life cycle, the software development process is
subdivided—in the case of XP the divisions are ‘releases’ lasting typically several months, them-
selves subdivided into ‘iterations’ of up to three weeks (see Figure 2).

At the start of each iteration a planning meeting is held with the customer, and the program-
ming team is present, to decide what work is to be done during that iteration. This is an exercise
in the customer listing desired features (‘user stories’). These are short documents (often written
on index cards), in contrast to the lengthy usage scenarios found in classical software engineering.

During each iteration the coding is shared, and is dynamically allocated. Each programmer
selects the tasks he/she wishes to attempt, but during the iteration may spend time assisting other
programmers. In XP, ‘pair programming’ is expected, where two programmers use each
computer terminal at the same time, so that only one of them can actually be entering code
whilst the other keeps a watchful eye on the machine, and this strategy is known to be an effective
strategy to deliver good code (Williams & Upchurch, 2001; McDowell ez al., 2002).

In classical software engineering, the testing phase occurs at the end of the life cycle. In XP,
tests must be written at the szart of each iteration. In consultation with the customer, the team
specifies tests for each user story which will be used to ascertain whether the user story has been

lteration —P» lteration P lteration P> - —P lteration

Release 1

:

lteration —P» lteration [P lteration P - —P» lteration

Release 2

v

Figure 2. Cycles within an agile process

22 M. Joy

implemented correctly. Thus tests are used to drive the software coding, rather than being a vali-
dation check at the end of the process.

Another innovation is the approach to documentation. Classical processes generate large
volumes of documents, but the agile view is ‘Produce no document unless its need is immediate
and significant’ (Martin, 2003, p. 5).

The new curriculum

The computer science curriculum, as viewed by the BCS and ACM/IEEE, contains references
to the software life cycle as fundamental to a group project, and requires the production of technical
documentation. Each team member must be able to identify clearly their own contribution and
the quality and maintainability must be measurable. How does this fit with agile programming?

The classical software life cycle does not exist within agile programming. The production of
technical documentation is explicitly discouraged. The structure of a team mitigates against any
member ‘owning’ part of the process or the code. Quality and maintainability are not issues
which are explicitly part of the process, unless they are customer’s user stories.

Another issue is the role of the lecturer. In the classical case, the project is presented to the
group by the lecturer, acting as a customer, and the group ‘delivers’ a product at the end of the
process. The agile paradigm involves the customer throughout, leaving the lecturer either to be
deeply involved with the group, or for the customer to be a different person.

Agile programming has existed as an identifiable phenomenon since 1999, and is already
popular and appears to be academically respectable. The pedagogic aims of having a group
project seem to be met by using an agile approach. Indeed, the emphasis on close co-operation
and team integration would appear to address all seven of the factors identified above, and there
is no conflict with the QAA requirement. However, the curriculum requirement for a group
project to demonstrate the use of the software life cycle appears to preclude the use of an agile
programming process.

We must ask ourselves what is it that students are learning when they undertake a group
project, and what are we measuring. If our focus is on effective group co-operation in order to
deliver a demonstrably good-quality product, then we should not prevent the use of a process
which supports this aim.

Pedagogy of agile programming

We have indicated that the use of agile programming in the software development process is of
interest, and that there is a potential conflict between agile programming methodologies and the
current requirements for a computer science curriculum. If we can demonstrate that the peda-
gogic benefits of such a methodology suggest that its use in group projects is desirable, then we
can argue that the software engineering requirements for a group project should be interpreted
so as to include agile programming.

We have taken as a case study a single group of four students enrolled on the four-year Master
of Engineering (MEng) course in Computer Science at Warwick University. This course
contains two group projects, one in the second year and one in the fourth. The four students
worked together as a team in both projects, the second-year project delivered using a

Group projects in computer science 23

‘traditional’ methodology, but for the fourth-year project they used the XP agile methodology.
We interviewed all four students to ascertain how they perceived the differences in the two meth-
odologies affected their learning experiences, and we summarize the results under seven head-
ings, the seven reasons for students to undertake group work we introduced above.

Application of knowledge

The skills used in the two cases (which we will refer to as ‘traditional’ and ‘XTP’) were perceived
as being very different. Traditional methodologies require diagrammatic methods, whereas XP
demands negotiating skills (for communicating with the customer), for example. Depending on
the role of a given team member in a traditional project, that student may only use a part of the
knowledge he/she has been taught, whereas in XP, since there is no ‘ownership’ of code or
process, the student must practise a greater variety of skills. The point was also made that in any
such project (whether traditional or XP) the knowledge a student brings is rarely sufficient, and
that part of the educational experience during a project involves the assimilation of new skills
which have not formed part of the taught syllabus.

The constraints of an assessed project were felt to be an issue for the traditional methodology.
Typically, the instructor will provide the students with the specification of the software to be
written, and students therefore are unable to apply that part of the methodology which refers to
the specification phase. However, it would be in practice very difficult to provide a task for a
group to perform without a specification. In XP, the evolution of the customer requirements and
the less formal nature of the specification mean that this is not an issue.

Mounvation

The students were very clear that in XP the motivation is consistent throughout the project, due
to the regular requirement for iterations to be completed involving all members of the team. This
contrasts with the ‘bursty’ (non-constant) nature of the traditional process, where a team
member might be very heavily involved at specific parts of the process and lightly involved at
other times (e.g. the student in charge of the design phase would have his/her work skewed to
the start of the project).

Another point made was that with a traditional methodology there may be a temptation for
students to delay their work until the last minute, perhaps producing documentation which
obscures their failure to adhere to the time dependencies of the components of the software life
cycle. For example, code might be written in haste, the testing phase ignored and the design
documents retrospectively written. This would be impossible with XP.

Perhaps the most persuasive argument in favour of XP motivating students is best summed
up in the words of one of the students: ‘I think it’s just more fun, because it seems more suited
to programming’.

Higher cognitive skills

The iterative nature of XP affects this also. Since a traditional methodology normally demands
only one iteration, the opportunity for students to reflect on and evaluate their work cannot

24 M. Joy

comfortably take place until near the end of the project, whereas in XP this can happen after
each iteration.

With a traditional methodology, the necessity that the design phase be completed well in
order for the coding to be successful requires the students to think deeply about their work at
the start of the process. The subsequent implementation and testing should then be a relatively
straightforward process. In XP, each iteration requires careful thought about the design of the
software.

Autonomy

In the traditional process, members of a team are allocated tasks, so a student’s autonomy is
restricted by that allocation. The opportunities to choose a task would depend on the composi-
tion of each individual group. In XP, an individual can—and, indeed, must—be able to contrib-
ute to different tasks throughout the project. So it would appear that a student would enjoy
greater autonomy when using XP. However, this observation ignores the input of the customer,
who may constrain the flexibility of the group to take informed decisions.

Assessment

This is a topic which the students felt was generally independent of the methodology employed.
However, the point was made that sometimes the individual contributions of individuals are
significantly unequal when a traditional methodology is used, whereas there is perhaps a
tendency in XP for a levelling process to occur. This can partly be explained by individuals
having ownership of specified parts of the process in a non-agile environment, and those compo-
nents being of unequal size.

Ideology

Close contact with the customer in XP, pair programming and the joint ownership of code were
factors which were considered to be beneficial in preparing students for future participation in
society. One student remarked that his XP experience with ‘customer contact’ had been very
helpful when he was applying for jobs, since his potential employers regarded it as a valuable
skill. In contrast, a traditional approach might allow a ‘loner’ to complete his/her allocated task
with minimal contact with the rest of the group.

Team skills

Both types of methodology were felt to enhance team skills, provided that the team members
were engaged and enthusiastic.

Overall, we find that the experience of this specific group of students would seem to favour
the use of XP on educational grounds. Motivation and student autonomy appear to be signifi-
cantly enhanced, and deep learning is consistently promoted throughout. Issues relating to
assessment, application of knowledge, ideology and team skills are less differentiated, but none
was considered to favour the traditional approach to software development.

Group projects in computer science 25

Conclusion

We have considered the use of group projects within the computer science curriculum, and
remarked that a typical curriculum meeting the accreditation requirements of the professional
bodies requires the use of a ‘traditional’ software engineering methodology. We have also noted
the popularity within industry of a new type of software engineering methodology, so-called
‘agile programming’. A small case study has indicated that there may be positive pedagogical
benefits to be gained by using agile programming rather than a traditional methodology in
computer science group projects.

Notes on contributor

Mike Joy is a senior lecturer in Computer Science at the University of Warwick. His research
interests include educational technology in computer science education, programming
languages and agent-based systems.

References

ACM/IEEE-CS Joint Curriculum Task Force (2001) Computing curricula 2001. Available online at:
www.acm.org/sigcse/cc2001/ (accessed 10 April 2003).

ADM Inc. (2003) SCRUM. Available online at: www.controlchaos.com (accessed 23 April 2003).

BCS (1998) Guidelines on course exemption and accreditation (Swindon, British Computer Society).

BCS (2003) Review 2003. Available online at: www.bcs.org.uk (accessed 21 April 2003).

Beck, K. (1999) Extreme programming explained: embracing change (Reading, MA, Addison-Wesley).

Cockburn, A., Highsmith, J., Johansen, K. & Jones, M. (2003) Crystal. Available online at: www.crystal-
methodologies.org (accessed 23 April 2003).

DAES (2003) The future of higher educarion (London, The Stationary Office).

Fincher, S., Petre, M. & Clark, M. (Eds) (2001) Computer science project work: principles and pragmatics
(London, Springer).

FOLDOC (2003) The free online dictionary of computing. Available online at: www.foldoc.org (accessed 21 April
2003).

Ghezzi, C., Jazayeri, M. & Mandrioli, D. (2003) Fundamentals of software engineering (2nd edn) (New York,
Prentice-Hall).

Gibbs, G. (1995) Learning in teams: a tutor guide (Oxford, Oxford Centre for Staff Development).

Henry, J. (1994) Teaching through projects (London, Kogan Page).

Hughes, R. & Cotterell, M. (2002) Software project management (3rd edn) (London, McGraw-Hill).

Jaques, D. (2000) Learning in groups (3rd edn) (London, Kogan Page).

QAA (2000) Academic standards—compuring (Gloucester, Quality Assurance Agency for Higher Education).

Martin, R. C. (2003) Agile sofrware development: principles, patterns and practices NNew York, Prentice-Hall).

McDowell, C., Werner, L., Bullock, H. & Fernald, J. (2002) The effects of pair-programming on performance
in an introductory programming course, ACM SIGCSE Bulletin, 34(1), 38—42.

Raymond, E. (2001) The cathedral and the bazaar (Sebastopol, CA, O’Reilly).

Reynolds, M. (1994) Groupwork in education and training (LLondon, Kogan Page).

Schach, S. R. (2002) Object-oriented and classical software engineering (5th edn) (New York, McGraw-Hill).

State of Texas (2001) Texas engineering practice act (Austin, TX, Texas Board of Professional Engineers).

UCAS (2003) Course search. Available online at: www.ucas.ac.uk/ucc (accessed 10 April 2003).

Williams, L. & Upchurch, R. L. (2001) In support of student pair-programming, ACM SIGCSE Bulletin,
33(1), 327-331.

