
IEEE TRANSACTIONS ON EDUCATION, VOL. 42, NO. 2, MAY 1999 129

Plagiarism in Programming Assignments
Mike Joy and Michael Luck

Abstract—Assessment of programming courses is usually car-
ried out by means of programming assignments. Since it is simple
to copy and edit computer programs, however, there will always
be a temptation among some students following such courses
to copy and modify the work of others. As the number of
students in these courses is often high, it can be very difficult
to detect this plagiarism. We have developed a package which
will allow programming assignments to be submitted on-line, and
which includes software to assist in detecting possible instances of
plagiarism. In this paper, we discuss the concerns that motivated
this work, we describe the developed software, tailoring the
software to different requirements, and finally we consider its
implications for large group teaching.

Index Terms—Plagiarism, programming.

I. INTRODUCTION

T HE numbers of students following computer program-
ming courses in the U.K.—either within a computing

degree or as part of another course—are increasing [1], [2].
At the same time, university staff are under considerable
pressure to deliver such courses using available resources
with maximum efficiency. One consequence of this increase in
numbers is a corresponding increase in difficulty in detecting
isolated instances of students engaging in unacknowledged
collaboration or even blatant copying of coursework.

Assessment of programming courses usually involves stu-
dents writing programs, which are then marked against criteria
such as correctness and style. Unfortunately, it is very easy
for students to exchange copies of code they have written.
A student who has produced working code may be tempted
to allow a colleague to copy and edit their program. Unless
students have been organized into “teams” to produce group
coursework, this is discouraged, and is likely to be regarded
as a serious disciplinary offense.

It is not sufficient to remind students of regulations forbid-
ding plagiarism; they must understand that itwill be detected,
and that it will not be condoned. However, it is easy for an
instructor to fail to detect plagiarism, especially when class
sizes are measured in hundreds of students.

Automation provides a means with which to address these
concerns. Much of the program submission, testing, and mark-
ing process has the potential to be automated, since programs
are, by definition, stored in a machine-readable form. At
Warwick, we have been developing software which will allow
students to submit programming assignments on-line. An
integral part of our software consists of a module to assist a

Manuscript received June 30, 1995; revised January 21, 1999.
The authors are with the Department of Computer Science, University of

Warwick, Coventry, CV4 7AL, U.K.
Publisher Item Identifier S 0018-9359(99)03953-9.

course leader to detect instances of possible plagiarism, using
a simple but novel technique. In this paper, we discuss the
software and its implications for the management of large
courses.

II. WHAT IS PLAGIARISM?

Plagiarism—unacknowledged copying of documents or pro-
grams—occurs in many contexts. Inindustry, a company may
seek competitive advantage;academicsmay seek to publish
results of their research in advance of colleagues. In these
instances, the issue is treated very seriously by both parties,
and the person performing the unauthorized copying may
be backed by significant technical and/or financial resources.
Detection becomes correspondingly difficult.

Alternatively, studentsmay attempt to improve marks in
assessments. They are, however, unlikely to enjoy financial or
technical support for such an activity, and the amount of time
available to them is short. The methods used to conceal copied
work are therefore, in general, unsubtle. Only moderately
sophisticated software tools are required to isolate potential
instances of plagiarism.

There are many reasons for students copying material from
each other, or colluding in producing a specific piece of work.
These include the following.

• A weak student produces work in close collaboration with
a colleage, in the belief that it is acceptable.

• A weak student copies, and then edits, a colleage’s pro-
gram, with or without the colleage’s permission, hoping
that this will go unnoticed.

• A poorly motivated (but not necessarily weak) student
copies, and then edits, a colleague’s program, with the
intention of minimizing the work needed.

In the first case, the students concerned are treading on a
potentially grey area of acceptability—we expect, and desire,
that students should share knowledge, thereby reinforcing
the learning process. The boundary between plagiarism and
legitimate cooperation may be poorly defined, and some
students may be familiar with different customs and norms.
It is, nevertheless, still necessary to discover situations where
there is a high probability that collaboration has taken place,
so that any misunderstandings are resolved.

In the second case, the weak student is likely to have
a poor understanding of the program they have edited, and
the similarities between the two programs are likely to be
strong. Not only may disciplinary action be required, but
also—and perhaps more important—the tutor has been alerted
that remedial intervention may be appropriate to assist the
weak student.

0018–9359/99$10.00 1999 IEEE

130 IEEE TRANSACTIONS ON EDUCATION, VOL. 42, NO. 2, MAY 1999

In the final case, it may be that the student has very good
knowledge of the subject, and is able to make sophisticated
modifications to the original program. Such a student will be
more difficult to identify; it might be argued that if a student
can edit a program so much that it is undetected, then that
very act is itself a substantial software development task.

It must be realized that it isalwayspossible for undetectable
plagiarism to occur, no matter how sophisticated the tools
available. There is a tradeoff on the part of the instructor
between the resources invested in detecting plagiarism, and
the diminishing returns of finding the few (if any) cases which
are difficult to detect. The dishonest student must also balance
the work needed to conceal their plagiarism against the effort
to create a piece of coursework on their own.

A. Techniques for Plagiarism

It is not feasible to classifyall possible methods by which
a program can be transformed into another of identical (or
similar) functionality—such a task would be open-ended,
as the number of languages available is steadily growing.
However, some common transformation strategies can be
identified.

1) Lexical Changes:By lexical changes, we mean changes
which could, in principle, be performed by a text editor. They
do not require knowledge of the language sufficient to parse
a program.

• Comments can be reworded, added and omitted.
• Formatting can be changed.
• Identifier names can be modified.
• Line numbers can be changed (in languages such as

FORTRAN).

2) Structural Changes:A structural changerequires the
sort of knowledge of a program that would be necessary to
parse it. It is highly language-dependent.

• Loops can be replaced (e.g. awhile loop in Pascal can
be substituted for anuntil loop).

• Nested if statements can be replaced bycase state-
ments, and vice-versa.

• Statement order can be changed, provided this does not
affect the meaning of the program.

• Procedure calls may be replaced by function calls, and
vice-versa.

• Calls to a procedure may be replaced by a copy of the
body of the procedure.

• Ordering of operands may be changed (e.g.x < y may
becomey >= x).

B. The Burden of Proof

Not only do we need to detect instances of plagiarism, we
must also be able to demonstrate beyond reasonable doubt that
those instances are not chance similarities.

In our experience, most students who plagiarize do so
because theydo not understand fully how to program. The
modifications they make—once spotted—are usually suffi-
ciently obvious that they will readily admit to their actions.

If modifications to a program have been made which are so
large as to radically alter the structure of the program, then it

is difficult, if not impossible, to prove a charge of plagiarism
to a disciplinary officer. However, there is small incentive for
a student to engage in such a significant modification, since
the time and effort required would be of a simliar magnitude
to that involved in writing the program afresh.

III. T ECHNIQUES FORDETECTION

The ability to detect instances of similar programs can be
distilled into being able to decide whether or not apair of
programs are sufficiently similar to be of interest. Management
of a larger collection of programs is a topological exercise [11].
There are two principal comparison techniques.

• Calculate and compareattribute counts[8]. This involves
assigning to each program a single number represent-
ing capturing a simple quantitative analysis of some
program feature. Programs with similar attribute counts
are potentially similar programs. The size of a program,
for example, would be a very simple attribute count.
These metrics can be combined so that each program is
assigned a tuple of numbers, and programs are considered
similar if most or all of the corresponding tuple elements
are similar. Such measures as counts of operators and
operands are typically used to construct attribute counts,
and more sophisticated but related metrics such as cy-
clomatic complexity [7] and scope number [3] have been
examined.

• Compare programs according to theirstructure [9], [6].
This is a potentially more complex procedure than cal-
culating and comparing attribute counts, and depends
fundamentally on the language in which the programs
are written.

Whale [11], [12] has carried out a detailed comparison of
various attribute count and structure comparison algorithms.
He concludes that attribute count methods alone provide a poor
detection mechanism, outperformed by structure comparison.
His structure comparison software,Plague, is claimed to yield
excellent results.

Both Plague [11] and Yap [13] (a system based on
Plague, but simplified and optimized for speed) report
a high measure of success. However, a recurring fea-
ture of structure comparison software is its complex-
ity, and a detailed understanding is required of the tar-
get language. It is thus difficult to convert the software
for new languages. For example, Wise reports 2.5 days
to adapt Yap to handle the language Pascal rather than C
[13], for which Yap was originally written.

A system which incorporates sophisticated comparison al-
gorithms is, by its nature, complex to implement, potentially
requiring the programs it examines to be fully parsed. The in-
vestment in resources to produce such a system is heavy. This
may be justifiable in the commercial context, if it is necessary
to prove copyright violation. In an educational context, the
effort expended by students to hide their plagiarism is likely
to be much less. Furthermore, students will not necessarily
use a single programming language throughout their degree
course, and any detection software must be readily upgradeable
to handle new languages and packages. There is, therefore, a

JOY AND LUCK: PLAGIARISM IN PROGRAMMING ASSIGNMENTS 131

need for a relatively simple method of program comparison
which can be updated for a new programming language with
minimal effort, and yet which is sufficiently reliable to detect
plagiarism with a high probability of success.

IV. THE WARWICK APPROACH: SHERLOCK

Several criteria were isolated which we felt essential to a
robust and practical package.

• The program comparison algorithm must be reli-
able—ideally a structure comparison method.

• The program comparison algorithm must be simple to
change for a new language.

• The instructor using the package must have an efficient
interface (preferably with graphical output) to enable
them to isolate potential instances of plagiarism rapidly.

• The output from the package must be in a form which is
clear to someone unfamiliar with the programs it is exam-
ining. If two students are suspected of being involved in
plagiarism, clear evidence needs to be presented both to
themand to a third party (such as a disciplinary officer)
who might need to become involved.

In order to preserve the correct functioning of a copied
program, unless the person copying the program already
understands well how it works, only limited editing can
be performed. Thelexical changes described above would
probably be implemented, together with a limited number of
structural changes.

We might expect, then, that by filtering outall this infor-
mation, and reducing a program to meretokensor primitive
language components, similarities would become apparent.
Even with substantial structural changes, we would expect
there to be significantly large sections of the programs which
are tokenwise the same. In practice, this filtering process
removes much data. For simpler programs typical of intro-
ductory programming courses, students have a limited choice
of algorithms to use, and tokenized representations of their
programs yield many spurious matches. Similarity of tokenized
representations alone is insufficient to demonstrate plagiarism,
unless a program is complex or of an unusual structure.

A. Incremental Comparison

We adopted the following approach, which we callincre-
mental comparison. A pair of programs is compared five times,

• in their original form;
• with the maximum amount of whitespace removed;
• with all comments removed;
• with all commentsand maximum amount of whitespace

removed;
• translated to a file oftokens.

A token is a value, such asname, operator, begin, loop-
statement, which is appropriate to the language in use. The
tokens necessary to detect plagiarism may not be the same
as those used in the parser for a real implementation of the
language—we do not need to parse a program as accurately
as a compiler. Our scheme will work even with a very simple
choice of tokens, and a rudimentary parser. Thus it is easy

TABLE I
ILLUSTRATION OF RUNS

to update for a new language. Each line in the file of tokens
will usually correspond to a single statement in the original
program.

If a pair contains similarities, then it is likely that one
or more of these comparisons will indicate as much. By
examining the similarities and the corresponding sections of
code in the original program, it should be possible to arrive
at a preliminary decision as to whether the similarities are
accidental or not.

B. Implementation

We have implemented this scheme in a program, called
SHERLOCK, which allows an instructor to examine a col-
lection of submitted programs for similarities. It assumes that
each program is stored as a single file, and is written using
a specific predefined language. Each pair of programs in the
collection is compared five times, as described above.

1) Runs and Anomalies:We define arun to be a sequence
of lines common to two files, where the sequence might not
be quite contiguous. That is, there may be a (possibly small)
number of extra or deleted lines interrupting the sequence. The
allowable size of interruptions (which we callanomalies), and
density within the sequence, are configurable. For instance,
(using a default configuration) in Table I, Sequence 1 and
Sequence 2 form a run with two anomalies comprising one
extra and one deleted line. By contrast, Sequence 1 and
Sequence 3 do not form a run since there are six anomalies in
nine lines (three deletions and three insertions).

When comparing two programs, SHERLOCK traverses the
two programs looking for runs of maximum length. An entry
is appended to arecord filefor each run, which indicates which
two programs were being compared, where the runs are located
in the files, the number of anomalies in each run, and the size
of the run as a percentage of the length of each program.

2) Presentation of Data:When all pairs of files have
been compared, a neural-network program (a Kohonenself-
organizing feature map[5]) is invoked which reads the record
file and creates a PostScript image which illustrates the
similarities between the programs listed in the record file.

132 IEEE TRANSACTIONS ON EDUCATION, VOL. 42, NO. 2, MAY 1999

Fig. 1. Neural-net output.

The image consists of a number of points (representing the
original files), connected by lines. A line joining two points
indicates that significant similarities have been found between
the corresponding files, and the shorter the line, the stronger
the similarities. The function of the neural network is to design
the layout for the image, a procedure which would be difficult
by other means.

In Fig. 1, which is typical of the sort of output produced
by the neural network, the named files are grouped into
three clusters. Files in separate clusters have essentially no
similarities; those in the A–C cluster and the E–I cluster have
similarities, but these are relatively weak. Cluster J–K is very
tight, and large parts of files J and K are almost identical.

The image may be viewed or printed. The instructor is then
presented with a copy of the record file, and invited to select
an entry from the file. Typically, an entry representing a long
run for two programs close together in the image would be
selected initially. The line sequences forming the run would
then be displayed in separate windows, so they can easily be
compared.

By repeatedly selecting entries from the record file, an
instructor will quickly be able to arrive at a preliminary judge-
ment as to which programs are worth a detailed examination.

C. Testing

At Warwick, we have implemented a software package
called BOSS [4] (“The BOSS Online Submission System”)
which allows students to submit online programming assign-
ments. It contains a collection of programs which run under
the UNIX operating system, and is designed specifically for
courses which have a large number of students attending,
and which are assessed by means of programming exercises.
Introductory programming courses in high-level computer
languages are the typical target for BOSS.

BOSS is in use for four courses at present:

• an introductory programming course (in Pascal) for Com-
puting students;

• an introductory programming course (in Pascal) run as a
service course for the Mathematics Departments;

• a course on UNIX shell and utilities;
• a course which covers LEX and YACC

Each course is attended by over 100 students. We thus
had a useful environment in which we could implement and
test software which might assist us in detecting unauthorized
collusion. Furthermore, SHERLOCK has also been used on
a functional programming course (using the language Mi-
randa) and a unit covering data structures (using Pascal).
Adapting the software to handle a different language can
be done comfortably in a single afternoon. A number of
instances of copied work have been detected in all of these
courses.

It is not possible to demonstrate exactly what proportion of
plagiarized programs such software will detect, for the reasons
outlined at the start of this paper. However, we have used the
software on many courses, and have successfully managed to
reduce the incidence of plagiarism through identification of
particular cases. Specifically, over a period of three years,
the proportion of students involved in such incidents has
decreased from a relatively high 6% to a more acceptable
1%. We believe this is due to an awareness among students
of the existence and efficacy of the plagiarism detection
software. To demonstrate that our confidence is well-founded
we performed two tests to gain a quantitative measure of
performance.

1) First Test: Attempted Deception:We selected a program
of medium length and good quality submitted for a later
assignment in the Pascal course for computing students. This
we felt was a typical program which might lend itself to being
copied. We then passed this to two postgraduate students who
are skilled in Pascal, and requested them to attempt to edit the
program with the intention of fooling SHERLOCK. Neither
was able to do so without making substantial changes requiring
a good understanding of Pascal and of the solution—a student
with such knowledge would be unlikely to be motivated to
plagiarize.

2) Second Test: Comparison with Plague:The software
was tested on a suite of 154 programs written in Modula-
2 [10] on which Plague had been run. Of 22 instances of
plagiarism initially detected by SHERLOCK, Plague found 21,
and detected two others missed by SHERLOCK. “Fine-tuning”
the parameters to SHERLOCK improved its performance and
it then detected all 24 cases. We claim that SHERLOCK
is capable of achieving a similar level of performance as
Whale’s Plague.

V. CONCLUSION

We have designed a simple method which assists us with
the detection of instances of plagiarism in computer programs.
Our scheme is easy to adapt for the large variety of pro-
gramming languages in use, and is sufficiently robust to be
highly effective in an educational environment. While having
a detection rate as good as other more complex software, it
presents its report as a simple graph, enabling large numbers
of programs to be checked quickly and efficiently. By using
“runs,” SHERLOCK provides straightforward documentation
which can be used as clear and convincing evidence should a
suspected instance of plagiarism be disputed.

JOY AND LUCK: PLAGIARISM IN PROGRAMMING ASSIGNMENTS 133

ACKNOWLEDGMENT

The authors wish to thank G. Whale for providing the test
data and W. Smith for the initial software development.

REFERENCES

[1] Higher Education Statistics Agency,Higher Education Statist. U.K.
1994/95. Cheltenham, U.K.: HESA, 1995.

[2] Higher Education Statistics Agency,Higher Education Statist. U.K.
1995/96. Cheltenham, U.K.: HESA, 1996.

[3] W. A. Harrison and K. I. Magel, “A complexity measure based on
nesting level,”ACM SIGPLAN Notices, vol. 16, no. 3, pp. 63–74, 1981.

[4] M. S. Joy and M. Luck, “Software standards in undergraduate computing
courses,”J. Comput.-Assisted Learning, vol. 12, no. 2, pp. 103–113,
1996.

[5] T. Kohonen, Self-Organization in Associative Memory. Berlin, Ger-
many: Springer-Verlag, 1988.

[6] K. Magel, “Regular expressions in a program complexity metric,”ACM
SIGPLAN Notices, vol. 16, no. 7, pp. 61–65, 1981.

[7] T. J. McCabe, “A complexity measure,”IEEE Trans. Software Eng.,
vol. SE-2, pp. 308–320, 1976.

[8] G. K. Rambally and M. Le Sage, “An inductive inference approach to
plagiarism detection in computer programs,” inProc. Nat. Educational
Comput. Conf., Nashville, TN. Eugene, OR: ISTE, 1990, pp. 23–29.

[9] S. S. Robinson and M. L. Soffa, “An instructional aid for student
programs,”ACM SIGCSE Bull., vol. 12, no. 1, pp. 118–129, 1980.

[10] W. O. Smith, “A suspicious program checker,” B.Sc. dissertation, Dept.
Comput. Sci., Univ. Warwick, U.K., 1994.

[11] G. Whale, “Identification of program similarity in large populations,”
Comput. J., vol. 33, no. 2, pp. 140–146, 1990.

[12] , “Software metrics and plagiarism detection,”J. Syst. Software,
vol. 13, pp. 131–138, 1990.

[13] M. J. Wise, “Detection of similarities in student programs: YAP’ing
may be preferable to Plague’ing,”ACM SIGCSE Bull., vol. 24, no. 1,
pp. 268–271, 1992.

Mike Joy received the B.A. degree in mathematics and the M.A. degree from
Cambridge University, and the Ph.D. degree in computer science from the
University of East Anglia.

He is currently a Lecturer in Computer Science at the University of
Warwick. His research interests include computer-based learning and teaching,
agent-based systems, functional programming, and software engineering.

Dr. Joy is a member of the British Computer Society and of the Association
for Computing Machinery, and is a Chartered Engineer.

Michael Luck received the degree of B.Sc. in computer science from
University College London in 1985. After spending a year at the University
of Illinois at Urbana-Champaign, he returned to University College London
and received the Ph.D. in computer science for work on motivated discovery
in 1993.

Since then, he has been a Lecturer in Computer Science at the University of
Warwick. His research includes artificial intelligence, concerned with single-
agent and multiagent systems, computer-assisted learning, tutoring systems,
and educational technology.

