Software Standards in Undergraduate Computing
Courses

Mike Joy and Michael Luck,
Department of Computer Science,
University of Warwick,
COVENTRY,

CV4 7AL,

UK
email: {M.S.Joy,Mike.Luck}@dcs.warwick.ac.uk



Abstract

High-quality software must be robust, reliable and maintainable. The design
and coding of such software is no longer a craft; it is an engineering discipline,
and the teaching of computer programming must reflect this. Consequently, stu-
dents need to be aware of the importance of formulating accurate specifications for
programming tasks, and of coding programs which correctly implement such spec-
ifications. However, the increase in student numbers experienced in recent years
has caused manual methods of assessing students’ programming assignments to
become inefficient, and consistency more difficult to enforce. In order to support
and motivate a rigorous approach in the context of these difficulties, we have devel-
oped an innovative on-line assessment system for programming language modules
which addresses both concerns. In this paper we describe the package and dis-
cuss its importance in the delivery and assessment of undergraduate programming

modules.

Keywords

programming assessment; programming skills; automated marking; software standards



1 Introduction

As computer science matures as a discipline, the skills required to program a computer
system effectively are becoming better understood. The task of writing a computer pro-
gram is no longer mysterious; it can be divided into separate processes — the “software
design cycle” — underpinned by solid theoretical foundations. However, the so-called
“software crisis” (Brooks, 1987, Gibbs, 1994) is upon us; theory and practice are no
longer in step. It is rare for large programs to be constructed using the wealth of theory
and “good practice” normal in other engineering disciplines. In consequence, much
commercial software contains errors, and corporate I'T budgets are often overspent in
attempting to correct those errors and maintain the software.

First year undergraduate computer scientists, fresh from school or college, and ex-
cited by the courses on which they are embarking, are naturally fired by an overpower-
ing enthusiasm. This often manifests itself — and rightly so — in unstructured exper-
imentation with the software to which they have access. All too often, however, this
can leave them oblivious to the importance of being able to write good specifications
for software, and being able to code those specifications correctly. These are practical
skills which are needed to overcome the software crisis, and to enable programmers to
write correct programs to specification and to time.

If we are to address the problems that cause the software crisis, we must begin to
do so at this point, when students are first developing their programming styles and
practices.

In this paper we look at aspects of the design and delivery of introductory program-
ming courses which encourage students to adopt good practice. These are considered
in the context of innovations at Warwick which relate to the automated submission and
testing of programming assignments. The paper is divided into three main sections.
First we look at general issues involved with assessing a student’s programming abil-
ity, followed by a discussion of factors relating to automating the assessment process.

Finally we present an overview of the assessment system adopted at Warwick, which



efficiently and securely allows programming assignments to be managed on-line.

2 Programming Skills

The purpose of a programming course is to teach students to code in a particular lan-
guage; it is not to introduce them to formal specification tools, such as Z (Wordsworth,
1992) and VDM (Jones, 1990), which are generally regarded as a separate discipline.
Nor would such a course examine in depth the choice of algorithm for solving a par-
ticular programming problem. There are strong similarities between a solution to a
course assignment, and a software solution to a problem which might be encountered
in an industrial or commercial context. Both demand a well-specified problem together
with an accurate programmed solution. Neither allows much, if any, design choice on
the part of the programmer over and above that which is necessary (algorithm, modu-
larisation and data structures) to perform the coding.

A client of a software company will have, as a main consideration, the confidence
that the company will write correct and maintainable software for them. If such a com-
pany fails to deliver working software, it will incur heavy penalties; a good computer
professional is used to working with well-specified problems, and is judged on their
ability to solve those problems. This principle should be applied to student assign-

ments.

2.1 Introductory Programming Modules

It is normal practice for a computer science student to be exposed in their first term
or semester to an introductory programming module, so that basic programming skills
are available to be built upon later in the course. It is important at that stage to ensure
that students have understood correctly, or bad habits will be carried over to subsequent
course units.

This module typically takes the form of a unit in which the students are taught to
program in a high-level language, such as Pascal, Modula 2 or Lisp. A student who

has successfully completed such a module is able to write programs in that language



— and most students do acquire that skill. Furthermore, they will have been assessed
on that programming ability, and will have demonstrated to their examiners that they
are indeed proficient at programming.

Consider, for a moment, how this process would be carried out. Following lectures,
seminars and laboratory sessions, a student is given an assignment. This is the point
at which the student is required to exhibit their competence in producing an item of
software which is of an acceptable standard. The assignment takes the form of a task
for which the student must write a program (and probably also produce supporting
documentation). The solution will at a later time be handed in, either as a printout on
paper, or as a machine-readable copy of the program. The submitted piece of work

must then be assessed, and criteria must be chosen by which it can be measured.

2.2 Specification of Assignments

It is vital that a programming assignment be specified with a high degree of accuracy.
If the specification of the task is imprecise, assessing a submitted assignment becomes
relatively difficult, as conformance with the specification may not be easy to ascertain.
However, with a tight specification, the submitted program can be tested against suit-
able test data, and for each set of data the output of the program can be compared with
the expected output.

These mirror the demands encountered in industry. A software house which has
produced a program for a client will typically be required to test the program on sets of
data, provided by the client, and which the client expects to be processed. The examiner
is the client of the student being assessed, and is entitled to make similar demands on

the student.

2.3 Marking Assignments

A major criterion which is used to evaluate the student’s standard of programming is
simply whether or not the student’s program correctly solves the problem. In other

words, whether or not it implements the examiner’s specification. Other factors will



also be taken into consideration when arriving at a mark or grade for that student’s sub-
mission, such as readability, modularisation and maintainability of the code. However,
it would be difficult to argue that a high grade should be awarded to a non-functioning
program, or conversely, that a program which implements the specification should fail
to reward the student with a good mark.

We divide the measurement of a program into two distinct parts. One part is con-
cerned with the correctness of the program, determined by the specification, while the
other part is concerned with the style in which it has been written and the supporting
documentation. This partition serves a useful purpose — correctness can be checked
but style and documentation are somewhat subjective. It is, in principle, possible to
test the correctness of a program with a high degree of accuracy.

By placing a high priority on students producing working programs which conform
precisely to the required specification, they are encouraged to adopt good habits from

the start.

3 Managing Programming Assessments

Students put a large amount of effort into writing their programs, and expect — and
deserve — thorough and accurate marking of their assignments, coupled with rapid
turnaround so that they will receive useful feedback.

It is not sufficient to require a student to submit programming assignments which
fulfil the required specifications. The specifications themselves must be of sufficient
accuracy and clarity that students will not accidentally be misled — the quality of the
tasks set to the students must be high. Furthermore, measurement of the correctness
of students’ solutions must itself be both correct and seen to be so. Ideally, both the
examiner and the student should be able to test submitted programs against the specifi-
cations.

Until recently, it was commonplace for submitted programs to be printed out on
paper, and for the printed copies to be read and assessed by an examiner. There are

serious problems with this approach.



e There will inevitably be inaccuracies in the marking process, as even the most

proficient programmer will find it difficult to check the actions of a program.
e The amount of ftime needed to read and fully understand a program is substantial.

e If a student is required to submit test output from a program, that output can

easily be forged.

e It is only possible to require students to demonstrate that a program has been
tested on a relatively small set of test data, and it therefore cannot be tested on
unanticipated data. Consequently, students will often tailor their programs to

the test data rather than construct more general programs.

o The volume of paper required is high, resulting in time spent physically handling

it, together with possible errors when documents are accidentally mis-filed.

Automation of the testing and marking process would, in principle, solve these
problems. Partial automation is now not uncommon; students are often asked to pro-
vide the examiner with a copy of their program, which the examiner can then run and

test. There are problems with this approach.

e Extreme care must be taken to ensure privacy of submitted programs. For exam-
ple, if a networked computer system is used, and a file containing the program is
made readable to the examiner, it is undesirable for it to be read by other users

of the system.

e There are many ways in which the process can be frustrated, such as students

failing to make their programs “readable” by the examiner.

e A program could contain a “Trojan Horse” which, when run by the examiner,
might damage the security or integrity of the system. On stand-alone computers,

such as PCs, viruses are an unpleasant fact of life.

e The examiner is still required to spend time locating the program, compiling it

and running it on suitable data before examining results.



Although much of the testing and marking process has the potential to be auto-
mated, this is not as simple as it might at first appear. We can test whether a program
meets its specification (at least, in part — the problem is in general formally unde-
cidable). That is, we can run a program against various sets of data, and then check
whether its output matches that required by the specification. Furthermore, we can
measure the source code using various metrics and arrive at concrete indicators of pro-
gramming style (modularisation, commenting, consistency of indentation, and so on).
The former tests make up a major part of the testing process, as discussed above. The
latter is also valuable and serves to refine the final mark arrived at — but in any event,
it can be argued that measuring programming style is an inexact science (Hung et al.,
1993). The relative importance of style against correctness when designing a mark-
ing scheme for an assignment is a matter best decided for each individual course — for
some programming courses, it may be desirable to emphasise style and readablility
more strongly.

The numbers of students following computer programming courses — either within
a computing degree or as part of another degree course — are increasing. This is the
case in the UK and elsewhere. At the same time, university staff are under consid-
erable pressure to deliver such courses using available resources with maximum effi-
ciency. This is a major incentive to implement an automated testing and submission
mechanism.

Having established the desirability of devolving a substantial portion of the marking
process to the computer system itself, there are specific issues which such a system

must address.

e The system must be easy fo use — both for the students and for the examiner.
For the students, in particular, the complexities of learning new programming

skills need not be compounded by unfriendly support software.

e Security is paramount — although we accept that complete security on a uni-

versity computer network is probably unattainable, we needed to minimise any



risks introduced by the system. These include students “hacking” into the sys-
tem, students’ programs accidentally (or deliberately) damaging the system, and

the possibility of submitted documents becoming corrupted.

e The system must be sufficiently flexible to cope with different courses using dif-

ferent programming languages (both interpreted and compiled).

4 The Warwick Solution: BOSS

There have been attempts elsewhere to write software tools to perform this type of
function. These we examined, but none addressed all the concerns noted above. They

included:

e Ceilidh — a system developed by Eric Foxley et al. at Nottingham (Benford et
al., 1993a, 1993b). Ceilidh contains many more features than our system, which

we did not require, including on-line exercises and teaching aids.
e A package called Submit developed by Cameron Shelley at Waterloo.

e Other packages have been developed by, for instance, Collier at Northern Ari-
zona University, Kay at UCLA, Isaacson and Scott at the University of Northern
Colorado (Isaacson & Scott, 1989) and Reek at RIT (Reek, 1989).

A major problem with most of these initiatives is that of security, and we finally
took a decision that our own software was required. The other packages are written
principally as collections of interrelated UNIX™ shell scripts, a path we did not wish
to follow. Rather, we wrote our software using standard C, conforming to the emerging
UNIX standard known as POSIX (recently renamed PASC). Our software therefore
maximises portability across different UNIX systems, and minimises being compro-
mised by bugs in UNIX shell interpreters.

Systems such as Ceilidh are packages which provide a full programming environ-

ment, handling not only submission and testing of assignments, but also providing



tutorial material and a “user-friendly” interface to the machine. Students are then ar-
tificially isolated from the underlying operating system. There are strong arguments
in favour of such an approach, which we do not discuss here, and it is superficially
very attractive to install and use such a system. However, the more complex a soft-
ware package becomes, the more complex and time-consuming it becomes to maintain
and update. Furthermore, if that system does not match exactly the requirements of
the course on which it is intended to be used, it may not be possible to customise its
functionality.

We therefore resolved to separate the turorial and assessment functions of our sys-
tem, and for the latter to implement a limited and well-directed package which would
satisfy our security requirements and would be easy to maintain in the future.

The package we developed, together with Chris Box, is named BOSS (“Bob’s On-
line Submission System”), and contains a collection of programs which run under the
UNIX operating system. It is designed specifically for courses which have a large num-
ber of students attending, and which are assessed by means of programming exercises.
Assessed work must be in a form which can be specified very precisely (so that the
output from students’ programs can be compared with expected output). It is therefore
suitable for programming courses only, and not for modules which involve more gen-
eralised software design. Introductory programming courses in high-level computer
languages are thus the typical target for BOSS.

The system very much considers a program to be a “black box” defined only in
terms of the relationship between input to the box and output from it. We use the
concept of “output” from a program in its broadest sense. A program may write to a
terminal (text and/or graphics), create and modify files, and alter other aspects of the
state of a computer on which it is run. Similarly, “input” can take a variety of forms. If
it is felt desirable to impose constraints on the students’ programs (for example, con-
formance to a specific style), by considering a copy of a student’s program as itself an
item of output the BOSS system can be used to check such requirements. In principle,

any aspect of a student’s assignments which is measurable can be regarded as output

10



for the purposes of the BOSS system.

A benefit of using UNIX is the flexibility offered by the operating system, and it
is straightforward to compare output from students’ programs against expected out-
put. This holds true even when a program exhibits complex behaviour. Furthermore,
the algorithm used to determine whether program output matches expected output can
be tailored so that more or less approximate matches can be recognised, and is not
restricted to exact comparisons of text fragments.

For each assignment for which BOSS is used, the examiner is able to create a num-
ber of datasets on which submitted programs will be run. Each such input dataset is
linked to an output specification which defines the expected output when a program is
run on the input data. The specification may take the form of (for instance) a file, the
contents of which must be matched exactly. Alternatively, a range of possible outputs
can be allowed by using a “regular expression” as the specification, or a shell script to
perform the comparison.

We decided to follow the UNIX philosophy of creating a number of software units,
each of which can be run alone, and each performing a very specific task. The individ-

ual component programs of BOSS are as follows.

4.1 The program submit

This program reads a student’s program, and stores a copy of it so that the lecturer
can at a later date test it and mark it. The copied program is protected so that unau-
thorised users of the computer system cannot read its contents, thus addressing the
privacy requirement. It is a “user-friendly” program which will conduct a dialogue
with the student to ensure that the correct submission is made. Preliminary checks will
be carried out on the submitted program, to ensure that it appears to be in the correct
language (for instance). The identity of the student submitting the program is verified.

An “acknowledgement of receipt” is sent to the student by email; this contains a
code, generated by the “snefru” algorithm (the Xerox Secure Hash Function, (©)Xerox

Corporation 1989), which identifies the contents of their submission. A file only very

11



slightly different (even by just one character) will generate a different code. Thus if a
dispute arises, and it is claimed that a different file is assessed to that actually submitted,
the code can be used to authenticate that file. An audit file is maintained with copies of
all such receipts issued. This addresses concerns on security.

A student can also submit extra files (such as might contain documentation) which
will also be available to the lecturer to mark. The submit command does not perform

any further processing on the files.

4.2 The program run_tests

This program, which can only be run by a course tutor, will cause all submissions for a
specified item of coursework to be run against a number of sets of data. Each student’s
programs will be run by a dummy usercode which has minimal system privileges, thus
minimising the potential for the student’s program to damage the system — we believe
it would be very difficult for a “Trojan Horse” to be introduced into our system. Time
and space limits are placed on the execution of a program, so as to prevent a looping
program from continuing unchecked. The output from the student’s program is checked
against the expected output for each set of data, and the results stored. If a program
fails against a particular dataset, the differences between the actual and expected output
are also stored.

Most of the datasets are hidden from the students, thus requiring them to perform

their own checks on their programs to ensure the programs run on unexpected data.

4.3 The program mark

This utility also can only be run by a course tutor or examiner. Initially the tutor is
prompted to select one or more students. Each selected student’s program is, in turn,

made available to the tutor together with the output of run_tests on that program.

12



4.4 The program testsubmit

This program, which can be used by the students, will run the program which they
are developing against one of the data sets on which it will eventually be tested, and
under precisely the same conditions. Thus a student can check that their program
will run correctly under the final testing environment. It is not a method for students
exhaustively to test their program.

This program is important both for technical and for pedagogical reasons. Since
the BOSS system runs under UNIX, the UNIX environment is crucial to the correct
running of a program. It is common for a user to “tailor” their interface to the UNIX
system, and what will work for them may not necessarily work for someone else. So
even if a student’s program appears fo the student to be working correctly, it is not
always the case that it will work as expected when run by run_tests.

It is important to students as it provides a “confidence” hurdle which they can pass,
by running their program on a (well-chosen) data set. They then have a reasonable

expectation that their program is well on the way to completion.

4.5 Experience with BOSS

We have run the system so far on 3 courses, two involving Pascal and one which cov-
ered UNIX Shell programming, and each attracting roughly 150 students. No student
has yet broken the security of the system.

The system can be tailored so that its behaviour can be changed. For example, the
default system limits on a student’s program during testing can be changed. The num-
ber of times a student is allowed to submit a program can be restricted. The availability
of the submit command can be restricted to a specified list of students.

The BOSS system is a tool to allow students to submit assignments, and for those
programs to be tested automatically. It is not an automated marking system. It is
the responsibility of the individual lecturer to provide a marking scheme which takes
account of the results produced by BOSS, together with all other factors which may be

regarded as important (such as program style, commenting, etc.).

13



Action that should be taken when a student’s program does not pass one or more of
the tests on which it is run, is again the lecturer’s responsibility. It may be desirable to
award marks for a partially working program — however BOSS does not address that
problem.

The BOSS system has provided us with a number of benefits, including those fol-

lowing.
o Large numbers of students can be handled efficiently by the system.

e Security of assignment submission is assured — programs submitted cannot be
copied by other students, and the possibility of paper submissions being acciden-

tally “lost” is removed.

e Secretarial staff do not need to be employed at deadlines to collect assignments,

thus more efficient use is made of secretarial time.
e The time needed to mark an assignment is reduced considerably.

e The volume of paperwork involved is reduced to (almost) zero both for the lec-

turer and for administrative and secretarial staff.

e The accuracy of marking and testing is improved, and consequently the confi-

dence enjoyed by the students in the marking process.

e Consistency of marking is improved, especially if more than one person is in-

volved in the marking process.

e There is potential for further checks to be built into the system, such as automatic

checks for plagiarism.

It follows from the necessity of exact specification for a programming task that
there is less scope available to students for novel solutions. This might be considered a
criticism of the system. However, the point at which the innovation should occur is in

the initial program design.

14



Another drawback of this approach is that by specifying a program simply in terms
of expected output for a given input, the internal structure of a program cannot be
checked automatically. An example where this would be important might be a program
to perform bubblesort on a list of numbers. The algorithm employed by a student must
be checked by the lecturer when marking, by examining the program source code.
Whether or not a program specification should include requirements relating to the

algorithm to be employed is an issue we do not address here.

4.6 Student Response

We sought the views of our Computer Science students on BOSS, by means of a ques-
tionnaire. These were generally favourable, and most students considered it an easy
system to use. The ability to use testsubmit to check the conformance of their
programs to the specification was also widely appreciated.

The principal concerns expressed fell into two categories. First of all, the user
interface is somewhat raw — and in particular when a program fails testsubmit
the messages delivered are not very lucid. This is a fairly simple task to correct.

The second — and more interesting — criticism is that the output expected was
too precisely specified. BOSS is far too “fussy”. All the students who have used the
system have been first year undergraduates, many of whom have had considerable pro-
gramming experience prior to joining our course. Many of them are thus used to pro-
gramming in an unstructured fashion. We wonder to what extent these concerns are
fuelled by a “culture shock”, simply not being used to being required to follow precise

specifications.

S Future Developments

As it stands, the systems is functioning well. The generally favourable student response
has already been discussed above, and this is expected to improve once the culture of
automatic submission has been established within the Department. In addition, lectur-

ers and tutors have also found the system to be simple and easy to use, and marking

15



times have been reduced significantly with a corresponding increase in consistency
throughout.

We hope to extend the system to include extra facilities. We are currently design-
ing a module which will perform automatic checks to indicate possible instances of
plagiarism.

The user interface is at present quite rudimentary. In the next few months we intend
to produce windowed software for the mark program, which will help to speed up
marking of assignments even further.

Though these extensions are not yet complete, results so far have been highly en-
couraging, and the significant beneficial effects of using the system have already been

felt by students, academic staff and secretarial staff alike.

6 Conclusion

At Warwick we have developed a system which enables students to submit program-
ming assignments on-line, each of which can then be tested, under secure conditions,
against its specification. Our system has been successfully tried on several undergrad-
uate programming modules. This has greatly speeded up the process of marking as-
signments, and has improved the consistency and accuracy with which it is performed.
By requiring specifications to be followed precisely, we encourage an appreciation
amongst our students that programming is an exact science. This is a significant factor

helping us to produce graduates well-placed to help solve industry’s software crisis.

7 References

Benford, S.D., Burke, K.E., Foxley, E., Gutteridge, N.H. & Mohd Zin, A. (1993).
Early Experiences of Computer-Aided Assessment and Administration when Teaching
Computer Programming. Association for Learning Technology Journal 1, 2, 55-70.
Benford, S.D., Burke, K.E. & Foxley, E. (1993). A System to Teach Programming in a
Quality Controlled Environment. The Software Quality Journal 2, 177-197.

16



Brooks, F.P. (1987). No Silver Bullet: Essence and Accident of Software Engineering.
IEEE Computer 20, 4, 10-19.

Gibbs, W.W. (1994). Software’s Chronic Crisis. Scientific American 271, 3, 72-81.

Hung, S., Kwok, L. & Chan, R. (1993). Automatic Programming Assessment Metrics.
Computers and Education 20, 2, 183-190.

Isaacson, P.C. & Scott, T.A. (1989). Automating the Execution of Student Programs.
ACM SIGCSE Bulletin 21, 2, 15-22.

Jones, C.B. (1990). In Systematic Software Development using VDM. Prentice—Hall,
Englewood Cliffs, NJ.

Reek, K.A. (1989). The TRY System — or — How to Avoid Testing Student Programs.
ACM SIGCSE Bulletin 21, 1, 112-116.

Wordsworth, J.B. (1992). In Software Development with Z. Addison—Wesley, Cam-
bridge, MA.

17



