STAFF AND EDUCATIONAL DEVELOPMENT ASSOCIATION

Innovations In
Computing Teaching

Edited by
John Hart
University of Huddersfield

SEDA Paper 88
March 1995
ISBN 0 946815 93 3



12 On-line submission and
testing of programming
assignments

Mike Joy and Michael Luck
University of Warwick

Background

The numbers of students following computer programming courses - either within a computing
degree or as part of another degree course - are increasing. At the same time, university staff are under
considerable pressure to deliver such courses using available resources with maximum efficiency.
A major (and critical) part of a programming course consists of the programming assignments,
typically in the form of programs (or choices of programs) which the students are required to write.
However, the process of testing and marking assessed pieces of software is very time-consuming and
can be unreliable if attempted ‘by hand’. Sharing the workload between several members of staff is
one way of coping with the extra workload generated by large student numbers, but can lead to
inconsistencies in marking.

Students put a large amount of effort into writing their programs, and expect -and deserve - thorough
and accurate marking of their assignments, coupled with rapid turnaround so that they will receive
useful feedback.

Fortunately, much of the testing and marking process has the potential to be automated. At Warwick
we have been developing software which will allow students to submit programming assignments
on-line, and which will run those programs against test data. This paper reports our experiences after
a year of using this software.

At Warwick, as at other universities, we have in the past relied on students handing in paper copies
of programming assignments which are then marked by the appropriate lecturer. This method of
assessing students’ programming skills is flawed, and for several reasons:

° A decision must be reached for each submitted program as to whether or not it works.

If that program is only available as ‘hard copy’ it is difficult and time-consuming to
decide whether or not it works. In addition, the final verdict may be incorrect.

Innovations in computing teaching 97 SEDA Paper 88




On-line submission and testing of programming assignments

° It is only possible to require students to demonstrate that a program has been tested on
arelatively small set of test data, and it therefore cannot be tested on unanticipated data.
Consequently, students will often tailor their programs to the test data rather than
construct more general programs.

® If a student is required to submit test output from a program, that output can easily be
‘forged’.

® The volume of paper required is high, resulting in time spent physically handling it,
together with possible errors when documents are accidentally misfiled.

A possible solution would be simply to require students to leave copies of their programs on a
networked computer (or to hand in a disk containing a copy of the program). This is also problematic:

® Extreme care must be taken to ensure privacy of submitted programs.

° There are many ways in which the process can be frustrated, such as students failing
to make their programs ‘readable’ by the tutor.

° A program could containa ‘Trojan Horse’ which, when run by the tutor, might damage
the security or integrity of the system.

° The lecturer is still required to spend time locating the program, compiling it and
running it on suitable data before examining results.

In considering these problems, we identified a number of issues which would need to be addressed
if a feasible system were to be introduced.

° The system must be easy to use - both for the students and for the lecturer setting and
marking an assignment.

° Security is paramount - although we accept that complete security on a university
computer network is probably unattainable, we needed to minimise any risks
introduced by the system. These include students hacking into the system, students’
programs accidentally (or deliberately) damaging the system, and the possibility of
submitted documents becoming corrupted.

® The system must be sufficiently flexible to cope with different courses using different
programming languages (both interpreted and compiled).

Innovation

There have been similar attempts to address some of these concerns, and we examined systems
available from other institutions which might have assisted us. These included:

Innovations in computing teaching 98 SEDA Paper 88



On-line submission and testing of programming assignments

e Ceilidh - a system developed by Eric Foxley et al. at Nottingham. Ceilidh contains
many more features than our system, which we did not require, including on-line
exercises and teaching aids.

° A package called Submit developed by Cameron Shelley at Waterloo.

e Other packages have been developed by, for instance, Collier at Northern Arizona
University, Kay at UCLA, Isaacson and Scott (1989) at the University of Northemn
Colorado and Reek at RIT (1989).

All of these packages excited us. However, we finally took a decision that our own software was
required. The principal reason for this was security. The other packages are written principally as
collections of interrelated UNIX shell scripts, a path we did not wish to follow. Rather, we wrote our
software using C, conforming to the emerging UNIX standard known as POSIX. Our software
therefore maximises portability across different UNIX systems, and minimises being compromised
by bugs in UNIX shell interpreters.

The package we developed, together with Chris Box, is named BOSS ‘Bob’s Online Submission
System’, and contains a collection of programs which run under the UNIX operating system. It is
designed specifically for courses which have a large number of students attending, and which are
assessed by means of programming exercises. Assessed work must be in a form which can be
specified very precisely (so that the output from students’ programs can be compared with expected
output); it is therefore not suitable for courses involving more generalised software design.
Introductory programming courses in high-level computer languages are thus the typical target for
BOSS.

The individual component programs of BOSS are as follows.

The program submit

This program reads a student’s program, and stores it, encrypted, so that the lecturer can at a later
date testit and mark it. Itis a ‘user-friendly’ program which will conduct a dialogue with the student
to ensure that the correct submission ismade. Preliminary checks will be carried out on the submitted
program, to ensure that it appears to be in the correct language (for instance). The identity of the
student submitting the program is verified.

An ‘acknowledgement of receipt’ is sent to the student by email; this contains a code, generated by
the ‘snefru’ algorithm (the Xerox Secure Hash Function, Xerox Corporation 1989), which identifies
the contents of their submission. A file only very slightly different (even by just one character) will
generate a different code. Thus if a dispute arises, and it is claimed that a different file is assessed
to that actually submitted, the code can be used to authenticate that file. A student can also submit
extra files (such as might contain documentation) which will also be available to the lecturer to mark.

Innovations in computing teaching 99 SEDA Paper 88




On-line submission and testing of programming assignments

The program run_tests

This program, which can only be run by a course tutor, will cause all submissions for a specifieditem
of coursework to be run against a number of sets of data. Each student’s programs will be copied to
anewly-created directory, and run by a dummy usercode which has minimal system privileges, thus
minimising the potential for the student’s program to damage the system. Time and space limits are
placed onthe execution of a program, so as to preventa looping program from continuing unchecked.
The output from the student’s program is checked against the expected output for each set of data,
typically using a utility such as diff.

The program mark

This utility also can only be run by a course tutor. Initially the tutor is prompted to select one or more
students. Each selected student’s program is, in tum, made available to the tutor together with the

output of run_tests on that program.
The program testsubmit

This program, which can be used by the students, will run the program which they are developing
against one of the data sets on which it will eventually be tested, and under precisely the same
conditions. Thus a student can check that their program will run correctly under the final testing
environment. It is not a method for students exhaustively to test their program.

This program is important both for technical and for pedagogical reasons. Since the BOSS system
runs under UNIX, the UNIX environment is crucial to the correct running of a program, and many
utilities require UNIX variables to be set correctly. In addition, programs may exist in several
locations, and a given utility may have different versions. Many systems have, for example, two or
more C compilers. So even if a student’s program appears o the student to be working correctly, it
is not always the case that it will work as expected when run by run_tests. It is important to students
asitprovidesa ‘confidence’ hurdle which they can pass, by running their program on a (well-chosen)
data set. They then have a reasonable expectation that their program is wellon the way to completion.

Evaluation

The system we have running is in the process of being tested, but so far we have encountered no
problems in the BOSS software, although some ‘features’ of the version of the operating system it
is running on have caused complications. We have run the system so far on 3 courses, two involving
Pascal and one which covered UNIX Shell programming, and each attracting roughly 150 students.
No student has yet broken the security of the system.

The system can be tailored so that its behaviour can be changed. For example, the default system
limits on a student’s program during testing can be changed. The numberoftimes a student isallowed
to submit a program can be restricted. The availability of the submit command can be restricted to

a specified list of students.

Innovations in computing teaching 100 SEDA Paper 88




On-line submission and testing of programming assignments

The BOSS system is a tool to allow students to submit assignments, and for those programs to be
tested automatically. It is nor an automated marking system. Itis the responsibility of the individual
lecturer to provide amarking scheme which takes account of the results produced by BOSS, together
with all other factors which may be regarded as important (such as program style, commenting, tc.).
Action that should be taken when a student’s program does not pass one or more of the tests on which
it is run, is again the lecturer’s responsibility. It may be desirable to award marks for a partially
working program - however BOSS does not address that problem.

The BOSS system has provided us with a number of benefits, including those following.
° Large numbers of students can be handled efficiently by the system.

° Security of assignment submission is assured - programs submitted cannot be copied
by other students, and the possibility of paper submissions being accidentally ‘lost’ is
removed.

° Secretarial staff do not need to be employed at deadlines to collect assignments, thus
more efficient use is made of secretarial time.

° The time needed to mark an assignment is reduced considerably.

° The volume of paperwork involved is reduced to (almost) zero both for the lecturer and
for administrative and secretarial staff.

® The accuracy of marking and testing is improved, and consequently the confidence
enjoyed by the students in the marking process.

° Consistency of marking is improved, especially if more than one person isinvolved in
the marking process.

° Thereis potential forfurther checks to be builtinto the system, suchas automatic checks
for plagiarism.

There have been few teething troubles, and those there have been related to ‘features’ of and bugs
in the operating system under which the system is running. One problem has been in the area of
program specification.

In order for a system such as BOSS to indicate correctly whether or not a student’s program works,
assignments must be specified very accurately. This is because utilities such as diff, which can be
used to compare a program’s output to that which is expected, are precise formal tools. This places
a burden on the lecturer to ensure that the assignments are very carefully worded. Experience has
highlighted the difficulty of doing this. It follows from the necessity of exact specification for a
programming task that there is less scope available to students fornovel solutions. It might be argued
that this is a potential demerit of the system, but conversely it encourages students to adopt the rigour
and precision expected of a modemn engineering discipline.

Innovations in computing teaching 101 SEDA Paper 88




On-line submission and testing of programming assignments

Another drawback of this approach is that by specifying a program simply in terms of expected
output for a given input, the internal structure of a program cannot be checked automatically. An
example where this would be important might be a program to perform bubblesort on a list of
numbers. The algorithm employed by a student must be checked by the lecturer when marking, by

examining the program source code.

We sought the views of our computer science students on BOSS, by means of a questionnaire. These
were generally favourable, and most students considered it an easy system to use. The ability to use
testsubmit to check the conformance of their programs to the specification was also widely

appreciated.

The principal concerns expressed fell into two categories. First of all, the user interface is somewhat
raw - and in particular when a program fails testsubmit the messages delivered are not very lucid.
This is a fairly simple task to correct. The second - and more interesting - criticism is that the output
expected was oo precisely specified. BOSS is far too ‘fussy’. All the students who have used the
system have been first year undergraduates, many of whom have had considerable programming
experience priorto joining our course. Many of them are thus used to programming in an unstructured
fashion. We wonder to what extent these concerns are fuelled by a ‘culture shock’, simply not being
used to being required to follow precise specifications.

Conclusions

As it stands, the systems is functioning well. The generally favourable student response has already
been discussed above, and this is expected to improve once the culture of automatic submission has
been established within the department. In addition, lecturers and tutors have also found the system
to be simple and easy to use, and marking times have been reduced significantly with a corresponding

increase in consistency throughout.

We hope to extend the system to include extra facilities. We are currently designing an extension to
‘submit’ which will perform automatic checks to indicate possible instances of plagiarism. The user
interface is at present quite rudimentary. In the next few months we intend to produce windowed
software for the mark program, which will help to speed up marking of assignments even further.
Though these extensions are not yet complete, results so far have been highly encouraging, and the
significant beneficial effects of using the system have already been felt by students, academic staff

and secretarial staff alike.

Further Information

Technical specifications may be obtained by mailing boss@csv.warwick.ac.uk, together withdetails
on how institutions may obtain a copy of the software.

Innovations in computing teaching 102 SEDA Paper 88




On-line submission and testing of programming assignments

References

BENFORD, S D, BURKE, K E, FOXLEY, E, MOHD ZIN, A & GUTTERIDGE, N H (1993), The
Design of Ceilidh Version2, Technical Report, Learning Technology Research, Computer Science
Department, University of Nottingham.

REEK, K A (1989) The TRY System - or - How to Avoid Testing Student Programs. ACM
SIGCSE Bulletin, 21(1) 112-116.

ISAACSON,PC & SCOTT,TA (1989) Automating the Execution of Student Programs, ACM
SIGCSE Bulletin, 21(2) 15-22.

Innovations in computing teaching 103 SEDA Paper 88




