
Effective Electronic Marking for On-line Assessment
Mike Joy

Department of Computer Science
University of Warwick
Coventry, CV4 7AL
+44 1203 523368

M.S.Joy@dcs.warwick.ac.uk

1. ABSTRACT

In response to the demands of increasing
student numbers, the BOSS system for
submission and assessment has been
constructed to enable student programming
assignments to be submitted and tested on-
line. More recent developments of this system
have been concerned with the addition of
electronic marking facilities that incorporate
both automated marking, resulting from the
automated testing, and manual marking in a
secure environment. This paper briefly
reviews the system and describes in detail the
electronic marksheets, their functionality, and
their user-interface.

2. INTRODUCTION
By developing techniques for automating the submission,
compilation and testing of student programs, we can
support the process of marking, and enable marking tasks to
be divided among several individuals while maintaining
rigour and consistency. Not only can this stem the tide of
an increasing workload, it can also enable other
administrative tasks to be automated as part of a coherent
approach to full course management.
In response to the demands of ever increasing student
numbers and me need to maintain and improve quality of
teaching, we have developed just such a system for on-line
submission and assessment of student programs. This
system, known as BOSS, is described in more detail
elsewhere with regard to the philosophy behind it in

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.

ITiCSE ‘98 Dublin, Ireland

0 1998 ACM l-581 13-000-7/98/0008... $5.00

Michael Luck
Department of Computer Science

University of Warwick
Coventry, CV4 7AL
+44 1203 523364

Michael.Luck@dcs.warwick.ac.uk

addressing software development concerns [7], how it fits
in with a general approach to the teaching of Computer
Science [lo], its general functionality [6] and its user-
friendliness [S]. In this paper, we review the core system
and describe more recent developments relating to the
electronic marking aspects of the system. We begin by
considering the motivation behind the system.
Until recently, it was commonplace for submitted programs
to be printed out on paper, and for the printed copies to be
read and assessed by an examiner. This approach suffers
from several distinct problems. First, there will inevitably
be inaccuracies in the marking process, as even the most
proficient programmer will find it difficult to check the
functionality of a program by hand. Second, the amount of
time needed to read and fully understand a program in this
way is substantial. Third, paper submission of student
programs and test output lead to the possibility of forged
output listings. Finally, it is only possible to require
students to demonstrate mat a program has been tested on a
relatively small set of test data, and it therefore cannot be
tested on unanticipated data. Consequently, students will
often tailor their programs to the test data rather than
construct more general programs. Automation of the
testing and marking process would, in principle, solve these
problems. Partial automation is now not uncommon;
students are often asked to provide the examiner with a
copy of their program, which the examiner can then run and
test. However, this solution also suffers from some
technical difficulties.
Extreme care must be taken to ensure privacy of submitted
programs. For example, if a networked computer system is
used, and a file containing the program is made readable to
the examiner, it is undesirable for it to be read by other
users of the system. There are also many ways in which the
process can be frustrated, such as students failing to make
their programs readable by the examiner. Moreover, a
program submitted in this way could be dangerous if it
contained a Trojan Horse which, when run by the examiner,
might damage the security or integrity of the system. On
stand-alone computers, such as PCs, viruses are an
unpleasant fact of life. Finally, it is worth noting mat the
examiner is still required to spend time locating the

134

program, compiling it and running it on suitable data before
examining results.
Although much of the testing and marking process has the
potential to be automated, this is not as simple as it might at
first appear. We can test whether a program meets its
specification (at least, in part - the problem is in general
formally undecidable). That is, we can run a program
against various sets of data, and then check whether its
output matches that required by the specification.
Furthermore, we can measure the source code using various
metrics and arrive at concrete indicators of programming
style (modularisation, commenting, consistency of
indentation, and so on). The former tests make up the major
part of the testing process, as discussed above. The latter,
although valuable, serve to refine the final mark arrived at -
and in any event, it can be argued that measuring
programming style is an inexact science [4]. The relative
importance of style against correctness when designing a
marking scheme for an assignment is a matter best decided
for each individual course - for some programming courses,
it may be desirable to emphasise style and readability more
strongly.

3. THE BOSS ONLINE SUMISSION
SYSTEM
The BOSS system for automatic submission of assignments
[6], built in an effort to address me problems described
above, comprises a collection of programs, each of which
performs a different task contributing to the overarching
goal of effectively managing the process of submitting
programming assignments on-line. BOSS is designed
primarily for courses with large numbers of students,
assessed by means of programming exercises. The
individual component programs of BOSS are designed to
be used by two kinds of individual. First, some programs
must be used by students so that they can gain feedback and
submit their programs. Second, lecturers and any course
tutors involved in assisting the lecturer must be able to gain
access to the submitted programs in order to test and mark
the student submissions. The programs offer the following
functionality.
Students may submit programs on-line by means of a user-
friendly program that conducts a dialogue with the student
to ensure that the correct submission is made. The program
is stored and simple checks are carried out (to ensure the
correct programming language is used and to verify the
student’s identity, for example), so that the lecturer can
subsequently test and mark it.
In response to a submission, an acknowledgement of receipt
is sent to me student by email, which also contains a code, a
message digest identifying the contents of their submission.
A file only very slightly different (even by just one
character) will generate a different code. Thus in the case

of a dispute, the code can be used to authenticate that file.
An audit tile is also maintained with copies of all such
receipts issued.
All submissions for a specified item of coursework can be
run against a number of sets of data. The output from the
students’ programs are compared with the expected output
for each set of data. Time and space limits are placed on
the execution of a program so as to prevent a looping
program from continuing unchecked, and other steps are
taken to minimise the potential for a program to damage the
system.
Submissions and the results of me testing process can be
inspected on-line by authorised staff. Anonymity is
preserved by storing data by University ID number.
Students can test their programs by running them against
one data set on which they will eventually be tested, and
under precisely the same conditions. Thus a student can
check that their program will run correctly under the final
testing environment. This ensures that the program will
work as the student expects when being tested and marked.
In addition, it provides students with confidence mat their
submitted work does pass some minimal requirement.

Final marks are stored in a SQL database and correlated
with information from the University database (names and
courses versus ID numbers and course registration, for
example) to produce final marksheets for examination
secretaries.
The BOSS system is a tool to allow students to submit
assignments, and for those programs to be tested
automatically. It is not an automated marking system. It is
the responsibility of the individual lecturer to provide a
marking scheme which takes account of the results
produced by BOSS, together with all other factors which
may be regarded as important (such as program style,
commenting, etc. [9])
Action that should be taken when a student’s program does
not pass one or more of the tests on which it is run is, again,
the lecturer’s responsibility. It may be desirable to award
marks for a partially working program, but BOSS does not
address that problem. We do not aim to remove the
instructor from the teaching loop, but instead simply to
assist the instructor in achieving a quicker, more accurate
and more consistent assessment of programming
assignments. This is important, and should be made clear to
students to avoid any misconceptions about the extent and
scope of the automated system. It is our experience that
students gain confidence from the system, but they are also
uneasy about the possibility of its unlimited significance in
me assessment process.
This software is available with both a text-based interface
and a graphical front-end, allowing it to be run on several
hardware platforms. It is also configurable to particular

135

course requirements, and has optional capabilities for
incorporating automated marking into the assessment
process.

4. ELECTRONIC MARKSHEETS
In more recent developments, the process of marking has
been even more closely integrated into the system through
the use of graphical electronic marksheets, constructed
using the Tcl/Tk toolkit [ll]. Lecturers simply need to
specify the categories for which marks are awarded, and the
weight attached to these categories, and a graphical
marksheet is constructed. The marksheet integrates marks
resulting from running and testing the program with those
relating to other aspects of the program (such as style, for
example), and the interface includes buttons that provide a
range of functionality as described below. Figure 1 shows a
screen dump of a completed electronic marksheet with the
buttons grouped at the top and the categories of marks
below.

The marks resulting from the automatic tests that are
performed, by which a student’s program is run on several
sets of data and the output compared with expected output,
are incorporated into the marksheet directly. If the output is
correct and the program passes, fnll marks for that category
are declared on me marksheet. If the program fails, then no
marks are awarded, but the tutor or lecturer may
subsequently adjust the automatically assigned marks to
give either full, half or zero marks. This is shown by the
bottom four mark categories on the marksheet of Figure 1.
The buttons provide the means by which the marker can
inspect the results of testing to discover how marks were
awarded automatically, and also allow the marker to run the
tests manually in problem cases, if necessary.

Figure 1: Electronic Marksheet

The remaining categories of marks are awarded by the tutor
or lecturer interacting with the marksheet and moving the
slider along on a scale of zero to ten. Only when this mark
is combined with the weight (that is not shown to the
marker), is the final mark calculated. This allows
independent assessment of various aspects of the program
without the marker being biased by the number of marks to
be awarded. Before a category is assigned a mark, the
unmarked box is highlighted so that it is obvious which
parts of the marksheet need addressing. At present, these
marks are awarded manually, but it is possible for various
automated measurements of source code to be made to
arrive at concrete indicators of programming style
(modularisation, commenting, consistency of indentation,
and so on) [3, 4, 131. The incorporation of such metrics
are intended to be the subject of the next step in the
system’s development.
Several further checks are built into the systems to ensure
consistency and preserve integrity by anonymous marking.
All assignments are identified using student identification
numbers alone so that marking is entirely anonymous. In the
current version of the system, an extra utility has been
developed by which these anonymous marks are linked into
the central university database so that reintegration can take
place to produce a list of final marks by name, once
marking is complete. The system provides for double
marking on the same marksheets, and for a moderator to
view both sets of marks and the original submission in
arriving at a final judgement, with suggested final marks
being offered by the system as the mean of the two sets.
Finally, an extensive commenting facility is also included,
and is invoked by the buttons at the top of the marksheet.
This allows each marker to comment on the submission
either for the moderator who fixes on the final mark, or as
feedback for the student. At the point of finalising marks,

136

the moderator may edit the student feedback and the
system will email these comments to the student directly,
while ensuring that private comments by the markers are
kept confidential. All of the comments and each set of
marks are retained so that if students query their marks, it
is a simple matter to re-examine and justify them.
The moderation window is illustrated by Figure 2, which
shows the relevant buttons at the top as before, but now
displays the marks of the individual markers (here named
by usercodes sam and Chris, as well as the
automatically assigned marks (indicated by auto) On the
right-hand side of the window, the system offers a
suggested average as the final mark, which the moderator
(with usercode csrnp) can adjust if appropriate. The
final marks are shown in the top right corner.
In summary, the electronic marksheet not only enhances
the usability of the system, but it also increases its
functionality, and contributes to a marking regime of high
integrity and consistency. These are clearly vital qualities
that are to be demanded of any course, but the system
makes this visible externally.

5. RELATED WORK
These include packages from Isaacson and Scott at the
IJniversity of Northern Colorado [5], Reek at RIT [12],
and the Submit system developed by Cameron Shelley at
Waterloo. All of these packages interested us, but were
inappropriate due to reasons of security. We were
especially concerned about opportunistic attempts by
students to exploit loopholes in the systems, given that the
learning environment at Warwick is intended to encourage
and stimulate experimentation.
One type of package in particular deserves some
discussion because of their size and distinct approach.
Systems such as Ceilidh [I, 21 are packages which provide
a full programming environment, handling not only

Figure 2: Electronic Moderation Sheet

submission and testing of assignments, but also providing
tutorial material and a user-friendly interface to the
machine. Students are then artificially isolated from the
underlying operating system. There are strong arguments
in favour of such an approach, which we do not discuss
here, and it is superficially very attractive to install and
use such a system. However, the more complex a
software package becomes, the more complex and time-
consuming it becomes to maintain and update.
Furthermore, if that system does not match exactly the
requirements of the course on which it is intended to use
it, it may not be possible to customise its functionality.

More importantly, our system targets the particular areas
of concern to us in providing us with a secure system that
can easily interface with the University databases so that
the electronic marksheets are integrated into the broader
process of assessment administration. Thus, following
marking and moderation, marks are finalised and entered
into the University database. When all marks have been
entered, a mark list can then be produced ready to be sent
to examination secretaries.

6. CONCLUSIONS
Over the course of the four years the systems has been
used on our courses, we have enhanced the software in
several ways. The original command-line interface to the
system has been replaced with a graphical user-interface
for both students and tutors, further extending the user-
friendliness and functionality of the system as a whole.
Not only does this provide student with a more intuitive
means of submitting their assignments on-line, it also
enables more aspects of the administration of assignments
to be integrated into the system. The inclusion of
electronic marksheets, for example, enables the provision
of a system that supports both anonymous marking and
double marking in a coherent, secure and efficient way.

137

More importantly, perhaps, the time needed to mark an
assignment is reduced considerably, while the accuracy of
marking, and consequently the confidence enjoyed by the
students in the marking process, is improved. In addition,
consistency is improved, especially if more than one
person is involved in the marking process.
More information can be found on the Web at URL
http://www.dcs.warwick.ac.uWcobalt/

7.

[II

PI

131

[41

t51

REFERENCES
Benford, S. D., Burke, K. E. and Foxley, E. A
System to Teach Programming in a Quality
Controlled Environment. The Software Quality
Journal, 2, 177-197, 1993.
Benford, S. D., Burke, K. E., Foxley, E., Gutteridge,
N. 1-I. and Mohd Zin, A. Experience using the ceilidh
system. Monitor, 4:32-35, 1993/94.

Berry, R. E. and Meckings, B. A. E. A style analysis
of C programs. Communications of the ACM,
28(1):80-88, Jan 1985.

Hung, S. Kwok, I,. and Chan, R. Automatic
programming assessment metrics. Computers and
Education, 20(2):183-190, 1993.

Isaacson, P. C. and Scott, T. A. Automating the
execution of student programs. ACM SIGCSE
Bulletin, 21(2):15-22, 1989.

[61

[71

191

Joy, M. and Luck, M. On-line submission and testing
of programming assignments. In J. Hart, editor,
Innovations in Computing Teaching. SEDA, London,
1995.
Joy, M. and Luck, M. Software standards in
undergraduate computing courses. Journal of
Computer Assisted Learning, 12:103-l 13, 1996.

Joy, M. and Luck, M. A user-friendly on-line
submission system. In R. O’Connor and S.
Alexander, editors, Proceedings of the Fourth Annual
Conference on the Teaching of Computing, pages 92-
95, Dublin, 1996.
Kernighan, B. W. and Plauger, P. J. The Elements
of Programming Style. McGraw-Hill, New York,
1974.

[lo] Luck, M. and Joy, M. Automatic submission in an
evolutionary approach to computer science teaching
Computers and Education, 25(3):105-l 11, 1995.

[l l] Ousterhout, J.K. Tel and the Tk toolkit. Addison-
Wesley, 1994.

[12]Reek, K. A. The try system - or - how to avoid
testing student programs. ACM SIGCSE Bulletin,
21(1):112-116,1989.

[13] Rees, M. J. Automatic assessment aid for Pascal
programs. SIGPLAN Notices, 17(10):33-42, Ott
1982.

138

