This article was downloaded by:[University of Warwick]

On: 15 November 2007

Access Details: [subscription number 773571163]

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

MEST | International Journal of Mathematical
Education in Science and
International Journal of TeCh nology

Mathemapcal Publication details, including instructions for authors and subscription information:
Educaﬂon http://www.informaworld.com/smppl/title~content=t713736815
———— Some experiences in teaching functional programming
Science and Technology Mike Joy % Steve Matthews 2
Exdioe: Harila Hortaen 8 Department of Computer Science, University of Warwick, Coventry, CV4 7AL,
England

Online Publication Date: 01 April 1994

To cite this Article: Joy, Mike and Matthews, Steve (1994) 'Some experiences in
teaching functional programming’, International Journal of Mathematical Education in
Science and Technology, 25:2, 165 - 172

To link to this article: DOI: 10.1080/0020739940250202

URL: http://dx.doi.org/10.1080/0020739940250202

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713736815
http://dx.doi.org/10.1080/0020739940250202
http://www.informaworld.com/terms-and-conditions-of-access.pdf

INT. J. MATH. EDUC. SCI. TECHNOL., 1994, voL. 25, No. 2, 165-172

Some experiences in teaching functional programming

by MIKE JOY and STEVE MATTHEWS

Department of Computer Science, University of Warwick,
Coventry, CV4 7AL, England

(Received 3 November 1992)

The authors have been developing functional programming units within the
computer science BSc degree course at Warwick. In recent years there has been a
shift away from a principally theoretical approach to the subject; functional
programming is now taught using a ‘hands on’ experiential approach. This paper
outlines the reasons for this change of emphasis and discusses some of the
pedagogical issues raised.

1. Introduction

Until recently computer languages have relied on imperative constructs,
whereby a program is a sequence of instructions describing how to manipulate the
storage and i/o devices of a machine in order to produce a defined behaviour. It is
now easily possible to implement languages which are not defined in terms of a
machine architecture, thus allowing a programmer to concentrate on what is to be
solved, rather than the details of how it is to be solved. A major class of language
which allow such a declarative style of programming is the class of functional
languages.

A program written in a functional language takes the form of a sequence of
definitions and expressions. The ‘output’ from such a program will be those
expressions, evaluated with names occurring within them associated with the given
definitions. Each name has a unique definition, and cannot be redefined. There is no
concept of a variable or of a storage location.

Since a name in a function program has a unique definition, and all names therein
referred to must also have unique definitions, the value to which a name evaluates
must also be unique. Functional programs are thus said to be referentially
transparent. Since the value of a name is unique, it is of little interest to the
programmer how it is computed, rather its relationship with the other defined
names. Functional programming becomes an exercise in algebra.

By writing programs in a functional style it is possible to reason formally about
them with ease, and consequently development time is reduced. However, since
such languages are not defined with reference to the hardware on which they are
executed, this comes at a price, namely efficiency. A functional program will
typically run much slower than an equivalent imperative program, and it is not
uncommon for the storage used by such a program to become unexpectedly large.

We aim to square the circle of teaching students the highest standards of
programming discipline while writing efficient programs. Efficiency can be
adequately discussed in traditional languages using devices such as global variables
and side effects. A pure functional programming language allows us to enforce the

0020-739X/94 $10-00 © 1994 Taylor & Francis Ltd.

166 M. Joy and S. Matthews

highest standards, but it is our experience that any attempt to suggest that such
standards automatically imply faster programs will be rejected by students. We can
make a convincing case for efficiency for functional programs by arguing that they
are speedier to write and debug. As long as we neither claim nor imply that functional
programs must be faster and more space-saving than their imperative counterparts
our reasoning is acceptable.

We have found that a major challenge is how to get the message across that
functional programming is an economic route to good software design regardless of
the eventual target language. The computer experience of the vast majority of
students prior to commencing our course must be seen in the context of an
imperative culture. Microcomputers running various dialects of BASIC still form
the mainstay of computer provision in British schools and colleges. Only a minority
of institutions teach other languages, such as Pascal, and virtually none give students
exposure to a declarative style of programming. Thus students come to us with the
concepts of ‘variable’ and ‘assignment’ already hard-wired into their perception of
programming.

In this paper we address issues raised by this task, and argue that by approaching
functional programming from a pragmatic angle students find the concepts
underlying functional programming easier to digest.

2. Functional programming
‘Functional programming is a good example of a specification oriented program
development tool, and so worth teaching, as such tools are becoming increasingly
important in Computer Science’. So might a lecture on functional programming
commence. Some detailed arguments in favour of the relevance of functional
programming will motivate our discussions below.

e Increasingly important parallel algorithms, distributed programming archi-
tectures and techniques can be studied easily using functional programming.

e Problem specification (i.e. functional specification) is facilitated.

® Problem analysis (for example, examining a problem to produce a divide-and-
conquer algorithm) is facilitated, since program transformation can be placed
on a sound formal footing.

® Top-down program design (for example, turning divide-and-conquer
algorithms into networks of communicating processes) is also made simpler,
for the same reason.

o Information hiding becomes a natural process; the use of algorithmic and data
abstraction is a normal functional programming skill, as opposed to explicit
data representation.

e Data specification is placed on a similar footing to problem specification.

® Levels of abstraction can be introduced naturally into a program.

In summary, these aspects are all applications of various forms of ‘abstraction’ in the
software design and development process. A major aim of the computer science
course at Warwick was to communicate both the theory and some experience of using
abstraction in software design and development.

These goals do not seem to be achievable in (for instance) Pascal. Our experience
of programming courses which used Pascal made it clear that students were reluctant

Experiences in teaching functional programming 167

to design their own data structures appropriate for their parsing exercises, preferring
instead to do everything in much less structured ways using only Pascal’s built-in
data types. Students have a mental barrier against abstraction; it is understandable
that an instinct for security tells them to stick with the more concrete built-in data
structures that they have already conceptualized. This barrier should be attacked
from day 1.

Once a student has understood an imperative language such as Pascal, their
experience of that language does not provide a sound foundation for understanding
the concepts underlying a functional language. Imperative programming and
functional programming are different skills. To teach a student to program well in a
functional language one must somehow cause that student to understand clearly the
foundations of functional programming. We would argue that this comprehension is
best facilitated by the students themselves [1] and that substantial hands-on
experience with a functional language is a prerequisite.

2.1. Teaching functional programming at Warwick

The teaching of functional programming was instituted at Warwick by the late
David Park in the 1970s. This tradition has been carried on by Bill Wadge, Steve
Matthews, Meurig Beynon, and Mike Joy using WAFL (Warwick Functional
Language), PIFL [2], Lucid [3], Standard ML and Miranda. However, the
emphasis has changed dramatically from a purely examined course on the theoretical
foundations of Kahn Data Flow or the lambda calculus to an experiential partly
assessed and partly examined course. This was partly due to improved software
availability and a local shift in opinion that it was actually necessary to get students to
write functional programs. The result of this evolutionary process is now for the first
time this year a 509 assessed course in Miranda for both first-year computer science
students and for first-year joint computer science and electronic engineering
honours students.

The utopian dream of understanding functional programming by first under-
standing the foundations of constructive types and Tarski’s fixed point theory has
apparently ‘bitten the dust’ at Warwick. This should not be misinterpreted as saying
that we are totally disregarding essential theoretical topics in our approach to
teaching software engineering with functional languages. Our approach has become
more pragmatically based in trying to get students to experience the science of
declarative programming. The course this year has been a successful experiment in
providing students with such experience. Ironically, as will be shown below, the
result has been to highlight the necessity of a more rigorous approach to teaching
high-level programming based upon the very methods which we have ‘let slip’ in
favour of ‘pragmatism’. Instead of trying (in vain) to convince computer science
students that a logic of functions can be applied to the programming of realistic
problems we are now taking the approach of letting them convince themselves by
giving them the opportunity to write medium size programs. We are thus faced with
a challenge of how sucessfully to introduce topics to students such as types, higher-
order functions, and streams in step with their appreciation of functional programm-
ing. To take such an approach now seems prudent for non-academic reasons.
Students in the UK are fast becoming ‘consumers’ of education, and so will become
increasingly intolerant of courses which appear ‘irrelevant’ to themselves. Today a

168 M. Joy and S. Matthews

‘theory first without experience’ approach appears to be a certain way to invite
extinction for functional programming on a computer science degree.

2.2. Functional languages

Functional languages have been available for several years now. Many came into
existence as research tools, were not designed with teaching in mind, and certainly
could not be described as ‘user-friendly’. With the development of sophisticated
languages such as Standard ML [4] and Miranda [5]1, the opportunities for using a
functional language as a teaching tool have increased dramatically.

For the purposes of this paper, we can divide functional languages into two
principal categories. Firstly, there are the strict languages, such as Standard ML,
whose semantics are based on ‘call-by-value’. A function defined in such a language
requires all its arguments to be passed to it fully evaluated. Secondly there are the
lazy languages, such as Miranda, whose semantics are ‘call-by-need’. In such a
language an expression is evaluated only if it is actually required.

The programming skills necessary for languages in these two categories are
significantly different. We therefore felt that a conscious decision was required as to
which to offer our students. To make that decision one has to trade off the potential
efficiency of strict language implementations against the arguably richer constructs
(such as infinite data structures) available in the latter. We adopted a language in the
latter category; a major reason for this decision was that one can model strict
semantics in a lazy language, but the converse is difficult. There are other criteria we
are also able to use in order to identify a suitable language for the task.

A major feature of a functional language is its type system; a language may be
weakly or strongly typed, possibly with polymorphic typing. From the viewpoint of
the programmer, strong and polymorphic typing is beneficial as programming errors
can be detected early on by a compiler. In this category we can cite inter alia
Miranda, Haskell {6] and Hope [7].

Another important consideration when choosing a language for teaching
purposes is ease of use. It is undesirable to let students be bogged down with the
mechanics of getting a simple program to run. The user-interface is therefore
important, and an area which has regrettably been developed in few functional
languages.

Also of importance are the machine resources consumed by a program. If a
program takes up too much memory to run, the size of class that can work on such a
program at any one time will be limited. Similarly if the time required for
compilation and execution is excessive then progress will be hampered. A number of
language implementations were regarded as unacceptable for our course for
precisely these reasons, and for the time being we have found that Miranda suits our
purposes well.

3. The maze problem
For the 5079 assessed component of our first year course, students were required
to write a Miranda script which would then be tested. We now look in detail at this
particular exercise.

1 Miranda is a trademark of Research Software Ltd.

Experiences in teaching functional programming 169

3.1. Description of the maze problem
A ‘Maze’ is a rectangular grid of paths such as

e R
3 [
+ et At +
2 | (I
+o-t -t + +
1 I
S U S S SR

typically found in the garden of an English stately home. The first part of the exercise
was to produce a script to draw a picture on a dumb terminal (such as an ADM3E) for
any given specification of a maze. The second part of the exercise was to write an
interactive script which would allow the user to move around the maze. The maze
exercise has some definitely novel features for an assignment in functional
programming at Warwick. To teach first years was an experiment, but to give them
an interactive dumb terminal graphics exercise appeared bold at the time. Lessons
learnt here were not only that such exercises were quite within the reach of the vast
majority of first years, but that this could be achieved with the minimal amount of
programming theory. 90%, of students submitted scripts which could, by and large,
draw the correct maze and move around it.

The maze problem was chosen as it is an exercise in which the programmer must
think of a maze as both a ‘data structure’ and as an arrangement of characters on a
screen. As a data structure a maze has logical qualities such as those which define
horizontal and vertical paths. Also, the conditions which determine whether the
walker can move in a given direction in a given position are logical properties of this
data structure. The arrangement of characters on the screen is a representation of the
data structure. It was clear from the marking of the assignment that many students
were not aware of this distinction, preferring to think of the maze as solely a problem
in character manipulation. The drawback with the maze problem was that the logical
properties of a maze can be programmed at a lower character level. The lesson here
was that whatever wise words were given in lectures on data structures students will
try to avoid them if they can ‘hack’ their way around high-level concepts using low-
level structures such as characters.

A maze can be described as a sequence of line segments, each segment being
defined by the coordinates of its endpoints. A Miranda specification for a maze is of
the type

maze :: [({num, num), (num, num))]

where num is the data type for a number (integer or floating point), (num, num) is
a pair of numbers (which thus can represent an (x, ¥) coordinate) and ((num, num)),
(num, num)) a pair of coordinates (thus denoting a line segment). The square
brackets in the type specification indicate a list of objects of the type specified
between them, so here the data type maze does indeed denote a list of line segments.

170 M. Joy and S. Matthews

For example, the above maze is defined by

maze = [((1,3), (4,3)),
((1,2), (2,2)),
((1,1), (5,1)),
((1,2),(1,3)),
((2,1), (2,2)),
((3,2), (3,3)),
((4,1), (4,2)),
((5,1), (5,3)) 1

The set of valid maze specifications is a proper subset of the set of values of the
Miranda type necessitating error handling for maze specifications. Despite being
told expectations on error handling 47% failed to complete this stage of the problem.
Although there is no way of knowing for sure it is most probable that students did not
use a sufficiently varied range of example mazes upon which to test their work. It is
doubtful whether students at this stage are aware of their dependency upon an
empirical debugging method which cannot be exhaustively completed. After
marking this error handling section it was unfortunately too late to use this example
to impress upon the class that other more rigorous methods were needed to correctly
implement the error handling.

Many students did not recognize the need to return informative error messages,
so failing to emphasize with the user of their software. Using tools from predicate
logic and arithmetic it is quite easy to identify the most informative error for a given
maze specification. These problems with error handling highlighted the difficulty
some students found in discussing the properties of a data structure such as a maze in
first-order predicate logic. For example, how do I express that the width of a maze
must be a non-negative odd integer?

1< =width & widthmod 2=1 & width=entier width
It was not always clear that the centre square (marked with a ‘*’) could be defined by,
((width+1)/2, (height+1)/2)

The essential interplay between predicate logic and program development in a
functional language needs to be developed more in future courses.

Drawing mazes was, by and large, quite successful. One recurring problem did
highlight the inability of people to appreciate a maze as a grid of squares. A ‘path’isa
sequence either horizontal or vertical of squares, thus allowing for the possibility that
a path may be of length one. However, 449, of people failing to understand unit
length paths interpreted such isolated squares as solid hedges. A more serious
problem arising from an incomplete understanding of a maze as a data structure was
the following. Interactive commands to be allowed for movement in the maze were
‘u’ (up), ‘d’ (down), ‘I’ (left), and ‘r’ (right). Any one sequence of such commands
which track out a path to the centre of a given maze in one’s student’s work should
thus do likewise for any other student. However, 279 interpreted these commands as
movement by character positions, thus not appreciating the intended homeomorph-
ism between two different solutions to the maze problem. Much time was spent
labouring the message that the exercise was a commission for them to meet a
specification, however this message does not appear to have sunk in. The four above
mentioned commands for movement around the maze were specified as the only

Experiences in teaching functional programming 171

permitted commands along with their intended behaviour in the maze data
structure. However, 237 of students insisted on including additional commands
such as ‘rr’ (move right twice) undoubtedly conceived by students as a natural
extension worthy of extra marks. According to the precise written specification of the
maze problem it is an illegal command and so its existence resulted in the deduction
of marks. Marks were thus deducted for an extension to the required script
inconsistent with the original specification. An extension made by 4% of the students
which was warmly welcomed was the use of dumb terminal graphics when only the
use of textual characters was required. Only one student managed to reconcile both
the original specification with an extension into graphics characters.

After the initial culture shock of facing a functional language there was only really
one area of significant concern for the students outside of program design. The
interleaving of a sequence of inputs with a sequence of outputs has to be explicitly
programmed in a Pascal-like language. In alazy functional language such as Miranda
it was all too easy for the teacher to forget that demands for outputs generated by the
evaluator are interleaved with demands for inputs also generated by the evaluator.
This led to considerable initial confusion. Another related problem in Miranda was
the use of the pre-defined input variable ‘$-’, which at run-time is associated with
the UNIX® ‘standard input’ stream. It took many people a long while to realise that
$- has a type [char] in exactly the same way that any other [char] variable has.
Having grasped this it was even more difficult to get many people to use the
conversion function

lines :: [char] — > { [char]l]

for ‘abstracting’ character input into a list of strings.

4. Conclusions

Teaching a functional language today in a British university is far from
uncommon. As a vehicle for introducing formal notions into programming we too
conclude that functional languages should play an important role in the computer
science undergraduate curriculum. We cannot escape, however, the political realities
of a changing British university system in which students are fast becoming
consumers of educational products. No longer is it possible to preach the virtues of
the lambda calculus to an élite captive audience, instead functional languages are
now just another product to be sold to students. OQur experience suggests that the
traditionally difficult task of convincing students of the merits of programming using
executable specifications has now been complicated by political changes far beyond
our control. We will have to fight even harder in the future to prevent student
misconceptions of functional languages as competitors to the more mainstream
languages such as Pascal and C. At Warwick we have chosen to confront this
challenge by replacing our traditional theoretical approach by a hands-on approach.

Concern over the effect of national curriculum changes on core mathematical
skills of incoming home undergraduates is growing. Our experience suggests that if
such concern is well founded functional languages will become much harder to teach.
Ironically a functional language is an ideal vehicle for teaching both essential
mathematical and logical skills in programming. It will be interesting to see whether
functional languages become a teaching aid for enhancing mathematical and logical
skills or whether they remain a serious component of the undergraduate programm-
ing agenda.

172 Experiences in teaching functional programming

References

[1] von GLasersFELD, E., 1983, Learning as a constructive activity in Proceedings of the 5th
Annual Meeting of the North American Chapter of the International Group for the
Psychology of Mathematics Education, Montreal, edited by J. Bergeron and N.
Herscovics (Montreal, Canada: Faculté de Sciences et de I'Education, Université de
Montreal), pp. 41-70.

[2] Berry, D., 1981, The Pifl programmer’s manual, Department of Computer Science,
University of Warwick, Coventry.

[3] Asucrort, E. A., and Wabce, W., 1985, Lucid the Dataflow Programming Language
(Reading, MA: Addison-Wesley).

[4] WiksTROM, A., 1986, Functional Programming Using Standard ML (London: Prentice-
Hall).

[5] HovLver, L., 1991, Functional Programming with Miranda (London: Pitman).

[6] Davig, A. J. T., 1992, An Introduction to Functional Programming Using Haskell
(Cambridge, UK: Cambridge University Press).

[7] BaiLey, R., 1990, Functional Programming with Hope (Chichester, West Sussex: Ellis
Horwood).

