
Comput. Lang. Vol. 10, No. 3/4, pp. 211-224, 1985 0096-0551/85 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright ~C" 1985 Pergamon Press Ltd

E F F I C I E N T C O M B I N A T O R C O D E *

M. S. JoYt, V. J. RAYWARD-SMITH and F. W. BURTON~

School of Computing Studies and Accountancy, University of East Anglia, Norwich NR4 7T J, U.K.

(Received 26 September 1984; revision received 6 March 1985)

Abstract--Some combinatory logics are examined as object code for functional programs. The worst-case
performances of certain algorithms for abstracting variables from combinatory expressions are analysed.
A lower bound on the performance of any abstraction algorithm for a finite set of combinators is given.
Using the combinators S, K, I, B, C, S', B', C' and Y, the problem of finding an optimal abstraction
algorithm is shown to be NP-complete. Some methods of improving abstraction algorithms for those
combinators are examined, including "'balancing" (for asymptotic performance) and "peephole" optimis-
ations (for smaller cases).

Combinators Combinatory logic Computationalcomplexity Functionallanguages NP-complete-
ness Optimisation

1. I N T R O D U C T I O N

Combinatory logic [1-3] had for many years been of interest to just a handful of logicians.
However, it is now recognised that combinators may be a useful low-level code for functional
programs. This idea has stimulated several papers, notably by Turner [4, 5] and there exist machines
which use combinators as such a code (such as SKIM [6]). We examine here some aspects of
efficient translation of a functional program to combinator code.

We assume the reader is familiar with the rudiments of combinatory logic (an excellent
introduction can be found in Ref. [1]; Ref. [2] is a comprehensive treatment of the subject and a
discussion of recent trends can be found in Ref. [3]). The material in this paper is a summary of
some of the results obtained in Ref. [7]. Detailed proofs of the results will be omitted.

A combinatory logic is defined by an alphabet consisting of the symbols "(" and ")", together
with a set of variables, a set of annotated constants, and a set of combinators. An atom is a variable
or a constant or a combinator. A combinatory expression E is either x (where x is an atom) or
(F G) (where F and G are combinatory expressions). If E is a combinatory expression, then size
(E) (or IEI) will mean the number of atoms occurring in E. The symbol " - " will stand for lexical
equality. To each combinator is associated a reduction rule which is used to change one
combinatory expression into another. If just one such change is made that change is called a
reduction step, and if a sequence of changes are made then that is called a reduction. The logics
will have names beginning "CL-" and we now give the combinators and combinatory logics we
shall use.

In the following definitions of the reduction rules the symbols "a" , "b" , "c", "d" are to be
regarded as arbitrary combinatory expressions,

S a b c > (a c) (b c) B' d a b c > d a (b c)
K a b > a C ' d a b c > d (a c) b
I a > a J a b c > a b
B a b e > a (b c) J ' d a b c > d a b
C a b c > a c b Y a > a (Y a)
S ~ d a b c > d (a c) (b c)

*This material is based on work supported by the United Kingdom Science and Engineering Research Council and by the
National Science Foundation under grant number ECS-8312748.

tPresent address: School of Computing and Information Technology, The Polytechnic, Wolverhampton WVI ILY, U.K.
:~Present address: Department of Electrical Engineering and Computer Science, University of Colorado at Denver, I I00

Fourteenth Street, Denver, CO 80202, U.S.A.

211

212 M.S. JoY et al.

Name of Logic
CL-SKI
CL-SKIBC
CL-Dash
CL-J

Set of Combinators
{v, s, K, I}
{Y, S, K, I, B, C}
{Y, S, K, I, B, C, S', B', C'}
{Y, S, B, C, J, S', B', C', J', I}

We shall assume the expressions are represented as directed acyclic graphs, so that expressions
may be shared. An expression which can have no more reductions applied to it is in normal form.
The functions oc (occurs in), and its converse/oc (does not occur in), are defined in the obvious
way. The symbol " = " used between combinatory expressions will indicate that they can be
interconverted by using a number of reduction steps or expansions (the inverse of reductions). If
E, F and G are combinatory expressions, then [E/F]G shall mean the expression constructed by
replacing all occurrences of the expression F in G by E.

An abstraction algorithm is a function taking as argument a combinatory expression containing
variables and returning an expression containing fewer variables such that, if the variables thus
removed are appended to the resulting expression, and that expression reduced fully to normal
form, (the normal form of) the original expression will be arrived at again. Abstraction algorithms
will be given names of the form Abs/'logic-name'/'number', where 'logic-name' refers to the name
of the combinatory logic for which the algorithm is designed, and 'number' the number of the
algorithm (for each logic we shall consider several algorithms).

We shall write abstraction algorithms as functions of two arguments, the first a list of the
variables being abstracted. Each algorithm in the next section abstracts variables "one at a time".
So we shall in each case define the algorithm for abstracting one variable only, and the following
rule is to be assumed:

Abs/X/r(x I Xm) (E) --- Abs/X/r(xl x m_j) ((Abs/X/r(Xm) (E))),

where X is the logic-name, and r is the algorithm number.
Standard notations for the complexity of functions--O(n), 0(n) and f/(n)--will be used

(definitions can be found in Ref. [9]).

2. ABSTRACTION ALGORITHMS

In this section we define some abstraction algorithms and give worst-case performance bounds.

Definition: Abs /SKI/1
The first of the following that is applicable should be used:

Abs/SKI/l(x)(x) - I, (i)

Abs/SKI/l(x)(y) -= (K y) if atom(y) and y # x, (ii)

Abs/SKI/I(x)(E F) - (S(Abs/SKI/I(x)(E))(Abs/SKI/I(x)(F))). (iii)

This is arguably the "simplest" abstraction algorithm, being easy to state and easy to analyse--
unfortunately, it does not produce compact combinator code. In an attempt to improve this
situation, the following two variations have been proposed.

Definition: Abs ~SKI~2
As Abs/SKI/1, except (ii) is replaced by:

Abs/SKI/2(x)(E) - (K E) if x /ocE. (iv)

Definition: Abs /SKI / 3
As for Abs/SKI/2, except that after (iv) is inserted:

Abs/SKI/3(x)(E x) = E if x/oc E. (v)

Efficient c o m b i n a t o r code 213

Abs/SKI/3 includes "eta-abstraction", equivalent to "strong" (as opposed to "weak") combina-
tory logic. That is, two functions are equated if they evaluate to the same result given the same
arguments. Eta-abstraction makes the underlying theory somewhat more complicated, but when
variables are abstracted using algorithms that allow eta-abstraction, then for many expressions the
size of the resulting code is significantly reduced. This is especially true for small expressions
corresponding to functions that might appear in a "real" program.

Definition: Abs ~SKI/4
This algorithm is equivalent to Abs/SKI/3, but is defined in terms of rewrite rules (see Ref. [4])

rather than "occurs in".

Abs/SKI/4(x)(x) - I,
Abs/SKI/4(x)(y) -= (K y) if atom(y) and y :/: x,
Abs/SKI/4(x)(E F) = S(Abs/SKI/4(x)(E))(Abs/SKI/4(x)(F)),

but, whenever a term of the form S(K E0(K E2) occurs, replace it immediately by K(E~ E2) , and
whenever a term of the form S(K E3)I occurs, replace it immediately by E3.

These we will refer to as "optimisations" for the rest of this section, and in future algorithms
will use the shorthand

S(K EI)(K E2) --~ K(E, E2), (vi)

S(K E3)I ~ E3, (vii)
etc.

Theorem

Let E be an expression in CL-SKI, then

Abs/SKI/3(x~ Xm)(E) - Abs/SKI/4(Xl, . . . , Xm)(E).

By introducing the combinators B and C we are able to make a substantial improvement--CL-
SKIBC avoids the excessive verbosity of CL-SKI, although the asymptotic performance is similar.
These two combinators were initially studied as computer code in Ref. [4].

Definition: A bs /SKIBC / I

Abs/SKIBC/1 (x)(x) _=

Abs/SKIBC/I(x)(E) _=

Abs/SKIBC/I(x)(E F) =

Abs/SKIBC/I(x)(E F) -

Abs/SKIBC/I(x)(E F) -

(K E) if x/oc E,

(S(Abs/SKI BC/1 (x)(E))(Abs/SKIBC/1 (x)(F)))
if x oc E and x oc F,

(C(Abs/SKIBC/I(x)(E))F)
if x oc E and x/oc F,

(S E (Abs/SKIBC/I(x)(F)))

(viii)

(ix)

(x)

(xi)

if x /oc E and x oc F. (xii)

The following two variations have also been proposed. Abs/SKIBC/2 contains eta-abstraction,
Abs/SKIBC/3 uses rewrite rules and was introduced in Ref. [4].

Definition: Abs /SKIBC /2

As for Abs/SKIBC/1, except after (vii) is inserted:

Abs/SKIBC/2(x)(E x) - E, if x /oc E. (xiii)

Definition: Abs / SKIBC / 3

As Abs/SKIBC/4, but with additional optimisations:

S (K El) E2 -~ B E~ g2, (xiv)

S El (K E2) -~ C E l E2. (xv)

C L . 10 3 - ~ D

214 M.S. JoY et al.

Theorem
Let E be an expression in CL-SKIBC, then

Abs/SKIBC/2(x I Xm) (E) - Abs /SKIBC/3(x l , . . . , Xm) (E).

By introducing the "dashed" or "long-reach" combinators we can make an improvement in the
asymptotic performance of the simple abstraction algorithms. The extra combinators in CL-Dash
were initially examined in Ref. [5], where the algorithm Abs/Dash/3 is proposed.

Definition: A bs /Dash / 1
The first of the following

containing no variables):

Abs/Dash/1 (x)(x) -

Abs/Dash/1 (x)(E) -

Abs/Dash/l(x)(k E F) ---

Abs/Dash/l(x)(k E F) -

Abs/Dash/l(x)(k E F) =

Abs/Dash/l(x)(E F) -

Abs/Dash/l(x)(E F) -=

Abs/Dash/ l (x)(EF) =

which is applicable should be used (k is an arbitrary expression

(K E) if x /oc E,

(S' k (Abs/Dash/1 (x)(E)) (Abs/Dash/1 (x)(F)))
i f x o c E a n d x o c F ,

(C' k (Abs/Dash/1 (x)(E))F)
if x oc E and x /oc F,

(a ' k E (Abs/Oash/l(x)(F)))
if x /oc E and x oc F,

(S (Abs/Dash/1 (x)(E)) (Abs/Dash/l(x)(F)))
if x oc E and x oc F and E # (k El) for any El,

(C (Abs/Dash/1 (x)(E))F)
if x oc E and x /oc F and E # (k El) for any El,

(B E (Abs/Dash/1 (x)(F)))
if x /oc E and x oc F and E # (k El) for any E I.

Definition: Abs /Dash /2
As for Abs/Dash/1, but after (xxi) is inserted

Abs/Dash/2(x)(E x) = E if x /oc E.

Theorem
Let E be an expression in CL-Dash, then

IAbs/Dash/2(xl Xm)(E)l < [Abs/Dash/l(xl Xm)(E)[.

Definition: Abs /Dash /3
As Abs/SKIBC/3, but with the following extra optimisations:

S(B El E2) E3 ~ S' El E2 E3,

B(EI E2) E3 ---, B' El E2 E3,

C(B El E2) E3 --, C' E 1 E2 E3.

(xvi)

(xvii)

(xviii)

(xix)

(xx)

(xxi)

(xxii)

(xxiii)

(xxiv)

(XXV)

(xxvi)

(xxvii)

We note that the order of the optimisations matters. For instance, consider the function (2 x. + x x).
Using Abs/Dash/3 we get

Abs/Dash/3(x)(+ x x)

S(Abs/Dash/3(x)(+ x))(Abs/Dash/3(x)(x))

--. S(S(Abs/Dash/3(x)(+))(Abs/Dash/3(x)(x)))I

---, S(S(K +)I)I

~ S + I .

(using iii)

(using iii and i)

(using iv and i)

(using vii)

Efficient combinator code 215

However, using a different order, we get

Abs/Dash/3(x)(+ x x)

- + . . . -+ S(S(K +)I)I

S(B + I)I (using xiv)

-+ S' + I I. (using xxv)

The algorithms we give perform these optimisations in the most efficient order, and yield a unique
result, provided one always uses the first one which can be used.

By extending the sets of optimisations (which remain finite) in each of the above algorithms, we
can dispense with the necessity of performing their constituent operations in any particular order.
Thus such "extended" abstraction algorithms possess the Church-Rosser "confluence" property.
We do not exhibit them here, since the resulting abstraction algorithms are more cumbersome than
those we use whilst still yielding the same results.

Theorem
Let E be an expression in eL-Dash, then

Abs/Dash/2(xl Xm)(E) =- Abs/Dash/3(xl Xm)(E).

CL-J is very similar to eL-Dash, except the combinator K is replaced by two combinators--J
and J ' --whose degrees (number of arguments they need before they can reduce) correspond to S,
B and C (for J) and S', B' and C' (for J'). This fits in with the idea that combinators can "tag"
the internal nodes of a graph representing a combinator expression and "ship down" arguments
to left or right (or neither or both) immediate subexpression of that node. A different formalisation
of this concept is "Director Strings" [8]. The two abstraction algorithms we now present correspond
to Abs/Dash/1 and Abs/Dash/2.

Definition: Abs /J /1
The first of the following which is applicable should be used (k is an arbitrary expression

containing no variables):

Abs/J/1 (x)(x) = I, (xxviii)

Abs/J/l(x)(E) _= (J I E) if x /oc E and atom(E), (xxix)

Abs/J/l(x)(k E F) - (S' k (Abs/J/l(x)(E)) (Abs/J/l(x)(F)))
if x oc E and x oc F, (xxx)

Abs/J/l(x)(k E F) - (C' k (Abs/J/l(x)(E))F)
if x oc E and x/oc F, (xxxi)

Abs/J/l(x)(k E F) - (B' k E (Abs/J/l(x)(F)))
if x/oc E and x oc F, (xxxii)

Abs/J/l(x)(k E F) -= (J' k E F)
if x/oc E and x/oc F, (xxxiii)

Abs/J/l(x)(E F) - (S (Abs/J/l(x)(E)) (Abs/J/l(x)(F)))
if x oc E and x oc F and E ~ (k El) for any El, (xxxiv)

Abs/J/l(x)(E F) - (C (Abs/J/l(x)(E)) F)
if x oc E and x/oc F and E ~ (k El) for any E~, (xxxv)

Abs/J/l(x)(E F) = (B E (Abs/J/l(x)(F)))
if x /oc E and x oc F and E ~ (k G) for any El, (xxxvi)

Abs/J/l(x)(E F) - (J E F)
if x/oc E and x/oc F and E ~ (k G) for any E~. (xxxvii)

2 1 6 M . S . J o Y et al.

Definition: Abs /J/2
As Abs/J/1, except after (xxi) is inserted

Abs/J/2(x)(E x) = E if x/oc E. (xxxviii)

From Table 1 we see that the abstraction algorithms for CL-Dash and CL-J yield asymptotically
better code than those for CL-SKI and CL-SKIBC. We can remedy the asymptotic performance
by performing one of the abstraction algorithms in CL-Dash that we have described, and then
replacing each dashed combinator in CL-Dash by an equivalent expression in CL-SKIBC. CL-SKI
can be treated in a similar manner, except B and C will also need replacing. However, this is a
lengthy method of producing asymptotically better code for CL-SKI and CL-SKIBC, and the code
so produced will always be worse than that produced using just CL-Dash (typically by a factor
of 10).

The logics introduced above form a hierarchy in the sense that, except for CL-J, the successive
logics are formed by adding increasing numbers of combinators to the logic which contains only
S, K and I. Thus one can consider the sequence of logics as increasing in complexity. As is to be
expected, the more combinators are added to the logic, the shorter the code produced when a naive
algorithm is used to abstract variables.

Results of "worst case" analyses for those algorithms are summarised in Table 1. If we are
considering the algorithm Abs/X/r, then the column indicated by "upper bound" will contain a
provable upper bound on the value of IAbs/X/r(xl Xm) (E)I, where E ranges over expressions
containing variables in CL-X of size n. The column indicated by "attainable" will give the size of
code for an achievable example. It will be assumed that m < 3 and n - m > 2. Proofs of all these
results are to be found in Ref. [7].

We have shown one algorithm to be "exponential", and several to be either "0 (n.m2) '' or
"0(n .m)" . The latter are clearly those which are likely to be of practical use, and as we shall see
later, Abs/Dash/2 and Abs/Dash/3 yield particularly good code which is not easily susceptible to
optimisation.

T a b l e 1.

A l g o r i t h m U p p e r b o u n d A t t a i n a b l e

A b s / S K I / I 3ran - (3 = - 1)/2

A b s / S K I / 2 2 n m : + 4 n m - n
A b s / S K I / 3 2 n m 2 + 4 n m - 4 n

A b s / S K I / 4 2 n m ~ + 4 n m - 4 n
A b s / S K I B C / I n (m + l /2)2 /2 + n (2 m - l)

A b s / S K I B C / 2 n m : / 2 + 2 n m - 2 1 n / 8
A b s / S K I B C / 3 n m 2 / 2 + 2 n m - 2 1 n / 8

A b s / D a s h / l n m + n - n

A b s / D a s h / 2 n m + n - n
A b s / D a s h / 3 n m + n - n
A b s / J / l 2 n m + 2 n - n

A b s / J / 2 2 n m + 2 n - n
A b s / J / 3 2 n m + 2 n - n

2 , r a m - i n - (3 TM - I) /2

n (m 2 + m + 1) - 2ma /3 + 2 m / 3 - 2
n (m 2 + m + 1) - 2m3 /3 - 7 m / 3

n (m 2 + m + l) - 2ma/3 - 7 m / 3
n m (m + 1) - (2 m 3 + 3 m 2 + I I m - 6) /6

n m (m + I) - (m 3 + 2 m - 3) /3

n m (m + l) - (m a + 2 m - 3) /3
n m + n - (m 2 - m + 2) /2

n m + n - (m 2 + 3 m - 2) /2
n m + n - (m 2 + 3 m - 2) /2
n m + n - (m 2 - m - 2) /2

n m + n - (m 2 + 3 m - 2) /2
n m + n - (m 2 + 3 m - 2) /2

3. WHAT IS POSSIBLE?

In this section we look at (i) a lower bound to the size of combinator code attainable for afinite
set of combinators, and (ii) show that the problem of optimising combinator code using CL-Dash
is NP-complete.

Theorem
Let CL-X be a combinatory logic, where the number of combinators in CL-X is finite. Then,

for each abstraction algorithm Abs/X/r, there exist expressions E in CL-X with]EJ = n such that,
if Xl Xm are variables, then]Abs/X/r(xt xm)(E)] is F~(n*log(m)).

Proof
Assume CL-X contains p combinators. We enumerate the possible expressions of a given size n
which contain only combinators (0(pn)), and those which are allowed to contain up to m variables

Efficient combinator code 217

(0((m+p)n)). We argue that since Abs/X/r can take 0((m +p)") distinct function bodies as
argument it must then return a similar number of distinct combinator expressions containing no
variables. Thus these expressions containing no variables must be of a maximum length n' where

0(p"') = 0((m + p)"), thus n' = 0(n*log(m)). []

Next we show that optimising combinator code is NP-complete. The optimisation problem will
be: given an expression E whose only atomic subexpressions are variables xl Xm, and an integer
q, does there exist an expression E, whose only atomic subexpression~ are combinators in
CL-Dash, such that the expression (E' x~... Xm) reduces in q (or less) redt/~tion steps to E? The
NP-completeness of this problem will be proved by transformation fron~ "Hitting Set" to a
restricted set of such expressions.

The reduction strategy will be the equivalent of normal order for graphs, that is, leftmost-
outermost first. The expression being reduced will be considered as a graph. Initially, at the start
of the reduction, this graph will be a binary tree. Thereafter code-sharing will be allowed. OP, as
defined above, can easily be shown to lie in NP, and we have the following result.

Theorem

The Optimisation Problem is NP-Complete.

Proof
Given in full in Ref. [7]. []

4. BALANCING

The concept of "balancing" an expression in order to improve the code obtained after
abstraction of variables was introduced in Ref. [10].

Balancing is an operation which takes as input a combinatory expression, E, and returns as
output an expression, F, in which may occur combinators, such that the resulting expression tree
is partially "balanced"; then, when variables are abstracted from F, in the asymptotic case (IEI
large, number of variables occurring in E large) the code produced will be shorter than if the
variables were to be abstracted from E using the above abstraction algorithms.

It should be stressed that it is the asymptotic performance of an abstraction algorithm that is
improved, and that for certain expressions the size of code produced will be worse.

It should also be stressed that balancing "works" for certain logics and abstraction algorithms
only. For instance, CL-SKI together with Abs/SKI/1 will produce worse code after balancing has
been performed in every instance. We examine only Abs/Dash/1 and Abs/Dash/2.

As Kennaway remarks in Ref. [11], the number of combinators produced when abstracting a
variable from an expression E using Abs/Dash/1 is equal to the number of nodes in the minimal
subtree of E containing all occurrences of that variable. When Abs/Dash/2 is used, a similar result
holds, except that certain nodes are deleted.

Definition: Tsize
Let E be an expression in CL-Dash, considered as a binary tree, then tsize(E) is equal to the

number of leaf nodes in E which are not combinators.

Definition: Select

Let E be an expression in CL-Dash. Then
Itsize(E)/2- tsize(select(E))[is minimised.

select(E) is a subexpression of E where

Definition: Balance
Let E be an expression in CL-Dash, F = select(E), v a variable not occurring in E, E = (E~ E2)

and Abs/Dash/r the abstraction algorithm being used. Then balance(E) is defined as follows,

if tsize(E) <_ 3 then
balance(E) = E (i)

218 M.S. JoY et al.

else
if tsize(E)/3 _< tsize(El) _< 2*tsize(E)/3 then

balance(E) = (balance(El) balance(E2)) (ii)
else

balance(E) = ((Abs/Dash/r(v) (balance([v/F]E))) (balance(F))) (iii)

For example, let E -= (Xl x2 x3 x4), then

balance(E) -- (Abs/Dash/r(v) (v x3 x4) (xl x2)).

In Burton's original paper [10], the logic CL-Dash is used, together with the abstraction algorithm
Abs/Dash/2.

Theorem

Let s be the maximum value of IAbs/Dash/l(Xl Xm)(balance(E))l, as E ranges over
expressions in CL-Dash with IEI = n, and using Abs/Dash/1. Then

s < 6*n*log(m) + 9*n - (log(n) + log(2/9))/(log(3) - 1) - 10 (n _> 2).

Once again, if balancing is performed using Abs/Dash/1 and using Abs/Dash/2, we find that the
latter always produces more efficient code. However, their order of magnitude performance is
similar--O(n*log(m))---and from section 3 we see that this is asymptotically optimal. So balancing
using Abs/Dash/1 or Abs/Dash/2 yields code which is 0(n*log(m)).

Balancing can be considered as having two separate stages--that of balancing an expression, and
that of abstracting variables from an expression after balancing it. The former behaves in an linear
fashion, the latter in an "n*log(m)" way. The former is independent of which variables occur in
the expression being balanced, the latter is by its very nature sensitive to how often the variables
being abstracted occur in it.

It will be seen that the first process, that of balancing an expression, introduces combinators.
For many practical purposes, this simply yields too many, giving code which is worse than that
produced without balancing. In section 5 we give some numerical results on this.

Burton in Ref. [10] claims that, if the lengths of the variables used in the expression which is
being balanced is taken into account in determining "size", then the growth in size of the expression
is linear in the size of the original expression, thus, if IEI = n, using that definition of size, we get
IAbs/Dash/2(Xl xm)(balance(E)) I is O(n). We get a different result here, as we ignore the
lengths of variables introduced.

5. IMPROVING CODE

In this section we shall examine heuristics for getting "better" code in CL-Dash than by simply
using Abs/Dash/2. By this we shall mean: given an expression, E, containing variables Xl , Xm,
how can one produce an expression F such that (i) x t , . . . , xm do not occur in F and (ii) (F x~ . . . xm)
reduces to E in a "small" number of reduction steps? The code improvements we display are not
intended to be a definitive set, merely a collection which we have found to give significant
improvements (at least, in certain cases).

We shall give examples of all these heuristics "in action", using sets of test functions. These will
fall into two categories.

First we shall use a number of functions representing "real" problems. We do not know what
"real" large functional programs will look like when such languages become more widely used,
however the examples we use we consider typical.

Second, we present some functions which yield interesting results (but, again, may not occur in
practice). These will be defined as lambda-exprcssions.

We shall assume that we have a function where any internal functions are considered as
predefined atoms--thus we allow no global variables. We shall possibly alter that expression (for
instance, by balancing it), then we shall translate it to an expression in CL-Dash.

Recursion will be implemented using the "least fixed-point" combinator Y, and we shall always
be using acyclic graph structures. The definition of tsize treats as atomic a subexpression which

Efficient combinator code 219

contains only constants. This seems reasonable on the grounds that such a subexpression represents
a function which is effectively predefined, and into which combinators will not need to be inserted
anyhow.

It often occurs that balancing an expression introduces more combinators than it gets rid of.
We present first some methods of improving the balancing algorithm which do not compromise
the asymptotic performance.

"B" shall refer to the balancing operation (using Abs/Dash/2), and will be used with a following
digit.

"B0 '° will refer to balancing without any optimisations at all.
" B I " will alter case (iv) of the definition of balance to be:

if E contains more than one free variable then
balance(E) = ((Abs/Dash/2(v) (balance(Iv/FIE))) (balance(F)))

else
balance(E) = E.

"B2" will be defined similarly to "BI" :

if F contains more than one free variable then
balance(E) = ((Abs/Dash/2(v)(balance([v/F]E)))(balance(F)))

else
balance(E) = ([F/vl(balance([v/FlE))).

"B3" is similar to "B2", except that "full optimisation" is performed. That is, balance(F) and
balance([v/F]E) are evaluated using "B3", the two cases above are both evaluated separately, the
one yielding the shortest code after all variables have been abstracted then being chosen (in the
ambiguous case balancing is not performed). It will be seen that "B3" must yield the shortest
possible code consistent with the asymptotic analysis in section 4, since all possible combinations
are tried. We do not suggest that "B3" be used in practice, but it sets a lower bound on the size
of code obtainable by inhibitions of the balancing algorithm.

We note now that " B I " and "B2" must produce shorter code after variables have been
abstracted using Abs/Dash/2 than "B0"; for, if select(E) contains at most one distinct variable, any
extra variable inserted in place of select(E) must introduce more combinators (since any internal
node which was previously "tagged" will remain so).

The "Bi" (0 _< i _< 3) are ordered, in that "Bj" produces shorter code than "Bi" if j > i. Since
each of the optimisations produces better code than "B0" at each balancing step, the asymptotic
performance of balancing is preserved and the worst case analysis of section 4 still holds.

The examples of programs given below are typical of a certain class of program, and are all fairly
well balanced to start with--hence the poor results when the balancing algorithm is used. However,
it can be argued that in certain cases badly balanced lambda-expressions might be created--for
instance, in a compiler or similar program which includes large "case" statements. In such cases,
inhibitions similar to "only balance if one immediate subexpression of E is at least ten times as
big as the other"could be implemented. However, such a restriction would not be illustrated by
any of our examples here. Indeed, even a naive strategy such as "abstract without balancing, and
also abstract with balancing, and choose whichever produces the shortest code" would not be
infeasible. On the other hand, it could also be argued that the creation of badly-balanced
lambda-expressions counts as "bad" programming style.

We perform essentially one sort of optimisation of the source lambda-expression apart from
balancing. If we have an expression E = (7 • fl) where), is an arithmetic operator, :~ is a variable,
and fl is an integer, then we manipulate that expression as follows:

replace E by E', where
i f T e { + , * , = } then E '=(Tf l~ t) ,
else if 7 = - a n d fl is an integer then E ' = (+ - /~ ~t)
else if 7 = < then E' = (>f l ~t)
else i f T = _ < t h e n E ' = (> f l a)
else if 7 = > then E' = (< fl ~t)
else if 7 = >_-then E' = (<fl~t).

220 M.S. JoY et al.

This optimisation is performed before any others. Note that we do not include corresponding
replacements involving / and **.

We note that this optimisation will remove a number of C combinators from the abstracted code,
since Abs/Dash/2(x)(7 x f l)= (C 7 fl), and Abs/Dash/2(x)(7 fl x)= (7 fl). In the cases "A", "B2"
and "B3", the optimisation will always improve the code. We denote these optimisations by
prefixing "H" to the name of the following optimisation, thus "HBI" will mean: perform this
high-level optimisation, then balance using "BI".

These "high-level" optimisations give significant code improvements, but are dependent on the
symmetry of the arithmetic operators annotated to the combinatory logic. They therefore do not
rely on properties inherent in the combinators being used. They may be considered as standing in
close relation to established optimisation techniques for non-functional programs.

Now, let us consider the dashed combinators. The rules for Abs/Dash/2 say that the first
combinator introduced when evaluating Abs/Dash/2(x)(7 ct fl), where 7 is an expression which
contains variables, but in which x does not occur, should be non-dashed, thus

Abs/Dash/2(x)(7 ~ fl) = A(7 ~)' fl',

where

fl' e{fl,Abs/Dash/2(x l)(fl)}, similarly (7 ~)', and A ~{S, B, C}.

However, since x/oc 7, there may be circumstances in which it is desirable for the first combinator
to be a dashed one, thus getting instead

(A' 7 ct' fl'), where A' e{S', a', C'}.

For example, consider abstracting a, b, c, d and e (in that order) from the expression

b(a b c e) (d e).

Using simply Abs/Dash/2, this becomes

(B'(B' B) S(S(B' B))),

however, using S' when abstracting the variable e we get

(S(B' S')).

This is clearly a significant improvement. However, if we use this amendment to the definition of
Abs/Dash/2 indiscriminately, then we may get a deterioration in performance. Abs/Dash/4, which
we now define, is merely Abs/Dash/2 rewritten so that dashed combinators are always used when
it is possible to use them. This is introduced not as an optimisation, rather to illustrate its
performance.

Definition: Abs /Dash/4
As for Abs/Dash/2, except that k denotes an arbitrary expression in which x does not occur.

We now look at conditions for combining these two algorithms for abstracting variables
(Abs/Dash/2 and Abs/Dash/4) so that improved code is produced. We shall amend the definition
of Abs/Dash/4 so that a check is performed before using a dashed combinator to ensure that it
really is a good idea. Essentially this check will consist of seeing whether introducing a dashed
combinator will produce shorter code than not doing so by "counting" the combinators that will
be introduced. The condition will be denoted by cond.

Definition: Abs /Dash / 5
The first of the following which is applicable should be used (G is an expression in which x does

not occur):

Abs/Dash/5(x) (x) -= I;

Abs/Dash/5(x) (E x) - E if x/oc E;

Abs/Dash/5(x)(E) -= (K E) if x/oc E;

Efficient combinator code 221

Abs/Dash/5(x) (G E F)

Abs/Dash/5(x)(G E F)

Abs/Dash/5(x)(G E F)

Abs/Dash/5(x)(G E F)

Abs/Dash/5(x)(G E F)

= (S G(Abs/Dash/5(x) (F)))
i f E = x a n d x o c F;

= (C G F)
if E = x and x/oc F;

= (S' G(Abs/Dash/5(x) (E)) (Abs/Dash/5(x) (F)))
if x oc E, x oc F and c o n d (G E F);

= (C' G(Abs/Dash/5(x)(E))F)
if x oc E, x/oc F and cond(G E F);

- (B' G E(Abs/.Dash/5(x)(F)))
if x/oc E, x oc F and cond(G E F);

--- (S(Abs/Dash/5(x) (E)) (Abs/Dash/5(x) (F)))
i f x o c E a n d x o c F;

-= (C(Abs/Dash/5(x) (E))F)
if x oc E and x/oc F;

- (B E(Abs/Dash/5(x)(F)))
if x/oc E and x oc F.

Abs/Dash/5(x) (E F)

Abs/Dash/5(x) (E F)

Abs/Dash/5(x) (E F)

Cond(G E F) is true if one of the following cases holds, otherwise false:

(i) G contains no variables;
(ii) G = y for some variable y with y 4: x;

(iii) G is not of the form (H L) where H contains no variables and E is not a variable;
(iv) G is not of the form (H L) where H contains no variables, E is a variable and E oc G;
(v) G = (H y) for some variable y, some expression H containing no variables, and either E

is not a variable or E-= y.

These conditions ensure that the code produced will be at least as short as that produced using
non-dashed combinators. However, they make no assumptions about the order in which
subsequent variables are abstracted. If we have access to this information, then we can improve
on Abs/Dash/5 as follows:

Definition: A bs /Dash / 6

As for Abs/Dash/5, except that clause (iv) and (v) of the definition of cond are replaced by

(vi) G is not of the form (H L) where H contains no variables, E is a variable, E oc G or E
is abstracted after some variable which occurs in G has been;

(viii) G = (H y) for some variable y, some expression H containing no variables, and either E
is not a variable or E is not abstracted before y is.

We shall assume that our lambda-calculus contains constants. These will include integers,
inequalities and " = " as integer relations, the empty list "nil", the list constructor ":", the list
predicates "hd" and "tl", "null" which tests whether a list is empty or not, and the recursion
combinator "Y". All functions will be Curried.

We use the following test functions:

(1) Ackerman's function (usual definition).
(2) Factorial (usual definition).
(3) The eighth Fibonnacci number--21 (usual definition).
(4) List of the first eight Fibonnacci numbers, using a cached list (21, 13, 8, 5, 3, 2, i, 1).
(5) Knapsack- -a version of the standard 0/1 knapsack problem. The first argument is an

integer, the second is a list of integers.
(6) Permutations of a list--takes as input a list of integers, returns a list of permutations of

that list.
(7) Powers23 is a function which returns a list of all numbers of the form 2 i + 3 j (i,j > 0).

222 M . S . JoY et al.

(8) Primes--an infinite list, by test division. We take the fourth in that list. The list does not
include 2.

(9) Primes--using the "sieve" technique.
(10) Bubblesort.
(11) Lopside-10.

((2xl 2Xl0. xl0(x9(... (x2 x l) . . .))) 1 2 . . . 9 10)

(12) Lopside-20.

((,~X 1),X20. X 2 0 (X l 9 (. . . (X 2 X l) . . .))) 1 2 . . . 19 20)

(13) Lopside-30.

((2Xl 2x30. x30(x29(. • • (x2 x~) . . .))) 1 2 . . . 29 30)

(14) Case-statement- 10

((2v. 2xl).xl0. = v 1 x l (= v 2 x 2 (. . . (= v 10xl0 11) . . .))) l l 1 . . . 10)

(15) Case-statement-20

(().v. 2Xl 2x20. = v 1 x l (= v 2 x 2 (. . . (= v 20x2021). . .))) 21 l . . . 20)

The results are given in Table 2, with the columns representing the number of the test function,
as given in the previous section and the rows representing the number of combinator reduction
steps.

The number of non-combinator (for instance, arithmetic) operations is not changed by these
optimisations; we do not address the problem of amending an expression to alter the number of
such operations.

Since we may wish to apply more than one optimisation to a particular lambda-expression, the
names we shall give in these tables will contain the names of all the optimisations used. For
instance, "B1HA2" will mean "balance using optimisation B1, then apply high-level optimisation
H, then abstract variables using Abs/Dash/2".

Columns 1-10 "Real" examples
Columns 11-13 Contrived examples where balancing works well
Columns 14-15 Possible "real" examples where balancing works well

We do not include results for Abs/Dash/6, since they are identical in our examples to those for
Abs/Dash/5.

Table 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A2 442 90 316 239 320 360 435 648 640 335 62 227 492 95 290
A4 400 90 316 239 306 360 427 635 626 325 62 227 492 140 480
A5 400 90 316 239 306 360 427 635 626 325 62 227 492 95 290
BOA2 669 119 612 369 599 553 636 1002 793 481 35 93 159 169 354
BIA2 669 111 571 349 599 533 636 956 784 481 35 93 159 169 354
B2A2 569 90 471 239 549 485 589 864 716 411 35 93 159 84 187
B3A2 442 90 316 239 327 360 435 648 640 335 35 93 159 84 187
HA2 362 75 235 212 320 360 435 633 618 335 62 227 492 85 270
HA5 320 75 235 212 306 360 427 620 604 335 62 227 492 85 270

6. CONCLUSIONS

The main conclusions to be drawn are as follows:

(i) Eta-abstraction does not significantly affect worst-case performance (although it affects
beneficially the performance of abstraction algorithms for many "small' expressions).

(ii) The logics CL-Dash and CL-J produce worst-case code which is of size O(n*m), where n
is the size of the expression from which m variables are being abstracted, and although
the other logics considered can be coerced into producing code with similar behaviour, the

Efficient combinator code 223

method for doing it is at best long-winded and at worst produces code which is typically
an order o f magni tude worse than that produced f rom CL-Dash .

(iii) The "or iginal" abstract ion algori thm (Abs/Dash/2) gives remarkably good code, and
at tempts to improve it seem to have limited effect for the "real" functional p rograms that
we have tried (improvement o f a round 10~o).

(iv) We have an algori thm (balancing) which will p roduce code which is within a constant
factor o f the optimal, a l though its per formance on "rea l" functional p rograms tends to
be detrimental.

(v) The problem of optimising the code is NP-Comple te , therefore we do not need to be
disappointed that we have not found all the useful code optimisations.

M a n y unresolved questions remain. Results for other sets o f combina tors and for other
abstract ion algori thms have not been given. Our choice o f combina tors may well be far f rom
optimal, and a different set o f combina tors might yield much improved code. In particular, we have
not been concerned with combina to ry logics which contain an infinite set o f combinators . We do
not, as yet, have many algori thms for improving combina to r code, and more are needed.

7. S U M M A R Y

For several years now it has been recognised that combina tors may be useful as a low-level code
for functional programs. This idea has stimulated several papers, notably ones by Turner, and
several machines (such as the Cambridge SKI machine). Some algori thms to translate a functional
p rogram (written as a lambda-expression) into combina tors are examined, and "worst -case"
analyses for these algori thms presented. These algori thms span several sets o f combinators . When
the set o f combina tors is finite, a lower bound to the per formance of any abstract ion algori thm
is given. The problem o f producing optimal code for the set o f combina tors in t roduced by Turner
is shown to be NP-Comple te . The balancing algorithm, originally devised by Burton, is examined,
and shown to produce code which is within a constant factor o f the optimal. The performance of
balancing for " rea l" programs is looked at, and we show that balancing tends to have a detrimental
effect. Methods o f improving the per formance of balancing are exhibited, together with some other
algori thms for improving combina to r code.

R E F E R E N C E S

1. Hindley J. R., Lercher B. and Seldin J. P., Introduction to Combinatory Logic. Cambridge University Press (1972).
2. Curry H. B., Craig W. and Feys R., Combinatory Logic, Vol. 1. North-Holland, Amsterdam (1968).
3. Seldin J. P. and Hindley J. R. (Eds), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism.

Academic Press, London (1980).
4. Turner D. A., A new implementation technique for applicative languages. Software Pract. Exper. 9, 31-49 (1979).
5. Turner D. A., Another algorithm for bracket abstraction. J. Symbolic Logic 44, 267-270 (1978).
6. Clarke T. J. W., Gladstone P. J. A., MacLean C. D. and Norman A. C., SKIM--the S,K,I reduction machine.

Conference Record of the 1980 LISP Conference, Stanford University, California, pp. 128-135 (1980).
7. Joy M. S., On the efficient implementation of combinators as an object code for functional programs. Ph.D. Thesis,

University of East Anglia (1985).
8. Kennaway J. R., Director strings as combinators. Internal Note, School of Computing Studies and Accountancy,

University of East Anglia, Norwich (1982).
9. Garey M. R. and Johnson D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.

Freeman, San Francisco, California (1979).
10. Burton F. W., A linear space translation of functional programs to Turner combinators. Information Processing Lett.

14, 201-204 (1982).
11. Kennaway J. R., The complexity of a translation of lambda-calculus to combinators. Internal Report CS/82/023/E,

University of East Anglia, Norwich (1982).

About the AmhormMICI-IAEL S. JoY was born in Manchester, England, in 1958, and received the degrees
of B.A. and M.A. from the University of Cambridge and the degree of Ph.D. from the University of East
Anglia. Dr Joy is currently a Lecturer at Wolverhampton Polytechnic. His research interests centre around
declarative languages and their implementations.

About the Author--Vic RAYWARD-SMITH was educated at Tiffin School, Kingston and Hertford College,
Oxford. Having obtained his B.A. in mathematics, he completed a postgraduate diploma in machine

224 M.S. Joy et al.

intelligence at the University of Edinburgh and a Ph.D. from Queen Mary College, London. He is
currently a senior lecturer at the University of East Anglia, Norwich. Dr Rayward-Smith has authored
several undergraduate texts in computing and has research intersts in formal language theory, complexity
theory and algorithm design and analysis.

About the Author--F. WARREN BURTON has a B.S. in applied mathematics and an M.A. in mathematics
from the University of Colorado, and a Ph.D. in computing studies from the University of East Anglia.
He has been on the faculty of Michigan Technological University and the University of East Anglia. He
is currently an associate professor at the University of Colorado at Denver. Dr Burton is a member of
ACM, Sigplan, the IEEE Computer Society and Sigma Xi. His research interests include functional
programming, distributed computing, design and analysis of algorithms and computational geometry.

