
NP-Completeness of a Combinator Optimisation Problem

M. S. Joy

Department of Computer Science,

University of Warwick,

Coventry,

CV4 7AL,

U.K.

V. J. Rayward-Smith,

School of Information Systems,

University of East Anglia,

Norwich,

NR4 7TJ,

U.K.

This revision dated 3 August 1990.

Address for sending Proofs:

Dr. M.S. Joy, Department of Computer Science, University of Warwick, Coventry, CV4 7AL, U.K.

2

Abstract:

We consider a deterministic rewrite system for combinatory logic over combinators S, K, I, B, C, S’, B’ and

C’. Terms will be represented by graphs so that reduction of a duplicator will cause the duplicated expres-

sion to be "shared" rather than copied. To each normalising term we assign a weighting which is the num-

ber of reduction steps necessary to reduce the expression to normal form. A lambda expression may be rep-

resented by several distinct expressions in combinatory logic, and two combinatory logic expressions are

considered equivalent if they represent the same lambda expression (up to β-η-equivalence). The problem

of minimising the number of reduction steps over equivalent combinator expressions (i.e. the problem of

finding the "fastest running" combinator representation for a specific lambda expression) is proved to be

NP-complete by reduction from the "Hitting Set" problem.

3

List of symbols:

α Greek lower-case alpha

β Greek lower-case beta

γ Greek lower-case gamma

η Greek lower-case eta

λ Greek lower-case lambda

ψ Greek lower-case psi

Γ Greek upper-case gamma

Σ Greek upper-case sigma

square (for "end of proof")

O Capital oh

0 Numeral 0

1 Number one

l Lower-case ell (not used as a sub/superscript)

I Upper-case eye

é Lower-case ee acute

ï Lower-case eye diresis

∩ Set intersection

∪ Set union

∅ Empty set

∝ "Reduces to" symbol

4

1. Introduction

The uses of the lambda-calculus [1] and combinatory logic [4,5] as notations for defining functions

are well known. As branches of mathematical logic they hav e been explored in great depth. In recent years,

however, both disciplines have been used in computer science as models for the evaluation of functional

programs. The lambda calculus has served as a starting point for, for instance, SECD machines [7] and

combinatory logic for graph reduction machines [14,16] .

There is a "natural" correspondence between a lambda expression and the function it represents, but

to evaluate a function in such a form leads to complications. This is due to the use in the lambda calculus of

variable names, which results in environments needing to be stored when recursively-defined functions are

called, in order to avoid clashes of local variable names. In combinatory logic no such variables are used, so

the evaluation of a function is simplified. However such a combinator expression will probably not be easy

to read. It is common practice to consider a function as being initially a lambda expression, and then to

apply an algorithm to the lambda expression to eliminate all the variables and introduce combinators. We

assume the reader is familiar with the fundamentals of the lambda calculus and combinatory logic. A good

introduction can be found in [8] . Having created such a combinator expression, it can be considered in a

natural way as being a graph, and to evaluate the function it represents we can apply rewrite rules to the

graph until the graph becomes the required form representing "the answer".

We shall consider the set {S,K,I,B,C,S’,B’,C’} of combinators, partly because it is a set in common

use, partly since it has known abstraction algorithms associated with it. The results we prove will be appli-

cable to many sets of combinators, but the details of the proof are valid only for this set.

A combinatory logic will often be augmented by extra primitives, such as integers, in order to

improve its efficiency as a computer code. In order to simplify our analysis we shall assume that no such

extra primitives are used. If we assume a small finite set of combinators in our combinatory logic, we can

think of each as corresponding to a single "machine instruction", and can thus form a measure of time for

the function to evaluate as being the "number of instructions (reduction steps) executed". This metric is

na ̈iv e, but it will be sufficient for our purposes.

For simplicity in describing the result here, we shall assume that our combinatory logic is augmented

by a (countable) set of variables. Variables and combinators will be considered as "atomic" expressions.

5

Suppose we have a function f written as a combinator expression. We consider the size |f| of the com-

binator expression to be the number of occurrences of atoms (combinators or variables) in it. Suppose f

evaluates, using "normal order" reduction, to "the answer" (that is, an expression in normal form) in r

reduction steps (assuming, of course, that f is a function which evaluates in finite time!). Then the problem

of minimising r over equivalent combinatory logic expressions of size |f| is NP-complete. We prove this by

reduction from the "Hitting Set" problem.

Investigation into this result was motivated by recent techniques for the implementation of functional

programming languages involving the use of combinatory logic not just as a semantic domain, but with

combinators implemented as primitive machine instructions [3,13] . Given a translation of a functional pro-

gram to such combinator code, it is often desirable to optimise the code, and our result establishes an upper

bound to the possibilities for such code improvement techniques.

This result was proved first in [9] and was published (without proof) in [10] .

2. The Optimisation Problem

The main result of this paper is that the following Optimisation Problem ("OP") is NP-complete.

OPTIMISATION PROBLEM (OP)

INSTANCE: A combinator expression E whose only atomic subexpressions are variables x1, ..., xm, and an

integer k.

QUESTION: Does there exist an expression E’, without variables, such that the expression (E’ x1 ... xm)

reduces, using a normal order reduction strategy, in k (or less) reduction steps to E?

Thus E’ is a combinator expression equivalent to the lambda-expression (λx1. ... λxm. E).

We will establish OP ∈ NP, and then the NP-completeness of OP will be proved by exhibiting a poly-

nomial transformation to OP from a known NP-complete problem. We choose to use the following problem

proved to be NP-complete in [6] .

HITTING SET (HS)

INSTANCE: Collection C of distinct subsets of a finite set S such that ci ∈C satisfies |ci|=2 and S=∪C, a

positive integer k ≤ |S|.

6

QUESTION: Does there exist a subset S’ of S such that

(i) |S’| ≤ k, and

(ii) for each ci ∈ C, ci∩S’ ≠ ∅?

Before we can detail the transformation HS ∝ OP, we need to establish our notation and prove some

intermediate results. We do this in sections 3 and 4. In section 5 we return to the transformation and give

the necessary detail.

3. Notations and Assumptions

3.1. Combinator Expressions

A combinator expression is

(i) a variable v, or

(ii) a combinator (an element of {S,K,I,B,C,S’,B’,C’}), or

(iii) an application (L M) where L and M are combinator expressions.

By default, parentheses may be omitted for clarity on the assumption of left-associativity, for example

S w (I y) z

is equivalent to

(((S w) (I y)) z).

We adopt the convention that lower-case Roman letters (with or without subscripts) denote variables

unless otherwise stated. We introduce no extra atoms, such as numbers. The above definition of a combi-

natory logic is still sufficiently rich to be equivalent to a Turing Machine, that is, for any partial recursive

function there exists an expression in the combinatory logic which can be used to compute that function. In

order to simplify our calculation later on, we do not formally define the lambda calculus. Instead we

include variables in our definition of combinatory logic. Let CL denote the set of all such combinator

expressions.

The size of a combinator expression is given by

|E| = 1, if E is an atom, else |(F G)| = |F| + |G|.

For instance, |S w x (I (I y))| = 6.

7

Our plan of attack is to restrict our attention to a subset of lambda expressions which we know will

reduce to normal form in a finite time after they hav e been given the correct number of arguments. These

are "proper combinators" of the shape

λv1. ... λvm.E

where E contains no lambdas and, as atomic subexpressions, only elements of {v1,...,vm}. Thus they can be

thought of as simple functions which rearrange, possibly with duplications, their arguments. If v1 ... vm are

provided as arguments such an function with m lambdas will reduce to normal form (viz. E).

The conversion of such an expression with m lambdas to a combinator expression containing no

lambdas and no variables is equivalent to a map abstract from CL to CL, such that, for each E in CL,

(i) abstract(E) contains no variables, and

(ii) (abstract(E) v1 ... vm) reduces to E.

We use the symbol "≡" to mean "lexically equal to", and the symbol "=" (as a relation between com-

binator expressions) to mean "are equivalent", that is, represent the same lambda-expression. Thus, if E and

F are combinator expressions such that (E v1 ... vm) reduces to an expression G containing only variables as

atomic subexpressions, and (F v1 ... vm) reduces to G also, then E = F.

We use the symbol ">" to denote "reduces to", and ">X" to mean "reduces in one X-reduction step to",

where X is a combinator. The combinators used, originally introduced by Turner in [15] , have definitions

as follows (a, b, c, etc., are used here as meta-variables):

S a b c >S a c (b c)

K a b >K a

I a >I a

B a b c >B a (b c)

C a b c >C a c b

S’ a b c d >S′ a (b d) (c d)

B’ a b c d >B′ a b (c d)

C’ a b c d >C′ a (b d) c

The graph rewrite rules are given in diagrammatic form in figure 1 below; all lines are directed downwards

(the arrows are omitted for clarity). In each rule except those for I and for K the root node of the redex is

overwritten. For the I and K rules the pointer to the redex is redirected. An I or K reduction where the

8

redex is the root of the whole graph is handled as a special case.

. >I a

I a

>K a

K a

b

>S

S a

b

c

a b c

>B

B a

b

c a

b c

>C

C a

b

c

a

b

c

>S′

S’ a

b

c

d

a

b

c

d

>B′

B’ a

b

c

d

a b c d

>C′

C’ a

b

c

d

a

b

c

d

Figure 1: The Graph Rewrite Rules

We assume that reduction is normal order, that is, "leftmost-outermost". This strategy minimises the

number of reduction steps needed to reduce an expression to normal form (as redexes are reduced only if

they are needed) [12] .

Initially, before any reductions are applied to an expression, that expression is stored either as a tree,

or as a graph in which the only nodes with in-degree greater than 1 are atoms. This corresponds with the

notion of a program being read in from a source in a way which naturally implies a simple storage mecha-

nism (knowledge about code-sharing is itself a difficult problem).

9

The phrase code-sharing will refer to nodes in a graph with in-degree greater than 1, and our result

depends on the code-sharing yielded by the S and S’ combinators (the duplicators). Thus

S (a b) (c (d e)) (x y z) > (a b (x y z) (c (d e) (x y z)))

will cause the subgraph which (x y z) represents to be shared after the reduction step, rather than copied.

3.2. An Almost Optimal Abstraction Algorithm

We describe an abstraction algorithm, originally due to Turner [14] (although we phrase it somewhat

differently) which produces code which in many cases is optimal. We shall prove the optimality of the algo-

rithm for some of our expressions.

The algorithm takes the form of a map abs from {variables of CL} × CL → CL. For notational con-

venience we write absx(E) in preference to abs(<x,E>), and absx,y(E) as shorthand for absx(absy(E)).

E and F are here arbitrary combinator expressions, k is an arbitrary combinator expression which contains

no variables. The first possible of the following rules should be applied.

absx(x) ≡ I,

absx(E x) ≡ E, if x does not occur in E,

absx(E) ≡ K E, if x does not occur in E,

absx(k x F) ≡ (S k absx(F)), if x occurs in F,

absx(k x F) ≡ (C k F), if x does not occur in F,

absx(k E F) ≡ (S’ k absx(E) absx(F)), if x occurs in both E and F,

absx(k E F) ≡ (C’ k absx(E) F), if x occurs in E but not in F,

absx(k E F) ≡ (B’ k E absx(F)), if x occurs in F but not in E,

absx(E F) ≡ (S absx(E) absx(F)), if x occurs in both E and F,

absx(E F) ≡ (C absx(E) F), if x occurs in E but not in F,

absx(E F) ≡ (B E absx(F)), if x occurs in F but not in E.

Example

To illustrate this algorithm, consider absx,y(y x x). The successive stages are as follows:

absx,y(y x x)

= absx(absy(y x x))

10

= absx(C (absy(y x)) x)

= absx(C (C (absy(y)) x) x)

= absx(C (C I x) x)

= S’ C (absx(C I x)) (absx(x))

= S’ C (C I) I.

4. Intermediate Definitions and Results

The construction of the transformation HS ∝ OP relies on the use of combinator expressions of the

form Wn
x,y, which we now define.

The functions ψ and V will also be used later on.

Let x, y and v be variables, n a positive integer, and f and g combinator expressions, then we define

ψ0,f,g ≡ g, and ψ r,f,g ≡ (f ψ r−1,f,g) if r > 0. Thus ψ r,f,g ≡ frg,

thus

fr ≡ ψ r−1,f,f.

Let n = 16n, then we define, as illustrated in figure 2 below,

Vn
x,y ≡ Vn,1,v,x,y, where

Vn,m,v,x,y ≡ Vn,m+1,v,x,y (vmn x) (vmn y), if n > m ≥ 1, else Vn,n,v,x,y ≡ (vnn x) (vnn y). This is illustrated in fig-

ure 2.

Finally we define Wn
x,y ≡ (Vn

x,y Vn
y,x). We note that |Vn

y,x| = nn(n+1) + 2n, which is polynomial in n.

The left-depth of a combinator expression is given by

left-depth(E,E) = 0;

left-depth(E,(F G)) = 0, if E does not occur in F, otherwise 1+left-depth(E,F).

For example, left-depth(x,(a b (c x d) e f)) = 2.

We use the phrase "the left-depth of E in F" as shorthand for left-depth(E,F). Right-depth is defined simi-

larly, with (G F) replacing (F G) in the second clause.

The depth of a combinator expression is given by

depth(E,E) = 0;

depth(E,(F G)) = 0, if E does not occur in (F G), otherwise 1 + max(depth(E,F), depth(E,G)).

For example, depth(x,(a b (c x d) e f)) = 5.

11

.

.........

y

x

y

x

yx

vn

vn

v2n

v2n

vnnvnn

Figure 2: V n
x,y

The spine of an expression E is the set of subexpressions of E whose right-depth in E is 0.

For example, spine(a b (c x d) e f) = {(a b (c x d) e f), (a b (c x d) e), (a b (c x d)), (a b), (a)}.

The notation [E/F]G is used to mean "the combinator expression produced when all occurrences of the

expression F in G are replaced by the expression E".

Let F be a combinator expression in normal form containing x1,...,xm as its only atomic subexpressions.

Then optx1,...,xm
(F) will be any combinator expression, not containing any element of {x1,...,xm} such that

(optx1,...,xm
(F) x1 ... xm) reduces to F in the minimum number of reduction steps using normal order reduc-

tion, denoted by redx1,...,xm
(F).

We also need to introduce Z1 and Z2:

Z1 = [(C’S(S’C(K(KI)) vnn)vnn)/(C’B vnn vnn)] absx,y(Vn
x,y),

Z2 = [(S’C(C’S(K(KI)) vnn)vnn)/(B’C vnn vnn)] absx,y(Vn
y,x).

12

We begin by giving some basic results on Vn
x,y, Wn

x,y, Z1 and Z2.

LEMMA. 1.

(absx,y(V n
x,y) x y) reduces to V n

x,y in 4n-2 reduction steps,

(absx,y(V n
y,x) x y) reduces to V n

y,x in 4n-2 reduction steps,

(Z1 x y) reduces to V n
x,y in 4n+3 reduction steps.

(Z2 x y) reduces to V n
y,x in 4n+3 reduction steps.

(Z1 x) and (Z2 y) each reduces to normal form in 2n+1 reduction steps.

Proof. These results are all immediate from the definitions of Vn
x,y, Z1 and Z2.

LEMMA. 2.

red x(V n
x,y) ≥ 2n-1, red x(V n

y,x) ≥ 2n-1,

red x,y(V n
x,y) ≥ 4n-2, red x,y(V n

y,x) ≥ 4n-2.

Proof. The left-depths of x and y in Vn
x,y are 2n-1 and 2n-2 respectively, hence we get the first two inequali-

ties, as a combinator of CL can increase the left- (or right-) depth of one of its arguments by at most 1.

Let X1 ≡ [w1/vn] ([w2/v2n] ([w3/v3n]... ([wn/vnn] Vn
x,y)...)),

and X2 ≡ [w1/vn] ([w2/v2n] ([w3/v3n]... ([wn/vnn] Vn
y,x)...)),

where the wi are distinct new variables. Thus X1 ≡ ((wn x)(wn y)... ((w1 x)(w1 y)), and v occurs in neither

X1 nor X2.

We note that redx,y(X1) = redx,y(Vn
x,y), since the right-depth of vin in v(i+1)n is n, and thus any attempt to

utilise the fact that there exist common sub-expressions of Vn
x,y except the instances of vin in (vin x) and (vin

y) for each i, will necessitate at least (n-1) extra reduction steps, which is more than the number needed by

absx,y(Vn
x,y). X2 is treated similarly. To create each sub-expression of the form (wi x) or (wi y), an A-

reduction

A a1 ... ar ... at >A b1 ... br−1 ... ar+1 ... at (r ≤ t).

where ar is either x or y, is needed. Each reduction step can increase the left-depth of either x or y (but not

both) by at most 1. For, if it increased the left-depth of both by one, at least one more reduction step would

13

be needed to "separate" them in order for them to be passed singly as arguments to the A combinators. We

thus get

redx,y(X1) ≥ 4n-2, and redx,y(X2) ≥ 4n-2. The results for Vn
x,y then follow.

LEMMA. 3.

opt x,y(V n
x,y) ≡ absx,y(V n

x,y), opt x,y(V n
y,x) ≡ absx,y(V n

y,x).

Proof. This follows from lemmas 1 and 2.

LEMMA. 4.

opt x,y(W n
x,y) ≡ absx,y(W n

x,y), opt x,y(W n
y,x) ≡ absx,y(W n

y,x).

Proof. Since no node in X1 nor X2, as defined in lemma 2, with right-depth 0 and left-depth less than 2n+1

can be shared, each reduction step in optx,y(Wn
x,y) may only affect the spine of Vn

x,y or Vn
y,x (but not both).

So each reduction step using optx,y(X1 X2) can be associated with either Vn
x,y or Vn

y,x. Thus

redx,y(Wn
x,y) ≥ redx,y(Vn

x,y) + redy,x(Vn
x,y).

The result then follows from lemmas 2 and 3.

LEMMA. 5.

redv(absx,y(V n
x,y)) ≤ nn + 2n + 8n -3,

redv(absx,y(V n
y,x)) ≤ nn + 2n + 8n -3.

Proof. Let V1 ≡ ψn−1(f,g)v (vn) ≡ absx,y(Vn
x,y), where

f α β γ > (C’S(S’C(α β (β γ)) γ) γ),

g β γ > (C’ B γ γ), and

v ≡ absh(ψn(v,h)).

Thus we have

14

f = (C’ (C’ (S’ (C’ S)))(C’ (C’ (S’ (S’ C)))(C (S’ B) I) I) I),

g = (K (S (C’ B) I)),

v ≡ ψn−1((B v),v) = ψn−1(((S B),I) v), and

vn = (ψn−1((S I), I) v).

Hence,

V0 ≡ (S’ (ψn−1(f,g)) ψn−1((S B), I) (ψn−1((S I), I)) v)

reduces to normal form (absx,y (Vn
x,y)).

V1 ≡ (S’ F (ψn−1((S B), I)) (ψn−1((S I), I)) v), where F is (ψn−1(f,g))

reduces to normal form (absx,y (Vn
x,y)) in at most

1 because of initial S’

+ 9(n-1) because of f

+ 5 because of g

+ n + (n-1)(n-1) because of ψn−1((S B),I), since each B is used for each occurrence of f

+ 2n-1 because of ψn−1((S I), I))

= nn + 2n + 8n - 3 reduction steps.

The result for absy,x (Vn
x,y) is almost identical.

LEMMA. 6.

redv(Z1) ≤ nn + 2n + 8n + 6,

redv(Z2) ≤ nn + 2n + 8n + 6.

Proof. The proof is essentially the same as that for lemma 5, except that

g β γ > (K (K I)),

g = (K (K (K (K I)))),

U0 ≡ (S’ (ψn(f,g)) (ψn−1((S B), I)) (ψn−1((S I), I)) v)

reduces to normal form Z1;

U1 ≡ (S’ F (ψn−1((S B), I)) (ψn−1((S I), I)) v), where f is (ψn(f,g)) reduced to normal form, reduces to normal

form, Z1, in at most

15

nn + 2n + 8n + 6 reduction steps. The result for Z2 is almost identical, with the (C’ S) and (S’ C) in f inter-

changed.

We now examine Z1 and Z2 more closely. First of all, by using Z1 instead of absx,y(Vn
x,y), and Z2

instead of absx,y(Vn
y,x), we have a structure which is more "symmetric". The extra symmetry manifests itself

in the following way:

absx,y(Vn
x,y) = C’ S (S’ C (... (C’ B vnn vnn) ...) vn) vn,

Z1 = C’ S (S’ C (... (C’ S (S’ C(K (K I)) vnn) vnn) ...) vn) vn,

so the former contains an expression (C’ B vnn vnn), which corresponds to (B’ C vnn vnn) in absx,y(Vn
y,x).

Note carefully the ordering of the subscripts x and y.

Apart from the interchange of (C’ B) and (B’ C), absx,y(Vn
x,y) and absx,y(Vn

y,x) can be interconverted merely

by swapping occurrences of (C’ S) and (S’ C). It is not necessary also to swap occurrences of (C’ B) and

(B’ C) in the Zi.

Consider the proof of lemma 5. Since code which reduces to Z1 can be created by swapping the

occurrences of (S’ C) and (C’ S) in the definition of f, we may replace (C’ S) and (S’ C) in U0 by variables

t1 and t2 respectively, and abstract them out. Thus f would become

(C’ (C’ (S’ t1))(C’ (C’ (S’ t2))(C (S’ B) I) I) I).

After U0 had then been reduced to normal form we would have

U0’ = t1 (t2 (t1 (t2 ... (t1 (t2 (K (K I)) vnn) vnn) ...) v2n) v2n) vn) vn.

Abstracting t1 and t2 from this expression yields 8n new combinators, since

U0’ = (U1’ t1 t2) and U0’ = (U2’ t2 t1) where

U1’ ≡ C (S C’ (C’ C (B’ S I (...)) vn)) vn,

U2’ ≡ C’ C (B’ S I (C (S C’ (...)) vn)) vn,

and so an extra 16n reduction steps, as each combinator must be used twice.

16

LEMMA. 7.

optt1,t2
(U0’) = U1’, optt2,t1

(U0’) = U2’.

Proof. We examine the first case; the second is almost identical. As in lemma 2, we are unable to utilise

the code-sharing possibilities offered by the vin, and the other internal nodes of U0’ cannot be shared. Due

to the symmetry of U0’, we are interested in code U and U’ such that (U t1 t2) reduces to (t1 (t2 (U’ t1 t2) vn)

vn) in the minimal number of reduction steps. Each combinator A occurring in U must take as its last argu-

ment precisely one of t1 or t2. It is then straightforward to enumerate the possible U, and the result follows.

However, we cannot simply abstract the ti from U0’. We would, as in lemma 6, need to consider

redv(U1’) and redv(U2’).

LEMMA. 8.

redw,v(w Z1 Z2) ≤ nn + 2n + 28n + 17.

Proof. Replace in U0’ above t1 by (B C (S C’)), and t2 by (B (C’ C) (B’ S I)), thus obtaining U0’’, where

(U0’’ (C’ S) (S’ C)) = Z1 and (U0’’ (S’ C) (C’ S)) = Z2. Thus we have introduced 10 combinators to create

each Zi (total of 20n reduction steps). We hav e also redv(Z1) = redv(U0’’), since the structures of Z1 and

U0’’ are essentially identical. So (C’ B (C (C S’ (C (C I (C’ S)) (S’ C))) (C (C I (S’ C)) (C’ S))) optv(U0’’))

w v reduces to (w Z1 Z2) in at most redv(U0’’) + 11 + 20n reduction steps. Apply lemma 6.

LEMMA. 9.

redw,v(w absx,y(V n
x,y) absx,y(V n

y,x)) ≥ redw,v(w Z1 Z2).

Proof. Clear, by symmetry.

17

LEMMA. 10.

optv(vn) ≡ ψ n−1((S I), I).

Proof. Clear, from inspection.

LEMMA. 11.

redv(Z1) ≥ nn + 2n + 8n - 10.

Proof. We count the minimum number of combinators needed in optv (Z1). We note first that it will be nec-

essary to share certain sections of code. The occurrences of vn must be shared, and by lemma 10, redv(vn) =

2n-1. Since the expressions vin must be shared there will be a function h: vin → v(i+1)n which must be

executed (n-1) times. Each execution of h must require at least n-1 reduction steps, as the depth of vin in

v(i+1)n is n. Since the right-depth of ψn(v,x) is n, at least n-1 reduction steps will be needed to create h ini-

tially. We are using the "simplest" method for obtaining each vin. We thus need an expression Z which will

take as arguments h and vin, returning an expression of the form

(C’ S (S’ C Z’ vin) vin),

where Z’ is Z with arguments h and (h vin). So

Z = S’ (C’ (C’ S)) (S’ (C’ (S’ C)) (S’ B Z’ I) I) I.

This code is optimal. We get 9(n-1) extra reduction steps from the Z, and the result follows. Note the effects

at the "top" and "bottom" of Z1 have been ignored, and will introduce (a few) extra combinators.

LEMMA. 12.

redw,v(w Z1 Z2) ≥ nn + 2n + 25n -11.

18

Proof. We note first of all that the only differences between Z1 and Z2 are the leftmost (C’ S) and (S’ C)

expression referred to at the start of the subsection. Thus the "obvious" way to achieve the expression

optw,v(w Z1 Z2) is to use a strategy similar to that outlined in lemma 8. Such a strategy involves replacing

t1 and t2 in U0’ by expressions consisting only of combinators such that the resulting expression (U0’’, say)

acts as if t1 and t2 had been abstracted out, yet is still of the same essential structure as U0. Thus (U0’’ t1 t2)

reduces to U0’. If such a strategy is adopted, the replacements for t1 and t2 previously given are optimal.

Unlike the previous lemma, it is not obvious that this reduction strategy is optimal. However, it is suffi-

ciently close to optimal for our purposes.

There are two other possible reduction strategies. The first involves creating some (and by symmetry this

implies all) of the vin, and passing them as arguments to code representing Z1 and Z2. This would require

O(n2) extra reduction steps - so such a strategy is unacceptable.

The second involves amending the definition of f so that the number of reduction steps needed to abstract

the ti is less. For instance,

f α β γ > C (S’ C (C’ C (B’ S I (α β (β γ))) γ)) γ

would implement the optimal abstraction of t1 and t2 from U0’ giv en earlier. Now, suppose that we had

decided on another, more efficient, abstraction of t1 and t2 from U0’. The corresponding f will be such that f

α β γ > F, where α, β and γ occur in F, but the depth of α in F is increased by at least one, and thus abstract-

ing α, β and γ from F will yield at least one extra combinator, hence a total of n-1 extra reduction steps. The

optimal number of combinators introduced to abstract t1 and t2 from U0’ is 8n, hence

redw,v(w Z1 Z2) ≥ 2redt1,t2(U0’) + (n-1) + redv(Z1)

2(8n) + (n-1) + (nn + 2n + 8n - 10)

(by lemma 11).

LEMMA. 13.

Let sn,m =
max

E
|absx1,...,xm

(E)| as E ranges over expressions in CL with |E| = n.

Then sn,m < 2mn.

19

Proof. See [9] or [11] .

5. The Transformation

Given an instance, I, of HS, we construct an instance f(I) of OP as follows.

We assume m = |S|, r = |C| and ci = {ci,1,ci,2}, then f(I) comprises

a combinator expression E, containing variables v,d1,...,dm (all distinct), defined by

E ≡ (Wn
c1,1c1,2

... Wn
cr,1cr,2

), where n = 100r3, and

an integer k’ = 30r(m+r) + 4n(r+k) +(nn + 2n + 28n).

Note that the f so constructed is injective, and that the size of the instance of OP is polynomial in the

size of the instance of HS. We see also that m ≤ r2. We shall assume that r is large, for instance r ≥ 100. To

compute the transformation, we need to show that I is a YES-instance of HS iff f(I) is a YES-instance of

OP. Before doing this we motivate our definition and establish two further lemmas.

Let Γ be the set of all functions from {1,...,r} → {1,2}. Thus Γ represents the possibilities for order-

ing the elements of the ci as the suffices of the W’s. Fix some φ ∈ Γ, and let ai = ci,3−φ (i). Let b1,...,bq be an

enumeration of the ai, so we hav e not presupposed an ordering, on the ai, and

X1
i ≡ [(S (C (K I) (vnn ci,3−φ (i)))) / (B (vnn ci,3−φ (i)) vnn)] absci,φ (i)

(Vn
ci,1,ci,2

),

X2
i ≡ [(C (S (K I) vnn) (vnn ci,3−φ (i))) / (C vnn (vnn ci,3−φ (i)))] absci,φ (i)

(Vn
ci,2,ci,1

),

thus (Zj ci,φ (i)) reduces to Xi
j.

Let Y1,...,Y2p be an enumeration of the X1
i and X2

i , where we note that, due to the symmetry of the Xi
j there

must be an even number of Yi.

Let x1
i , x2

i and yj be variables which will correspond with X1
i , X2

i and Yj respectively.

E1 ≡ absy1,...,y2p,b1,...,bq
(E2),

E2 ≡ ((x1
1 a1) (x2

1 a1) ... (x1
r ar) (x2

r ar)),

E3 ≡ E1 Y1 ... Y2p b1 ... bq.

Thus the choice of φ(i) corresponds with code-sharing variables v and ci,φ (i)) in Wn
x,y, and p will corre-

spond to k in HS.

E3 reduces to E in e1+ex reduction steps, where, by lemma 13,

e1 < 2(2p+q)(4r) ≤ 24r2

20

(since q ≤ r and p ≤ r). e1 is the number of combinators introduced by abs in E1, and, by lemma 1, ex =

2r(2n+2) is the number of reduction steps for the X1
i and X2

i .

So we now hav e a situation where we have taken E and abstracted two variables (one of them being

v) from each Wn
x,y in E (we remember that there are three variables occurring in Wn

x,y). By introducing the

bi we have ensured that no predefined ordering has been specified for the abstraction of the variables in E

different to v. This has led to code-sharing; thus if, for instance, Wn
x,y and Wn

z,x are in E, then we may have

chosen to code-share the occurrences of (vin x) in Wn
x,y and Wn

z,x.

Now, Yi = (Zi yi), where Zi ∈ {Z1,Z2}, yi occurs in Yi, and yi ≠ v (1 ≤ i ≤ 2p).

Let E4 = (absz1,z2,d1,...,dm
(E1(z1 y1) ... (z2p y2p) b1...bq)),

where the zi are variables corresponding to the Zi, and z1,z2 is the enumeration of the zi corresponding to

Z1,Z2, and we note that each of Z1 and Z2 contains precisely one variable v.

(E4 Z1 Z2 d1 ... dm) reduces to E3 in e4+ey reduction steps, where

e4 < 2(m+2)(4p + q + 2) < 24mr, by lemma 13.

e4 is the number of combinators introduced by abs in E4,

ey = 2p(2n + 1) is the number of reduction steps for the Z1 and Z2.

Now, let Z = optw,v(w Z1 Z2) and ez = redw,v(w Z1 Z2).

We hav e, by lemmas 8 and 12, nn + 2n + 25n - 11 ≤ ez < nn + 2n + 28n + 17, and

(Z E4 v d1 ... dm) reduces to E3 in e4+ey+ez reduction steps.

We note here that, by using Z1 instead of absx,y(Vn
x,y) and Z2 instead of absx,y(Vn

y,x) we hav e intro-

duced at most 12r extra reduction steps from using the optimal code for each individual Vn
x,y, and have got

improved code for the abstraction of v from Vn
x,y, by lemma 9.

LEMMA. 14.

There exists an expression E5 containing no variables such that (recalling that v, d1,..., dm is our enumera-

tion of the variables occurring in E)

E5 v d1 ... dm reduces to E in e steps, where

e < 30r(m+r) + 4n(r+p) + (nn + 2n + 28n).

21

Proof. From the above discussion, let E5 = (Z E4).

e e1 + ex + e4 + ey + ez

< 24r2 + 2r(2n+2) + 24mr +2p(2n+1) + ez

< 27r(m+r) + 4n(r+p) + ez, since 4r+2p < 3r2

< 30r(m+r) + 4n(r+p) + (nn + 2n + 28n), since 17 < 3r2.

We assume that n is "large" (though only polynomially so) compared to r and m. We hav e found an

expression E5 which after suitable arguments have been added reduces to E in 4n(r+p) + ez + O(r2) reduc-

tion steps. We associate p in this with k in HS. We next show that "optimal" code representing E reduces in

approximately 4n(r+p) + ez reduction steps.

We know the value of ez to within (approximately) 3n. Thus we know the "optimal" size of code,

and have an algorithm for getting to within narrow bounds of such code, and certainly to sufficient accuracy

to evaluate the value of k necessary to furnish a solution of HS. Thus we argue that, if we can find code rep-

resenting E of size at most 30r(m+r) + 4nr + 4nk + (nn + 2n + 28n) for E in polynomial time, we can solve

HS in polynomial time also.

LEMMA. 15.

redv,d1,...,dm
(E) ≥ (4n-2)(r+p) + (nn + 2n + 25n - 11).

Proof. Since the depth of Vn
x,y is greater than nn, optimal code to represent Vn

x,y reduces in at least nn steps,

and by lemma 5 there exists code representing E which reduces in less than 2nn steps. Thus to produce

optimal code for E some code-sharing will be necessary. An "obvious" strategy would be to share as many

common subexpressions as possible, in particular all occurrences of vin and of (vin z), where z ∈

{d1,...,dm}. This does not, however, yield a strategy for producing optimal code, since we may only assume

that most of these subexpressions must be shared, and we have not exhibited an optimal method for gener-

ating them.

Consider Vn
x,y and Vn

a,b, where x, y, a and b are distinct. The only shareable subexpressions are those con-

taining only occurrences of v, that is the vin. Suppose we require to find code V such that (V v x y a b)

reduces to (Vn
x,y Vn

a,b) in the minimum number of steps. Then we may assume that we share code X where

22

(X x y) reduces to Vn
x,y. For, if we share code that allows more complicated arguments, we do not improve

the code we produce, since we still require a similar amount of work for each Vn
x,y, of which less may be

shared. By lemma 3, we may assume that X ≡ absx,y (Vn
x,y). If a ≡ x then this allows us the possibility of

sharing the instances of vin also.

Consider now Vn
x,y and Vn

a,y, where x, y and a are distinct. Suppose we wish to find code V such that

(V v x y a) reduces to (Vn
x,y Vn

a,y) in the minimum number of steps. If we share code as X above, we lose

the possibility of sharing expressions (vin y) containing y. Howev er, if we hav e created absx,y(Vn
y,x), we will

be able to share those expressions. By symmetry, for a non-trivial E it will be necessary to create both

absx,y(Vn
x,y) and absx,y(Vn

y,x), hence we will need at least ez reduction steps to perform that creation.

At this point we note that, by lemma 4, we would not be better off treating each Wn
x,y as a single unit rather

than a combination of Vn
x,y and Vn

y,x.

Each occurrence of absx,y(Vn
x,y) or absx,y(Vn

y,x) will, by lemma 1, require 4n-2 reduction steps, of

which 2n-1 cannot be shared (viz. the second arguments), and 2n-1 may be shared (the first arguments),

thus yielding 4n-2 for each Wn
x,y (total (4n-2)r) and 4n-2 for each shared expression (total (4n-2)p). We also

have, by lemma 12,

ez ≥ nn + 2n + 25n -11.

Using Wn
x,y ensures that, if at any point we introduce absx,y(Vn

x,y), we must also introduce

absy,x(Vn
x,y), thus ensuring symmetry. Use of Z1 and Z2 in the previous analysis serves to iron out the asym-

metry which is introduced at the "bottom" of Vn
x,y when applying abs.

THEOREM. 1.

HS Transforms to OP

Proof. We hav e, from lemmas 14 and 15,

(i) A map f from an instance of HS to an instance of OP which can be evaluated in polynomial time, and

which is injective,

(ii) An algorithm which will find code for an instance OP which reduces (after suitable arguments have

been added) to E in e steps, where

23

e < k’ = 30r(m+r) + 4n(r+k) + (nn + 2n + 28n), and

(iii) A proof that

redv,d1,...,dm
(E) ≥ (4n-2)(r+k) + (nn + 2n + 25n - 11).

The difference between these two bounds is 30r(m+r) + 2(r+k) + 3n - 11, which is less than the change in

value of either of them if k is altered by 1 (viz. 4n), since n = 100r3. If we produce code which reduces in

k’ reduction steps, we can find a value for k which is uniquely determined, which will solve the correspond-

ing instance of HS.

LEMMA. 16.

Suppose expression E1, which contains only combinators, is such that (E1 x1 ... xm) reduces to E3 in p

reduction steps, where E3 contains no combinators and the xi are distinct variables. Then there exists an

expression E2, containing only combinators, such that (E2 x1 ... xm) reduces to E3 in at most p steps, with

|E2| ≤ (| E3| +4p-m)2.

Proof. Let the combinators for the p reduction steps when (E1 x1 ... xm) is reduced be (in order) c1, ..., cp.

We can construct the expression E2 by working "backwards" from the graph representing E3, effectively

"mimicking" the original reduction in reverse. Where necessary we insert a "dummy" symbol, which is

then replaced by an expression when appropriate.

When (E2 x1 ... xm) is finally constructed, each remaining dummy symbol is replaced by a single combina-

tor, as this atom will have been "deleted" when (E2 x1 ... xm) is reduced.

Since the original reduction was normal order, E2 will be in normal form. However there may be some

code-sharing in E2, but since this expression is in normal form the number of reduction steps for (E2 x1 ...

xm) will be the same as if E2 were considered as a tree with the shared subgraphs copied. This is because no

shared node in E2 will be overwritten.

At no point must we introduce more than 4 extra symbols at any one step (for example, suppose our expres-

sion after reduction step n is α; and an S’ reduction is used at reduction step n, then the expression after

step (n-1) would be: (S’ κ β γ δ), i.e. symbol α has been replaced by expression (κ (β δ)(γ δ)).

24

We are constructing a graph, therefore the number of leaf nodes in E2 will be at most (|E3|+4p − m). Since

this graph may contain shared nodes, |E2| ≤ (|E3|+4p − m)2.

Note that this construction is nondeterministic; it assumes one has been able to choose which subexpression

of an an intermediate expression to rewrite in order to mimic the original reduction.

THEOREM. 2.

The Optimisation Problem is in NP.

Proof. From lemma 16, we need only generate expressions E’ nondeterministically, with

|E’| ≤ (|E|+4k′ − m)2, such that the only atomic subexpressions of E’ are combinators and (E’ x1 ... xm)

reduces to E in at most k’ steps. We note here that we have already produced an expression E’ which such

that (E’ x1 ... xm) reduces to E in at most k’ steps (see lemma 14 above), and we may without loss of gener-

ality assume that k<k’. The steps necessary from creating the expression E’ to deciding whether E’ is a

suitable expression can clearly be completed in polynomial time.

THEOREM. 3.

The Optimisation Problem is NP-Complete

Proof. This is a consequence of theorems 1 and 2.

6. Final Observations

If we restrict our attention to a subset of combinators, a subbase, and the corresponding set of func-

tions which are representable using them, then the problem of producing optimal code may be simplified, as

Batini in [2] shows for the subbase {B}.

However, it is reasonable to assume that the result we have giv en is true if we do not restrict the func-

tions we allow, provided that we use only a finite set of combinators. Our proof is specific to one particular

25

set of combinators (it would, for example, fail at lemmas 5 and 6 for a different set of combinators). A gen-

eral proof is required.

We are grateful to Warren Burton, Mike Paterson, Alan Gibbons and Tom Axford for comments on

previous versions of this document, and to the United Kingdom Science and Engineering Research Council

for funding the initial research.

26

References

1. Barendregt, H.P., The Lambda Calculus, its Syntax and Semantics, North-Holland, Amsterdam, NL

(1981). Studies in Logic and the Foundations of Mathematics.

2. Batini, C. and Pettorossi, A., “Some Properties of Subbases in Weak Combinatory Logic,” Report

75-04, Istituto di Automatica, Roma, IT (1975).

3. Clarke, T.J.W., Gladstone, P.J.S., MacLean, C.D., and Norman, A.C., “SKIM - The S,K,I Reduction

Machine” in Conference Record of the 1980 LISP Conference, Stanford University (1980).

4. Curry, H.B., Craig, W., and Feys, R., Combinatory Logic, volume 1, North-Holland, Amsterdam, NL

(1958).

5. Curry, H.B., Hindley, J.R., and Seldin, J.P., Combinatory Logic, volume 2, North-Holland, Amster-

dam, NL (1972).

6. Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-

Completeness, W.H. Freeman, San Francisco, CA (1979).

7. Glaser, H., Hankin, C., and Till, D., Principles of Functional Programming, Prentice-Hall, Engle-

wood Cliffs, NJ (1984). ISBN 0-13-709163-X (pbk).

8. Hindley, J.R. and Seldin, J.P., Introduction to Combinators and λ-Calculus, Cambridge University

Press, Cambridge, UK (1986). London Mathematical Society Student Texts 1. ISBN 0-521-31839-4

(pbk).

9. Joy, M.S., On the Efficient Implementation of Combinators as an Object Code for Functional Pro-

grams, University of East Anglia, Norwich, UK (1985). PhD Thesis.

10. Joy, M.S., Rayward-Smith, V.J., and Burton, F.W., “Efficient Combinator Code,” Computer Lan-

guages, 10, 3/4, pp. 211-224 (1985).

11. Kennaway, J.R., “The Complexity of a Translation of λ-Calculus to Combinators,” Internal Report

CS/82/023/E, University of East Anglia (1982).

12. Klop, J.W., Combinatory Reduction Systems, Mathematisch Centrum, Amsterdam, NL (1980). Math-

ematical Centre Tracts 127.

13. Stoye, W.R., “The Implementation of Functional Languages using Custom Hardware,” Technical

Report 81, University of Cambridge Computer Laboratory, Cambridge, UK (1985).

27

14. Turner, D.A., “Another Algorithm for Bracket Abstraction,” Journal of Symbolic Logic, 44, 3, pp.

67-70 (1979).

15. Turner, D.A., “A New Implementation Technique for Applicative Languages,” Software - Practice

and Experience, 9, pp. 31-49 (1979).

16. Turner, D.A., “Combinator Reduction Machines,” Proceedings of the International Workshop on

High Level Computer Architecture, Los Angeles (1984).

