
Pergamon 0360-1315(95~0056-9

Computers Educ. Vol. 25, No. 3, pp. 105--111, 1995
Copyright © 1995 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0360-1315/95 $9.50 + 0.00

A U T O M A T I C S U B M I S S I O N I N A N E V O L U T I O N A R Y

A P P R O A C H T O C O M P U T E R S C I E N C E T E A C H I N G

MICHAEL LUCK and MIKE JOY
Department of Computer Science, University of Warwick, Coventry CV4 7AL, England

(Received 24 July 1995; accepted 8 August 1995)

Abstract--The teaching of programming languages will often involve students being assessed by means
of programming assignments. The administration of such assessments is a complex and demanding task
which is compounded by increasing numbers of students. Many institutions have attempted to address
this problem by developing computer-assisted learning and assessment systems. However, in the rush to
use technology, they have circumscribed the scope and severely restricted the educational experience to
be gained from these courses. At Warwick, we have adopted an evolutionary approach to computer
science teaching, in which students are exposed to an evolving pool of different tools and techniques from
which they can choose according to their own needs and preferences, It is in this context that we have
developed software for the automatic submission of assignments. This paper discusses this approach and
describes how our automatic submission system fits in with it.

1. I N T R O D U C T I O N

The number of students following computer programming courses--either within a computing
degree or as part of another degree course--is increasing. At the same time, university staff are
under considerable pressure to deliver such courses using available resources with maximum
efficiency. A major and critical part of a programming course consists of the programming
assignments, typically in the form of programs or choices of programs which the students are
required to write. However, the process of testing and marking assessed pieces of software is very
time-consuming and can be unreliable if attempted manually with paper copies of programs.
Sharing the work between several members of staff is one way of coping with the extra load
generated by large student numbers, but it may lead to inconsistencies in marking.

Fortunately, much of the testing and marking process has the potential to be automated. At
Warwick we have been developing software which will allow students to submit programming
assignments on-line, and which will run those programs against test data. In contrast to other
efforts at addressing these issues, this software has been developed in the context of a broad
strategy which we will call an evolutionary approach to computer science teaching. Such a strategy
avoids rigid locally-tailored solutions and instead provides for exposure to a wide range of available
tools and methods. It is evolutionary because it is not prescriptive, but allows the system as a
whole to grow and evolve with corresponding advances in tools and technology. This paper
describes this approach and discusses how our automatic submission system fits in with it. First
we discuss why an automatic submission system is necessary and our aims in developing such a
system. Then we describe some related developments and outline why these are inappropriate.
Finally, we discuss the solution adopted at Warwick which has been developed as part of a much
larger picture, and we assess how the system fits in with and contributes to our evolutionary
approach.

2. MOTIVATION FOR AUTOMATIC SUBMISSION AND ASSESSMENT

At Warwick, as at other universities, we have in the past relied on students handing in paper
copies of programming assignments which are then marked by the appropriate lecturer. This
method of assessing students' programming skills is flawed for several reasons.

105

106 MICHAEL LUCK and MIKE JOY

• A decision must be reached for each submitted program as to the degree it satisfies the
problem requirements. If the program is only available as hard copy it is difficult and time-
consuming to decide whether or not it works. In addition, the final verdict may even be
incorrect.

• It is only possible to demonstrate that a program has been tested on a relatively small set
of test data, and it therefore cannot be tested on unanticipated data. Consequently students
will often tailor their programs to the test data rather than construct more general programs.

• If a student is required to submit test output from a program, that output can easily be
forged.

• The volume of paper required is high, resulting in time spent physically handling it, together
with possible errors if documents are accidentally mis-filed.

In response to these problems, the processes of submission and assessment were analysed. It
was concluded that an automatic submission system is motivated by three primary concerns.

• The need to be efficient. As student numbers rise, the difficulty of effectively and efficiently
managing the manual processes of submitting and assessing asignments, and the cor-
responding workload placed on academic and clerical staff, increase significantly.

• Thewish to demonstrate our commitment to using technology. The application of technology
in the organization of computing-based courses provides a strong and immediate de-
monstration of the relevance and usefulness of the subject matter. This is especially true
when concerned with the automation of those tasks that affect students in their learning
environment on a regular basis. An automated submission system gives evidence of our
own commitment to and enthusiasm for our subject in a real-world environment rather
than the laboratory. We want to make use of technology to provide up-to-date facilities in
a stimulating environment.

• The need to maintain and improve quality, and to recognize that innovative use of technology
is only sensible if high quality results can be achieved. We aim to improve accuracy and
consistency and reduce the time taken in assessing assignments. Students put a large amount
of effort into writing their programs, and expect--and deserve--thorough and accurate
marking of their assignments, coupled with rapid turnaround so that they will receive useful
feedback.

3. R E Q U I R E M E N T S OF AN ON-LINE SUBMISSION SYSTEM

In considering these problems, we identified a number of issues which would need to be addressed
if a feasible system were to be introduced, as one component amongst many in a broader strategy.
These cover technological requirements, specific course requirements, and broader educational
requirements, all in the context of our evolutionary approach to teaching computer science.

• The system must be easy to use--both for the students and for the lecturer setting and
marking an assignment.

• Security is paramount--a l though we accept that complete security on a university computer
network is probably unattainable, we needed to minimise any risks introduced by the
system. These include students "hacking" into the system, students' programs accidentally
or deliberately damaging the system, and the possibility of submitted documents becoming
corrupted.

• The system must be sufficiently flexible to cope with different courses using different
programming languages, both interpreted and compiled.

• The system should provide feedback to students, giving some indication of the performance
of assessed programs.

• The system must not impact on the use of other tools and techniques in a significant way.
Students should still be required to use existing compilers, editors, and other such utilities
in working on assignments, so developing a strong familiarity with a range of available
methods.

Evolutionary approach to computer science teaching 107

• The system must not constrain the ability of students to initiate and pursue their own
learning goals or to develop their skills.

The last two requirements itemized above are particularly relevant to our evolutionary approach.
It is important that students are exposed to a broad range of software tools that is encountered
not just in an academic environment, but also in commercial and industrial settings. There is
minimal educational value in providing software systems that demand significant effort in attaining
a familiarity for regular use, but which do not develop skills that are transferable to the workplace.
In addition, software systems which deny access or the need for access to widely available tools
that are likely to be encountered in commerce and industry severely counteract any benefits to be
gained.

By limiting the functionality of our automatic submission systems, we require students to use
and gain familiarity with those software tools necessary to complete their assignments. Furthermore~
by making a range of tools available but not prescribing the use of any particular tools, we
encourage students to learn much more than is demanded by formal course requirements. As more
and more students purchase their own personal computers (PCs), this takes on even greater
significance. While many software tools and utilities are available for a variety of systems including
PCs and larger systems, allowing students to work on their own machines if they choose, an
encompassing centralized system is unlikely to be available without a prohibitive amount of effort.
CLEM, for example, a hypertext-based system for learning programming [1], has so far been
unavailable for home use due to a combination of cost and technical issues. Limiting functionality
also improves academic portability [2]. Educational software should be able to cope with changes
to the curriculum and to teaching style, avoiding fixed pedagogic content.

Finally, we must consider the problem of keeping pace with technology. This has proved to be
a key issue for hardware in education, given the limited resources that are available. As technology
progresses, machines purchased relatively recently quickly become outdated and must be replaced
as funds allow. This tends to be much less frequent than is desirable. Fortunately, this problem
has been largely confined to hardware while software, in education in particular where much is
freely available, has been kept up-to-date. However, if this freely available software is replaced
with an encompassing locally-developed system, then this immunity is likely to be lost. By contrast,
the evolutionary approach allows the set of tools and utilities available to change over time with
the technology, providing a continually evolving and current environment.

As a simple illustrative example, consider the case of text-formatters. For many years, a principal
means for formatting documents in academic environments was a Unix utility called nroff. This
is a very basic text justifier for line printers. As technology progressed, newer versions of the
program were developed to cater for the new laser printers. At the same time, other developments
were taking place. The growing PC market gave rise to several increasingly powerful word-
processors, while TEX and LATEX [3] were developed for Unix systems, and established themselves
in the education sector. There is now a vast range of tools available for all kinds of machine, and
even tools which have huge user bases are being upgraded. For example~ a new version of LATEX
is shortly to be released. The point of this example is not to document the development of text-
formatters, but to show how quickly and radically even standard utilities are improved and
upgraded. It is vitally important that students are exposed to current technology, and are motivated
to exploit that exposure. Educational software systems that constrain this motivation, either by
removing the need to use certain technology or by limiting students to particular tools, must surely
deny students important opportunities for learning and developing their skills.

4. RELATED DEVELOPMENTS

There have been other attempts to address some of these concerns, and we examined systems
available from other institutions which might have assisted us. These include packages from Collier
at Northern Arizona University, Kay at UCLA, Isaacson and Scott at the University of Northern
Colorado [4], Reek at RIT [5], and a package called Submit developed by Cameron Shelley at
Waterloo. All of these packages excited us, but were inappropriate due to reasons of security. We
were especially concerned about opportunistic attempts by students to exploit loopholes in the

108 MICHAEL LUCK and MIKE JOY

systems, given that the learning environment at Warwick is intended to encourage and stimulate
experimentation.

One package in particular deserves some discussion because of its size and distinct approach.
Ceilidh, a system developed by Steve Benford et al. at Nottingham [6] is a large system that
contains many features including on-line exercises and teaching aids. Each course has several
distinct components, all o f which are accessible from Ceilidh. First, general course information
such as lecture notes and assignment deadlines, specifications and solution outlines can be viewed
or printed. Second, programs can be edited, compiled and tested, with details of the compilation
process hidden to a greater or lesser extent from the student. Third, the programming assignments
can be marked by the system, and the marks provided as feedback, with completed work being
submitted and retained with mark details for further analysis. Finally, model solutions and test
data can be made available to be viewed, run and tested.

While such a system is indeed a formidable achievement--and is gaining wider use [7]--in
encapsulating in one monolithic structure nearly all of the possible forms of interaction that a
student can have on a programming course, it sanitises the learning environment and denies
students the variety of useful experience that they would otherwise have. It suffers from very many
of the problems that our evolutionary approach is intended to avoid. There is a great temptation
in using technology to develop such systems, yet we must be aware of the difficulties that they
cause, and of the barriers that they can create in attempting to provide a rich, flexible and
stimulating learning environment.

5. A U T O M A T I C SUBMISSION AT WARWICK: BO S S

In response to these issues, we have developed our own system for automatic submission of
assignments. The package we developed, together with Chris Box, is named BOSS, and contains
a collection of programs which run under the Unix operating system. It is designed specifically
for courses which have a large number of students attending, and which are assessed by means of
programming exercises. Assessed work must be in a form which can be specified very precisely so
that the output from students' programs can be compared with expected output; it is therefore
not suitable for courses involving more generalized software design. Introductory programming
courses in high-level computer languages are thus the typical target for BOSS.

The basic aims of the system are 2-fold: to assist the lecturer in marking assignments, and to
provide a form of rapid feedback to students. In this respect, the functions of the system are
limited. All development by students of their programs takes place outside the BOSS system. This
includes the processes of editing, compilation, running and testing. The way in which any student
chooses to go about these tasks, and the tools they use, are both issues for the student to decide.
There are no constraints imposed by the BOSS system on these tasks. Only when the student has
a program which they believe to be acceptable is it appropriate to use BOSS for obtaining feedback
or for submission.

The individual component programs of BOSS are as follows.

5.1. The program submit

This program reads a student's program, and stores it so that the lecturer can at a later date
test it and mark it. It is an easily used program which will conduct a dialogue with the student to
ensure that the correct submission is made. Preliminary checks will be carried out on the submitted
program, to ensure that it appears to be in the correct language (for instance). The identity of the
student submitting the program is verified.

An "acknowledgement of receipt" is sent to the student by email; this contains a code which
identifies the contents of their submission. A file only very slightly different (even by just one
character) will generate a different code. Thus if a dispute arises, and it is claimed that a different
file is assessed to that actually submitted, the code can be used to authenticate that file.

A student can also submit extra files (such as might contain documentation) which will also be
available to the lecturer to mark.

Evolutionary approach to computer science teacl~ing 10 ~

5.2. The program run_tests

This program, which can only be run by a course tutor, will cause all submissions for a specified
item of coursework to be run against a number of sets of data. Time and space limits are placed
on the execution of a program so as to prevent a looping program from continuing unchecked,
and other steps are taken to minimize the potential for a program to damage the system. The
output from the student's program is checked against the expected output for each set of datm
typically using a utility such as diff.

5.3. The program mark

This utility also can only be run by a course tutor. Initially the tutor is prompted to selecl one
or more students. Each selected student's program is, in turn, made available to the tutor together
with the output of run_tes ts on that program.

5.4. Tile program tos t submi t

This program, which can be used by the students, will run the program which they are developing
against one of the data sets on which it will eventually be tested, and under precisely the same
conditions, Thus a student can check that their program will run correctly under the final testing
environment. It is not a method for students exhaustively to test their program.

This program is important both for technical and for pedagogical reasons. Since the BOSS
system runs under Unix, the Unix environment is crucial to the correct running of a program,
and many utilities require Unix variables to be set correctly. In addition, programs may exist in
several locations, and a given utility may have different versions. Many systems have, for example,
two or more C compilers. So even if a student's program appears to the student to be working
correctly, it is not always the case that it will work as expected when run by run_tests .

It is important to students as it provides a confidence hurdle which they can pass, by running
their program on a well-chosen data set. They then have a reasonable expectation that their
program is well on the way to completion.

5.5. Discussion

The BOSS system is a tool to allow students to submit assignments, and for those programs to
be tested automatically. It is not an automated marking system. It is the responsibility of the
individual lecturer to provide a marking scheme which takes account of the results produced by
BOSS together with all other factors which may be regarded as important (such as program style,
commenting, etc.).

Action that should be taken when a student's program does not pass one or more of the tests
on which it is run, is again the lecturer's responsibility. It may be desirable to award marks for a
partially working program--however BOSS does not address that problem. We do not aim to
remove the instructor from the teaching loop, but instead simply to assist the instructor in achieving
a quicker, more accurate and more consistent assessment of programming assignments. This is
important, and should be made clear to students to avoid any misconceptions about the extent
and scope of the automated system. It is our experience that students gain confidence from the
system, but they are also uneasy about the possibility of its unlimited significance in the assessment
process.

5.6. Benefits

The BOSS system has provided us with a number of benefits without compromising the general
approach taken of maximizing exposure to standard tools and utilities.

Large numbers of students can be handled efficiently by the system, with security of assignment
submission being assured. Programs submitted cannot be copied by other students, and the
possibility of paper submissions being accidentally "lost" is removed.

Secretarial staff do not need to be employed at deadlines to collect assignments, making more
efficient use of secretarial time, and the volume of paperwork involved is reduced to (almost) zero
both for the lecturer and for administrative and secretarial staff.

The time needed to mark an assignment is reduced considerably, while the accuracy of marking,

110 MICHAEL LUCK and MIKE JOY

and consequently the confidence enjoyed by the students in the marking process, is improved. In
addition, consistency is improved, especially if more than one person is involved in the marking
process.

6. B O S S IN THE EVOLUTIONARY APPROACH

B O S S has been developed in the context of our evolutionary approach, and though it runs
under Unix, it was designed in a modular fashion using standard C and conforming to the emerging
Unix standard known as POSIX (recently renamed PASC). In this respect, it maximizes portability
across different systems, allowing great flexibility. It is also just one of several distinct components
that comprise the complete set of tools available. The evolutionary approach is thus intended to
stimulate and to encourage students to experiment and develop their computing skills, by placing
as few restrictions as possible in the way of individual learning choices.

Course notes, exercises and example programs are available on-line through the use of a variety
of standard tools and utilities including hypertext browsers such as Mosaic and Cello, and other
information delivery systems such as Gopher [8]. These notes are also accessible by navigating the
Unix filestore using generally applicable Unix commands [9]. Students can view these notes in any
way they choose, but are encouraged to gain experience of the more sophisticated tools by virtue
of their graphical interfaces and good previewing facilities.

Programming assignments will often also require accompanying documentation, and this can
be prepared by using any of the variety of text-formatters, word-processors, previewers, spelling-
checkers, and any other relevant software that is available either on university or on personal
machines.

It should be noted that most documentation of software tools and utilities is provided in the
form of Unix on-line manual pages rather than hard-copy paper documentation. This is intended
to encourage students to explore and experiment with the system on-line, and so gain experience
and familiarity.

In summary, students are provided with opportunities to use a variety of hardware platforms
(including PCs and Unix) and software tools for completing their assignments. The only constraint
is that they must at some point load their programs onto the central computers so that they can
be submitted for assessment.

7. EXPERIENCE IN USE

The system we have running has so far been used on three courses, two involving Pascal and
one which covered Unix Shell programming, and each attracting roughly 150 students. As it
stands, the system is functioning well. There has been a generally favourable student response,
and this is expected to improve once the culture of automatic submission has been established
within the Department. In addition, lecturers and tutors have also found the system to be simple
and easy to use, and marking times have been reduced significantly with a corresponding increase
in consistency throughout.

We hope to extend the system to include extra facilities. We are currently designing an extension
to mark which will perform automatic checks to indicate possible instances of plagiarism. Note
that all future developments are designed to enhance the effectiveness of staff in providing a quick
and effective service for students. No developments are intended to have a deleterious effect on
the learning opportunities that are available and an important part of our teaching strategy.

The results of using the system in our evolutionary approach have been highly encouraging,
and the significant beneficial effects of using the system have already been felt by students, academic
staff and secretarial staff alike.

REFERENCES

1. Boyle T., Gray J., Wendl B. and Davies M., Taking the plunge with CLEM: the design and evaluation of a large scale
cal system. Computers Educ. 22, 19-26 (1994).

Evolutionary approach to computer science teaching 111

2. Thomas R., Durable low-cost educational software. Computers Educ. 22, 65-72 (1994).
3. Lamport L., LATEX." A Document Preparation System. Addison-Wesley, Wokingham (1986).
4. lsaacson P. C. and Scott T. A., Automating the execution of student programs. A CM SIGCSE Bull. 21 No. 2, 15-22

(1989).
5. Reek K. A., The try system--or--how to avoid testing student programs. ACM SIGCSE Bull. 21, No. 1, 112-116

(1989).
6. Benford S. D., Burke K. E. and Foxley E., A system to teach programming in a quality controlled environment.

Software Qual. J. 177-197 (1993).
7. Benford S. D., Burke K. E., Foxley E., Gutteridge N. H. and Mohd Zin A., Experience using the Ceilidh system.

Monitor 4, 32-35 (1993/94).
8. Gilster P., Finding it on the Internet, Essential Guide to Archie, Veronica, Gopher. WAIS, W W W and Other Search Tools.

Wiley, New York (1994).
9. Kernighan B. W. and Pike R., The UNIX Programming Environment. Prentice-Hall, Englewood Cliffs, N.J. (1984),

CAE 25-3-C

