
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.,29(8), 721–740 (1999)

A Secure On-line Submission System

MICHAEL LUCK ∗ AND MIKE JOY
Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

(email: {Michael.Luck,M.S.Joy}@dcs.warwick.ac.uk)

SUMMARY

As student numbers on computer science courses continue to increase, the corresponding demands placed
on teaching staff in terms of assessment grow ever stronger. In particular, the submission and assessment
of practical work on large programming courses can present very significant problems. In response to
this, we have developed a networked suite of software utilities that allow on-line submission, testing and
marking of coursework. It has been developed and used over the course of five years, and has evolved into
a mature tool that has greatly reduced the administrative time spent managing the processes of submission
and assessment. In this paper, we describe the software and its implementation, and discuss the issues
involved in its construction. Copyright  1999 John Wiley & Sons, Ltd.

KEY WORDS: submission; assessment; coursework; testing; security; course management

INTRODUCTION

Large numbers of students on computing courses in further and higher education present
a distinct problem for those involved in the delivery of the courses, especially in relation
to the assessment of practical work. The teaching of programming in particular demands the
preparation and assessment of practical exercises which, in the face of such large numbers, can
be prohibitive in terms of time and effort. For an effective course, however, the assignments
must be processed and graded quickly so that students receive useful feedback that can benefit
their progress.

The solution to this problem, as has been recognised by several institutions, lies in the
potential for the processes of submission and assessment of programming assignments to be
automated, at least in part. In essence, there are two important aspects here that can be labelled
asinformation management, relating to the submission and organisation of assignments, and
assessment techniques, relating to the testing of the submitted assignments. While the obvious
issues involved in the introduction of such systems are concerned with pedagogical matters
of how to employ the assessment techniques, user-interface design, and so on, issues such as
security, especially with a user base of technically competent students, are equally important.

The problem

As has been documented elsewhere [1–3], it is generally not possible to assess the
correctness of a program with a large degree of accuracy simply by inspecting the source code

∗Correspondence to: Michael Luck, Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.

CCC 0038–0644/99/080721–20$17.50 Received 26 June 1998
Copyright 1999 John Wiley & Sons, Ltd. Revised 3 March 1999

Accepted 18 March 1999

722 M. LUCK AND M . JOY

listings. While this is obviously true of large programs, it also holds even for small programs
on introductory programming courses. The only way to arrive at an accurate assessment of a
program is by running the program against several sets of test data, yet this is time-consuming,
and can be prohibitive if done manually with large classes. It is possible to require students
to provide evidence of their own testing, but this requires further skills on the part of the
students that are not typically covered by introductory programming courses. Moreover, such
tests might easily befakedby students modifying the output from their programs to give the
desired results.

By automating the processes of submission and testing, these problems, at least to some
extent, can be addressed. Indeed, several distinct requirements of systems for such a purpose
were identified by a recent panel discussion [1], and elsewhere [4,5].

(a) The system must copy the student’s source code program to a location accessible only
by the instructor, noting the date and time of submission.

(b) It should allow for multiple source files of various types, including documentation.
(c) It should allow late submission of assignments.
(d) Before submission, the system should compile and run the program against public test

cases to alert the student to obvious errors.
(e) After submission, the program should be compiled and run against several sets of test

data.

Related work

There have been several attempts to address some of the concerns outlined above, with
varying degrees of success. MacPherson [6] describes a system that allows students to work
in a special course directory in their own filestore, but at the appropriate time transfers
ownership to an instructor who can then subsequently run and test the programs. Canup and
Shackelford [7] have developed a suite of programs for assisting in automatic submission,
but do not address automated testing of programs. Isaacson and Scott [8] use a C shell
script for automating the compilation and testing of student programs against sets of test data
once students have placed their program files in an appropriate directory structure. Similarly,
Reek’sTRY program [2] copies student programs into the instructor’s filestore, runs them
against sets of test input data, and produces a log file that can be used to provide feedback to
students. All of these systems address some of the main functionality requirements described
above, but are rather rudimentary and, more importantly, do not provide adequatesecurity. In
particular, opportunistic attempts by students to exploit loopholes in the systems cause special
concern given that learning environments are generally intended to encourage and stimulate
experimentation.

Alternative approaches, such as that by Dawson-Howe [3], manage the process of
submission and testing through the sending of email messages containing programs, data
and results. While this avoids some of the security loopholes, it does not address many of the
key requirements of such a system as described above. However, Dawson-Howe’s work does
go further than the others in that it includes some simple database management facilities for
maintaining information about submissions and grades, and generating simple reports.

A third class of system, exemplified by one package in particular, deserves some discussion
because of its size and distinct approach.Ceilidh, a system developed by Benfordet al. at
Nottingham [9], is a large system that contains many features including on-line exercises
and teaching aids. Each course has several distinct components, all of which are accessible

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

A SECURE ON-LINE SUBMISSION SYSTEM 723

from Ceilidh. First, general course information, such as lecture notes, assignment deadlines,
specifications and solution outlines, can be viewed or printed. Second, programs can be
edited, compiled and tested, with details of the compilation process hidden to a greater or
lesser extent from the student. Third, the programming assignments can be marked by the
system, and the marks provided as feedback, with completed work being submitted and
retained together with mark details for further analysis. Finally, model solutions and test data
can be made available to be viewed, run and tested.

While such a system is indeed a formidable achievement – and is gaining wider use [10]
– in encapsulating in one monolithic structure nearly all of the possible forms of interaction
that a student can have on a programming course, it sanitises the learning environment by
restricting the nature of interaction. For example, familiarity with underlying tools, programs
and shells is typically gained through experience of using them. Thislearning by doing, by
which compilers and editors are encountered and understood, is denied in Ceilidh, which
instead offers its own set of commands for editing and compilation that do not apply beyond
this particular system. In this way, the variety of useful experience that students might
otherwise have, and which is valuable in gaining familiarity with general software, is no
longer available. In our approach, by contrast, we do not constrain the use of existing tools,
but merely provide extra utilities that are used in conjunction with them to offer increased
functionality. Indeed, there is a great temptation to use technology to develop such systems,
yet we must be aware of the potential difficulties that they can cause beyond the immediate
benefits, and of the barriers to confidence and familiarity that they can create in attempting to
provide a rich, flexible and stimulating learning environment.

An integrated course management tool

This paper describes the design of an integrated software system for the task of submission
and assessment, focusing on the technical issues and the lessons learned. Known asBOSS,
the system comprises a suite of programs that allows students to submit coursework on-line –
typically, but not exclusively, programming assignments – and allows them to be run against
test data, the results of such tests then being made available to staff marking the submitted
work. Some aspects of the software are similar to some of the systems described above (e.g.,
Reek [2]), but these are part of an overall integrated system that addresses the weaknesses
identified. The approach taken has been to isolate tasks that can be fully automated, such as
submissionandtestingof programs, to provide modules to implement each such task, and to
provide a graphical user interface to these modules. In general, it is not feasible to automate
all of the process of assessment –markinga program is a non-trivial process, best performed
by a human. In contrast to alternative approaches elsewhere [9,10], we have attempted to
solve the problems of security and reliability with the intention of seamlessly integrating the
modules into a robust coursework management tool.

The next section provides a functional overview of theBOSSsubmission system, and
identifies the main components. Then, the way in which the wide variety of information
and raw data needed byBOSSis structured, and how it is managed, is described in detail.
The important security aspects of the system are addressed, covering issues of data integrity,
privacy and rogue programs. The main algorithms relating to the submission and testing of
student programs are then presented, and the administration of marking is explained. The
following two sections provide details of the plagiarism detection component and the user-
interface, before concluding with an overall summary of the system and its benefits.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

724 M. LUCK AND M . JOY

File Store

Security

Utilities

User-interface

Testing MarkingSubmission

Figure 1. System overview

THE BOSS SUBMISSION SYSTEM

The BOSSsystem is intended to perform several distinct tasks within a single overarching
framework. It is aimed at course management rather than instruction, in that it incorporates
facilities for submission of assignments, their subsequent testing and marking, and the
provision of feedback on assignments to students. Thus, it does not constrain in any way the
delivery of instructional materials, which is a completely separate problem. To be effective
in addressing these aims, the system must also ensure that security issues are sensibly dealt
with, and that the overall system is well designed and organised.

The structure of the system reflects the conceptual division of the software into three core
modules, each well-defined, which can be treated as largely independent components. These
are represented as the ovals at the top of Figure1, and address submission of assignments,
their testing and their marking.

(a) Thesubmission moduleallows students to submit a piece of coursework, and handles
the task of copying that coursework to a secure location where it can be accessed
subsequently.

(b) Thetesting moduleruns and tests a single piece of coursework against one data set, and
reports success or failure according to the given expected output.

(c) Themarking moduleassists an instructor in marking a collection of coursework after
the submitted programs have been run and tested against several sets of data.

Each of these components provides information through the user-interface that is processed
and managed by lower level utilities that access the central file store through careful and
secure techniques. The arrows in the figure indicate the flow of information through the
system and illustrate its general organisation. Before considering the distinct aspects of these
components, we describe the aspects of the system that cut across them.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

A SECURE ON-LINE SUBMISSION SYSTEM 725

INFORMATION MANAGEMENT

A large part of the system is concerned with information management, as explained briefly
in the introduction. Each student submits files containing programs and possibly other
documentation, and these must be stored so that they may subsequently be accessed, compiled
and tested. It should also be possible to store multiple submissions by a single student, backing
up older copies to a suitable desired depth. All of this, of course, must be done in a secure
fashion so that the stored data is not generally accessible, but only accessible to the instructor
for the purposes of assessment.

The organisation of the stored data is structured around user-centred concepts relating to
high level course organisation. While notions of courses, assignments, etc., are loose and may
differ from institution to institution and from one degree programme to another, in the context
of system design, distinct and specific meanings have been adopted. Acoursedenotes a unit of
a degree programme that contributes to that programme, such as an introductory programming
course on a computer science degree programme. Anassignmentdenotes a piece of work that
forms part, or all, of the credit for a course, typically with a given deadline, and containing one
or moreexercises, each of which is a specified task such as writing a program. These come
together with the convention that, for a given assignment, a student completes exactly one
exercise, so that an assignment requiring students to complete two or more exercises would
be specified as two or more separate assignments.

Using these notions of courses, assignments and exercises, the detailed file system can
then be described. The entire file system structure forBOSSis illustrated in Figure2,
with the store for submitted programs forming a UNIX directory hierarchy by course,
assignment and exercise, as shown in the bottom half of the figure. Each such directory
contains a configuration file namedsettings , which specifies the properties for the course,
assignment or exercise that directory represents. To facilitate discussion of the data, we have
chosen to give specific illustrative names to the files and directories, but naturally these might
be different in a real installation of the software.

Two usercodes are needed,boss to own the software and the submitted programs, and
slave to run programs when they are being tested, as discussed below. Both of these are
indicated in Figure2, which shows the topmost directory as theboss home directory.

At the top level of the file hierarchy there are standard UNIX directories such asman, src ,
anddoc , for storing the utilities and their related documentation, together with the following
application specific files and directories:

(a) A file containing anaudit trail, with entries for each submission, or attempted
submission, is maintained to track submissions for use in the case of conflicts, as
described below. This file is namedaudit.log .

(b) A global configuration file,settings , is used to temporarilydisable the software
should that be required as, for example, with updates or other software maintenance.

(c) For ease of addition of new courses to the system file space, a template of the course
data files is stored in theskel directory.

(d) In order to prevent simultaneous submission of the same exercise, a directory labelled
locks containslock files. Whenever a user runs the program, a file in the directory is
created; when the program terminates, the file is deleted. If the user attempts to run a
second copy of the program, and a lock file is detected, the new program will terminate.

(e) Theslaves directory is used as temporary workspace when running tests on programs
during the assessment phase, and is owned by userslave , as discussed further below.

(f) Finally, the bin directory stores the program modules. This also contains the

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

726 M. LUCK AND M . JOY

Figure 2. The BOSS file space structure

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

A SECURE ON-LINE SUBMISSION SYSTEM 727

Table I. Information contained in thesettings configuration files

Course Assignment Exercise

course code submissions allowed? CPU time limit
exam code multiple files allowed? file size limit
instructor maximum mark language selection
multiple submissions allowed? penalty regime real time limit
student restrictions penalty per day exercise title
course title assignment title
course tutor list

subdirectory,closed , with no general access permissions, and which itself contains
programs that can only be called from programs in thebin directory that areset-uid
userboss . That is, when run, they inherit the file access permissions ofboss rather
than those of the calling program.

As described above, there are other top-level directories for each course, named
course.1 , course.2 , and so on. In each such directory is another configuration file,
again namedsettings , containing course properties including the course title, the course
code number, the usercode of the instructor, and the usercodes of other staff assisting. The
course may be configured so that only students from a given cohort may submit work, in
which case a related text file calledstudents contains the identification numbers of those
students.

Within these course directories are subdirectories for each assignment, which are named
assign.1 , assign.2 , etc. In addition to a title, the deadline and the maximum mark for
the assignment are included in the properties detailed in thesettings file.

Similarly, each assignment directory contains subdirectories for each exercise,ex.1 ,
ex.2 , etc., with each of these containing several further subdirectories:

(a) Thesolutions subdirectory simply contains a directory for each student who has
submitted work for the exercise, comprising copies of the submitted files and the files
used byBOSSto store the test results.

(b) There are several scripts in separate files, initially set to defaults, for compiling a
program in various languages, such ascompile.Fortran , and for comparing two
data sets, such ascompare.boss . The latter may simply contain the UNIX command
diff , or may be made more complex as required.

(c) Finally, there is a directory for each test that is to be carried out on submissions for the
exercise. These contain a script,runtest.boss , to run that test, and directoriesin ,
containing data for the test, andout containing theexpectedoutput for the data. The
input includes the standard input stream, the output includes the standard output and
standard error streams, and both may contain other files as specified.

The contents of thesettingsfile at each level is given by TableI. In part, this summarises and
illustrates the organisation of the whole system in that the levels at which the different aspects
of assignments are considered determine the nature of the system itself. For example, only at
the exercise level is the system concerned with the choice of programming language or time
and space limits for program execution, as these are only relevant at this point. Moreover,

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

728 M. LUCK AND M . JOY

this allows complete flexibility in terms of all these choices until the last point at which a
commitment to them must be made.

SECURITY

With a system such as this in which student work is stored on a central file system, security is
paramount. The importance of this is heightened by the fact that many of the students involved
in submitting work through the system are technically very competent. The broad heading of
security covers several different aspects, each providing distinct possibilities for exploitation
by dishonest and cunning students. By addressing the security issues described below, and by
developing software that correctly implements the corresponding checks, no security failures
have been suffered during the deployment of theBOSSsoftware.

Data integrity

From the moment the student instructsBOSSto complete the process of submitting a piece
of coursework, they must be confident that their files have been copied intact:

(a) All submissions must belogged.
(b) A mechanism forverifying that a stored document used for assessment is the same

as the document actually submitted by a given student is needed to prevent claims of
discrepancies between the two.

(c) A feedbackmechanism must be in place to confirm to students that submission of their
work has been successful.

(d) Theidentityof a student submitting coursework must be established so as to uniquely
identify them.

Logging of all submissions is trivial, and details are recorded in theaudit.log file
mentioned earlier. Verification and feedback are tackled by forming anauthentication code
for each file submitted using theSnefrualgorithm [11]. The Snefru algorithm is asecure hash
function that maps an input file to a fixed-length byte array. Small changes in the input file
generate completely different output that cannot be easily predicted, thus preventing a user
who has submitted work subsequently altering their submission and claiming it was the same
one they had previously submitted. Other algorithms are available, such as MD5 [12], but at
the time of coding, an implementation of Snefru was the most readily available.

A file containing areceipt for the submitted files that includes their authentication codes
is created, and is sent by email to a studentafter their files are submitted successfully. If the
student does not receive such a receipt after submission, they are told to contact the instructor
to resolve the problem. The authentication code for the receipt is written to the log file, and a
copy of the receipt is stored together with the student’s submitted files. Finally, the problem of
student identification is solved by using an existing and available mapping between usercodes
and university identification numbers, with all submissions being stored in directories labelled
with these numbers.

Privacy

Submitted coursework must be stored with sufficient read-protectsecuritymechanisms
to prevent unauthorised access. This is achieved through allowing access only by the
users identified in the appropriatesettings files as described in the previous section.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

A SECURE ON-LINE SUBMISSION SYSTEM 729

Furthermore, writing and reading to and from these directories is only allowed through the
submission and marking modules, and not in any other way.

Rogue programs

Once a program has been stored securely, there can still be problems that arise at the point
of testing the program, and thetest harnessmust guard against a number of scenarios.

(a) It is easy for programs to contain infinite loops and space leaks that cause the software
to crash. The system must beresilient, in that it avoids such situations.

(b) Some programs may, by design or accident, contain code that adversely affects any of
a number of other systems or processes. The test harness must therefore besecure, so
that suchTrojan horsesare prevented from causing damage.

The resilience criterion is handled by standard UNIX signalling. That is, whenever an
undesired event occurs, such as the program running beyond a certain time or using more
than a pre-set amount of memory, the operating system sends asignal to the program that
the program acts upon by terminating cleanly. The security criterion can be handled by
running programs under adummyusercode, the previously mentionedslave , which is
denied all possible permissions, including a home directory. Furthermore, during testing,
a temporary directory whose name is randomly generated, is created within the top-level
slaves directory in which to store acopyof the program, which is then used for testing.
This temporary directory has read and write access denied toall users, includingslave , so
preventing discovery of its location by a malicious program.

SUBMISSION AND TESTING

The core of the system consists of three modules. First, thesubmit module fulfils the
function of copying a student’s assignment to the relevant location in the directory hierarchy.
The second module,onetest , runs a program against a set of data, reporting the results
back to the user. Third, themark module allows an instructor to enter a final mark for a
student into an SQL database. Additionally, there are a number of smaller modules, with
limited functionality, which typically callonetest , and which are used to implement the
full Graphical User Interface (GUI) as described below. In this section, the first two of these
modules is described.

Coursework submission

The main functional requirements for coursework submission include the selection by a
student of the files containing coursework they wish to submit, and the copying of those files
to a location where they can subsequently be accessed by authorised staff.

The coursework submission module forms a set-uid program owned byboss , with
arguments of the student username, the course, assignment and exercise numbers, and the
names of the files to be submitted. The main control algorithm of the program is shown
in TableII , with any error being fatal, causing the program to terminate immediately with
a message displayed to the student. The effective user-id changes between the student and
boss repeatedly depending on whether the files in the student’s file space are being accessed,
or data in theBOSSstore, the latter being minimised.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

730 M. LUCK AND M . JOY

Table II. Algorithm for coursework submission

• if username is valid then
establish corresponding ID

else
error

• if course, assignment and exercise are not valid
or submitted files are not readable then

error
• if settings file does not permit submission then

error
• if student has already submitted then

if not allowed to re-submit then
error

else
move previous submission to back-up location

• create directory in BOSS file space for new files
• for each file

copy file to BOSS file space
calculate authentication code for each file

• create receipt file in BOSS file space
• calculate authentication code for receipt
• add entry to log file
• email receipt to student

The algorithm starts by checking several items of data before proceeding. First, the
username is checked for validity, and if it is valid, the corresponding University identification
number is established. Then, the course, assignment and exercise numbers are checked for
validity, and the specified filenames are checked for read permission. At this point, the
assignmentsettings file is checked for submission permission at this date and time by
the student. If the student has already submitted, then the assignmentsettings file must be
checked for permission to resubmit, and any resubmission must cause the previous submission
to be moved to a backup location. A new subdirectory of the appropriatesolutions
directory named by the University ID number is then created, and each file to be submitted is
copied to that subdirectory. The final part of the submission process requires an authentication
code for each file to be calculated, a receipt file and an authentication code for the receipt to
be created, an entry to be added to the log file, which includes the receipt authentication code,
and an email message containing the receipt to be sent to the student.

Program testing

As described earlier, one of the key problems in dealing with programming assignments is
that it is difficult to assess the correctness of a program simply by inspecting a paper copy. On-
line submission of assignments not only streamlines the administration of submission, it also
facilitates what might be regarded as the primary requirement of such a system, the automated
testing of a program against specified data sets. This is particularly important, since it enables
different parts of a program to be tested, and the program’s limits to be explored, by providing
multiple data sets and running multiple tests.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

A SECURE ON-LINE SUBMISSION SYSTEM 731

Modes of testing

The testing module is used in two circumstances. First, it is used during the process of
assessment, which is described in more detail later. Secondly, students can access the testing
program with asingledata set for each exercise, so that they can try out a program prior to
submission. The aim is not for the module to assist substantially in their debugging activity,
rather to ensure that a program theythinkworks in fact does so. It is not unusual for programs
to generate output containing, for example, control characters that are not seen when the
program is run, but which the testing module would notice. Also, since students can modify
their system environments – and this is especially common when using UNIX – it is possible
for a program to run correctly for a student and fail under the configuration used by the testing
program.

The testing process

A testing protocol for each submitted exercise is needed. First, a collection of data sets
containing the input data and the corresponding expected output must be created. Then, a
test harnesssatisfying two constraints additional to the security conditions detailed above is
used to run programs against the data. First, the test harness must runautomaticallywithout
user intervention, otherwise it would generate its own administrative overheads. Secondly, for
subsequent inspection to take place, information must be stored regarding failed tests.

Theexpected outputfrom a program is stored as a set of files, including two files for the
standard output and standard error streams. Simply by use of indirection, a program requiring
interaction via the standard input and output streams can run without manual intervention.
The actual output from a program is compared file-by-file with the expected output. If an
exactmatch between the two is needed, a utility such asdiff is used to perform the check.
For more complex processing, a short UNIX shell script can be written to preprocess the
submitted program’s output prior to comparison with the expected output files as, for example,
if small variations between the files regarding whitespace or case sensitivity can be ignored.
The results of applyingdiff are used, after processing, to generate reports on the differences
between the files.

Comparison of the actual and expected outputs has perhaps been the most problematic part
of the software, however. First, any non-printing characters in the input todiff cause it
to terminate immediately, with a non-zero exit status. Unfortunately, especially when using
Pascal or C, it is very easy for a program to generate unexpected control characters in its
output. Second, for the marker, and consequently the student, to appreciate the correctness
of a program, they must know exactly how the files differ. However, presenting the output of
diff in such a form as to display that information in a clear and simple to understand form
is not an easy task.

The possibility of automatically assigning marks to programs that are partially correct in
terms of output is one that was considered, but which has no good solution. In general, where
the output generated by a student’s program differs from the expected output, it must be
inspected manually to determine the nature of the inconsistency. There are, however, some
cases where minimal differences such as incorrect formatting, incorrect case of letter, etc.,
might lead to partial marks, and these might easily be incorporated through thediff options.
Similar utilities might be developed for enhanced capabilities in this respect as, for example,
suggested by Reek [2]. Nevertheless, the general case is still problematic, and assessing the
correctness of output when it differs more than just minimally from the expected output can

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

732 M. LUCK AND M . JOY

be a sophisticated issue of judgement for which automatic processes are unsuitable.
The test harness is used by the instructor to run tests on an unlimited number of data sets.

Using a setuid program, the results of the tests are stored in files in the same directory as
the student’s submitted work. Typically, this program is run once, after the deadline for the
assignment in question has passed.

Assessment

It is becoming increasingly important that the quality and consistency of marking should
be high and should be seen to be high. Double-marking is often desirable, and at some
institutions is becoming mandatory. Once a marking scheme has been chosen for a given
exercise, marks awarded must be justifiablerelative to that scheme. The BOSSsoftware
implements a relatively strong version of this paradigm by distinguishing between amarker
and amoderatorfor an exercise.

Running the tests

The first stage in the marking process is to run the tests on all submitted coursework for
a given exercise, as described above. This may be done by any authorised staff, and can be
repeated later if, for example, some students have been allowed to submit late, in which case
only newly submitted coursework will be tested.

Assuming that tests have been run on a set of programs submitted by a class, the results
of the tests are available to assist in the allocation of marks for that piece of work. While
automation of this allocation of marks reduces the time and effort involved, there may
be individual circumstances where the automatically generated test results require human
intervention. For example, a failed test might be due to an obscure system bug orfeaturefor
which it would be inappropriate to penalise the student. Alternatively, a program thatalmost
workedmight be worthy of partial credit.

Using the test harness discussed above, an instructor can run tests on all work for a given
exercise, on multiple sets of data. The results of the tests are then made available via either a
text-based or a graphical interace. The latter allows the instructor to specify other marking
criteria beyond the automatic tests, and for a marker therefore to assign marks without
recourse to a paper marksheet. Several independent markers can be involved to facilitate the
double marking increasingly required by many institutions.

Marksheets

Instructors simply need to specify the categories for which marks are awarded, and the
weight attached to these categories, and a graphical marksheet is constructed. The marksheet
integrates marks resulting from running and testing the program with those relating to other
aspects of the program, such as style, for example.

The marks resulting from the automatic tests, by which a student’s program is run on
several sets of data and the output compared with expected output, are incorporated into the
marksheet directly. If the output is correct and the program passes, then full marks for that
category are declared on the marksheet. If the program fails, then no marks are awarded, but
the tutor or instructor may subsequently adjust the automatically assigned marks to give either
full, half or zero marks. This is shown by the bottom four mark categories on the marksheet
of Figure3, which shows a typical window presented to a marker.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

A SECURE ON-LINE SUBMISSION SYSTEM 733

Figure 3. Electronic marksheet

Each marking category is assigned a weighting by the instructor, and this is hidden from
the individual markers to prevent bias. The other capabilities, accessed by the buttons at the
top of the window, allow the marker to perform the following actions:

(a) Examine the output from the testing program.
(b) Start a UNIX shell in a separate window and in a new, temporary directory into which

all the student’s files have been copied, so that manual examination, and execution if
need be, can take place.

(c) Write a note to the instructor if there are any matters that the marker considers should
be brought to their attention.

(d) Edit a file containing feedback for the student.

The remaining categories of marks are awarded by the instructor interacting with the
marksheet and moving the slider along on a scale of zero to ten. Only when this mark is
combined with the weight, which is not shown to the marker, is the final mark calculated.
This allows independent assessment of various aspects of the program without the marker
being biased by the number of marks to be awarded. Before a category is assigned a mark,
the unmarkedbox is highlighted so that it is obvious which parts of the marksheet need
addressing. At present, these marks are awarded manually, but it is possible for various
automated measurements of source code to be made to arrive at concrete indicators of
programming style such as modularisation, commenting, consistency of indentation, and so
on [13–15].

Subsequently, amoderator, who is typically the course organiser, has access to all of the
first pass marks in order to arrive at a moderated markfor each marking criterion. The
moderation window is illustrated by Figure4, which shows the relevant buttons at the top
as before, but now displays the marks of the individual markers, here named by usercodes
smith andjones , as well as the automatically assigned marks, indicated byauto . On the
right-hand side of the window, the system offers a suggested average as the final mark, which

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

734 M. LUCK AND M . JOY

Figure 4. Electronic moderation sheet

the moderator, with usercodecsrat , can adjust if appropriate. The final marks are shown in
the top right corner.

Once a grade for a student has been established for a given exercise, that grade is stored in
an SQL database, which also contains data such as a student’s name, department and degree
programme. Security here is twofold. Not only does the security of theBOSSsystem forbid
access to the database by unauthorised users, but the database itself restricts access to data.
There is thus double confidence that marks are kept confidential. The data in the database can
be used to produce marksheets for both the instructor and examination secretaries, or other
administrators as necessary, minimising the administrative time needed for the collation of
grades.

PLAGIARISM DETECTION

There is a danger inherent in any on-line submission system, that some weaker or dishonest
students may be tempted to copy, and edit, each other’s work prior to submission. Within the
BOSSsystem, software has been included, called SHERLOCK, to assist in the detection of
similar programs submitted for the same exercise.

The approach adopted, which we callincremental comparison, involves the comparison of
each pair of submitted programs five times:

(a) in their original form;
(b) with the maximum amount of whitespace removed;
(c) with all comments removed;
(d) with all commentsandmaximum amount of whitespace removed; and
(e) translated to a file oftokens.

A token is a value, such asname, operator , begin , loop-statement , that is
appropriate to the language in use. The tokens necessary to detect plagiarism may not be
the same as those used in the parser for a real implementation of the language – it is not
necessary to parse a program as accurately as a compiler. The scheme will work even with
a very simple choice of tokens, and a rudimentary parser, and it is simple to update it for a

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

A SECURE ON-LINE SUBMISSION SYSTEM 735

new programming language. Each line in the file of tokens will usually correspond to a single
statement in the original program.

If a pair of programs contains similarities, then it is likely that one or more of these
comparisons will indicate as much. By examining the similarities and the corresponding
sections of code in the original program, it should be possible to arrive at a preliminary
decision as to whether the similarities are accidental or not. This scheme has been
implemented in the SHERLOCK utility, which allows an instructor to examine a collection
of submitted programs for similarities. SHERLOCK is described in detail elsewhere [16].

There are other approaches to plagiarism detection.Attribute counting[17–19] involves
assigning to each program a single number capturing a simple quantitative analysis of some
program feature; programs with similar attribute counts are potentially similar programs.
Similar, but more complex, techniques include cyclomatic complexity [20] and scope
number [21]. Structural comparisonof programs [22,23] is a potentially more complex
procedure than comparing attribute counts, and depends fundamentally upon the language
in which the programs are written.

Whale [24,25] and Verco [26] have carried out a detailed comparison of various attribute
count and structure comparison algorithms. They conclude that attribute count methods
alone provide a poor detection mechanism, outperformed by structure comparison, while the
structure comparison software developed by Whale,Plague[24] and Wise (Yap) [27] report
a high measure of success. Although the software discussed by Whale was not available,
SHERLOCK has been run on some of the data sets for which the results generated by Plague
were available. In that instance, SHERLOCK detectedall the instances of possible plagiarism
found by Plague, and more, and it appears that the effectiveness of SHERLOCK is similar to
that of Plague. Furthermore, attempts to deceive SHERLOCK by running it on test data failed.

Use of SHERLOCK has decreased the amount of detected plagiarism in our department.
In the first year of its use in 1994, out of more than 550 submissions for programming
assignments, over 6.5 per cent were both detected by SHERLOCK and subsequently
established as genuine instances of plagiarism. Two years later this had fallen to under 1 per
cent. The number offalse hitsis usually small.

It is clear that the volume ofdetectedplagiarism has decreased substantially. This is due
either to a reduced level of plagiarism, or to a greater proportion of students being able to hide
the changes they have made. The latter, as has already been remarked, is a difficult exercise,
and we therefore claim that the incidence of plagiarism has decreased.

USER INTERFACE

The first version of the program featured a text based interface only, and the paradigm an
instructor would use would be to view the text files containing the marks and transcribe
them to a paper marksheet. A GUI was considered but rejected on the grounds that with
the available tools – the relatively low-levelXlib graphics toolkit – the time necessary to
develop the GUI would be disproportionately long. The current user interface is a GUI
written in Tcl/Tk [28], which was relatively straightforward to implement. Unfortunately,
large programs written using Tcl/Tk are difficult to maintain due to the fact that it is an easy-
to-use scripting language with few modular syntactic features.

Nevertheless, the GUI has provided us with the opportunity to develop a paper-free
environment for staff marking coursework, with the benefit that transcription errors between
theBOSSsoftware and marksheets are eliminated. Figure3 shows a typical window presented
to a marker, and Figure4 shows one presented to a moderator. An important observation is

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

736 M. LUCK AND M . JOY

Figure 5. The submission and marking window

that the number of keystrokes required is kept low, so helping both the marking and the
moderation phases to be completed rapidly.

The various different parts of the system are treated in a similar way, so that coursework
submission requires the student to select the course, assignment and exercise, then select the
files to be submitted, and finally either test or submit the work, using a series of interactive
windows constructed using Tcl/Tk. Users with a special status are provided with extra options
in their windows for marking, for example, or for changing the default parameters in the
settings files. Thus, while the interface is consistent inlook and feelacross all users, it
provides extra functionality when required.

For example, Figure5 shows the window that offers the possibility of submitting an
assignment, testing it against the public sample data provided, marking the assignment,
editing the exercise settings such as CPU time allowed, etc., testing the submitted programs
against the unseen data, or editing the weightings attached to each marking category for the
exercise. Of course, this is only presented to the markers. For students, the same window
would appear with only the first two options of testing or submitting. The window that results
from the last of these options is shown in Figure6 as an illustration of the ease with which
the weightings are attached to particular categories of marks. The user interface thus provides
a high degree of flexibility in allowing users to tailor the parameters of a particular course to
their needs.

CONCLUSIONS

Evaluation

In comparison with the related work considered briefly at the start of this paper,BOSSis
a significant improvement. In Dawson-Howe’s system [3], the student’s program is compiled

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

A SECURE ON-LINE SUBMISSION SYSTEM 737

Figure 6. Modification of weightings for marking categories

and executed under the students’ supervision, using data suggested by the instructor, with
email messages containing the program and its results being sent to the instructor. This avoids
security problems, but leaves a large burden on the instructor, because students will invariably
make mistakes in the testing process, and submissions will require further evaluation without
tools to assist in that process. MacPherson [6] simply transfers ownership of files from
students to the instructor at an appropriate time, while Isaacson and Scott [8] require students
to place files readable by the instructor in directories under the instructor’s filestore. In this
latter work, some limits are imposed on CPU time and file sizes, but both of these have
minimal security features, and still require significant manual effort in terms of marking
beyond efforts to compile and run the submitted programs. Reek’s TRY system [2] compiles
and runs programs for students against the instructors protected data, comparing results with
the expected results, and generating a log file of all such tests. Again, however, student
programs are copied to the instructor’s filestore for compilation and execution. Ceildih [9]
is distinct in that it provides an entirely separate environment in which a student can compile
and test programs and, while offering great functionality, insulates students from standard
tools and utilities.

By contrast,BOSSprovides a complete and effective submission system that allows the
testing and submission of programs, and their subsequent evaluation by instructors in an
integrated fashion. In the standard case, no extra effort is needed to process the submissions,
but the capability for them to access and manipulate submissions for further evaluation is
provided. Extensive marking facilities and plagiarism detection software are also included.
Perhaps most importantly, however, is the great effort made to ensure that security is
paramount, and that the possibility of student programs corrupting the instructor’s files or
doing other damage is minimised. Thus, not only doesBOSSsurpass the range of functionality
of the existing systems, it does so based upon a much stronger model of security.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

738 M. LUCK AND M . JOY

Benefits

TheBOSSsystem has assisted us by speeding up and making more accurate the process of
assessing students’ programming coursework. Over the course of six years, it has been used
successfully on several first year programming courses using Pascal and the UNIX shell,
each attended by between 100 and 200 students, and by students on second-year courses on
software engineering using C++, and programming with automata usinglex andyacc . By
adopting a limited but well-defined set of criteria, and ensuring that the software meets the
specifications, we have created a robust and efficient system that minimises the repetitive
administrative tasks faced by instructors.

As it stands, the system is functioning well. There has been a generally favourable
student response, and this has improved as the culture of automatic submission has become
established within the Department. Specifically, students have had virtually no difficulty in
using the system. This seems to imply that the newly established culture has taken root, and
that initial efforts at integrating the system into the fabric of the degree courses are paying
off. In addition, instructors have also found the system to be simple and easy to use, and
marking times have been reduced significantly with a corresponding increase in consistency
throughout.

The BOSSsystem has provided us with a number of benefits without compromising
the general approach taken of maximising exposure to standard tools and utilities. Large
numbers of students have been handled efficiently by the system, with security of assignment
submission being assured. Programs submitted cannot be copied by other students, and the
possibility of paper submissions being accidentally lost is removed. Secretarial staff do
not need to be employed at deadlines to collect assignments, making more efficient use of
secretarial time, and the volume of paperwork involved can be reduced to almost zero both
for the instructor and for administrative and secretarial staff.

More importantly, perhaps, the time needed to mark an assignment is reduced considerably,
while the accuracy of marking, and consequently the confidence enjoyed by the students in
the marking process, is improved. In addition, consistency is improved, especially if more
than one person is involved in the marking process.

User feedback

In terms of students, we sought feedback by means of questionnaires that required students
to comment on their experiences of using the system. These were generally favourable, and
most students considered it an easy system to use. The ability to use the utility to test programs
in advance of submission to check the conformance of their programs to the specification was
also widely appreciated.

The principal concerns expressed fell into two categories. The first of these covered minor
criticisms about the user-interface and the specific messages that the system provides to
students when a program fails the test utility. Many of these criticisms have since been
addressed in the latest version of theBOSSsystem, and development is continuing so that the
user-interface is improved still further. The second – and perhaps more interesting – category
of criticism was that the output expected wastoo precisely specified. BOSSis far too ‘fussy’.
This criticism relates to the format of the output specified – as in the precise layout of tabular
output, for example – and also to some students’ desire to design their own user-interfaces by
establishing interactive prompting for input. This is an important point, for it seemed to reflect
the preference of first year undergraduates who had considerable programming experience

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

A SECURE ON-LINE SUBMISSION SYSTEM 739

prior to joining the course. Many of them were thus used to programming in an unstructured
fashion, and were unused to being required to follow precise specifications. This seems to
imply that resistance to the system is only significant in those students who have already
adopted particular styles of programming that may not be appropriate for the particular
problem at hand, but who may have preconceptions about the nature of programming.

Standards and constraints

The core modules themselves were coded in ANSI C [29] using only system library calls as
specified in the POSIX standard [30], and great care was taken to follow those standards and
to perform exhaustive compile-time and run-time checks on the code. The resulting programs
passed both Sun Microsystems’cc compiler and the Free Software Foundation’sgcc
compiler cleanly with maximum checking enabled. It is interesting to observe that, although
roughly half the code is concerned with mundane tasks such as ensuring all function return
values are as expected, the resulting programs required minimal debugging. Furthermore, the
programs were able to be ported to machines running different versions of the UNIX operating
system with no changes being required to the code.

Future work

We are conscious of the rapid changes in technology affecting the discipline of
programming, and the impact of the Internet on users’ interaction with computers. In
consequence, these tools are being actively developed, via the use of Java [31], to create a
networked and platform-independent version ofBOSS, in order to maintain step with these
paradigm shifts.

One unanswered question that will become ever more pressing, is how a system such as
BOSScan be adapted to handle arbitrary input and output, rather than just being text-based.
As the use of windows, icons and other graphical devices becomes the normal paradigm for
communicating with a program, the functionality of a program must be specified in such a
way that its output can be accurately and automatically checked. It may be possible to replace
arbitrary GUI front ends with different ones to be used in testing, but this can constrain the
nature of the programs themselves. Such constraints may, nevertheless, be a small price to
pay for the benefits of a system that can adequately address the problem of submission and
assessment of student programs in a secure and effective fashion.

ACKNOWLEDGEMENTS

The authors wish to thank Geoff Whale for providing the test data and William Smith and
Chris Box for the initial software development.

REFERENCES

1. D. G. Kay, P. Isaacson, T. Scott and K. A. Reek, ‘Automated grading assistance for student programs’,ACM
SIGCSE Bulletin, 26(1), 381–382 (1994).

2. K. A. Reek, ‘The TRY system – or – how to avoid testing student programs’,ACM SIGCSE Bulletin, 21(1),
112–116 (1989).

3. K. M. Dawson-Howe, ‘Automatic submission and administration of programming assignments’,ACM
SIGCSE, 27(4), 51–53 (1995).

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

740 M. LUCK AND M . JOY

4. M. Joy and M. Luck, ‘Software standards in undergraduate computing courses’,Journal of Computer
Assisted Learning, 12, 103–113 (1996).

5. M. Luck and M. Joy, ‘Automatic submission in an evolutionary approach to computer science teaching’,
Computers and Education, 25(3), 105–111 (1995).

6. P. A. Macpherson, ‘A technique for student program submission on UNIX systems’,ACM SIGCSE, 29(4),
54–56 (1997).

7. M. J. Canup and R. L. Shackelford, ‘Using software to solve problems in large computing courses’,ACM
SIGCSE, 30(1), 135–139 (1998).

8. P. C. Isaacson and T. A. Scott, ‘Automating the execution of student programs’,ACM SIGCSE Bulletin,
21(2), 15–22 (1989).

9. S. D. Benford, K. E. Burke and E. Foxley, ‘A system to teach programming in a quality controlled
environment’,The Software Quality Journal, 177–197 (1993).

10. S. D. Benford, K. E. Burke, E. Foxley, N. H. Gutteridge and A. Mohd Zin, ‘Experience using the Ceilidh
system’,Monitor, 4, 32–35 (1993/94).

11. R. C. Merkle, ‘A fast software one way hash function’,Journal of Cryptology, 3(1), 43–58 (1990).
12. B. Schneier,Applied Cryptography, Wiley, New York, 1994.
13. R. E. Berry and B. A. E. Meekings, ‘A style analysis of C programs’,Communications of the ACM, 28(1),

80–88 (1985).
14. S. Hung, L. Kwok and R. Chan, ‘Automatic programming assessment metrics’,Computers and Education,

20(2), 183–190 (1993).
15. M. J. Rees, ‘Automatic assessment aid for Pascal programs’,SIGPLAN Notices, 17(10), 33–42 (1982).
16. M. Joy and M. Luck, ‘Plagiarism in programming assignments’,IEEE Transactions on Education, (to appear

1999).
17. G. Rambally and M. Le Sage, ‘An inductive inference approach to plagiarism detection in computer

programs’,Proceedings of the National Educational Computing Conference, 23–29. Nashville, TN. ISTE,
Eugene, OR 1990.

18. J. Faidhi and S. Robinson, ‘An empirical approach for detecting program similarity within a university
programming environment’,Computer Education, 11, 11–19 (1987).

19. S. Grier, ‘A tool that detects plagiarism in pascal programs’,12th SIGCSE Technical Symposium, 15–20. St.
Louis, MI, 1981.

20. T. McCabe, ‘A complexity measure’,IEEE Transactions on Software Engineering, 2(4), 308–320 (1976).
21. W. Harrison and K. Magel, ‘A complexity measure based on nesting level’,ACM SIGPLAN Notices, 16(3),

63–74 (1981).
22. S. Robinson and M. Soffa, ‘An instructional aid for student programs’,ACM SIGCSE Bulletin, 12(1), 118–

129 (1980).
23. K. Magel, ‘Regular expressions in a program complexity metric’,ACM SIGPLAN Notices, 16(7), 61–65

(1981).
24. G. Whale, ‘Identification of program similarity in large populations’,The Computer Journal, 33(2), 140–146

(1990).
25. G. Whale, ‘Software metrics and plagiarism detection’,Journal of Systems and Software, 131–138 (1990).
26. K. L. Verco and M. J. Wise, ‘Plagiarism `a la mode: A comparison of automated systems for detecting

suspected plagiarism’,The Computer Journal, 39(9), 741–750 (1997).
27. M. Wise, ‘Detection of similarities in student programs: Yap’ing may be preferable to plague’ing’,ACM

SIGCSE Bulletin, 24(1), 268–271 (1992).
28. J. K. Ousterhout,Tcl and the Tk toolkit, Addison-Wesley, Reading, MA, 1994.
29. ANSI,Programming Language – C, American National Standards Institute, New York, NY 1990.
30. IEEE,Information Technology – Portable Operating System Interface (POSIX) Part 1: System Application

Program Interface (API) [C Language], IEEE, New York, NY 1990.
31. M. Campione and K. Walrath,The Java Tutorial, Addison-Wesley, Reading, MA, 1996.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(8), 721–740 (1999)

	INTRODUCTION
	The problem
	Related work
	An integrated course management tool

	THE BOSS SUBMISSION SYSTEM
	INFORMATION MANAGEMENT
	SECURITY
	Data integrity
	Privacy
	Rogue programs

	SUBMISSION AND TESTING
	Coursework submission
	Program testing
	Modes of testing
	The testing process

	Assessment
	Running the tests
	Marksheets

	PLAGIARISM DETECTION
	USER INTERFACE
	CONCLUSIONS
	Evaluation
	Benefits
	User feedback
	Standards and constraints
	Future work

